Notes

Structure of the 2-Lithio-1,1,3,3-tetramethyl-1,3-disilacyclobutane-N,N,N',N'-Tetramethylethylenediamine Adduct

Jennifer L. Robison, William M. Davis, and Dietmar Seyferth*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received February 11, 1991

Summary: The solid-state structure of the title compound has been determined by X-ray diffraction. The lithium atom is tetracoordinate with short bonds to one carbon atom and two nitrogen atoms of the TMEDA ligand and a weaker (2.33-Å) intermolecular interaction with a hydrogen atom of a CH_3 group on the silicon atom of an adjacent molecule.

During the course of our work on polycarbosilanes,¹ we investigated the metalation of 1,1,3,3-tetramethyl-1,3-disilacyclobutane by t-BuLi-TMEDA (Me₂NCH₂CH₂NMe₂ = TMEDA) and the reactivity of the resulting 2-lithio-1,1,3,3-tetramethyl-1,3-disilacyclobutane-N,N,N',N'tetramethylethylenediamine reagent (1).² In an extension of this research, we have studied the NMR spectra of 2 and have determined the solid-state structure of the adduct by X-ray diffraction.

Results and Discussion

A solution of 1 was prepared by reaction of 1,1,3,3tetramethyl-1,3-disilacyclobutane with a slight excess of *tert*-butyllithium in hexane in the presence of an excess of TMEDA. This solution was concentrated, a small amount of benzene was added, and the resulting solution was cooled to 3 °C. The white solid that crystallized was 2 on the basis of NMR data and the X-ray structural study.

An ORTEP representation of the 1:1 TMEDA adduct of 2-lithio-1,1,3,3-tetramethyl-1,3-disilacyclobutane (1) is shown in Figure 1. On the basis of its Li–C and Li–N interactions, this organolithium compound is monomeric with an apparently tricoordinate lithium atom. Some known monomeric organolithium species contain tetracoordinate lithium: $(Me_3Si)_2CHLi\cdot(Me_2NCH_2CH_2)_2NMe;^3$ $(Me_3Si)(Me_2P)CHLi\cdot(Me_2NCH_2CH_2)_2NMe;^4$ $C_6H_5Li\cdot(Me_2NCH_2CH_2)_2NMe;^5$ $(C_6H_5)_3CLi\cdotMe_2NCH_2CH_2NMe;^6$

Figure 1. ORTEP diagram of 1, with hydrogen atoms excluded.

Table I. Intramolecular Distances (Å) Involving the Non-Hydrogen Atoms for 1

Si(1)-Si(2)	2.558 (3)	N(1)-C(9)	1.444 (7)			
Si(1) - C(1)	1.876 (7)	N(1) - C(11)	1.464 (8)			
Si(1)-C(2)	1.791 (6)	N(1)-Li	2.09 (1)			
Si(1) - C(3)	1.876 (6)	N(2)-C(8)	1.455 (8)			
Si(1) - C(5)	1.869 (6)	N(2)-C(10)	1.467 (8)			
Si(2)-C(1)	1.852 (6)	N(2)-C(12)	1.451 (8)			
Si(2) - C(2)	1.814 (6)	N(2)-Li	2.08 (1)			
Si(2) - C(4)	1.874 (6)	C(2)-Li	2.10 (1)			
Si(2) - C(6)	1.871 (8)	C(7) - C(8)	1.42 (1)			
N(1)-C(7)	1.465 (8)	C(1) - C(2)	2.589 (8)			

 Table II. Selected Intermolecular Distances (Å) and Angles (deg) for 1°

	distance		angle	
Li-H(4)*	2.327	H(4)*-Li-C(2)	116.0	
LiC(3)*	3.15 (1)	H(4)*-Li-N(1)	87.0	
Li-Li**	5.76 (2)	H(4)*-Li-N(2)	102.1	
		H(4)*-Li-C(3)*	12.5	

 a A single asterisk indicates atoms from the nearest next molecular unit in the polymeric structure. Two asterisks indicate the only Li found within 6.0 Å.

lithiofluorene- $2N(CH_2CH_2)_3CH.^7$ A few contain tricoordinate lithium atoms: $(C_6H_5)_2PCH_2Li\cdot TMEDA;^8$ $(C_6H_5Me_2Si)_3CLi\cdot THF.^9$ In the latter, in addition to the

0276-7333/91/2310-3385\$02.50/0 © 1991 American Chemical Society

⁽¹⁾ Seyferth, D.; Lang, H. Organometallics 1991, 10, 551.

⁽²⁾ Seyferth, D.; Robison, J. L.; Mercer, J. Organometallics 1990, 9, 2677.

⁽³⁾ Lappert, M. F.; Engelhardt, L. M.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commun. 1982, 1323.

⁽⁴⁾ Karsch, H. H.; Zellner, K.; Mikulcik, P.; Lachmann, J.; Müller, G. Organometallics 1990, 9, 190.

⁽⁵⁾ Schumann, U.; Kopf, J.; Weiss, E. Angew. Chem., Int. Ed. Engl. 1985, 24, 215.

⁽⁶⁾ Brooks, J. J.; Stucky, G. D. J. Am. Chem. Soc. 1972, 94, 7333.

⁽⁷⁾ Brooks, J. J., Rhine, W.; Stucky, G. D. J. Am. Chem. Soc. 1972, 94, 7339.

⁽⁸⁾ Fraenkel, G.; Winchester, W. R.; Willard, P. G. Organometallics 1989, 8, 2308.

⁽⁹⁾ Eaborn, C.; Hitchocock, P. B.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem. Commun. 1983, 1390.

Table III. Intramolecular Bond Angles (deg) Involving the Non-Hydrogen Atoms for 1

	angle		angle
Si(2)-Si(1)-C(1)	46.3 (2)	C(7)-N(1)-C(11)	107.8 (5)
Si(2)-Si(1)-C(2)	45.2 (2)	C(7)-N(1)-Li	102.8 (5)
Si(2)-Si(1)-C(3)	117.5 (2)	C(9)-N(1)-C(11)	108.3 (5)
Si(2)-Si(1)-C(5)	139.8 (5)	C(9)-N(1)-Li	104.8 (4)
C(1)-Si(1)-C(2)	89.8 (3)	C(11)-N(1)-Li	120.6 (5)
C(1)-Si(1)-C(3)	110.7 (3)	C(8)-N(2)-C(10)	107.1 (6)
C(1)-Si(1)-C(5)	115.6 (3)	C(8)-N(2)-C(12)	112.9 (6)
C(2)-Si(1)-C(3)	119.8 (2)	C(8)–N(2)–Li	100.4 (5)
C(2)-Si(1)-C(5)	118.8 (3)	C(10)-N(2)-C(12)	108.0 (6)
C(3)-Si(1)-C(5)	102.3 (3)	C(10)-N(2)-Li	112.4 (5)
Si(1)-Si(2)-C(1)	47.1 (2)	C(12)–N(2)–Li	115.8 (5)
Si(1)-Si(2)-C(2)	44.4 (2)	Si(1)-C(1)-Si(2)	86.7 (3)
Si(1)-Si(2)-C(4)	115.3 (3)	Si(1)-C(2)-Si(2)	90.4 (3)
Si(1)-Si(2)-C(6)	139.4 (2)	Si(1)-C(2)-Li	109.4 (4)
C(1)-Si(2)-C(2)	89.9 (3)	Si(2)-C(2)-Li	115.4 (4)
C(1)-Si(2)-C(4)	109.9 (3)	N(1)-C(7)-C(8)	115.0 (6)
C(1)-Si(2)-C(6)	113.5 (3)	N(2)-C(8)-C(7)	115.7 (7)
C(2)-Si(2)-C(4)	117.8 (3)	N(1)-Li-N(2)	88.1 (4)
C(2)-Si(2)-C(6)	120.4 (3)	N(1)-Li-C(2)	123.2 (5)
C(4) - Si(2) - C(6)	104.7 (3)	N(2)-Li-C(2)	130.1 (6)
C(7)-N(1)-C(9)	112.5 (6)		

covalent C-Li and O-Li interactions, there also is a weaker, but still significant, interaction between the lithium atom and the ipso carbon atom of one of the phenyl groups.

Intra- and intermolecular bond distances and angles in 1 are given in Tables I-III. The methyl group hydrogen atoms shown in Figure 2 were placed in calculated positions with an average C-H distance of 0.96 Å. In addition to the Li-C interaction of 2.10 (1) Å and the two Li-N interactions of 2.09(1) and 2.08(1) Å, there is a weaker, but still significant, interaction of the lithium atom with a hydrogen atom of a methyl group on a silicon atom in an adjacent molecule (Li-H(4)* = 2.33 Å; Figure 2). This Li-H bonding is continuous throughout the crystal. Thus, the lithium atoms in 1 may be regarded as tetracoordinate, and hence 1 may be considered to be polymeric. In 1, with the assumed position of the bridging H atom, the $C(3)^{*-}$ H(4)*-Li angle is 142° and the C(3)*-Li distance is 3.15 (1) Å. The Li-H interaction can be viewed as bridging, 2, as found in dilithiomethane¹⁰ or as semibridging, 3, as found in cyclohexyllithium.¹¹ Noteworthy is the similarity

. .

of the intermolecular Li-H distance in 1 with those observed in dimeric, unsolvated [(Me₃Si)(Me₂P)CHLi]₂ $(Li - H = 2.33 (3), 2.30 (3), 2.46 (3) Å),^4$ for which Li - H - Cinteractions also were discussed. Intermolecular Li-H-C interactions of similar magnitude, 2.36 Å, which serve to give the lithium atoms a coordination number of 4, also occur in the methyllithium tetramer.¹²

The intramolecular C-Li bond distance in 1 of 2.10 (1) Å is comparable to those found in (Me₃Si)₂CHLi-(Me₂NCH₂CH₂)₂NMe (2.13 (5) Å),³ (PhMe₂Si)₃CLi·THF (2.12 (2) Å),⁹ (Me₃Si)(Me₂P)CHLi·(Me₂NCH₂CH₂)₂NMe $(2.207 (5) Å),^4 (Me_2PCH_2Li \cdot TMEDA)_2 (2.14 (5) Å),^{13}$ (PhSCH₂Li · TMEDA)₂ (2.131 (4) Å),¹⁴ and 2-lithio-2-

Figure 2. PLUTO diagram of 1 showing Li-H(4)* bonding.

Table IV. ¹H and ¹³C NMR Spectral Data for 1

^e At room temperature the SiCH₃ groups (C(3)-C(6)) of the ring silicon atoms give a single resonance at 9.36 ppm. Upon cooling to -32 °C (in toluene- d_8), this resonance broadened only slightly, indicating the equivalence of the CH₃ groups on the NMR time scale. The methine carbon (C(2)) signal remained sharp upon cooling, and no ¹³C-Li coupling was observed.

methyl-1,3-dithiane-TMEDA (2.18 (6) Å).¹⁵ These distances are rather short, and on that basis one might consider them to involve a covalent, at most polarized Li-C bond. However, we note the discussion of Amstutz, Laube, Schweizer, Seebach, and Dunitz¹⁴ in which it is concluded that X-ray results, even those involving electron density difference maps, cannot distinguish between covalent and ionic Li-C interactions.

Aspects of the NMR spectra of 1 may, in principle, be rationalized in terms of the presence of a covalent C-Li bond in which the electron density of the carbon atom is affected by the adjacent silicon atoms. NMR data for 1 are given in Table IV. In the ¹H NMR spectrum of 1 the methine proton signal is a hyperfine triplet that is shifted upfield relative to the methylene proton signal. The triplet pattern results from long-range coupling to the methylene

^{(10) (}a) Stucky, G. D.; Eddy, M. M.; Harrison, W. H.; Lagow, R.; Kawa, H.; Cox, D. E. J. Am. Chem. Soc. 1990, 112, 2425. (b) Novoa, J.
 J.; Whangbo, M.-H.; Stucky, G. D. J. Org. Chem., in press.
 (11) Zerger, R.; Rhine, W.; Stucky, G. D. J. Am. Chem. Soc. 1974, 96,

^{6048.}

 ⁽¹²⁾ Weiss, E.; Hencken, G. J. Organomet. Chem. 1970, 21, 265.
 (13) Engelhardt, L. M.; Jacobsen, G. E.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commun. 1984, 220.

⁽¹⁴⁾ Amstutz, R.; Laube, T.; Schweizer, W. B.; Seebach, D.; Dunitz,
J. D. Helv. Chim. Acta 1984, 67, 224.
(15) (a) Amstutz, R. Seebach, D.; Seiler, P.; Schweizer, B.; Dunitz, J.

D. Angew. Chem., Int. Ed. Engl. 1980, 19, 53. (b) Amstutz, R.; Dunitz, J. J. D.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 465.

				naovorizou ijo Bil		
	molecule	Si _{ring} -C _{ring} av length (Å)	Si _{ring} -C _{ring} - Si _{ring} av angle (deg)	C_{ring} -Si _{ring} -C _{ring} av angle (deg)	θ (deg)	method (ref)
2	H ₂ SI SIH ₂	1.888 (2)	86.8 (3)	90.6 (3)	25 (2)	gas-phase electron diffraction (19)
3		1.895		89 (1)	14 (3)	gas-phase electron diffraction (20)
4		1.918 (5)	87.2 (2)	91.4 (5)	17.8	single-crystal X-ray (21)
	Me ₂ Si SiMe ₂ Me ₂ Si Cl					
5ª		e 1.902 (2)	87.38 (9)	89.62 (9)	18.7	single-crystal X-ray (22)
6 ⁶	R ₂ R ₃ R ₄ R ₁	1.962	84.5	95.4	2.4-5.9	single-crystal X-ray (23)

Table V Structurally Characterized 1.3-Disilacyclobutanes

 $^{a}R = Fe(CO)_{2}Cp.$ $^{b}A: R_{1} = Me; R_{2} = OSiMe_{3}; R_{3} = Ad; R_{4} = SiMe_{2}^{t}Bu. B: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{1} = Me; R_{2} = Me; R_{3} = Ad; R_{4} = SiMe^{t}Bu(OSiMe_{3}). C: R_{3} = Me; R$ $R_2 = Me; R_3 = Ad; R_4 = SiMePh(OSiMe_3)$ isomers.

group protons. The methylene proton signal is a hyperfine doublet due to this coupling. Such long-range proton spin-spin coupling is well-known for small, strained ring systems, and the coupling constants can be as large as 7 Hz.¹⁶ The SiCH₃ proton resonances appear as a singlet. The NCH₂ and N(CH₃)₂ proton signals are singlets. The integrated intensities of the SiCH₃ and NCH₃ proton signals are in agreement with the formulation of 1 as indicated.

The ^{13}C NMR spectrum shows the methine (CLi) carbon atom resonance at 10.04 ppm and that of the methylene carbon atom at 5.02 ppm. This small difference in chemical shifts suggests that the carbon atom bonded to lithium carries only a fractional negative charge. The C-H spinspin coupling constant for the carbon atom to which the lithium is bonded merits comment. A decrease in J_{C-H} on going from the parent hydrocarbon (e.g., RCH₃) to the organolithium (RCH₂Li) has been taken to indicate an increase in negative charge on the carbon atom.¹⁷ In the ¹³C NMR spectrum of 1, J_{C-H} for the carbon atom bonded to Li, 128.8 Hz, actually is slightly greater than J_{C-H} for the methylene carbon atoms of the parent hydrocarbon, 1,1,3,3-tetramethyl-1,3-disilacyclobutane, 123.1 Hz. Thus, both the chemical shift data and the J_{C-H} values indicate that the methine carbon atom of 1 does not contain an excess of negative charge. This, however, is not necessarily evidence in support of a covalent C-Li bond since in this case it is likely that some of the negative charge originally generated at the methine carbon atom is drained away by interaction with the two silicon atoms $(d\pi - p\pi)$ interaction or, more likely, by polarization). Enhancement of CH acidity by adjacent organosilicon groups that facilitates preparation of silvl-substituted alkyllithiums by CH deprotonation is a well-known phenomenon that has been explained in terms of such stabilization of alkyllithiums by adjacent silicon groups.¹⁸ In agreement with the

participation of the silicon atoms in the stabilization of 1 is the ²⁹Si NMR resonance of 1 observed at -10.10 ppm, an upfield shift from δ_{Si} 2.53 ppm for the parent disilacyclobutane. Such a shift would be expected if some of the negative charge is absorbed by the Me₂Si groups of 1. In this connection, it is noteworthy that the endocyclic Si-C(methine) bond distances, C(2)-Si(1) = 1.791 (6) and C(2)-Si(2) = 1.814 (6) Å, are significantly shorter than those of the Si-C(methylene) bonds, C(1)-Si(1) = 1.876 (7) and C(1)-Si(2) = 1.852 (6) Å. Similarly short Si-CLi bonds have been observed in (Me₃Si)₂CHLi. $(Me_2NCH_2CH_2)_2NMe$ (1.78 (3) and 1.79 (3) Å)³ and (PhMe₂Si)₃CLi·THF (1.786 (2) and 1.819 (12) Å).⁹ Such short Si-C distances result from the Si-CLi interactions mentioned above.

The internal angles of the disilacyclobutane ring of 1 all are approximately 90° (Table III), and the ring is puckered by 19.03° from planarity. This value for the ring torsion angles falls well within the values of these angles in other structurally characterized 1,3-disilacyclobutanes (Table V).¹⁹⁻²³ The Si-CH₃ bond distances in 1 are normal (approximately 1.87 Å), but the Si-CH₂ bond distances are short compared with the endocyclic Si-C distances in other known 1,3-disilacyclobutanes (Table V). (Inspection of the Si-C bond distances in Table V shows that the steric crowding resulting from the presence of sterically demanding substituents on the ring carbon atoms results in considerable elongation of the endocyclic Si-C bonds.)

Experimental Section

All reactions were performed under an argon atmosphere with standard Schlenk techniques. Solvents were distilled under nitrogen from the appropriate drying agents. tert-Butyllithium was purchased from Aldrich and titrated for RLi content by the Gilman double-titration method. Tetramethylethylenediamine (TMEDA) was purchased from Aldrich and distilled from calcium

⁽¹⁶⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1981; p 209.

^{(17) (}a) McKeever, L. D.; Waack, R. J. Chem. Soc., Chem. Commun. 1969, 750. (b) Waack, R.; McKeever, L. D.; Doran, M. A. J. Chem. Soc., Chem. Commun. 1969, 117.

⁽¹⁸⁾ Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds, Part 2: Patai, S., Rappaport, Z., Eds.; Wiley: New York, 1989; Chapter 14, p 893.

⁽¹⁹⁾ Rempfer, B.; Pfafferot, G.; Oberhammer, H.; Auner, N.; Boggs,
J. E. Acta Chem. Scand. 1988, A42, 352.
(20) Vilkov, L. V.; Mastryukov, V. S.; Baurova, Y. V.; Vdovin, V. M.;
Grinberg, P. L. Dokl. Akad. Nauk SSSR 1967, 177, 1084.
(21) Fritz, G.; Thomas, J.; Peters, K.; Peters, E. M.; von Schnering, H.
(23) Amort Allo Chem. 1984, 514 621

G. Z. Anorg. Allg. Chem. 1984, 514, 61.
 (22) Auner, N.; Grobe, J.; Schäfer, T.; Krebs, B.; Dartmann, M. J.
 Organomet. Chem. 1989, 363, 7.

⁽²³⁾ Baines, K. M.; Brook, A. G.; Lickiss, P. D.; Sawyer, J. F. Organometallics 1989, 8, 709.

Table VI. Experimental Details

A. Crystal Data						
empirical formula	$C_{12}H_{31}LiN_2Si_2$					
formula weight	266.50					
crystal color, habit	colorless, needle					
crystal dimensions	$0.100 \times 0.100 \times 0.300 \text{ mm}$					
crystal system	monoclinic					
no. of reflections used for unit	25 (12-15°)					
cell determination (2θ range)						
ω scan peak width at half-height	0.19					
lattice parameters	a = 9.408 (6) A					
	b = 16.63 (1) A					
	c = 11.849 (7) A					
	$\beta = 108.51 (4)^{\circ}$					
	$V = 1757 (4) A^{\circ}$					
space group	$P2_1/n$ (No. 14)					
2	4					
D _{calc}	1.007 g/cm ³					
	092 1 91					
$\mu(\mathbf{MO} \mathbf{K}\alpha)$	1.81 cm -					
B. Intensity Me	asurements					
diffractometer	Rigaku AFC6R					
radiation	$Mo K\alpha (\lambda = 0.71069 \text{ Å})$					
temperature	-72 ± 1 ℃					
takeoff angle	2.8°					
detector aperture	6.0 mm horizontal					
	6.0 mm vertical					
crystal to detector distance	31.0 cm					
scan type	$\omega - 2\theta$					
scan rate	$8.0^{\circ}/\min$ (in ω) (8 rescans)					
scan width	$(0.84 + 0.35 \tan \theta)^{\circ}$					
$2\theta_{\rm max}$	50.4°					
no. of reflections measured	total 2895					
	unique 2678 ($R_{\rm int} = .053$)					
corrections	Lorentz-polarization					
	absorption					
	(transmissn factors 0.51-1.48)					
	decay (-48.00% decline)					
C. Structure Solution	and Refinement					
structure solution	direct methods					
refinement	full-matrix least squares					
function minimized	$\sum w(F_0 - F_0)^2$					
least-squares weights	$\overline{4F_{0}}^{2}/\sigma^{2}(F_{0}^{2})$					
p factor	0.03					
anomalous dispersion	all non-hydrogen atoms					
no. observations $(I > 3.00\sigma(I))$	1204					
no. of variables	154					
reflection/parameter ratio	7.82					
residuals: $R; R_w$	0.054; 0.063					
goodness of fit indicator	1.97					
max shift/error in final cycle	0.00					
max peak in final diff map	$0.30 e^{-}/A^{3}$					
min peak in final diff map	$-0.27 \text{ e}^{-}/\text{A}^{3}$					

hydride before use. 1,1,3,3-Tetramethyl-1,3-disilacyclobutane was prepared according to the method of Kriner.²⁴

Proton NMR spectra were obtained in C_6D_6 solution with a Varian XL-300 NMR spectrometer with C_6D_6/C_6H_6 as a reference at 7.15 ppm downfield from tetramethylsilane. ¹³C NMR spectra, both proton coupled and decoupled, were obtained in C_6D_6 on a Varian XL-300 NMR spectrometer operating at 75.4 MHz. ²⁹Si NMR spectra were obtained in C_6D_6 on a Varian XL-300 NMR spectrometer operating at 59.59 MHz with tetramethylsilane (0.00 ppm) as the external standard.

Preparation of 1. A 50-mL flask was charged with 3.198 g (0.022 mol) of 1,1,3,3-tetramethyl-1,3-disilacyclobutane, 5.2 mL (0.034 mol) of TMEDA, and 5 mL of hexane (all operations under an inert atmosphere). To this solution was added by syringe 16.2 mL of 1.5 M *tert*-butyllithium (0.024 mol) in pentane. The mixture was stirred at room temperature for 25 min. Subsequently, the volume was reduced to about 5 mL by distillation of volatiles at room temperature and 0.05 Torr into a liquid nitrogen cooled trap. Freshly distilled benzene (3 mL) was added to the residue, and the resulting clear, slightly yellow solution was

(24) Kriner, W. A. J. Org. Chem. 1964, 29, 1601.

		for Compound			
atom	x	У	2	B(eq)	
Si(1)	0.5359 (2)	0.2309 (1)	0.4592 (1)	4.10 (7)	
Si(2)	0.7750 (2)	0.1676 (1)	0.4400 (1)	4.71 (8)	
N(1)	0.8201 (6)	0.0164 (3)	0.7579 (4)	4.7 (2)	
N(2)	0.5441 (6)	0.0834 (3)	0.7776 (4)	5.1 (3)	
C(1)	0.7141 (8)	0.2731 (3)	0.4445 (5)	5.2 (3)	
C(2)	0.6223 (7)	0.1339 (3)	0.4908 (4)	4.0 (2)	
C(3)	0.3757 (8)	0.2470 (3)	0.3187 (5)	5.3 (3)	
C(4)	0.7679 (9)	0.1407 (4)	0.2847 (6)	6.6 (4)	
C(5)	0.4665 (7)	0.2801 (4)	0.5735 (5)	5.1 (3)	
C(6)	0.9742 (8)	0.1494 (4)	0.5326 (6)	6.1 (3)	
C(7)	0.751 (1)	-0.0114 (5)	0.8458 (7)	7.8 (4)	
C(8)	0.594 (1)	0.0019 (5)	0.8144 (7)	8.3 (5)	
C(9)	0.8078 (8)	-0.0420 (4)	0.6651 (6)	6.1 (3)	
C(10)	0.385 (1)	0.0785 (4)	0.7070 (7)	6.9 (4)	
C(11)	0.9794 (8)	0.0307 (4)	0.8202 (5)	5.7 (3)	
C(12)	0.5577 (9)	0.1367 (5)	0.8774 (6)	7.2 (4)	
\mathbf{Li}	0.680 (1)	0.1107 (6)	0.6738 (8)	5.0 (5)	
H(1)	0.6994	0.3051	0.3740	6.3	
H(2)	0.7700	0.3051	0.5114	6.3	
H(3)	0.5596	0.0922	0.4393	5.0	
H(4)	0.3560	0.3030	0.2978	6.9	
H(5)	0.3977	0.2232	0.2481	6.9	
H(6)	0.2844	0.2227	0.3188	6.9	
H(7)	0.6683	0.1466	0.2292	8.5	
H(8)	0.8344	0.1725	0.2574	8.5	
H(9)	0.7957	0.0845	0.2799	8.5	
H(10)	0.5405	0.2781	0.6524	6.5	
H(11)	0.4482	0.3381	0.5569	6.5	
H(12)	0.3764	0.2580	0.5782	6.5	
H(13)	1.0047	0.0940	0.5284	7.4	
H(14)	1.0440	0.1818	0.5056	7.4	
H(15)	0.9929	0.1619	0.6147	7.4	
H(16)	0.7725	-0.0647	0.8650	9.2	
H(17)	0.7915	0.0215	0.9177	9.2	
H(18)	0.5585	-0.0153	0.8778	9.2	
H(19)	0.5476	-0.0358	0.7476	9.2	
H(20)	0.7082	-0.0538	0.6217	7.4	
H(21)	0.8575	-0.0219	0.6094	7.4	
H(22)	0.8593	-0.0917	0.6967	7.4	
H(23)	0.3460	0.1304	0.6810	8.6	
H(24)	0.3703	0.0445	0.6394	8.6	
H(25)	0.3292	0.0562	0.7552	8.6	
H(26)	1.0288	-0.0191	0.8511	6.8	
H(27)	1.0259	0.0510	0.7639	6.8	
H(28)	0.9932	0.0677	0.8820	6.8	
H(29)	0.6629	0.1422	0.9243	8.9	
H(30)	0.5236	0.1898	0.8482	8.9	
H(31)	0.5041	0.1178	0. 925 3	8.9	

kept at 3 °C for 4 h. White crystals formed. The supernatant solution was removed by cannula, and the crystals were washed twice with 10-mL portions of cold hexane. Subsequently, they were dried in vacuo.

X-ray Crystallographic Study of 1. Data Collection. A colorless needle crystal of 1, $C_{12}H_{31}N_2LiSi_2$, having approximate dimensions of $0.100 \times 0.100 \times 0.300$ mm was mounted on a glass fiber under a stream of nitrogen. All measurements were made on a Rigaku AFC6R diffractometer with graphite-monochromated Mo K α radiation and 12-kW rotating-anode generators.

Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of two carefully centered reflections in the range $13.08 < 2\theta < 13.40^{\circ}$, corresponded to a monoclinic cell with the dimensions given in Table VI. Based on the systematic absences of $h01 (h + 1 \neq 2n)$ and $0k0 (k \neq 2n)$, the space group was determined to be $P2_1/n$ (No. 14).

Structure Solution and Refinement. The structure was solved by direct methods.²⁵ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions ($\langle C-H \rangle = 0.96$ Å; B(H) = 1.2B(C)). The final cycle of

⁽²⁵⁾ Gilmore, C. J. MITHRIL—an integrated direct methods computer program, University of Glasgow, Scotland, 1984; J. Appl. Crystallogr. 1984, 17, 42–46.

33**89**

full-matrix least-squares refinement was based on 1204 observed reflections $(I > 3.00\sigma(I))$ and 154 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of $R = \sum ||F_0| - |F_c|| / \sum |F_0| = 0.054$ and $R_w = [(\sum w(|F_0| - |F_c|)^2 / \sum wF_0^2)]^{1/2} = 0.063$.

The standard deviation of an observation of unit weight was 1.97. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.30 and $-0.27 \text{ e}^{-}/\text{Å}^3$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber.²⁶ Anomalous dispersion effects were included in F_{c} ;²⁷ the values of $\Delta f'$ and $\Delta f''$ were those of Cromer.²⁸ All calculations were performed with use of the TEXSAN²⁹ crystallographic software

(26) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.

(27) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
(28) Cromer, D. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A. package of Molecular Structure Corp.

Table VII is a listing of the positional parameters and the B(eq) values for the atoms.

Acknowledgment. We are grateful to the Air Force Office of Scientific Research (AFSC) for support of this work.

Registry No. 1, 129152-58-5; 1,1,3,3-tetramethyl-1,3-disilacyclobutane, 1627-98-1.

Supplementary Material Available: Tables of U values, intramolecular distances involving the hydrogen atoms, and torsion or conformation angles (5 pages); listings of observed and calculated structure factor amplitudes (9 pages). Ordering information is given on any current masthead page.

(29) TEXSAN—TEXRAY Structure Analysis Package, Molecular Structure Corp., 1985.

Bis((2,6-diisopropylphenyl)imido) Complexes of Molybdenum(VI)

N. Bryson, M.-T. Youinou, and J. A. Osborn*

Laboratoire de Chimie des Métaux de Transition et de Catalyse (URA 424 du CNRS), 4 Rue Blaise Pascal, 67000 Strasbourg, France

Received November 15, 1990

Summary: The molybdenum(VI) complex (Ar'N)₂MoCl₂. THF (Ar' = 2,6-diisopropylphenyl) was prepared by reaction of MoO₂Cl₂ with Ar'NCO at 70 °C in THF. The preparations of the derivatives Mo(NAr')₂Np₂, Mo-(NAr')₂Mes₂, Mo(NAr')₂MesBr, Mo(NAr')₂(NEt₂)Cl, and Mo-(NAr')₂(NEt₂)₂ from Mo(NAr')₂Cl₂·THF are described. In addition, the complex Mo(NAr')₂(NHAr')₂ has been synthesized and characterized crystallographically. Crystal data: MoC₄₈H₇₀N₄, M_r = 799.06, monoclinic, $P2_1/n$, a = 9.874 (3) Å, b = 24.004 (8) Å, c = 19.220 (7) Å, β = 93.34 (2) Å, V = 4547 Å³, Z = 4, ρ_{calc} = 1.167 g cm⁻³, λ = 1.5418 Å, μ = 26.35 cm⁻¹, T = -100 °C, R = 4.22% for 4426 unique observed [$I \ge 3\sigma(I)$] reflections, R_w = 7.65%.

The organoimido ligand $= NR^{2-}$ exerts a stabilizing influence on high oxidation states similar to that of the oxo ligand O^{2-} but additionally can provide, by modification of the R groups, variations in electronic and steric effects. For example, complexes involving imido groups have found use as designed electrophilic catalysts for olefin metathesis^{1,2} and for C-H activation.³ Also, interesting protonation-deprotonation reactions of tungsten and molybdenum imido complexes have recently been reported.^{4,5} We have been interested in generating coordinatively unsaturated

molybdenum(VI) complexes of the (2,6-diisopropylphenyl)imido ligand (Ar') for further investigations in the area of hydrocarbon activation. Although molybdenum complexes of this ligand exist, they have been prepared by rather tedious routes.¹ In this paper, we describe the convenient preparation of the (Ar'N)₂MoCl₂·THF complex, which serves as an important starting material for this chemistry. The synthesis of some alkyl (aryl) and amido derivatives are presented along with an X-ray structure of one such derivative.

Results and Discussion

The complex Mo(NAr')₂Cl₂·THF (1) was prepared under an inert atmosphere by reacting freshly sublimed MoO_2Cl_2 with 2 equiv of Ar'NCO in THF at 70 °C according to a method previously reported.² The reaction was complete after 3 days. Following evaporation of the solvent, 1 was recovered as a dark red powder in excellent yield. Mo-(NAr')₂Cl₂·THF, which is very soluble in nonpolar organic solvents, was recrystallized from pentane to give analytically pure material. The product is very sensitive to air and moisture both in solution and in the solid state.

Alkylation of 1 using neopentyllithium in diethyl ether yielded the orange air-sensitive $Mo(NAr')_2Np_2$ (2), which was recrystallized from pentane. If 1 equiv of LiNp was used, only the starting material 1 and the dineopentyl complex 2 (in a 1:1 ratio) were observed by ¹H NMR spectroscopy. Comparison of the ¹H NMR spectra of $Mo(NAr')_2Np_2$ (2) and $Mo(NBu^{t})_2Np_2^2$ prepared previously shows that the stronger electron-withdrawing arylimido ligand leads to a significant downfield shift of the neopentyl α -hydrogens from 1.89 to 2.35 ppm.

The compound $Mo(NAr')_2Cl_2$ ·THF (1) was allowed to react with 2 equiv of mesitylmagnesium bromide (MesMgBr) in THF. After 12 h, the monosubstituted product $Mo(NAr')_2MesX$ (4) (X = Br) comprised ca. 75% of the reaction products as determined by ¹H NMR spectroscopy. The analytical results and mass spectrum

^{(1) (}a) Schrock, R. R.; Murdzek, J. S.; Bazan, G.C.; Robbins, J.; Di-Mare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Murdzek, J. S.; Schrock, R. R. Organometallics 1987, 6, 1373-1374. (c) Schaverien, C. J.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1986, 108, 2771.

C. J.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1986, 108, 2771.
 (2) Schoettel, G.; Kress, J.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1989, 1062.

 ^{(3) (}a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem.
 Soc. 1988, 110, 8729. (b) Cummins, C. C.; Baxter, S. M.; Wolczanski, P.

<sup>T. J. Am. Chem. Soc. 1988, 110, 8731.
(4) Danopoulos, A. A.; Wilkinson, G.; Hursthouse, M. B.; Hussain, B. Polyhedron 1989, 8, 2947.</sup>

⁽⁵⁾ Danopoulos, A. A.; Wilkinson, G.; Hussain, B.; Hursthouse, M. B. J. Chem. Soc., Chem. Commun. 1989, 896.