anion. This formed an infinite chain running through the cell. Although the structure can be described as repeating units of $Zn_6Cl_{14}^{2-}$, with the structure shown in Figure 7, the chain was disordered at all sites. It appeared that the chains actually consisted of a mixture of $[Zn_6Cl_{14}^{2-}]_n$ and $[Zn_7Cl_{16}^{2-}]_n$, the latter containing an adamantane-like $Zn_4(\mu$ -Cl)₆²⁺ unit. The objective of the present work was the characterization of the $\{[(\eta - C_5Me_5)Nb(\mu$ -Cl)(μ -O)]₃]⁺ cation, and it was clear that only a very complicated and carefully refined model for the chlorozincate anion would be adequate to describe the salt. No detailed investigation of the site occupancies of the Zn and Cl atoms was undertaken. In the final difference Fourier all of the largest peaks were in the region of the chlorozincate chain. The atomic coordinates are given in Table VIII, diagrams in Figures 4 and 7, and relevant distances and angles in Table II, and other details are available as supplementary material.

Structure Determination of the $Zn_2Cl_6^{2-}$ Salt of 3⁺. This was uneventful. Some of the C atoms had nonpositive thermal parameters when refined anisotropically. This was due to the low percentage of observed data. There was also evidence of disorder in the $C_5(CH_3)_5$ ring attached to Nb(3). Because of the limited data, no attempt was made to model this disorder, and all C atoms were refined isotropically. The atomic coordinates are given in Table IX, diagrams in Figures 8 and 10 (the $Zn_2Cl_6^{2-}$ anion was similar to that shown in Figure 5, as is clear from Table IV), and relevant distances and angles in Tables III and IV. Other details are available as supplementary material.

Acknowledgment. We thank Daniel F. Drummond for assistance with the mass spectra and with the X-ray programs and Prof. Philip Dean (Western Ontario) for helpful discussions on the structures of chlorozincate anions. The Natural Sciences and Engineering Research Council of Canada and the Petroleum Research Fund, administered by the American Chemical Society, are acknowledged for their financial support. S.K. thanks the Karadeniz Technical University for study leave.

Registry No. 1a, 137172-82-8; 1b, 133601-68-0; $[2^+]_2[Zn_2Cl_6]^2$, 137328-38-2; $[2^+]_2[Zn_6Cl_{14}]^2$, 137328-39-3; $[2]_1[(\eta-C_5Me_5)Nb]_3(\mu-Cl)_2(\mu-OH)(\mu-O)_3]_2[Zn_4Cl_{10}]$ -0.5(C₂H₅)₂O-0.5CH₂Cl₂, 133624-65-4; $[3^+]_2[Zn_2Cl_6^{2^-}]$, 137115-60-7; $[[(\eta-C_5Me_5)Nb(\mu-Cl)(\mu-O)_3]^+[[(\eta-C_5Me_5)Nb]_3(\mu-Cl)_2(\mu-OH)(\mu-O)_3]^+[Zn_4Cl_{10}]^{2^-}$, 133624-64-3; $(\eta-C_5Me_5)Nb]_3(\mu-Cl)_2(\mu-OH)(\mu-O)_3]^+[Zn_4Cl_{10}]^{2^-}$, 133624-64-3; $(\eta-C_5Me_5)_2NbCl_2$, 95313-61-4.

Supplementary Material Available: Figures showing full numbering schemes and tables of hydrogen atom positions, anisotropic and isotropic thermal parameters, and comprehensive distances and angles for 1, $\{2^+\}_2\{Zn_2Cl_6^{-2}\}$, $\{2^+\}_2\{Zn_2Cl_6^{-2}\}$, and $\{3^+\}_2\{Zn_2Cl_6^{2-2}\}$ (36 pages); tables of $|F_o|$ and $|F_c|$ values for the same four complexes (70 pages). Ordering information is given on any current masthead page.

Interaction of Alkylaluminum Reagents with Organotransition-Metal Arene Complexes: Net Addition of Alkide, Haloalkide, and Dichloromethide to [(arene)₂Fe]²⁺ Cations

Jerry L. Atwood,^{1a} Sean D. Christie,^{1b} Michael D. Clerk,^{1b} David A. Osmond,^{1b} K. Craig Sturge,^{1b} and Michael J. Zaworotko^{*,1b}

Departments of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada, and University of Alabama, University, Alabama 35487

Received June 24, 1991

AlEt₃ reacts with the hexafluorophosphate salts of Ar_2Fe^{2+} cations (Ar = arene = benzene (1a), p-xylene (1b), mesitylene (1c), pentamethylbenzene (1d), hexamethylbenzene (1e)) in dichloromethane or 1,2-dichloroethane to afford ChArFe⁺ (Ch = cyclohexadienyl) cations. The major products, the hexafluorophosphate salts of 2a-e, result from net Et⁻ addition to a single arene ring. The corresponding reactions with AlMe₃ in CH_2X_2 (X = Cl, Br) are more complex and afford characterizable products for 1c,e only. The unexpected major products of these reactions are the hexafluorophosphate salts of the $[(6-CH_2X-$ Ch)ArFe]⁺ monocations $3c_{e}$ (X = Cl) and $4c_{e}$ (X = Br), derived from net addition of CH₂X, rather than the expected methide addition products, 5a-e. 1c reacts with $[N(CH_2CH_2O)_3Al_2Me_3]_2$ (6), a compound that contains an octahedral aluminum methyl moiety, in dichloromethane to produce yet another ChArFe⁺ species, $(\eta^{5}-exo-6-(dichloromethyl)-1,3,5-trimethylcyclohexadienyl)(\eta^{6}-mesitylene)iron(II) hexafluoro-$ phosphonate (7c[PF₆]), which is the result of net addition of CHCl₂. The methide addition monocationicproduct 5c[PF₆] can be prepared in low yield from AlMe₃ or 6 and 1c if benzene and 1,2-dichloroethane,respectively, are utilized as solvent. The relevance of these reactions is discussed in the general context of transition-metal activation of Ar molecules. In addition to spectroscopic characterization, several compounds were characterized by X-ray crystallography. Full crystallographic details of the CH₂Cl-Ch and CHCl₂-Ch cations 3c and 7c, respectively, are presented and discussed in the context of related ChFe compounds: $3c[PF_6]$, orthorhombic, *Pcab*, with a = 15.2496 (9) Å, b = 15.5537 (10) Å, c = 17.5146 (16) Å, Z = 8, R = 0.059, $R_w = 0.058$ for 2506 independent, observed ($I > 2.5\sigma(I)$), and absorption-corrected reflections; $7c[PF_6]$ ·(CH₃)₂CO, monoclinic, $P2_1/c$, with a = 18.762 (3) Å, b = 8.758 (2) Å, c = 17.104 (3) Å, $\beta = 113.40$ (2)°, Z = 4, R = 0.049, $R_w = 0.055$ for 2051 independent, observed ($I > 2.5\sigma(I)$), and absorption-corrected reflections.

Introduction

Alkylaluminum reagents have found widespread application as stoichiometric carbanion sources in organic chemistry,² in particular toward the carbonyl moiety, for which they have been found to be capable of selective reduction.^{2,3} However, their adoption in organo-

^{(1) (}a) University of Alabama. (b) Saint Mary's University.

⁽²⁾ Zietz, J. R., Jr.; Robinson, G. C.; Lindsay, K. L. In *Comprehensive* Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1983; Vol. 6, Chapter 46, p 365.

transition-metal chemistry has been somewhat limited, which is perhaps surprising, as trialkylaluminum compounds ($\mathbf{R} = \mathbf{M}\mathbf{e}, \mathbf{E}\mathbf{t}$) are inexpensive, readily available compounds and may be derivatized in facile and diverse ways to give a surprisingly wide range of geometries. For example, in recent years novel five-4 and six-coordinate⁵ aluminum alkyl geometries have been characterized by X-ray crystallography. A seven-coordinate species derived from AlEtCl₂ has also been reported.⁶ That more reactive Grignard and lithium reagents have already been widely employed as carbanion sources in organotransition-metal chemistry⁷ prompted us to consider the applicability of both simple aluminum alkyls and derivatized aluminum alkyls as alkide sources in the context of organotransition-metal chemistry. We chose to target a particularly well-studied reaction, the formation of transitionmetal cyclohexadienyl (Ch) complexes from the appropriate arene (Ar) precursors.⁸ This transformation (Scheme I) has been effected for a number of transitionmetal templates, in particular $Mn(CO)_3^+$, CpFe⁺, CpRh⁺, $Cr(CO)_3$, and ArM^{2+} (M = Fe, Ru), and is not feasible for unactivated free arenes. Furthermore, such a reaction represents generation of the key intermediate in the conversion of arenes to stereospecifically difunctionalized dienes or to nucleophilically substituted arenes and is therefore of potential significance in a much wider context.

Our first investigation focused primarily upon ArMn- $(CO)_3^+$ substrates and demonstrated that trialkylaluminum compounds are indeed capable of inducing high-yield net carbanion addition to both $ArMn(CO)_3^+$ and $Cp_2Co^{+,9,10}$ However, the reactions were found to be considerably slower than those with the corresponding Grignard or lithium reagents, gave highest vields in relatively nonpolar solvents such as toluene and dichloromethane, and afforded minor reduction products. The last observation is relevant, as it suggests that a single-electron-transfer (SET) mechanism prevails, as was earlier reported for reaction of trialkylaluminum compounds with organic carbonyl substrates.¹¹ We subsequently extended our studies to include Ar_2Fe^{2+} cations, which are among the most highly activated species in the context of susceptibility toward nucleophilic addition.^{8a} We targeted these moieties not

(3) (a) Eisch, J. J.; Fichter, K. C. J. Org. Chem. 1984, 49, 4631. (b) Maruoka, K.; Araki, Y.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 2650.

 (4) (a) Benn, R.; Rufinska, A.; Lehmkuhl, H.; Janseen, E.; Kruger, C.
 Angew. Chem., Int. Ed. Engl. 1983, 22, 799. (b) Robinson, G. H.; San-gokoya, S. A. J. Am. Chem. Soc. 1988, 110, 1494 and references therein.
 (c) Sierra, M. L.; de Mel, V. S. J.; Oliver, J. P. Organometallics 1989, 8, 2486

(5) Healy, M. D.; Barron, A. R. J. Am. Chem. Soc. 1989, 111, 398. (6) Bott, S. G.; Elgamal, H.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 1796

107, 1796.
(7) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
(8) (a) Kane-Maguire, L. A. P.; Honig, E. D.; Sweigart, D. A. Chem. Rev. 1984, 84, 525.
(b) Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. Tetrahedron 1978, 34, 3047.
(c) Astruc, D. Tetrahedron 1983, 39, 4027.
(d) Semmelhack, M. F.; Clark, G. R.; Garcia, J. L.; Harrison, J. J.; Thebtaranonth, Y.; Wulff, W.; Yamashita, A. Tetrahedron 1981, 37, 3957.
(9) Gaudet, M. V.; Hanson, A. W.; White, P. S.; Zaworotko, M. J. Organometallios 1989, 266, 286

Organometallics 1989, 286, 286.

(10) There was also an earlier report of direct alkylation of $CoCp_2^+$ using AlR₃, AlR₂Cl, and AlRCl₂: Lehmkuhl, H.; Nehl, H. F. Chem. Ber. 1984, 117, 3443.

(11) Ashby, E. C.; Goel, A. B. J. Organomet. Chem. 1981, 221, C15.

only because the arene ligand is particularly well activated but also because other workers have encountered difficulties when reacting these potentially very useful substrates with conventional Grignard and lithium carbanion sources.¹² In this contribution we report the full details¹³ of our investigation into the reactivity of Ar_2Fe^{2+} cations (Ar = benzene, p-xylene, mesitylene, pentamethylbenzene and hexamethylbenzene; 1a-e, respectively) with AlR₃ (R = Me, Et) and the recently reported aluminum alkyl N- $(CH_2CH_2O)_3Al_2Me_3$ (6).⁵ 6 was chosen since it contains both tetrahedral and octahedral aluminum methyl groups, the latter being a unique environment for a methyl group bonded to aluminum.

Experimental Section

General Procedures. Manipulations involving alkylaluminum reagents were conducted in a Vacuum Atmospheres glovebox under an argon atmosphere or using standard Schlenk techniques. ¹H NMR (361.01 MHz) and ¹³C NMR (90.78 MHz) spectra were obtained on a Nicolet 360NB spectrometer using tetramethylsilane as an internal standard. Infrared spectra were obtained using a Perkin-Elmer 1600 Fourier transform infrared spectrophotometer equipped with a diffuse-reflectance accessory. Samples were prepared as 5% mixtures in KBr. Elemental analyses were conducted by Canadian Microanalytical Service Ltd., Vancouver, BC, Canada. Aluminum alkyls (Ethyl Corp.), deuterated solvents, pentamethylbenzene, hexamethylbenzene, calcium hydride, and ammonium hexafluorophosphate (Aldrich), and FeCl₂ and AlCl₂ (Aesar) were used as supplied. Other liquids and reaction solvents were purchased from Aldrich Chemical Co. and distilled over calcium hydride under dinitrogen prior to use, except for dibromomethane, which was distilled over phosphorus pentoxide.

(i) Synthesis of Ar_2Fe^{2+} Dication PF_6^- Salts. 1a-e were prepared by a method similar to that reported by Helling and Braitsch.¹⁴ A 5.00-g (30.8-mmol) amount of anhydrous FeCl₃ and 12.33 g (92.5 mmol) of AlCl₃ were refluxed in 100 mL of benzene (1a) or stirred at room temperature in p-xylene (1b) or mesitylene (1c) for 24 h. For 1d,e 5.00 g (30.8 mmol) of anhydrous FeCl₃, 12.33 g (92.5 mmol) of AlCl₃, and 61.6 mmol of pentamethylbenzene (1d) or hexamethylbenzene (1e) were stirred in 100 mL of decalin at 90 °C for 24 h. The reaction flask was then cooled to 0 °C and the contents extracted with 150 mL of H_2O . After filtration the aqueous phase was washed with hexane and separated, and orange solids were precipitated with aqueous $NH_4^+PF_6^-$. The solids were subsequently recrystallized from acetonitrile/ water or acetone/water, washed with ether, and dried under vacuum.

1a[PF₆]₂: yield 7.43 g (14.8 mmol, 48%). ¹H NMR (CD₃CN): δ 6.93 (s, C₆H₆). ¹³C NMR (CD₃CN): δ 95.2 (d, C₆H₆). 1b[PF₆]₂: yield 10.10 g (18.1 mmol, 59%). ¹H NMR

((CD₃)₂CO): δ 7.01 (s, 4 H, aromatic CH), 2.70 (s, 6 H, methyl CH). ¹³C NMR ((CD₃)₂CO): δ 112.0 (s, aromatic CC), 94.0 (d, aromatic CH), 19.4 (q, methyl CH).

 $1c[PF_6]_2$: yield 9.58 g (16.3 mmol, 53%). ¹H NMR ((CD₃)₂CO): δ 6.50 (s, 3 H, aromatic CH), 2.64 (s, 9 H, methyl CH). $^{13}\mathrm{C}$ NMR ((CD₃)₂CO): δ 113.3 (s, aromatic CC), 92.0 (d, aromatic CC), 19.7 (q, methyl CH).

1**d[PF**₆]₂: yield 14.25 g (22.2 mmol, 72%). ¹H NMR ((CD₃)₂CO): δ 6.36 (s, 1 H, aromatic CH), 2.36 (s, 9 H, 2,3,4-methyl CH), 2.26 (s, 6 H, 1,5-methyl CH). ¹³C NMR ((CD₃)₂CO): δ 107.7 (s, 3-CCH₃), 106.8 (s, 2,4-CCH₃), 105.3 (s, 1,5-CCH₃), 92.5 (d,

(14) Helling, J. F.; Braitsch, D. M. J. Am. Chem. Soc. 1970, 92, 7207.

^{(12) (}a) Madonik, A. M.; Mandon, D.; Michaud, P.; Lapinte, C.; As- (a) Madolik, A. M., Maldoli, D., Michaud, P., Lapite, C., Astruc, D. J. Am. Chem. Soc. 1984, 106, 3381. (b) Astruc, D.; Michaud, P.; Madolik, A. M.; Saillard, J. Y.; Hoffmann, R. Nouw. J. Chim. 1985, 9, 41. (c) Mandon, D.; Toupet, L.; Astruc, D. J. Am. Chem. Soc. 1986, 108, 1320. (d) Mandon, D.; Astruc, D. J. Organomet. Chem. 1989, 369, 383. (e) Mandon, D.; Astruc, D. Organometallics 1989, 8, 2372.

⁽¹³⁾ Preliminary communications concerning the ethylation and chloroethylation of FeAr₂²⁺ have already appeared: (a) Cameron, T. S.; Clerk, M. D.; Linden, A.; Sturge, K. C. Organometallics 1988, 7, 2571. (b) Clerk, M. D.; Sturge, K. C.; White, P. S. J. Organomet. Chem. 1989, 368, Canada Strange, Construction of the straight o C33

1e[**PF**₆]₂: yield 16.04 g (23.9 mmol, 81%). ¹H NMR ((CD₃)₂CO): δ 2.52 (s, methyl CH). ¹³C NMR ((CD₃)₂CO): δ 104.6 (s, aromatic CC), 15.9 (q, methyl CH).

(ii) Reaction of AlEt₃ with 1a-e. Synthesis of (6-Et-Ch)ArFe⁺PF₆ Salts (2a–e[PF₆]). 2a: In the glovebox, 1.44 mL (15.0 mmol) of AlEt₃ was added to a slurry of 2.00 g of 1a (3.98 mmol) stirred in 100 mL of CH₂Cl₂ in an Erlenmeyer flask. A purple suspension was observed within 1 min, and following stoppering and removal from the glovebox, the mixture was stirred for 24 h, at which point it was a deeply colored, almost black solution. The reaction vessel was placed in an ice bath, and the solution was quenched with ice water. Filtration, separation of the dichloromethane phase, and solvent removal via rotavaporation, afforded an orange/red solid which was recrystallized from acetone/H₂O: yield 0.43 g (1.1 mmol, 28%). ¹H NMR ((CD₃)₂CO): δ 6.98 (t, 1 H, Ch 3-CH), 6.46 (s, 6 H, Ar CH), 4.94 (t, 2 H, Ch 2,4-CH), 3.94 (t, 2 H, Ch 1,5-CH), 2.60 (t, 1 H, Ch 6-CH(CH₂CH₃)), 0.46 (t, 3 H, Ch CH₂CH₃), 0.37 (q, 2 H, Ch CH₂CH₃). ¹³C NMR ((CD₃)₂CO): δ 91.8 (d, Ch 3-CH), 91.5 (d, Ar CH), 85.7 (d, Ch, 2,4-CH), 84.6 (d, Ch, 1,5-CH), 48.9 (d, Ch, 6-CH), 11.8 (t, Ch, CH₂CH₃), 6.2 (q, Ch, CH₃). IR (cm⁻¹): 3097 m, 2958 m, 2931 m, 2874 m, 1455 m, 1379 w, 920 m, 842 s, 668 m. Anal. Calcd for C₁₄H₁₇F₆FeP: C, 43.55; H, 4.44. Found: C, 43.73; H, 4.47.

2b: The preparation was as for 2a, but 2.00 g (3.58 mmol) of 1b was used and the recrystallized yield was 0.40 g (0.92 mmol, 23%). ¹H NMR ((CD₃)₂CO): δ 6.59 (d, 1 H, Ch 3-CH), 6.32 (d, 2 H, Ar CH), 5.39 (d, 2 H, Ar CH), 4.56 (d, 1 H, Ch 2-CH), 3.38 (d, 1 H, Ch 5-CH), 2.65 (s, 6 H, Ar CH₃), 2.00 (s, 3 H, Ch 4-CH₃), 1.72 (s, 3 H, Ch 1-CH₃), 0.47 (m, 5 H, Ch CH₂CH₃) (the resonance associated with the endo hydrogen atom of the Ch ring could not be resolved unambiguously as a result of the presence of several overlapping peaks). ¹³C NMR (CDCl₃): δ 104.4 (s, Ar CC), 99.4 (s, Ch 4-CC) 92.1 (d, Ar CH), 89.6 (d, Ar CH), 83.2 (d, Ch 3-CH), 81.9 (d, Ch 2-CH), 68.2 (s, Ch 1-CC), 47.9 (d, Ch 5-CH), 43.9 (d, Ch 6-CH(CH₂CH₃)), 31.6 (t, Ch CH₂CH₃), 23.5 (q, CH₃), 20.4 (q, CH₃), 19.6 (q, CH₃), 9.1 (q, Ch CH₂CH₃). IR (cm⁻¹): 3004 m, 2890 w, 1480 m, 1458 m, 1390 m, 1184 m, 1032 m, 840 s, 789 m. Anal. Calcd for C₁₈H₂₅F₆FeP: C, 48.89; H, 5.70. Found: C, 48.68; H, 5.87

2c: The preparation was as for 2a, but 2.00 g (3.41 mmol) of 1c was utilized, the reaction was carried out in 1,2-dichloroethane, a purple solution was afforded and the overall yield was 1.26 g (78%) of a mixture of products. The major product (ca. 80% of isolated material by ¹H NMR spectroscopy) was shown to be $[(6-Et-1,3,5-Me_3Ch)(C_6H_3Me_3)Fe]PF_6$ (2c[PF_6]), whereas ¹H NMR spectroscopy suggested that the minor product was [(6- $\dot{C}_{2}H_{4}Cl-1,3,5-Me_{3}Ch)(C_{6}H_{3}Me_{3})Fe]PF_{6}$. ¹H NMR ((CD₃)₂CO) for 2c: § 5.86 (s, 3 H, Ar CH), 4.37 (s, 2 H, Ch 2,4-CH), 2.76 (s, 3 H, Ch 3-CH₃), 2.61 (t, 1 H, Ch 6-CH(CH₂CH₃)), 2.47 (s, 9 H, Ar CH₃), 1.70 (s, 6 H, Ch 1,5-CH₃), 0.56 (q, 2 H, Ch CH₂CH₃), 0.46 (t, 3 H, Ch 6-CH₂CH₃). ¹³C NMR ((CD₃)₂CO): δ 102.0 (s, Ar CC), 94.8 (s, Ch 3-CC), 92.5 (d, Ar CH), 84.0 (d, Ch 2,4-CH), 63.0 (s, Ch 1,5-CC), 49.0 (d, Ch 6-CH(CH₂CH₃)), 29.8 (t, Ch CH₂CH₃), 23.3 (q, CH_3) , 18.7 (q, CH_3) , 11.3 (q, CH_3) , 5.3 $(q, Ch CH_2CH_3)$. IR (cm⁻¹): 3056 w, 2975 m, 2929 m, 1540 m, 1452 m, 1383 m, 1037 m, 1012 m, 875 m, 840 s. If the reaction is conducted in dichloromethane, the major product is $[(6-CH_2Cl-1,3,5-Me_3Ch)(C_6H_3Me_3)Fe]PF_6$ (3c[PF₆]). 2c[PF₆] has also been characterized by X-ray crystallography.^{13a}

2d: The preparation was as for 2a, but 2.00 g (3.11 mmol) of 1d was used, a purple solution was afforded, and a recrystallized yield of 1.33 g (2.53 mmol, 81%) was obtained. ¹H NMR $((CD_3)_2CO): \delta 5.22$ (s, 1 H, Ar CH), 2.53 (s, 3 H, Ar 3-CH₃), 2.46 (s, 6 H, Ar 2,4-CH₃), 2.35 (s, 6 H, Ar 1,5-CH₃), 1.95 (s, 3 H, Ch 3-CH₃), 1.85 (s, 6 H, Ch 2,4-CH₃), 1.53 (s, 6 H, Ch 1,5-CH₃), 0.46 (dq, 2 H, Ch CH₂CH₃), 0.33 (t, 3 H, CH₂CH₃). ¹³C NMR $((CD_3)_2CO): \delta 102.8$ (s, Ar 3-CC), 101.7 (s, Ch 3-CC), 100.3 (s, Ar 2,4-CC), 98.5 (s, Ch 2,4-CC), 92.6 (s, Ar 1,5-CC), 91.4 (d, Ar CH), 57.0 (s, Ch 1,5-CC), 53.5 (d, Ch 6-CH(CH₂CH₃)), 29.9 (t, Ch CH₂CH₃), 20.7 (q, CH₃), 18.2 (q, CH₃), 15.6 (q, CH₃), 14.4 (q, CH₃), 13.9 (q, CH₃), 11.2 (q, Ch CH₂CH₃). IR (cm⁻¹): 3056 w, 2975 m, 2929 m, 1540 m, 1452 m, 1383 m, 1037 m, 1012 m, 875 m, 840 s. Anal. Calcd for C₂₄H₃₇F₆FeP: C, 54.76; H, 7.08. Found: C, 53.81; H, 7.03.

2e: The preparation was as for 2a, but 2.00 g (2.98 mmol) of 1e was used, a purple solution was afforded, and a recrystallized yield of 1.52 g (2.74 mmol, 92%) was obtained. ¹H NMR ((CD₃)₂CO): δ 2.51 (s, 3 H, Ch 3-CH₃), 2.30 (s, 18 H, Ar CH₃), 1.88 (s, 6 H, Ch 2,4-CH₃), 1.37 (s, 3 H, Ch 6-CH₃), 1.32 (s, 6 H, Ch 1,5-CH₃), 0.26 (m, 5 H, Ch 6-CH₂CH₃). ¹³C NMR ((CD₃)₂CO): δ 100.8 (s, Ar CC), 92.7 (s Ch 2,4-CC), 91.8 (s, Ch 3-CC), 56.8 (s, Ch 1,5-CC), 45.3 (s Ch 6-CMeEt), 37.9 (t, Ch CH₂CH₃), 21.9 (q, Ar CCH₃), 16.0 (q, Ch 2,4-CCH₃), 15.6 (q, Ch 3-CCH₃), 14.5 (q, Ch 1,5-CCH₃), 14.2 (q, Ch endo CCH₃), 9.0 (q, Ch CH₂CH₃). IR (cm⁻¹): 2988 m, 2957 m, 2914 m, 1458 m, 1438 m, 1390 m, 1065 m, 1024 m, 1004 m, 876 m, 842 s. Anal. Calcd for C₂₈H₄₁F₆FeP: C, 56.33; H, 7.45. Found: C, 55.86; H, 7.07.

(iii) Reaction of AlMe₃ with 1a-e. Synthesis of (6-CH₂X-Ch)ArFe⁺PF₆ (X = Cl, Br) Salts 3c, e (X = Cl) and 4c, e (X = Br). 3c: A 2.00-g amount of 1c (3.41 mmol) was stirred in 100 mL of CH₂Cl₂ in an Erlenmeyer flask inside the glovebox. Four molar equivalents of AlMe₃ was added, and within 1 min a purple solution resulted, although unreacted starting material could be seen. The reaction flask was stoppered and removed from the glovebox and the reaction solution stirred for 24 h, cooled to 0 °C, and quenched with ice water. After filtration, the dichloromethane phase was concentrated under reduced pressure to afford a red solid which was recrystallized from $acetone/H_2O$. A yield of 0.42 g (25%) of a mixture of products that was revealed through ¹H NMR spectroscopy to be [(CH₂Cl-C₆H₃Me₃)(C₆H₃Me₃)Fe]PF₆ (3c[PF₆]; 0.77 mmol, 90% of isolated product) and [(Me-C₆H₃Me₃)(C₆H₃Me₃)Fe]PF₆ (5c[PF₆]; 0.09 mmol, 10% of isolated product, for NMR see (v)) was obtained. [(CH₂Cl-C₆H₃Me₃)(C₆H₃Me₃)Fe]PF₆: ¹H NMR ((CD₃)₂CO) δ 5.87 (s, 3 H, Ar CH), 4.45 (s, 2 H, Ch 2,4-CH), 3.03 (t, 1 H, Ch 6-CH(CH₂Cl)), 2.76 (s, 3 H, Ch 3-CH₃), 2.60 (d, 2 H, Ch CH₂Cl), 2.50 (s, 9 H, Ar CCH₃), 1.80 (s, 6 H, Ch 1,5-CH₃); ¹³C NMR ((CD₃)₂CO) δ 103.8 (s, Ar CC), 97.0 (s, Ch 3-CC), 94.0 (d, Ar CH), 85.4 (d, Ch 2,4-CH), 59.7 (s, Ch 1,5-CC), 49.1 (d, Ch 6-CH(CH₂Cl)), 45.7 (t, Ch CH₂Cl), 23.3 (q, Ch 1,5-CCH₃), 19.8 (q, Ch 3-CCH₃), 19.0 (q, Ar, CCH₃).

3e: The preparation was the same as for 3c, but 2.00 g of 1e (2.98 mmol) was used, a yield of 0.86 g (1.5 mmol, 50%) was obtained after recrystallization, and no minor product was observed. ¹H NMR ((CD₃)₂CO): δ 2.53 (s, 3 H, Ch 3-CH₃), 2.32 (s, 18 H, Ar CH₃), 2.20 (s, 2 H, CH₂Cl), 1.92 (s, 6 H, Ch 2,4-CH₃), 1.51 (s, 3 H, Ch 6-CH₃)), 1.41 (s, 6 H, Ch 1,5-CH₃). ¹³C NMR ((CD₃)₂CO): δ 101.5 (s, Ar CC), 93.4 (s, Ch 2,4-CC), 92.3 (s, Ch 3-CC), 53.3 (s, Ch 1,5-CC), 52.6 (t, Ch CH₂Cl), 45.5 (s, Ch 6-C-(CH₃)(CH₂Cl)), 20.8 (q, Ar CCH₃), 16.0 (q, Ch 2,4-CCH₃), 15.5 (q, Ch 3-CCH₃), 14.5 (q, Ch 1,5-CCH₃), 14.2 (q, Ch 6-CH₃). Anal. Calcd for C₂₅H₃₈ClF₆FeP: C, 52.24; H, 6.66. Found: C, 52.01; H, 6.75. 3e[PF₆] has also been characterized by X-ray crystallography.^{13b}

4c: The preparation was the same as for 3c, but a yield of 0.62 g (34%) of a mixture of products was obtained containing $[(CH_2Br-C_6H_3Me_3)(C_6H_3Me_3)Fe]PF_6$ (4c[PF_6]; 0.93 mmol, 80%) and $[(Me-C_8H_3Me_3)(C_6H_3Me_3)Fe]PF_6$, (5c[PF_6]; 0.27 mmol, 20%). $[(CH_2Br-C_6H_3Me_3)(C_6H_3Me_3)Fe]PF_6$: ¹H NMR ((CD_3)₂CO) δ 5.88 (s, 3 H, Ar CH), 4.46 (s, 2 H, Ch 2,4-CH), 3.05 (t, 1 H, Ch 6-CH-(CH_2Br), 2.75 (s, 3 H, Ch 3-CH_3), 2.50 (s, 9 H, Ar CH_3), 2.09 (d, 2 H, Ch CH_2Br), 1.83 (s, 6 H, Ch 1,5-CH_3); ¹³C NMR ((CD_3)_2CO) δ 103.8 (s, Ar CC), 97.5 (s, Ch 3-CC), 93.9 (d, Ar CH), 85.1 (d, Ch 2,4-CH), 60.2 (s, Ch 1,5-CC), 48.7 (d, Ch 6-CH(CH_2Br)), 33.2 (t, Ch CH_2Br), 2.3.3 (q, Ch 1,5-CCH_3), 19.8 (q, Ch 3-CCH_3), 19.0 (q, Ar CCH_3).

4e: The preparation was the same as for 3e, but a yield of 1.29 g (2.08 mmol, 70%) of 4e was obtained. ¹H NMR ((CD₃)₂CO): δ 2.52 (s, 3 H, Ch 3-CH₃), 2.33 (s, 18 H, Ar CH₃), 2.14 (s, 2 H, Ch CH₄Br), 1.93 (s, 6 H, Ch 2,4-CH₃), 1.51 (s, 3 H, Ch 6-CH₃), 1.46 (s, 6 H, Ch 1,5-CH₂). ¹³C NMR ((CD₃)₂CO): δ 101.6 (s, Ar CC), 93.3 (s, Ch 2,4-CC), 92.4 (s, Ch 3-CC), 52.8 (s, Ch 1,5-CC), 44.7 (s, Ch 6-C(CH₃)(CH₂Br)), 42.4 (t, Ch CH₂Br), 21.8 (q, Ar CCH₃), 16.0 (q, Ch 2,4-CCH₃), 14.5 (q, Ch 1,5-CCH₃), 14.3 (q, Ch 6-CCH₃). Anal. Calcd for C₁₉H₂₆BrF₆FeP: C, 48.49; H, 6.18. Found: C, 48.94; H, 6.22.

The reactions of 1a,b,d with AlMe₃ in CH₂X₂ were also conducted, but even after recrystallization, mixtures of products were obtained. The NMR spectra are complex and unresolvable, although they appear consistent with the presence of at least two monocationic ChArFe⁺ complexes. AlMe₃ was also reacted with

1a-e using benzene as solvent; however, no reaction occurred other than for 1c, which gave a low yield of the methide addition monocationic product 5e (see (V) for spectroscopic details of 5c).

(iv) Synthesis of $[N(CH_2CH_2O)_3Al_2Me_3]_2$ (6). 6 was prepared immediately prior to use by a method based upon that described by Barron et al.⁵ In a typical reaction 4.0 mL (42 mmol) of AlMe₃ was dissolved in 100 mL of benzene in a Schlenk tube inside the glovebox. The Schlenk tube was removed from the glovebox and placed in an ice bath under a positive pressure of dinitrogen, and 3.11 g (20.8 mmol) of triethanolamine was added. Gas evolution resulted immediately, and a white gel was formed within 5 min. Solvent removal gave a white solid, which was used directly in the reaction with 1c described below. The identity of 6 was confirmed via NMR spectroscopy and X-ray crystallography. ¹H NMR (CDCl₃): δ 3.65 (m, 6 H, CH₂O), 2.62 (m, 6 H, CH_2N), -1.18 (s, 6 H, $Al_{tet}CH_3$), -1.38 (s, 3 H, $Al_{oct}CH_3$). ¹³C{¹H} NMR (CDCl₃): δ 56.2 (CH₂O), 54.7 (CH₂N), -7.5 (Al_{tet}CH₃), -10.9 $(Al_{ort}CH_3)$. The structure of 6 was solved in the monoclinic space group $P2_1/c$, with a = 9.5373 (6) Å, b = 9.8472 (6) Å, c = 14.355 (1) Å, $\beta = 108.001$ (5)°, V = 1282 (2) Å³, Z = 2, R = 0.052, and $R_{\rm w} = 0.060$ for 1185 unique observed reflections (the structure of 6 was earlier reported⁵ in the monoclinic space group $P2_1/n$, all bond distances and angles being consistent with those observed in our study).

(v) Synthesis of $[(\eta^5-6-CHCl_2-1,3,5-Me_3Ch)(\eta^6-1,3,5-Me_3Ch)($ C₆H₃Me₃)Fe]PF₆ (7c[PF₆]. 1c (1.00 g, 1.71 mmol) was suspended in 100 mL of CH₂Cl₂ in an Erlenmeyer flask inside the inertatmosphere glovebox. [N(CH₂CH₂O)₃Al₂Me₃]₂ (2.93 g, 5.98 mmol) was added to the slurry, and the mixture was stirred for 16 h. At this point the reaction vessel was removed from the glovebox and the reaction mixture was quenched with 50 mL of H₂O and filtered. The filtrate was dried over MgSO4 and concentrated under reduced pressure, and the resulting brown solid was eluted through a short alumina column in acetone and the eluate concentrated under reduced pressure. The orange solid was recrystallized from acetone/H₂O, yielding 0.447 g (0.77 mmol, 45%) of $7c[PF_6]$. ¹H NMR ((CD₃)₂CO): δ 5.90 (s, 3 H, Ar CH), 4.77 (d, 1 H, Ch CHCl₂), 4.53 (s, 2 H, Ch 2,4-CH), 3.31 (d, 1 H, Ch 6-CH(CHCl₂), 2.69 (s, 3 H, Ch 3-CCH₃), 2.52 (s, 9 H, Ar CCH₃), 1.93 (s, 6 H, Ch 1,5-CCH₃). ¹³C NMR ((CD₃)₂CO): δ 104.5 (s, Ar CC), 98.1 (d, Ch 3-CC), 94.6 (d, Ar CH), 85.4 (d, Ch 2,5-CH), 73.5 (d, Ch CHCl₂), 56.5 (d, Ch 6-CH(CHCl₂)), 55.2 (s, Ch 1,5-CC), 24.5 (q, Ch 1,5-CCH₃), 19.5 (q, Ch 3-CCH₃), 19.0 (q, Ar CCH₃). Anal. Calcd for acetone solvate C₂₂H₃₁Cl₂F₆FeOP: C, 45.31; H, 5.36. Calcd for unsolvated compound $C_{19}H_{25}F_6FeP: C, 43.46; H, 4.80$. Found: C, 44.03; H, 4.88. If the reaction is effected as above but with 1.0 g of 1c in 100 mL of 1,2-dichloroethane, the only isolated organometallic product is the single methide addition product $[(\eta^5-1,3,5,6-Me_4Ch)(\eta^6-mesitylene)Fe]PF_6$ (5c[PF₆]). A recrystallized yield of 0.32 g (0.66 mmol, 39%) of 5c was obtained. ¹H NMR ((CD₃)₂CO): δ 5.74 (s, 3 H, Ar CH), 4.20 (s, 2 H, Ch 2,4-CH), 2.74 (s, 3 H, Ch 3-CH₃), 2.37 (s, 9 H, Ar CCH₃), 1.67 (s, 6 H, Ch 1,5-CCH₃), 1.24 (q, 1 H, Ch 6-CH(CH₃)), 0.14 (d, 3 H, Ch 6-CH-(CH₃)). ¹³C NMR ((CD₃)₂CO): δ 104.51 (s, Ar CC), 98.07 (s, Ch 3-CC), 94.63 (d, Ar CH), 85.42 (d, Ch 2,4-CH), 79.54 (s, Ch 1,5-CC), 55.20 (d, Ch 6-CH(CH₃)), 24.55 (q, Ch 6-CH(CH₃)), 22.24 (q, CH₃), 19.53 (q, CH₃), 19.00 (q, CH₃). IR (cm⁻¹): 2924 m, 1561 m, 1543 m, 1510 m, 1459 m, 1384 m, 1036 m, 838 s, 557 s, 486 m. Anal. Calcd for C₁₉H₂₇F₆FeP: C, 45.31; H, 5.36. Found: C, 45.65; H, 5.97.

(vi) Synthesis of $[(\eta^5-6-CH_2C_6H_3Me_2-1,3,5-Me_3)(\eta^6-mesi-tylene)Fe]PF_6 (8c[PF_6]).$ 1c (1.00 g, 1.71 mmol) was suspended in 100 mL of CH₂Cl₂/H₂O. KOH (0.40 g, 7.1 mmol) was added, and the reaction mixture was stirrd for 16 h. Filtration, separation of the dichloromethane phase, and rotavaporation afforded an orange/brown solid, which was dissolved in acetone and eluted on an alumina column. Removal of the acetone afforded 0.203 g (3.62 mmol, 42.4%) of 8c[PF₆]. ¹H NMR ((CD₃)₂CO): δ 6.73 (s, 1 H, mesityl 4-CH), 6.43 (s, 2 H, mesityl 2,6-CH), 5.63 (s, 3 H, Ar CH), 4.18 (s, 2 H, Ch 2,4-CH), 2.9 (m, 1 H, Ch 6-CH-(mesityl)), 2.56 (s, 3 H, Ch 3-CCH₃), 2.38 (s, 9 H, Ar CCH₃), 2.13 (s, 6 H, Ch 1,5-CCH₃), 1.80 (d, 1 H, mesityl CH₂), 1.50 (s, 6 H, mesityl 3,5-CCH₃). ¹³C NMR ((CD₃)₂CO): δ 138.34 (s, mesityl 3,5-CC), 138.15 (s, mesityl 1-CC), 128.35 (d, mesityl 2,6-CH), 127.83 (d, mesityl 4-CH), 103.33 (s, Ar CC), 102.86 (s, Ch 3-CC), 93.44 (d, Ar CH), 85.53 (d, Ch 2,4-CH), 62.76 (s, Ch 1,5-CC), 49.99 (d,

Table I. Crystal Data and Summary of Intensity Data Collection and Structure Refinement

Confection and Structure Reinfement							
compd	3c[PF ₆]	7c[PF ₆]·(CH ₃) ₂ CO					
color	red	red					
fw	490.7	583.0					
space group	$Pcab^a$	$P2_1/c$					
temp, °C	17	20					
cell constants ^{b}							
a, Å	15.2496 (9)	18.762 (3)					
b, Å	15.5537 (10)	8.758 (2)					
c, Å	17.5146 (16)	17.104 (3)					
β , deg		113.40 (2)					
cell vol, Å ³	4154.2	2579.3					
Z	8	4					
$D_{\rm calc}$, g cm ⁻³	1.57	1.50					
$\mu_{\rm calc}$ cm ⁻¹	9.8	9.1					
scan type	$\omega/2\theta$	$\theta/2\theta$					
radiation	Μο Κα	Μο Κα					
max cryst dimens, mm	$0.15 \times 0.25 \times 0.50$	$0.25 \times 0.35 \times 0.50$					
scan width	$0.80 + 0.35 \tan \theta$	$0.80 \pm 0.35 \tan \theta$					
transmissn range	0.660, 0.997						
decay of standards, %	±3	± 2					
no. of rflns measd	3649	4336					
2θ range, deg	2-50	2-50					
no. of unique rflns	3649	4025					
no. of rflns obsd ^c	2506	2051					
computer programs ^d	NRCVAX ^e	NRCVAX ^e					
structure soln	direct	direct					
no. of params	253	298					
wt modifier, k	0.000 02	0.0001					
GOF	3.83	2.07					
R	0.059	0.049					
R _w	0.058	0.055					
final diff map, e Å ⁻³	0.880	0.370					

^a Nonstandard setting of *Pbca* (No. 61). ^b Least-squares refinement of $((\sin \theta)/\lambda)^2$ for 24 reflections; $\theta > 16.5^\circ$. ^c Corrections: Lorentz-polarization and absorption (empirical ψ scan). ^d Neutral scattering factors and anomalous dispersion corrections from: *International Tables for X-ray Crystallography*; Kynoch: Birmingham, England, 1974; Vol. 4. ^eAn interactive program system for structure analysis (Gabe, E. J.; Le Page, Y.; Charland, J.-P.; Lee, F. J.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384) implemented on a 80486-based IBM-compatible computer.

Ch 6-CH(mesityl)), 42.23 (t, mesityl CH₂), 23.04 (q, Ch 1,5-CCH₃), 21.12 (q, mesityl 3,5-CCH₃), 19.68 (q, Ch 3-CCH₃), 18.84 (q, Ar CCH₃). IR (cm⁻¹): 2927 m, 1458 m, 1383 m, 1036 m, 839 s, 558 m. Anal. Calcd for $C_{27}H_{35}F_6FeP$: C, 57.87; H, 6.30. Found: C, 55.90; H, 6.00.

(vii) X-ray Crystallographic Analysis. Crystals of 3c[PF₆] and $7c[PF_6] \cdot (CH_3)_2CO$ suitable for X-ray analysis were grown by allowing a saturated acetone/water solution to evaporate slowly under ambient conditions. The crystals were mounted in thinwalled glass capillaries and transferred to an Enraf-Nonius CAD-4 diffractometer. Details of data collection and refinement parameters are given in Table I. The structures were solved by direct methods (Fe and P), and all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were not included in the refinement for 7c[PF₆], whereas for $3c[PF_6]$ sp² hydrogen atoms were fixed in calculated positions $(d_{\rm C-H} = 1.08 \text{ Å})$ and sp³ hydrogen atoms were located by difference Fourier methods and fixed. Final values of R = 0.059 ($R_w = 0.058$) and R = 0.049 ($R_w = 0.055$) were obtained for 3c and 7c, respectively. Fractional atomic coordinates are presented in Tables II and III, respectively.

Results and Discussion

AlEt₃ Reactions. AlEt₃ ethylates one aromatic ring of 1a-e in moderate to high yield, thereby forming the exo addition products 2a-e. All reactions afforded clean products except for that of 1c, which gave $[(\eta^5-6-CH_2CH_2Cl-1,3,5-Me_3Ch)(\eta^6-1,3,5-C_6H_3Me_3)Fe]PF_6$ as a minor product (ca. 20% of isolated material). The formation of 2e in such high yield is particularly relevant, since a survey of the literature reveals that C-C bond formation via direct, high-yield net addition to substituted Interactions of Alkylaluminum Reagents

Ar ring carbon atoms is unprecedented. The NMR spectra of $2\mathbf{a}-\mathbf{e}$ show that the Ar carbon and hydrogen atoms resonate at higher yield than when uncomplexed and the Ch ring atoms shift, more substantially, to higher field depending upon their position relative to the sp³ carbon atom. Both trends are expected on the basis of earlier studies of Ar and Ch complexes.¹⁵

That only one Ar ring of 1a-e reacts despite the use of an excess of AlEt₃ and the isolation of a minor chloroethylation product, presumably from reaction with solvent, are supportive of the existence of a single-electron-transfer (SET) mechanism for these reactions (Scheme II). The importance of the solvent will be discussed in the next section. That addition to only one Ar ring occurs is consistent with AlR₃ being a milder reducing agent than analogous lithium and Grignard reagents, which under similar reaction conditions invoke net nucleophilic addition to both rings so as to form neutral Ch₂Fe or "pseudo-ferrocene" complexes.¹⁶ Significantly, it has been found by other workers that lithium and Grignard reagents do not effect C-C bond formation with 1a,b,d,e in THF because of the formation of intractable reduction products,¹² although such reactions are possible for Ar₂Ru²⁺ analogues¹⁷ and 1c.^{14,18}

A SET mechanism would not be unreasonable for Ar_2Fe^{2+} cations, which are more readily reduced (to isolable purple 19e⁻ Ar_2Fe^+ derivatives) than CpArFe⁺ and ChArFe⁺ cations (E° is ca. -0.50 V vs SCE for Ar_2Fe^{2+} , whereas E° values for CpArFe⁺ and ChArFe⁺ cations are ca. -1.50 V vs SCE¹⁹). Furthermore, it has been shown that net hydride addition to 1c employing BH₄⁻ as the source of hydride leads to electron-transfer processes,²⁰ AlH₄⁻ and RLi reduce Cp(naphthalene)Fe⁺ to its neutral 19e⁻ analogue,²¹ and aluminum alkyls are known to form radicals in the presence of organic carbonyl compounds.¹¹ It should also be noted that electron transfer from AlEt₃ itself is not a prerequisite for a SET mechanism, since it

(15) There are numerous examples of spectroscopically characterized Ar and Ch complexes, especially for Cr, Mn, and Fe. The chemical shift trend in the dienyl portion of the Ch ligand has also been seen in transition-metal pentadienyl complexes: Ernst, R. D. Chem. Rev. 1988, 88, 1255.

Table II. Atomic Parameters x, y, and z and B_{iso} Values

lor sc[rr ₆]									
	x	У	z	$B_{\rm iso}$, Å ²					
Fe	0.24161 (5)	0.37227 (5)	0.11859 (4)	2.52 (3)					
Р	0.03011 (11)	0.69660 (12)	0.13367 (11)	3.92 (8)					
Cl	0.56571 (12)	0.49507 (15)	0.12010 (13)	6.50 (11)					
F1	0.0053 (3)	0.7517 (3)	0.20684(21)	6.04 (22)					
F2	-0.0427 (3)	0.6284 (3)	0.1549 (3)	8.0 (3)					
F3	0.0551 (3)	0.6413 (3)	0.05978 (25)	7.31 (25)					
F4	0.1034 (3)	0.7641 (3)	0.1130 (3)	7.9 (3)					
F5	0.0996 (3)	0.6448 (3)	0.1817 (3)	7.23 (25)					
F6	-0.0391 (3)	0.7477 (4)	0.0860 (3)	8.5 (3)					
C1	0.3796 (3)	0.3815 (4)	0.0959 (3)	2.8 (3)					
C2	0.3274 (4)	0.3972 (4)	0.0309 (3)	3.0 (3)					
C3	0.2600 (4)	0.4609 (4)	0.0324 (3)	3.0 (3)					
C4	0.2468 (4)	0.5035 (3)	0.1031 (3)	3.2 (3)					
C5	0.3014 (4)	0.4849 (4)	0.1663 (3)	2.9 (3)					
C6	0.3936 (4)	0.4543 (4)	0.1514 (3)	3.0 (3)					
C7	0.4425 (4)	0.3054 (4)	0.0968 (4)	4.5 (3)					
C8	0.2026 (4)	0.4794 (5)	-0.0339 (4)	4.7 (3)					
C9	0.2810 (4)	0.5201 (5)	0.2438 (4)	4.7 (3)					
C10	0.4530 (4)	0.5265 (4)	0.1233 (4)	4.0 (3)					
C11	0.1062 (4)	0.3590 (4)	0.1452 (4)	3.4 (3)					
C12	0.1251 (4)	0.3136 (4)	0.0797 (4)	3.1 (3)					
C13	0.1940 (4)	0.2518 (4)	0.0770 (3)	3.2 (3)					
C14	0.2439 (4)	0.2408 (4)	0.1454 (3)	3.5 (3)					
C15	0.2284 (4)	0.2865(4)	0.2120 (3)	3.3 (3)					
C16	0.1579 (4)	0.3457 (4)	0.2114 (4)	3.6 (3)					
C17	0.0314 (4)	0.4222 (5)	0.1468 (5)	5.7 (4)					
C18	0.2146 (5)	0.2033 (5)	0.0069 (4)	5.1 (4)					
C19	0.2827 (5)	0.2729 (5)	0.2815(4)	5.4 (4)					

^aEsd's refer to the last digit shown. B_{iso} is the mean of the principal axes of the thermal ellipsoid.

Table III. Atomic Parameters x, y, and z and B_{iso} Values for $7c[PF_6] \bullet (CH_3)_2CO^a$

	x	У	z	$B_{\rm iso}$, Å ²
Fe	0.18365 (6)	0.73850 (11)	0.21009 (6)	2.74 (5)
Р	0.17253(12)	0.26675 (25)	0.46685(12)	3.88 (11)
F 1	0.2125 (3)	0.2893 (6)	0.5662 (3)	7.4 (3)
F2	0.1301 (3)	0.2466 (6)	0.3668 (3)	7.6 (3)
F3	0.1247(4)	0.4193 (6)	0.4572 (3)	8.1 (4)
F4	0.2382(3)	0.3604 (8)	0.4559 (4)	9.8 (4)
F5	0.1040 (3)	0.1798 (7)	0.4785 (3)	8.1 (4)
F6	0.2166 (4)	0.1135 (6)	0.4773 (4)	9.3 (4)
Cl1	0.42776 (16)	0.7001 (3)	0.14835(20)	8.53 (20)
Cl2	0.40866 (18)	0.3997 (3)	0.20288 (19)	8.35 (19)
C1	0.0678 (4)	0.7984 (9)	0.1851(5)	3.7 (4)
C2	0.0863 (5)	0.6664 (9)	0.2350 (5)	3.7 (4)
C3	0.1546 (5)	0.6636 (9)	0.3107 (5)	3.8 (4)
C4	0.2036 (5)	0.7945 (9)	0.3378 (4)	3.8 (4)
C5	0.1822 (5)	0.9263 (9)	0.2866(5)	3.9 (4)
C6	0.1141 (5)	0.9310 (8)	0.2109 (5)	3.7 (4)
C7	0.0356 (5)	0.5260 (10)	0.2060 (6)	5.2 (5)
C8	0.2762 (5)	0.7856 (11)	0.4179 (5)	6.0 (5)
C9	0.0918 (5)	1.0739 (9)	0.1586 (5)	5.0 (5)
C11	0.2548 (5)	0.5457 (8)	0.2147 (4)	3.4 (4)
C12	0.1880(4)	0.5543 (8)	0.1384 (5)	3.3 (4)
C13	0.1724 (4)	0.6869 (8)	0.0872 (4)	3.3 (4)
C14	0.2240(4)	0.8120 (8)	0.1209 (4)	3.3 (4)
C15	0.2895 (4)	0.7970 (8)	0.1972 (4)	3.3 (4)
C16	0.3234 (4)	0.6380 (9)	0.2208 (4)	3.5 (4)
C17	0.2655 (5)	0.4148 (9)	0.2742 (5)	4.9 (5)
C18	0.1008 (5)	0.7026 (9)	0.0058 (5)	4.6 (4)
C19	0.3378 (5)	0.9339 (10)	0.2396 (5)	4.9 (5)
C20	0.3605 (4)	0.5739 (10)	0.1618 (5)	4.6 (5)
OS1	0.4593 (4)	0.7348 (12)	0.4268 (5)	11.2 (6)
CS1	0.5273 (6)	0.7151 (14)	0.4595 (7)	7.0 (6)
CS2	0.5658 (7)	0.5877(13)	0.4373 (7)	8.6 (7)
CS3	0.5769 (7)	0.8198 (14)	0.5273 (8)	9.9 (8)

^aSee footnote a in Table II.

can be assumed that AlEt₃ is complexed (e.g. $[(AlEt_3)PF_6]^-)$ under the reaction conditions employed. The aluminum atom can therefore be regarded as being isoelectronic with the boron and aluminum atoms of MH_4^- (M = B, Al). The

⁽¹⁶⁾ Until recently clean high-yield double-addition "pseudoferrocene" products had only been reported for 1c. However, recent work has shown that double net addition may be effected for a wider range of Ar ligands: Sturge, K. C.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1990, 1244.

⁽¹⁷⁾ Neto, C. C.; Sweigart, D. A. J. Chem. Soc., Chem. Commun. 1990, 1703.

⁽¹⁸⁾ Clerk, M. D.; Zaworotko, M. J.; Borecka, B.; Cameron, T. S.; Hooper, D. L.; Linden, A. Can. J. Chem. 1990, 68, 1923.

⁽¹⁹⁾ Astruc, D. Chem. Rev. 1988, 88, 1189.

⁽²⁰⁾ Michaud, P.; Astruc, D.; Ammeter, J. H. J. Am. Chem. Soc. 1982, 104, 3755.
(21) (a) Nesmeyanov, A. N.; Vol'kenau, N. A.; Shilovtseva, L. S.; Pe-

^{(21) (}a) Nesmeyanov, A. N.; Vol kenau, N. A.; Shioviseva, L. S.; Fetrakova, V. A. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1974, 2159. (b) Nesmeyanov, A. N.; Solodovnikov, S. P.; Vol'kenau, N. A.; Kotova, L. S.; Sinitsyna, N. A. *J. Organomet. Chem.* 1978, 148, C5.

solubility of anionic aluminum alkyl adducts in hydrocarbon solvents and their ability to sustain "liquid clathrates" in the presence of excess liquid aromatic hydrocarbon compounds are well documented.²² Indeed, our previous study that concentrated upon [ArMn(CO)₃]⁺ cations⁹ utilized preformed "liquid clathrates" based upon aluminum alkyl complexes such as [AlR₃X]⁻ and [Al₂R₆X]⁻ and found them to be just as effective at net alkide transfer as the corresponding free aluminum alkyl compounds. Minor products that could only have resulted from coupling of 19e⁻ ArMn(CO)₃⁺ radicals were also afforded.

AlMe₃ Reactions. The major products isolated are the result of net addition of one CH_2X^- (X = Cl, Br) moiety to an unsubstituted carbon atom of one mesitylene (3c, 4c) or one hexamethylbenzene (3e, 4e) ring. There have been several previously reported examples of incorporation of chloroalkyls into Ch moieties. Of particular relevance is a study by Nesmeyanov and Vol'kenau²³ which demonstrated that 19e- neutral CpArFe compounds react with carbon tetrachloride and ethyl bromide to afford the corresponding ChCpFe complexes that are the result of net addition of CCl_3 and Et, respectively. Astruc et al. studied the reaction of alkyl and transition-metal halides with $20e^-$ Ar₂Fe complexes and isolated a series of Ch complexes.²⁴ More recent work by Sutherland et al. has shown that CCl₃ and CHCl₂ can also be incorporated into Ch ligands via direct nucleophilic addition to 18e⁻ ArCpFe⁺ complexes.²⁵ CCl₃⁻ and CHCl₂⁻ were generated by in situ deprotonation of CHCl₃ and CH₂Cl₂, respectively, before introduction of the [CpArFe]⁺ substrate. Also of relevance is a report that 19e⁻ organoiron compounds may add CH₂Cl in the presence of dichloromethane.²⁶ Our observation of net addition of CH_2X^- is inconsistent with deprotonation of solvent, which would lead to CHCl₂ addition. However, it is consistent with the aforementioned work on 19e⁻ organoiron complexes. There is therefore precedent for a

SET mechanism. Such a mechanism would involve generation of 19e⁻ Ar₂Fe⁺ complexes followed by reaction with, in the case of AlMe₃ in CH₂X₂, solvent (Scheme III). The distinct purple color of the reaction solutions is also consistent with such a proposal, as the purple Ar₂Fe⁺ 19e⁻ cations are, as mentioned earlier in this section, well documented.

Reactivity of 6. The monocation 7c, a result of net addition of the $CHCl_2^-$ moiety, is the only organometallic product isolated from the reaction of 6 with 1c in CH_2Cl_2 . However, if the reaction is conducted in 1,2-dichloroethane, the originally expected methide addition product 5c is afforded. The isolation of 7c is consistent with deprotonation of dichloromethane, presumably by the octahedral Al-Me moiety, and subsequent addition of the $CHCl_2^$ moiety thereby generated. Interestingly, our attempts to effect the preparation of 7c using a more conventional base such as OH^- resulted in deprotonation of a mesitylene and subsequent formation of the known complex 8c. 8c was

previously isolated via oxygen and nitrogen nucleophile abstraction of α -protons from iron-coordinated methylated arenes.²⁷ Removal of the α -protons using more conventional bases such as *t*-BuO⁻ is well established in CpArFe⁺ chemistry.²⁸

^{(22) (}a) Ziegler, K.; Köster, R.; Lehmkuhl, H.; Reinert, K. Justus Liebigs Ann. Chem. 1960, 629, 33. (b) Atwood, J. L. Recent Dev. Sep. Sci. 1977, 3, 195. (c) Atwood, J. L. In Inclusion Compounds; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Academic: New York, 1984; Vol. 1, p 375.

<sup>Vol. 1, p 375.
(23) Nesmeyanov, A. N.; Vol'kenau, N. A.; Petrakova, V. A. J. Organomet. Chem. 1977, 136, 363.</sup>

 ⁽²⁴⁾ Madonik, A. M.; Astruc, D. J. Am. Chem. Soc. 1984, 106, 2437.
 (25) (a) Sutherland, R. G.; Zhang, C. H.; Piorko, A. Tetrahedron Lett.
 1990, 31, 6831. (b) Sutherland, R. G.; Zhang, C. H.; Piorko, A. J. Orga-

nomet. Chem., in press.

⁽²⁶⁾ Goldman, A. S.; Tyler, D. R. Inorg. Chem. 1987, 26, 253.

⁽²⁷⁾ Helling, J. F.; Cash, G. G. J. Organomet. Chem. 1974, 73, C10.
(28) (a) Hamon, J.-R.; Saillard, J.-Y.; Le Beuze, A. L.; McGlinchey, M. J.; Astruc, D. J. Am. Chem. Soc. 1982, 104, 7549. (b) Moulines, F.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1347. (c) Moulines, F.; Astruc, D. J. Chem. Soc., Chem. Commun. 1989, 614. (d) Sutherland, R. G.; Steele, B. R.; Demchuk, K. J.; Lee, C. C. J. Organomet. Chem. 1979, 181, 411. (e) Lee, C. C.; Gill, U. S.; Sutherland, R. G. J. Organomet. Chem. 1981, 206, 89. (f) Lee, C. C.; Abd-El-Aziz, A. S.; Chowdury, R. L.; Gill, U. S.; Piorko, A.; Sutherland, R. G. J. Organomet. Chem. 1988, 348, 95. (h) Sutherland, R. G.; Abd-El-Aziz, A. S.; Piorko, A.; Gill, U. S.; Lee, C. C. J. Heterocycl. Chem. 1988, 25, 1107. (i) Piorko, A.; Abd-El-Aziz, A. S.; Lee, C. C.; Sutherland, R. G. J. Chem. Soc., Perkin Trans. 1 1989, 469.

Table IV. Interatomic Distances (Å) and Angles (deg) for 3c[PF_1]

	00	61	
Fe-C1	2.146 (5)	C1-C6	1.508 (8)
Fe-C2	2.054 (5)	C1-C7	1.523 (9)
Fe-C3	2.063 (5)	C2–C3	1.427 (9)
Fe-C4	2.061 (5)	C3-C4	1.419 (8)
FeC5	2.144 (6)	C3–C8	1.483 (8)
Fe-C6	2.708 (6)	C4-C5	1.415 (8)
Fe-C11	2.126 (5)	C5-C6	1.508 (8)
FeC12	2.111 (5)	C5-C9	1.497 (9)
Fe-C13	2.137 (6)	C6-C10	1.523 (8)
Fe-C14	2.098 (6)	C11-C12	1.377 (9)
Fe-C15	2.121 (6)	C11–C16	1.418 (9)
Fe-C16	2.108 (6)	C11–C17	1.507 (9)
P-F1	1.588 (4)	C12-C13	1.425 (9)
P–F 2	1.580 (5)	C13-C14	1.430 (8)
P-F3	1.600 (4)	C13-C18	1.475 (9)
P-F4	1.576 (5)	C14-C15	1.385 (9)
P-F5	1.575 (4)	C15-C16	1.416 (9)
P-F6	1.563 (4)	C15-C19	1.486 (9)
Cl-C10	1.788 (6)	C1-C2	1.410 (8)
C2C1C6	118.1 (5)	Cl-C10-C6	112.3 (4)
C2C1C7	119.9 (5)	C12-C11-C16	119.4 (6)
C6C1C7	119.1 (5)	C12-C11-C17	120.5 (6)
C1–C2–C3	120.7 (5)	C16-C11-C17	120.1 (6)
C2C3C4	116.3 (5)	C11-C12-C13	121.8 (5)
C2–C3–C8	123.0 (5)	C12-C13-C14	116.4 (5)
C4–C3–C8	120.6 (5)	C12-C13-C18	122.0 (6)
C3C4C5	120.2 (5)	C14-C13-C18	121.6 (6)
C4C5C6	118.6 (5)	C13-C14-C15	123.6 (6)
C4–C5–C9	120.9 (5)	C14-C15-C16	117.2 (5)
C6-C5-C9	117.8 (5)	C14-C15-C19	121.4 (6)
C1–C6–C5	102.5 (4)	C16-C15-C19	121.4 (6)
C1C6C10	115.5 (5)	C11-C16-C15	121.5 (6)
C5-C6-C10	112.2 (5)	F1-P-F2	90.3 (3)
F1-P-F3	179.9 (5)	F1-P-F4	89.7 (3)
F1-P-F5	90.3 (3)	F1-P-F6	89.8 (3)
F2-P-F3	89.8 (3)	F2-P-F4	179.4 (3)
F2-P-F5	90.2 (3)	F2-P-F6	89.6 (3)
F3-P-F4	90.2 (3)	F3–P–F5	89.8 (3)
F3-P-F6	90.1 (3)	F4-P-F5	89.3 (3)
F4-P-F6	91.0 (3)	F5-P-F6	179.8 (3)

Isolation of 7c is unusual but not unprecedented since, as mentioned earlier, direct addition of $CHCl_2^-$ generated by deprotonation of CH_2Cl_2 has recently been reported for FeCpAr⁺ complexes.²⁵ Isolation of 7c would therefore appear to be consistent with an in situ deprotonation of dichloromethane solvent molecules, presumably through the octahedral methyl moiety. If the octahedral Al-Me group is more ionic and therefore basic in character than thetrahedral aluminum alkyls, then 7c would not be an unexpected product. The relatively long⁵ octahedral Al-Me distance (1.99 Å) supports this suggestion, but further studies need to be conducted in order to confirm this suggestion.

X-ray Crystallography. The structures of the chloromethyl and dichloromethyl addition products **3c** and **7c**, respectively, are illustrated through perspective $ORTEP^{29}$ plots in Figures 1 and 2, respectively. The figures clearly illustrate how the chloroalkyl moiety has added in the expected exo fashion, thereby forcing the sp³ carbon atom out of the C₅ dienyl plane by 0.657 and 0.679 Å for **3c** and **7c**, respectively. The latter value is quite large and is presumably a result of the relative bulk of the CHCl₂ moiety, which also manifests itself by forcing the 1,5-dienyl methyl groups toward the Fe atom by an average 0.23 Å

Figure 1. ORTEP perspective view of 3c.

Table V. Interatomic Distances (Å) and Angles (deg) for $7c[PF_6] \bullet (CH_3)_2CO$

Fe-C1 Fe-C2 Fe-C3 Fe-C4 Fe-C5 Fe-C6	2.107 (7) 2.128 (7) 2.105 (7) 2.122 (7) 2.109 (7) 2.135 (7)	Fe-C11 Fe-C12 Fe-C13 Fe-C14 Fe-C15	2.134 (7) 2.047 (7) 2.078 (7) 2.058 (7) 2.145 (7)
C1-C2 C1-C6 C2-C3 C2-C7 C3-C4 C4-C5 C4-C5 C4-C8 C5-C6 C6-C9	1.396 (11) 1.412 (11) 1.414 (12) 1.513 (11) 1.426 (12) 1.408 (12) 1.503 (11) 1.414 (12) 1.498 (11)	$\begin{array}{c} C11-C12\\ C11-C16\\ C11-C17\\ C12-C13\\ C13-C14\\ C13-C18\\ C14-C15\\ C15-C16\\ C15-C19\\ C16-C20\\ C11-C20\\ C12-C20\\ \end{array}$	$\begin{array}{c} 1.407 \ (11) \\ 1.489 \ (11) \\ 1.491 \ (10) \\ 1.414 \ (10) \\ 1.424 \ (11) \\ 1.509 \ (11) \\ 1.509 \ (11) \\ 1.504 \ (10) \\ 1.541 \ (10) \\ 1.761 \ (8) \\ 1.770 \ (9) \end{array}$
P-F1 P-F2 P-F3	1.573 (5) 1.585 (5) 1.581 (5)	P-F4 P-F5 P-F6	1.552 (6) 1.573 (5) 1.549 (6)
OS1-CS1 CS1-CS3	1.185 (13) 1.482 (18)	CS1-CS2	1.460 (17)
$\begin{array}{c} C2-C1-C6\\ C1-C2-C3\\ C1-C2-C7\\ C3-C2-C7\\ C2-C3-C4\\ C3-C4-C8\\ C3-C4-C8\\ C5-C4-C8\\ C4-C5-C6\\ C1-C6-C5\\ C1-C6-C9\\ C5-C6-C9\\ C5-C6-C9\\ \end{array}$	121.2 (7) 119.3 (7) 120.1 (7) 120.6 (7) 121.0 (7) 118.0 (7) 119.3 (7) 122.7 (7) 121.6 (7) 118.8 (7) 120.7 (7) 120.5 (7)	$\begin{array}{c} C12-C11-C16\\ C12-C11-C17\\ C16-C11-C17\\ C11-C12-C13\\ C12-C13-C18\\ C14-C13-C18\\ C14-C13-C18\\ C14-C15-C16\\ C14-C15-C19\\ C16-C15-C19\\ C11-C16-C15\\ C11-C16-C15\\ C11-C16-C20\\ C15-C16-C20\\ C15-C16-C20\\ C11-C20-C12\\ C12-C20-C16\\ C12-C20-C16\\ \end{array}$	117.5 (6) 120.2 (7) 119.4 (7) 120.5 (6) 116.2 (7) 122.4 (7) 121.1 (6) 120.6 (6) 117.0 (6) 120.8 (7) 119.7 (7) 102.7 (6) 111.1 (6) 114.3 (6) 113.0 (6) 110.3 (5)
F1-P-F2 F1-P-F3 F1-P-F4 F1-P-F5 F1-P-F6 F2-P-F3 F2-P-F4 F2-P-F5	178.3 (3) 90.8 (3) 90.2 (3) 89.3 (3) 88.9 (3) 87.7 (3) 90.6 (3) 89.9 (3)	F2-P-F6 F3-P-F4 F3-P-F5 F3-P-F6 F4-P-F5 F4-P-F6 F5-P-F6	92.6 (3) 89.1 (4) 88.0 (3) 177.4 (4) 177.1 (4) 93.4 (4) 89.5 (4)
OS1-CS1-CS2 OS1-CS1-CS3	122.8(11) 120.2(12)	CS2-CS1-CS3	117.0 (9)

(vs 0.21 Å for 3c and as little as 0.12 Å for related Ch compounds¹⁸). Both 3c and 7c adopt the conformation that would be expected on steric grounds, i.e. staggering

⁽²⁹⁾ Johnson, C. K. ORTEP; Report ORNL-3794 (revised); Oak Ridge National Laboratory: Oak Ridge, TN, 1965.
(30) Cameron, T. S.; Linden, A.; Sturge, K. C.; Zaworotko, M. J. Un-

⁽³⁰⁾ Cameron, T. S.; Linden, A.; Sturge, K. C.; Zaworotko, M. J. Unpublished results.
(31) Rogers, R. D.; Sturge, K. C.; Zaworotko, M. J. Unpublished re-

sults.

⁽³²⁾ Mathew, M.; Palenik, G. Inorg. Chem. 1972, 11, 2809.

Table VI. Structural Comparison of Ar₂Fe²⁺, ArChFe⁺, and Ch₂Fe Complexes

					cyclohexadienyl ring						
		are	ne ring		• <u> </u>		M-C		dist of sp ³	fold	
complex	av M–C dist, Å	av C–C dist, Å	M–C plane dist, Å	planarity of ring ^a	av M–C dist, Å	av C–C dist, Å	plane dist, Å	planarity of ring ^a	C from plane, Å	angle deg	ref
$[(C_6H_3Me_3)_2Fe]-$ $(PF_6)_2$	2.13 (1)	1.39 (2)	1.615 (4)								30
$[(1,4-C_6H_4Me_2)(C_6-Me_6)Fe](PF_6)_2$	2.13 (1), 2.12 (2)	1.40 (2), 1.41 (1)	1.595, 1.587	0.012, 0.031							31
$[(1,3-C_6H_4Me_2)(C_6-Me_6)Fe](PF_6)_2$	2.13 (1), 2.12 (2)	1.42 (3), 1.40 (2)	1.594 (4), 1.587 (5)	0.018, 0.027							31
[(Et-C ₆ H ₃ Me ₃)(C ₆ - H ₂ Me ₂)Fe]PF ₆	2.11 (2)	1.41 (1)	1.570 (4)	0.011	2.09 (5)	1.41 (2)	1.586 (4)	0.016	0.664	44.2	13 a
[(Et-C ₆ Me ₆)(C ₆ - Me ₂)FelPF	2.16 (1)	1.41 (1)	1.631 (3)	0.011 (10)	2.12 (4)	1.41 (2)	1.616 (4)	0.026 (10)	0.596 (11)	41.0	13 a
3c[PF ₆]	2.12 (1)	1.41 (2)	1.580 (3)	0.010 (8)	2.09 (4)	1.42 (1)	1.577 (3)	0.013 (7)	0.657 (8)	43.8	this
$[(CH_2C]-C_6Me_6)-$	2.15 (1)	1.41 (1)	1.627 (4)	0.007 (10)	2.12 (3)	1.41 (1)	1.608 (4)	0.016 (11)	0.603	41.0	13b
	2.12 (1)	1.41 (1)	1.574 (6)	0.015 (17)	2.09 (4)	1.41 (1)	1.568 (6)	0.031 (16)	0.679 (18)	45.1	this study
[(C ₆ H ₅ -C ₆ H ₃ - Me ₃) ₂ Fe]					2.07 (3)	1.39 (1)	1.553, 1.555	0.014	0.638, 0.601	41.8, 39.7	18
$[({}^{t}\text{Bu}-\overline{C_{6}}\text{H}_{6})_{2}\text{Fe}]$ $[({}^{t}\text{Bu}-\overline{C_{6}}\text{H}_{3}-$ $Me_{2})_{2}\text{Fe}]$					2.07 (4) 2.09 (4)	1.41 (1) 1.41 (1)	1.556 (2) 1.572	0.020 (9) 0.021	0.621 (24) 0.670	39.4 43.5	16 32

^a Maximum deviation from best plane quoted in Å.

Figure 2. ORTEP perspective view of 7c.

of the methyl groups of the Ch and Ar rings. Interatomic distances and angles are presented in Tables IV and V for **3c** and **7c**, respectively, and they reveal no anomalous values. Table VI compares **3c** and **7c** with related Fe(II) full-sandwich complexes and reveals that the presence of the chloride has no statistical effect upon the Fe-C₆ and Fe-C₅ plane distances, the Fe-C distances, or the C-C distances. Comparison of the Fe-Ch and Fe-Ar plane distances in FeChAr⁺ complexes with those of their symmetrical FeCh₂ and FeAr₂²⁺ analogues further supports our assertion³³ that Ar ligands interact more effectively with Fe(II) than their Ch analogues. In summary, modified aluminum alkyl reagents may be employed to effect net single addition of alkide or haloalkide moieties to one Ar ring in the readily available $FeAr_2^{2^+}$ series of complexes. The products are isolated in surprisingly high yield and purity, considering the likelihood that an SET mechanism prevails, although additional minor products are obtained in several instances. The incorporation of haloalkyl moieties is particularly relevant, since they offer a potentially convenient means of further derivatization, particularly if a method of endo-hydride removal can be developed to generate $ArAr'^{2+}$ complexes.

Acknowledgment. We are grateful to the NSERC (Canada) for financial support (M.J.Z., operating grant; S.D.C. and M.D.C., undergraduate fellowships), Saint Mary's University for purchase of an X-ray diffractometer, and the Atlantic Region Magnetic Resonance Center for provision of high-field NMR spectra.

Registry No. $1a[PF_6]_2$, 11108-19-3; $1b[PF_6]_2$, 103123-09-7; $1c[PF_6]_2$, 31666-55-4; $1d[PF_6]_2$, 59688-09-4; $1e[PF_6]_2$, 53382-63-1; $2a[PF_6]$, 117340-92-8; $2b[PF_6]$, 137465-42-0; $2c[PF_6]$, 117340-94-0; $2d[PF_6]$, 117340-96-2; $2e[PF_6]$, 137465-42-0; $2c[PF_6]$, 125868-92-0; $3e[PF_6]$, 125949-25-9; $4c[PF_6]$, 125837-05-0; $4e[PF_6]$, 125819-86-5; $5c[PF_6]$, 125837-07-2; 6, 118418-59-0; $7c[PF_6]$, 137465-44-2; $7c-[PF_6]$, 125837-07-2; 6, 118418-59-0; $7c[PF_6]$, 137465-44-2; $7c-[PF_6]$, (CH₃)₂CO, 137566-58-6; $8c[PF_6]$, 137566-57-5; FeCl₃, 7705-08-0; AlEt₃, 97-93-8; $[(6-C_2H_4Cl-1,3,5-Me_3Ch)(C_6H_3Me_3)$ - $Fe]PF_6$, 117341-00-1; N(CH₂CL₂OH)₃, 102-71-6; AlMe₃, 75-24-1; CH₂Cl₂, 75-09-2; CH₂Br₂, 74-95-3; benzene, 71-43-2; p-xylene, 106-42-3; meaitylene, 108-67-8; pentamethylbenzene, 700-12-9; hexamethylbenzene, 87-85-4; 1,2-dichloroethane, 107-06-2.

Supplementary Material Available: Tables of H atom positional parameters and B values for $3c[PF_6]$ and u(i,j) or U values for $3c[PF_6]$ and $7c[PF_6]$ (3 pages); tables of observed and calculated structure factor amplitudes for $3c[PF_6]$ and $7c[PF_6]$ (26 pages). Ordering information is given on any current masthead page.

⁽³³⁾ Zaworotko, M. J.; Sturge, K. C.; White, P. S. J. Organomet. Chem. 1990, 389, 333.