In conclusion, neutral rhodocene and some derivatives \sim 10⁻⁶ s) by neutralization-reionization mass spectrometry. **Various** cyclopentadienyl complexes of rhodium *can* be used for generation of these species and other rhodocene derivatives in the gas phase. In addition to **the** compounds studied in this work, some other rhodium complexes, (e.g. $(RC₅H₄)₂RhL_n²⁴$ and $(cyclopendadienyl)(cyclo-$

(24) (a) Dickson, R. S.; Falton, G. D.; Nesbit, R. J.; Pateras, H. Organometallics 1987, 6, 2517. (b) Bixler, J. W.; Walton, J. K.; Williams, M. L.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1981, 212, C35. *(e)* **Mih, 0.** *S.;* **Nice, J. P.** *J. Organomet. Chem.* **1967, 10, 331. (d) He", W.** *k;* **mer, C.;** Goddard, **R;** Bernal, **L** *Angew. Chem., Znt. Ed. Engl.* **1977,16,334.** *(e)* **Herrmann, W. A.; Krilger, C.;** Goddard, **R.;** Bernal, **I.** *J. Organomet. Chem.* **1977,140,73.**

pentadiene)rhodium derivatives $a^{3a,c,25}$, which decompose easily to $(RC_sH_a)₂Rh⁺$ ions, are good sources for gas-phase substituted-rhodocenium ions. It is quite possible that rhodocenium salts,^{25a} like cobaltocenium²⁶ derivatives, will prove to be convenient sources for the correeponding gas-phase **cations** and their neutral counterparts.

OM920090J

Selective Formation of *cis*-(HMe₂Si)₂Pt(PEt₃)₂ from HMe₂SISIMe₂H and Pt(PEt₃)₃ and Its Reactivities Relevant to **Generation of (Sily1ene)piatinum Species Thereof**

Hiroshi Yamashita, Masato Tanaka,* and Midori Goto

NaHonel Chemkxl Laboratmy fw Industry, Tstkiba, Ibarakl305, Japan

ReOeivedMy 1, 1992

HMe₂SiSiMe₂H (1, 3 equiv) reacted with Pt(PEt₃)₃ at room temperature to give cis-(HMe₂Si)₂Pt(PEt₃)₂ HMe₂SiSiMe₂H (1, 3 equiv) reacted with Pt(PEt₃)₃ at room temperature to give cis-(HMe₂Si)₂Pt(PEt₃)₂
(2) and oligosilanes H(SiMe₂)_nH ($1 \le n \le 7$), while 2 was selectively obtained by the reaction of 1 (when treated with Pt(PEt₃)₃ at room temperature, although Si-Pi species were not found. Redistribution of 1 was efficiently catalyzed by 2 at room temperature, leading to H(SiMe₂)_nH with the approximate molar ratio being $\geq 30:10:30:5:2:1:0.3$ for $n = 1-7$, respectively. Me₂SiH₂ was mainly formed upon thermolysis of 2 at 60 °C. Reaction of 2 with phenylacetylene (3 equiv) at 60 °C gave 4,4-dimethyl-2,6-diphenyl-1platina-4-sila-2,5-cyclohexadiene (4), the structure of which was determined by X-ray crystallographic analysis: **space group** $P2_1/n$ **,** $a = 12.319$ **(1) A,** $b = 20.164$ **(1) A,** $c = 12.837$ **(2) A,** $\beta = 97.03$ **(1)^o,** $V = 3164.8$ **(7)** \mathbf{A}^3 , $\mathbf{Z} = 4$. Heating 4 at 120 °C afforded 1,1-dimethyl-3,4-diphenyl-1-sila-2,4-cyclopentadiene as the sole volatile product.

Introduction

Addition of a Si-H or Si-Si bond to organic unsaturated compounds is a versatile reaction which allows **us** to transform various organosilanes including polymers.^{1,2} Group 10 metal-catalyzed reactions of hydrodisilanes that have both Si-H and Si-Si bonds are particularly interesting since they can lead to unique products such **as** oligosilanes,^{3a} 1,4-disila-2,5-cyclohexadiene,^{3b} and 1-sila-2,4-cyclopentadiene,^{3c,d} although mechanistic details have not been elucidated yet. West et al. recently reported that 1,2-dihydrosilanee reacted with (diphosphine)Pt(O) complexes to give (disilene)platinum species, and they proposed **a** pathway involving **hydrido(disilany1)platinum** intermediates? In striking contrast with this, we have found that $HMe₂SiSiMe₂H$ reacts with $Pt(PEt₃)₃$ to give a bis(hydrosilyl)platinum complex selectively.⁵ Herein a bis(hydrosilyl)platinum complex selectively.⁵ are reported the formation and reactivities of the bis(sily1) complex.

Results and Discussion

Reactions of Pt(PEt₃), with Hydrodisilanes. When $HMe₂SiSiMe₂H$ (1, 3 equiv) was added to $Pt(PEt₃)₃$ in benzene- d_6 at room temperature, the color of the solution immediately turned from orange to pale yellow. 'H **NMR,** GC, and GC-MS of the solution showed the formation of cis-(HMe₂Si)₂Pt(PEt₃)₂ (2, nearly quantitative yield) along minionality variou from orange to pais yenow. If NWH,
GC, and GC-MS of the solution showed the formation of
cis-(HMe₂Si)₂Pt(PE₃)₂ (2, nearly quantitative yield) along
with H(SiMe₂)_nH (1 \leq n \leq 7).^{3a,6}

⁽²⁶⁾ (a) Cloke, F. G. N.; Day, J. P.; Greenway, A. M.; Seddon, K. P.; Shirman, A. A.; Śwain, A. C. J. *Organomet. Chem.* 1989, *372, 231. (b*)
Müller, J.; Stühler, H.-O.; Goll, W. *Chem. Ber.* 1975, *108*, 1074. (c)Müller, **J.** *Angew. Chem., Znt. Ed. Engl.* **1972,11,623.**

⁽²⁶⁾ Zagorevskii, D. V.; Nekramv, Yu. 5.; Malkov, A. V.; Leonova, E. V. *J. Organomet. Chem.* **1986,284,109.**

⁽¹⁾ For a recent review of hydroeilylation, see: Ojima, I. In *The Chemistry of Organic Silicon Compounde;* **Patai,** *S.,* **Rappoport, Z.,** Eds.; **John Wiley** *t%* **Sons: Chichester, U.K., 1989; p 1479.**

⁽²⁾ For recent studies on double silylation, see: (a) Yamashita, H.;
Catellani, M.; Tanaka, M. Chem. Lett. 1991, 241 and references cited
therein. (b) Murakami, M.; Andersson, P. G.; Suginome, M.; Ito, Y. J.
Am. Chem. Soc

Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263. (d) Okinoshima, H.;
Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1975, 86, C27.
(4) (a) Pham, E. K.; West, R. J. Am. Chem. Soc. 1989, 111, 7667. (b)

Pham, E. K.; Weat, R. *Organometallics* **ISSO, 9,1617.**

⁽⁶⁾ **For our recent studies on the reactions of organ&es with group 10 and/or 9 metal complexes, see: (a) Yamaehita, H.; Kobayaehi, T.-a; Hayashi, T.; Tanaka, M.** *Chem. Lett.* **1990, 1447. (b) Yamashita, H.; Kawamoto, A. M.; Tanaka, M.; Goto, M.** *Chem. Lett.* **ISSO, 2107 and references cited therein.**

⁽⁶⁾ Heating a mixture of 1 (0.178 mmol) and trans-PtCl₂(PEt₃)₂ (1 mol Hawamoto, A. M.; Tanaka, M.; Goto, M. Chem. Lett. 1990, 2107 and
Kawamoto, A. M.; Tanaka, M.; Goto, M. Chem. Lett. 1990, 2107 and
references cited therein.
(6) Heating a mixture of 1 (0.178 mmol) and *trans*-PtCl₂(PEt₉ \times 0.00178 mmol for $n = 2-9$, respectively (the amount of Me₂SiH₂ was not determined). Except for the case of the tetrasilane, one major GC not determined). Except for the case of the tetrashiane, one major GC peak, probably arising from H(SiMe₂)_nH,³⁴ was observed for each oligo-
silane. However, the tetrasilane seemed to be a mixture of two structural isomers (3.7) as described for the reaction of $Pt(PEt_3)_3$ with 1 in the **Experimental Section.**

ative molar ratio of the oligomeric silanes was estimated at $\geq 15:14:12:3:0.4:0.1:50.1$ for $n = 1-7$, respectively, the tetramer (H₂Me₈Si₄) of which was found by GC and GC-MS to consist of two isomers $(3:7)$, although the structure of the second isomer **has** not been fully elucidated yet *On* the other hand, ¹H NMR signals ascribable to the Pt- SiMe_2H moiety of 2 were observed at 0.78 (d, ${}^3J_{\text{HH}} \approx 4$ Hz, $^{3}J_{\rm{HPt}} \approx 28$ Hz, Si-CH₃) and 4.51 (sept t, $^{3}J_{\rm{HH}} \approx 4$ Hz, $^{3}J_{\rm{HP}}$ ≈ 19 Hz, $^{2}J_{\text{HPt}} \approx 40$ Hz, Si-H) ppm, and no signal arising from Pt-H species was found in the range -30.0 to 0.0 ppm.
The ³¹P NMR signal had cleanly shifted from 21.9 (¹J_{PPt} The ³¹P *NMR* signal had cleanly shifted from 21.9 $(\hat{1}J_{\text{PPt}} = 4216 \text{ Hz})$ ppm for Pt(PEt₃)₃ to 18.5 ppm with a rather small coupling constant of \mathbf{L}_{PPt} (1621 Hz), which is consistent with the cis configuration of **2.'** In a separate reaction of $Pt(PEt_3)$ with 1 (1.05 equiv) in pentane at -30 OC, complex **2** was isolated **as** pale yellow plates in 90% yield (eq 1). **2** was thermally unstable and gradually $Z_{\text{HPH}} \approx 40 \text{ Hz}$, Si-H) ppm, and no signal arising
t-H species was found in the range -30.0 to 0.0 ppm.
P NMR signal had cleanly shifted from 21.9 (¹ J_{PPt} ; Hz) ppm for Pt(PEt₃)₃ to 18.5 ppm with a rather
co

$$
Pt(PEt3)3 + HMe2SiSiMe2H
$$
 = partane
1 -30 °C = 2

decomposed in benzene- d_6 or toluene- d_8 solution even at room temperature. A very recent publication by Tilley et al. **also** suggested the formation of a similar complex $(H_2PhSi)_2Pt(PEt_3)_2$ from $Pt(PEt_3)_3$ and $H_2PhSiSiPhH_2^8$

Even though the structure of **2** seemingly indicates that cleavage of the Si-Si bond **has** taken place, we believe, on the basis of MO calculations? that kinetically favorable **hydrido(disilany1)platinum** species are formed first and that these then somehow rearrange to the thermodynamically more stable bis(sily1) species. This reaction sequence was very recently demonstrated by Fink et al. for [1,2 **bis(dicyclohexylphosphino)ethane]platinum-l,2-dihydro**disilane **systems.1o** In addition, Ebsworth et al. have **also** reported the preferential addition of an Si-H bond in H_3SisH_3 to IrCl(CO)(PEt₃)₂.¹¹

HMe2SiSiMe3& **also** underwent redietribution at room temperature upon treatment with $Pt(PEt₃)₃$ to give oligosilanes. GC-MS suggested the formula $HMe_{2m+1}Si_m$ (1) $\leq m \leq 7$). Their approximate relative molar ratio was estimated by ¹H NMR and GC at \geq 25:2:4:4 (three isomers, 1:5:4):3 (three isomers, 3:1:6):0.5 (two isomers, 1:9): ≤ 0.1 (two isomers, 2:3) for $m = 1-7$, respectively. Similarly, H₂MeSiSiMe₃ gave redistribution products, which were (two isomers, 2:3) for $m = 1-7$, respectively. Similarly,
H₂MeSiSMe₃ gave redistribution products, which were
assigned by GC-MS to be HMe₂₊₁Si_p (1 ≤ p ≤ 3),
H.Me, Si (2 ≤ q ≤ 6) and H.Me, Si (3 ≤ r ≤ 7) with H₂MeSiSiMe₃ gave redistribution products, which were

assigned by GC-MS to be HMe_{2p+1}Si_p (1 $\leq p \leq 3$),

H₂Me_{2q}Si_q (2 $\leq q \leq 6$), and H₃Me_{2p+1}Si_p (3 $\leq r \leq 7$) with

the annovimete relative ratio the approximate relative ratio being $\geq 12: \leq 0.1:1:14:0.2:5$ $(two$ isomers, $1:9$: ≤ 0.1 : ≤ 0.1 :0.2 ≤ 0.1 :0.2 (two isomers, 1:1): ≤ 0.1 : ≤ 0.1 for $p = 1-3$, $q = 2-6$, and $r = 3-7$, respectively. The predominant formation of $H_2Me₈Si₄$ seems to suggest dehydrogenative coupling of two molecules of H2MeSiSiMe3 being **also** involved in its formation,12 although its structure has not been fully confirmed **as** yet. In agreement with this, the GC-MS spectrum of $H_2Me_8Si_4$ (major isomer) obtained from $H_2MeSiSiMe_3$ was different

(7) Kobayashi, T.-a.; Hayashi, T.; Yamashita, H.; Tanaka, M. *Chem. Lett.* **1988, 1411.**

p 13. (c) Reference 10. (9) *Sakaki,* **S. Private communication. (10) Fink, M. J.; Recatto, C. A.; Michalczyk, M.** J.; **Cahbrese, J. C. Presented at the 25th Silicon Symposium, Los Angeles, April 3-4, 1992.** (11) Ebsworth, E. A. V.; Fraser, T. E. *J. Chem. Soc., Dalton Trans.* **1979**, 1960.

(12) For dehydrogenative coupling of hydrodisilanes, see: Hengge, E.;
Weinberger, M.; Jammegg, Ch. J. Organomet. Chem. 1991, 410, C1. See
also for platinum-catalyzed dehydrocoupling of hydrosilanes: Brown-**Wensley, K. A.** *Organometallics* **1987,6,1590. Tan&, M.; Kobayaehi, T.-a.; Hayaehi, T.; Sakakura, T.** *Appl. Organomet. Chem.* **1988, 2,91.**

from that of H₂Me₈S₁₄ (major isomer) obtained from 1. In the foregoing reactions of $HMe₂SiSiMe₃$ and H2MeSiSiM%, powible platinum **species such as** bis(sily1) and **hydrido(disilany1)platinum** complexes could not be detected by ¹H NMR. The R₃Si-M bond lengths decrease in the order of $R = Me₃Si > Me > H > F₁¹³$ indicative of Si-M bonds being stronger in the reverse way. The lack of the observation of $(Me_3Si)(MeRHSi)Pt(PEt_3)_2 (R = Me,$ H) seems to be associated with the weak $Me₃Si-Pt$ bond in comparison with the HMe₂Si-Pt bond.

Redistribution of 1 Catalyzed by 2. Complex 2 (1 mol %) efficiently catalyzed the redistribution of **1** in toluene- d_8 as previously observed using trans- $PtCl_2(PEt_3)_2$ as catalyst.^{3a,6,14} Monitoring by ¹H NMR and GC revealed that the reaction smoothly proceeded at room temperature to give an equilibrium mixture of oligosilanes $H(SiMe₂)_nH$ that the reaction smoothly proceeded at room temperature
to give an equilibrium mixture of oligosilanes $H(SiMe₂)_nH$
(1 $\le n \le 7$) in about 1 h, the relative molar ratio of each
component being estimated at ≥ 30 component being estimated at $\geq 30:10:30:5$ (the total of the two isomers (1:4) for $H_2Me_8Si_4$):2:1:0.3 for $n = 1-7$, respectively (eq 2). The Me-Si proton signal of **2** was re-

$$
1 \quad \xrightarrow{\qquad \qquad 2 \; (1 \; \text{mod} \frac{a_0}{b}) \qquad \qquad } \qquad \text{H(SiMø2)nH \qquad \qquad (2) \qquad \qquad \text{toluence} \qquad \qquad \text{H}(SiMø2)nH \qquad \qquad (2)
$$

tained unchanged at 0.69 ppm (d, ${}^{3}J_{\text{HH}} \approx 4$ Hz, ${}^{3}J_{\text{HPt}} \approx 28$ Hz) throughout the reaction. In the catalytic cycle, a (silylene)platinum species (3) ,^{3b,15} which is possibly generated in equilibrium with **2,** seems to interact with an α , ω -dihydrooligosilane to give a $(silyl)(oligosilanyl)platinum$ species, and subsequent reductive elimination would form a higher homologue of the oligosilane (eq 3).

$$
2 \frac{\cdot \text{Me}_{2} \text{SiH}_{2}}{+ \text{Me}_{2} \text{SiH}_{2}} [\text{Me}_{2} \text{Si}-\text{PL}_{2}] \frac{+ \text{H}(\text{SiM}\text{e}_{2})_{m}\text{H}}{3} + \text{H}(\text{SiM}\text{e}_{2})_{n}\text{H}} + \text{H}(\text{SiM}\text{e}_{2})_{n} \times \text{PL}_{2}] \frac{+ \text{H}(\text{SiM}\text{e}_{2})_{m+1}\text{H}}{+ \text{H}(\text{SiM}\text{e}_{2})_{n+1}\text{H}} [\text{PL}_{2}] \quad (3)
$$
\n
$$
(p = m, n) \quad (L = \text{PE}_{3})
$$

Thermolysis of 2. In order to obtain supportive evidence for the proposed intermediacy of a (silylene)platinum species, we examined the thermolysis of **2.** Thus, heating 2 at 60 °C for 30 min afforded $Me₂SiH₂$ as the main volatile product (230%) along with Me₃SiH (10%), hydrogen (10%), and $(HMe₂Si)₂O$ (4%).¹⁶ (Disilene)platinum species, which might have been formed in view of the reaction of **(diphoephine)Pt(O)-l,2-dihydrodisilane** systems,⁴ were not observed. By GC, no volatile oligosilanes were found to be formed. However, the 'H NMR **spectrum** displayed *small signals* in the 0.1-0.4 ppm region arising from **unknown** polymeric entities, presumably formed from (sily1ene)platinum species 3 (eq 4).

$$
2 \longrightarrow
$$

\n
$$
101 \text{when} -d_8
$$
\n
$$
60 \text{°C}
$$
\n
$$
80 \text{°C}
$$
\n
$$
3
$$

Reactions of 2 with Silylene Trapping Agents. Thermolysis of **2** in the presence of 2,3-dimethyl-1,3-butadiene (3 equiv) or triethylsilane (2 equiv) failed to afford products with silylene incorporation. However, treatment with phenylacetylene (3 equiv) in toluene- d_8 at 60 °C for 30 **min** cad acolor change of the solution from colorleas to yellow, and gave a white precipitate of 4,4-dimethyl-**2,6-diphenyl-l-platina-4-sila-2,5-cyclohexadiene** (4,46%

^{(8) (}a) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 1917.
See also: (b) Tessier, C. A.; Kennedy, V. O.; Zarate, E. A. In Inorganic
and Organometallic Oligomers and Polymers; Harrod, J. F.; Laine, R. **M., Ede.; Kluwer Academic Publiehere: Dordrecht, Netherlands, 1991;**

⁽¹³⁾ Aylett, B. J. *Adv. Inorg. Chem. Radiochem.* **1982,25, 1.**

⁽¹⁴⁾ For a review of distribution of organoe.ilanes, *we:* **Curtis, M. D.; Epetein, P. S.** *Adv. Organomet. Chem.* **1981,19,213.**

Epstein, P. S. Adv. Organomet. Chem. 1981, 19, 213.
(15) Some Si-M complexes (M = Fe, Ru, Os, Cr, W) have been isolated. For instance, see: (a) Leis, C.; Wilkinson, D. L.; Handwerker, H.; Zybill, C. *Organometallics* **1992**, *11*, 514 and references cited therein. (b) Woo, L. K.; Smith, D. A.; Young, V. G., Jr. *Organometallics* **1991**, *10*, 3977.

⁽¹⁶⁾ The **origin of the oxygen wan ambiguous. Monitoring by lH** *NMR* indicated that Me₃SiH was a secondary product, presumably via redis**tribution of MezSiHz (see Experimental Section).**

Table I. Crystallographic Data for 4

formula	PtP ₂ SiC ₃₀ H ₄₈
fw	693.824
cryst syst	monoclinic
space group	$P2\llap/1/n$
a, A	12.319 (1)
b, A	20.164 (1)
c, Å	12.837 (2)
β , deg	97.03(2)
V, A ³	3164.8 (7)
z	4
calcd density, $g \text{ cm}^{-3}$	1.456
cryst size, mm	$0.6 \times 0.1 \times 0.12$
diffractometer	Enraf-Nonius CAD4
Cu Kα radiation, $λ$, A	1.5418
scan type	ω/θ scan
scan rate, deg min ⁻¹	$1-4$ (in ω)
2θ range, deg	4-120
no. of reflens measd	5076
no. of indep reflens	4843
no. of indep reflens used $(F_o \geq 3\sigma F_o)$	4211
transm factor ^s	0.480--0.980
decay	(in glass capillary) none
μ (Cu Ka), cm ⁻¹	98.57
R	0.0817
R_{\bullet}	0.102
differential Fourier map max/min, e A ⁻³	$3.86/-2.68$ (near Pt atom)

"Correction: empirical Ψ scan method. $^b w = 1/(0.0132|F_0|^2 0.826|F_{o}| + 36.01$).

Table II. Positional and Thermal Parameters for Non-Hydrogen Atoms of 4^c

atom	x	y	z	B_{eq} , $\overline{A^2}$
Pt	0.31446(4)	0.27997(2)	0.64887(4)	3.38(2)
P(1)	0.4368(3)	0.1984(2)	0.7236(3)	2.73 (9)
P(2)	0.2955(3)	0.3380(2)	0.8047(3)	2.55(8)
Si	0.3849(3)	0.3707(2)	0.4476(3)	2.79 (9)
C(1)	0.2163(10)	0.3531(6)	0.5721(10)	2.3(3)
C(2)	0.2602(12)	0.3932(7)	0.5039(10)	2.9(3)
C(3)	0.3690(13)	0.2791(6)	0.4298(12)	3.0(4)
C(4)	0.3242(11)	0.2429(6)	0.5013(10)	2.4(3)
C(5)	0.1000(12)	0.3599(7)	0.5913(10)	2.9(3)
C(6)	0.0481(12)	0.4232(7)	0.5894(11)	3.3(4)
C(7)	$-0.0617(14)$	0.4284(8)	0.6039(12)	3.9(4)
C(8)	$-0.1223(14)$	0.3716(10)	0.6190(13)	4.6(5)
C(9)	$-0.0745(14)$	0.3098(9)	0.6200(12)	3.9(4)
C(10)	0.0366(13)	0.3027(8)	0.6055(11)	3.5(4)
C(11)	0.2821(11)	0.1727(6)	0.4706 (10)	2.4(3)
C(12)	0.3242(14)	0.1369(7)	0.3908(12)	3.7(4)
C(13)	0.2825(18)	0.0739(8)	0.3625 (13)	4.7(5)
C(14)	0.2043(17)	0.0467(7)	0.4136(14)	4.6(5)
C(15)	0.1608(14)	0.0805(7)	0.4931 (13)	3.9(4)
C(16)	0.2012(12)	0.1449(6)	0.5205(11)	2.9(3)
C(17)	0.3813(16)	0.4101(10)	0.3138(14)	5.1(5)
C(18)	0.5162(14)	0.3972(9)	0.5215(14)	4.5(5)
C(19)	0.5720(13)	0.2304(9)	0.7839(12)	3.8(4)
C(20)	0.6398(18)	0.2613(14)	0.7088(20)	7.3(7)
C(21)	0.3956(14)	0.1488(7)	0.8316(12)	3.7(4)
C(22)	0.2978(19)	0.1026(9)	0.8007(15)	5.6(6)
C(23)	0.4765(14)	0.1339(8)	0.6316(13)	3.9(4)
C(24)	0.5609(22)	0.0818(11)	0.6806(22)	7.7(8)
C(25)	0.1672(13)	0.3236(10)	0.8587(12)	4.4(5)
C(26)	0.1489(17)	0.2525(11)	0.8935(17)	5.4(6)
C(27)	0.3981(12)	0.3274(7)	0.9189(10)	3.0(4)
C(28)	0.3784(16)	0.3650(9)	1.0177(13)	4.8(5)
C(29)	0.2909(14)	0.4295(6)	0.7912(11)	3.5(4)
C(30)	0.3982(17)	0.4590(7)	0.7670(16)	4.9(5)

 $^aB_{\bullet q} = 4[a^2B_{11} + b^2B_{22} + c^2B_{33} + 2abB_{12}\cos\gamma + 2bcB_{23}\cos\alpha + 2caB_{13}\cos\beta]/3.$

yield) along with $Me₂SiH₂$ and other silicon-containing volatile compounds (eq 5, see Experimental Section). The

$$
2 + \text{ PhCECH} \xrightarrow{\text{toluence}} \text{Me}_2 \text{St}(\text{PE}_3)_2 + \text{Me}_2 \text{SH}_2 + \text{others} \qquad (5)
$$
\n
$$
(3 \text{ equal}) \qquad 60 \text{°C}
$$

structure of 4 was unequivocally confirmed by X-ray

Table III. Selected Bond Lengths and Bond Angles for 4

Bond Lengths (A)							
$Pt-P(1)$	2.355(4)	$C(13)-C(14)$	1.35(3)				
$Pt-P(2)$	2.354(3)	$C(14) - C(15)$	1.39(3)				
$Pt-C(1)$	2.08(1)	$C(15)-C(16)$	1.42(2)				
$Pt-C(4)$	2.05(1)	$C(16)-C(11)$	1.37(2)				
$C(1) - C(2)$	1.35(2)	$Si-C(17)$	1.89(2)				
$C(2)$ -Si	1.83(2)	$Si-C(18)$	1.85(2)				
$Si-C(3)$	1.87(1)	$P(1) - C(19)$	1.86(2)				
$C(3)-C(4)$	1.34(2)	$C(19)-C(20)$	1.49(3)				
$C(1)-C(5)$	1.49(2)	$P(1) - C(21)$	1.83(2)				
$C(5)-C(6)$	1.43(2)	$C(21) - C(22)$	1.54(3)				
$C(6)-C(7)$	1.39(2)	$P(1)$ –C(23)	1.86(2)				
$C(7)-C(8)$	1.39(3)	$C(23)-C(24)$	1.56(3)				
$C(8)-C(9)$	1.38(3)	$P(2)$ –C (25)	1.83(2)				
$C(9)-C(10)$	1.41(2)	$C(25)-C(26)$	1.53(3)				
$C(10)-C(5)$	1.42(2)	$P(2) - C(27)$	1.83(1)				
$C(4) - C(11)$	1.54(2)	$C(27)-C(28)$	1.52(2)				
$C(11) - C(12)$	1.40(2)	$P(2)$ -C(29)	1.85(1)				
$C(12) - C(13)$	1.40(2)	$C(29)-C(30)$	1.52(3)				
		Bond Angles (deg)					
$P(1) - Pt - P(2)$	97.2(1)	$C(13) - C(14) - C(15)$	121.5(14)				
$P(2)-Pt-C(1)$	86.4 (4)	$C(14)-C(15)-C(16)$	118.4 (15)				
$P(1) - Pt - C(4)$	90.9 (4)	$C(15)-C(16)-C(11)$	120.8 (14)				
$C(1)-Pt-C(4)$	85.2(5)	$C(2)$ -Si- $C(17)$	109.0 (8)				
$Pt-C(1)-C(2)$	118.4(10)	$C(2)$ -Si- $C(18)$	116.7(7)				
$C(1)-C(2)-Si$	121.8 (10)	$C(3) - Si - C(17)$	108.3(8)				
$C(2)$ -Si- $C(3)$	102.3(7)	$C(3) - Si - C(18)$	114.9(7)				
$Si-C(3)-C(4)$	119.9 (11)	$C(17)-Si-C(18)$	105.4 (8)				
$C(3)-C(4)-Pt$	120.5(9)	$Pt-P(1)-C(19)$	115.0 (6)				
$Pt-C(1)-C(5)$	120.2 (9)	$P(1)$ -C (19) -C (20)	114.8 (12)				
$C(1)-C(5)-C(6)$	121.2 (12)	$Pt-P(1)-C(21)$	117.9 (5)				
$C(5)-C(6)-C(7)$	120.4 (14)	$P(1)$ –C (21) –C (22)	114.7 (11)				
$C(6)-C(7)-C(8)$	120.2 (15)	$Pt-P(1)-C(23)$	115.7(5)				
$C(7)-C(8)-C(9)$	120.6 (16)	$P(1)$ –C (23) –C (24)	115.5 (13)				
$C(8)-C(9)-C(10)$	120.8 (16)	$Pt-P(2)-C(25)$	115.1(6)				
$C(9)-C(10)-C(5)$	119.5 (15)	$P(2) - C(25) - C(26)$	115.3 (13)				
$Pt-C(4)-C(11)$	121.0(9)	$Pt-P(2)-C(27)$	119.6(5)				
$C(4)-C(11)-C(12)$	121.1 (12)	$P(2)$ -C (27) -C (28)	116.5 (11)				
$C(11)-C(12)-C(13)$	120.0 (16)	$Pt-P(2)-C(29)$	114.9(5)				
$C(12) - C(13) - C(14)$	120.3 (16)	$P(2)$ –C(29)–C(30)	113.1 (11)				

crystallography of a pale yellow needle crystal of 4 (vide infra). As a tentative mechanism, one can envision that 4 arises from the insertion of phenylacetylene into the 4 arises from the insertion of phenyacetylene into the
Si-Pt bond^{17,18} of a platinasilacyclobutene intermediate
(5),¹⁹ generated by the interaction of 3 with phenyl-
acetylene²⁰ (eq 6). An alternative pathway leadin

$$
3 \quad \frac{\text{PhC:CH}}{\text{Ph}} \left[\begin{array}{c} \text{Me}_2\text{Si}-\text{Pl(PEt}_3)_2 \\ \text{Im}\end{array}\right] \quad \frac{\text{PhC:CH}}{\text{PhC:CH}} \quad 4 \tag{6}
$$

would be insertion of phenylacetylene into one of the Si-Pt bonds of 2, followed by interaction of the resulting β -SiH moiety with the platinum center (eq 7).²¹ However, fur-

$$
2 \xrightarrow{\text{PhC:CH}} \begin{bmatrix} \text{Me}_2\text{SiH} & \text{Pt(SiMe}_2\text{H})(\text{PEb}_2) \\ \text{Ph} & \text{Ph} \end{bmatrix} \xrightarrow{\cdot \text{H}_2\text{SiMe}_2} 5 \xrightarrow{\text{PhC:CH}_2} 4 \quad (7)
$$

(17) Kobayashi, T.-a.; Hayashi, T.; Yamashita, H.; Tanaka, M. Chem. Lett. 1989, 467.

(18) As for insertion of acetylenes into C-M bonds, it seems to proceed with larger substituents lying near the metal center. For the C-Ni bond, see: Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002.

(19) Metallasilacyclobutene intermediates have been suggested in the group 10 metal-catalyzed addition of silacyclopropenes to acetylenes
affording 1-sila-2,4-cyclopentadienes. (a) Sakurai, H.; Kamiyama, Y.;
Nakadaira, Y., J. Am. Chem. Soc. 1977, 99, 3879. (b) Ishkawa, M.;
Sugisawa, H.; Ha group 10 metal-catalyzed addition of silacyclopropenes to acetylenes inson, D. J.; Rheingold, A. L. Organometallics 1988, 7, 2239.

Figure 1. Perspective view of the molecular structure of **4.**

ther studies are required to reveal the provenance of **4** more definitely, since the reactivity of bis(hydrosily1) platinum species is extremely dependent on the nature of the phosphine ligand and/or the substituent bound to the silicon. For **instance,** it is interesting to note the formation of a **l-platina-2,5-disila-3-cyclopentene,** $\text{PhRSiCH}=\text{CR}'(\text{PhRSi})\text{Pt}(\text{PMe}_2\text{Ph})_2, \quad \text{from} \quad cis$ $(HPhRSi)_2Pt(PMe_2Ph)_2$ and $R'C=CH$ (R = Ph, R' = H, Ph, $p\text{-}BrC_6H_4$, $p\text{-}F\text{-}C_6H_4$; R = Me, R' = Ph).^{19e} **^b**.

Structure of **4. Details** of the **data** collection, positional and thermal parametere for non-hydrogen atoms, and selected bond lengths and angles are summarized in Tables I-III, respectively. A perspective view of the molecule with labeling scheme is shown in Figure 1.

Complex 4 has slightly distorted square-planar geometry, with a dihedral angle between $P(1)-Pt-P(2)$ and $C(1)-$ Pt-C(4) being 5.2°. The platinasilacyclohexadiene ring exists in the boat conformation with a nearly planar mean plane (A) consisting of four **carbons** C(l)-C(2)-C(3)-C(4); dihedral angles between $C(1)-Pt-C(4)$ and A and A and C(2)-Si-C(3) are 129.7 and 149.1°, respectively. Because of this conformation, the two methyl groups attached to the silicon are not equivalent to each other. This is consistent with the appearance of the two Si-Me proton signals $(0.21$ and 0.48 ppm in CDCl₃).

The Pt-P bond lengths (2.355 and 2.354 **A)** are slightly longer than those of RR'PtP₂ complexes reported before **(2.26-2.33 A).=** *On* the other hand, the Pt-C lengths (2.05 and 2.08 **A)** are a little bit shorter than those reported (2.06-2.22 **A).** The other bond lengths are unexceptional. **Thermolysis** of **4.** The 1,2-dihydrodisilane **1** is known

to react with acetylenes in the presence of Ni^{3c} or Pd^{3d} complex **catalyeta** to give **l-sila-2,4-cyclopentadienes.** The **fomtion** of **4** indicatea a possible intermediate of the type **4** complex involved in the catalysis. Indeed, heating **4** at 120 °C for 40 min in benzene- d_6 afforded 1,1-dimethyl-**3,4-diphenyl-l-sila-2,4-cyclopentadiene (6)** in 30% yield **as** the sole volatile product (eq 8). Exactly the same compound with the same locations of phenyl groups was

previously obtained in the Pd-catalyzed reaction of **1** with phenylacetylene.^{3d}

$$
4 \longrightarrow_{\text{benzened}_6} \text{Me}_2\text{Si} \longrightarrow \text{Me}_1(8)
$$

Experimental Section

'H and 31P NMR spectra were measured on Bruker **AC-200** and JEOL FX-90 instruments, respectively (200 MHz for ¹H NMR and **36.2** MHz for 31P NMR). Chemical **shifts** are referred to C6Da **(7.16** ppm), C&,HCD3 **(6.98** ppm), or CHC1, **(7.25** ppm) for ¹H NMR and H_3PO_4 (0 ppm) for ³¹P NMR. Infrared spectra were recorded on a **JASCO A-302** spectrometer. Mass spectra were measured on a **Shimadzu QP-lo00** spectrometer (EI, **70** eV). GC and GC-MS analyses were carried out *wing* columna of **OV-101 (1** m, **3** m), **OV-17 (1** m), and/or **OV-1701(25** m). Gas analyes were performed on a Gasukuro **Kogyo** Model 373FG fuel gas analyzer.

All manipulations were carried out under nitrogen. Solvents were dried by usual methods and distilled under nitrogen. **2,3-** Dimethyl-1,3-butadiene, triethylsilane, and phenylacetylene were dried with molecular sieve **4A** and distilled under nitrogen or a reduced pressure. $Pt(PEt₃)₃^{23a}$ was prepared by heating Pt- $(PEt₃)₄^{23b}$ at around 60 °C for about 5 min in vacuo. *trans-*PtCl₂(PEt₃)₂ was obtained by the method reported for *trans*- $\mathrm{PtCl}_2(\mathrm{PBu}_3)_2.^{\bf 24}$ $\,$ $\mathrm{HMe}_2\mathrm{Si}\mathrm{SiMe}_2\mathrm{H},^{25}\mathrm{HMe}_2\mathrm{Si}\mathrm{SiMe}_3,^{25}\mathrm{and}$ and an authentic sample of $\text{Me}_2\text{SiH}_2^{\text{28}}$ were synthesized according to the literature reactions. H_2M eSiSiMe₃ was prepared by the reduction of Cl_2M eSiSiMe₃²⁷ with LiAlH₄ in a way similar to that of $\mathbf{HMe}_{2}\mathbf{Si}\mathbf{Si}\mathbf{Me}_{2}\mathbf{H}.^{\mathbf{25}}$

Reaction of Pt(PEt₃), with $HMe₂SiSiMe₂H$ **(1).** To a benzene- d_6 (0.30 mL) solution of $Pt(PEt_3)$ ₃ (0.05 mmol) in an NMR tube was added 1 (0.15 mmol) at room temperature, and the tube was sealed under nitrogen. 'H *NMR* **spectra** after about 15 min indicated the formation of cis - $(HMe₂Si)₂Pt(PEt₃)₂$ (2) in nearly quantitative yield at 0.78 (d, ${}^3J_{\text{HH}} \approx 4 \text{ Hz}$, ${}^3J_{\text{HPt}} \approx 28 \text{ Hz}$, Si-CH₃) and 4.51 (sept t, ${}^3J_{\text{HH}} \approx 4 \text{ Hz}$, ${}^3J_{\text{HP}} \approx 19 \text{ Hz}$, ${}^2J_{\text{HPt}} \approx 40$ Hz, Si-H) ppm. In addition, the proton signals of Me₂SiH₂ and other Si-Me species emerged at -0.02 (t, $^{3}J_{\text{HH}} = 4.1 \text{ Hz}$, Si-CH₃) ppm and at **0.0.3** ppm, respectively, with Si-H protons being observed at **3.8-4.2** ppm. No signal arising from **R-H** species was found in the range **-30.0** to 0.0 ppm. In 31P *NMR,* the **signal** at 21.9 (${}^{1}J_{\text{PPt}}$ = 4216 Hz) ppm for $Pt(PEt_3)_3$ disappeared with appearance of new signals at 18.5 $(^1J_{\text{PPt}} = 1621 \text{ Hz})$ and -15.3 (broad) ppm arising from **2** and **the** liberated triethylphosphine, respectively. *On* the other hand, *GC* and **GC-MS** of the solution showed the formation of $H_2Me_{2n}Si_n$ ($1 \le n \le 7$) with other unidentified products. For H₂Me₈Si₄, two structural isomers seemed to be formed **as** judged from GC **(OV-1701)** and GC-MS. However, for other oligosilanes, almost one major GC **peak** was observed for each oligosilane. By the comparison of their GC retention times and GC-MS fragmentation **patterns** with those of the oligosilanea obtained by the redistribution of **1 catalyzed** by $trans\text{-}\text{PtCl}_{2}(\text{PEt}_{3})_{2}$,^{3a,6} they were assigned to be $\text{H}(\text{SiMe}_{2})_{n}\text{H}$ (1) the oligosilance and σ be the redistribution of 1 catalyzed by trans-PtCl₂(PEt₃)₂,^{3a,6} they were assigned to be H(SiMe₂)_nH (1 \tans exception of the second isomer of the tetramer.
 $\leq n \leq 7$) with an exce $\leq n \leq 7$) with an exception of the second isomer of the tetramer.
From the ¹H NMR and GC measurement after about 2 h, their approximate amounts were estimated at ≥ 15 , 14, 12, 3 (the total of the two isomers (3:7) for H_2M e₈Si₄), 0.4, 0.1, and $\leq 0.1 \times 0.0015$ mmol for $n = 1-7$, respectively. The GC-MS spectral data (m/z) (relative intensity)) for $H(SiMe₂)_nH$ ($3 \le n \le 9$) obtained in the above reaction and/or the reported reaction^{3a,6} were as follows. H(SiMe₂)₃H: 176 (M⁺, 5), 161 (13), 117 (76), 116 (97), 101 (24), **73 (loo), 59 (30), 45 (21), 43 (33).** HzMe& minor isomer: **234** (M', **7), 219 (17), 175 (33), 174 (51), 173 (20), 161 (25), 160 (loo), 159 (41), 145 (31), 131 (15), 129 (19), 117 (22), 116 (23), 115 (29),**

⁽²¹⁾ We cannot completely exclude intervention of another route in-
volving generation of PtL_2 species $(L = PEt_2)$ from 3, addition of Me_xSiH₂ **giving (M#Si)HPt&, insertion of phenylacetylene into the Si-Pt bond, intramolecular Si-H addition to the Pt center, and reductive elimination**

of hydrogen to result in 5.
(22) Hartley, F. R. In *Comprehensive Organometallic Chemistry*;
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford,
U.K., 1982; p 532.

⁽²³⁾ (a) Yo?hida, T.; Matauda, T.; Oteuka, **S.** *Inorg. Synth.* **1979,19,** 107. (b) Yoshida, T.; Matsuda, T.; Otsuka, S. *Inorg. Synth.* 1979, 19, 110.
(24) Kauffmann, B.; Teter, L. A. *Inorg. Synth.* 1963, 7, 245.
(25) Urenovitch, J. V.; West, R. J. Organomet. Chem. 1965, 3, 138.
(26) Bond, A. C

⁽²⁷⁾ Ishikawa, M.; Fuchikami, T.; Kumada, M. *J. Organomet. Chem.*

^{1976,118,139.}

101 (24), 99 (14), 73 (89), 59 (31), 45 (27), 43 (23). H₂Me₈Si₄ major isomer: 234 (M⁺, 14), 219 (16), 175 (68), 174 (48), 173 (25), 160 **(29),** 159 (27), 145 (19), 131 (19), 129 (14), 117 (47), 116 (82), 115 (22), 101 (35),99 (13),73 (loo), 59 (35),45 (27),43 (29). Some fragment **peaks** of these two isomers might involve a considerable error because of the insufficient GC peak separation. $H(SiMe₂)₅H$: 292 (M+, 6), 233 (loo), 203 (14), 175 (27), 174 (14), 173 (21), 159 (39) , 157 (12), 116 (22), 101 (13), 73 (56), 59 (14). H(SiMe₂)₆H: 350 (M+, 6), 291 (27), 261 (12), 233 (loo), 217 (35), 215 (lo), 175 (19), 174 (lo), 173 (le), 159 **(48),** 157 (13), 116 (ll), 73 (42). H(SiMe₂)₇H: 408 (M⁺, 5), 291 (50), 233 (82), 217 (100), 175 (20), 173 (21), 159 (62), 157 (23), 73 (69). H(SiMe₂)₈H: 466 (M⁺, 2), 291 (42), 275 (12), 233 *(55),* 217 (loo), 201 (17), 199 (13), 173 (14), 159 (38), 157 (21), 73 (67). H(SiMe₂)₉H: 524 (M⁺, 2), 291 (38), 275 (18), 233 **(46),** 217 (loo), 201 (21), 199 (16), 159 **(27),** 157 (20), 73 (67).

In a separate experiment, to a pentane (2 mL) solution of Pt(PEt₃)₃ (0.47 mmol) in a Schlenk tube cooled at -30 °C was added 1 (0.49 mmol) and the resulting mixture was stirred at -30 °C for 5 min. The volatiles were removed in vacuo at -30 to -20 OC, and pentane (1 **mL)** was added to the residue. When the pentane solution was cooled to -80 °C, pale yellow plate crystals of 2 were obtained $(0.42 \text{ mmol}, 90\% \text{ yield})$: mp 63-65 °C (under of 2 were obtained (0.42 mmol, 90% yield): mp 63-65 °C (under 27.5 Hz, 12 H, SiCH₃), 0.99 (td, $2^{3}J_{\text{HH}} \approx \frac{3J_{\text{HP}}}{J_{\text{HP}}} \approx 15.0$ Hz, 18 H, PCCH₃), 1.90 (qd, ³/_{HP} ≈ ⁴/_{HP} ≈ 7.5 Hz, 12 H, PCH₂), 3.89 (sept
t, ³/_{HH} ≈ 4.0 Hz, ³/_{HP} ≈ 18.5 Hz, ²/_{HPt} ≈ 39.4 Hz, 2 H, SiH). ³¹P **(e),** 1234 (m), 1032 (m), 922 **(a),** 832 **(a),** 770 **(a),** 736 (m), 710 (m), 680 (m), 626 (m) cm⁻¹. Anal. Calcd for $C_{16}H_{44}P_2PtSi_2$: C, 34.96; H, 8.07. Found: C, 35.04; H, 7.94. N₂). ¹H NMR (CDCl₃, 0 °C): δ 0.28 (d, ³ J_{HH} = 4.0 Hz, ³ J_{HPt} = $PCCH₃$), 1.90 (qd, $^{3}J_{\rm HH} \approx {}^{2}J_{\rm HP} \approx 7.5$ Hz, 12 H, PCH₂), 3.89 (sept *NMR* (C₆D₅CD₃, 0 °C): *δ* 23.8 (¹J_{PPt} = 1626 Hz). IR (Nujol): 2020

Reaction of $Pt(PEt_3)$ **, with HMe₂SiSiMe₃.** To a benzene- d_6 (0.30 mL) solution of $Pt(PEt₃)₃$ (0.05 mmol) in an *NMR* tube was added HMe₂SiSiMe₃ (0.15 mmol) at room temperature, and the tube was sealed under nitrogen. ¹H NMR of the resulting mixture after about 2 h indicated the formation of Me₃SiH at 0.02 (d, ³J_{HH} $= 3.6$ Hz, Si-CH₃) ppm (\sim 0.03 mmol) along with other Si-Me species at 0.0-0.8 ppm. The Si-H protons of Me_3SiH and other species appeared at $3.8-4.7$ ppm. However, Pt-Si-CH₃ signals with satellite bands arising from $H^{-186}Pt$ coupling were not found. On the other hand, GC and GC-MS analyses of the solution indicated the formation of oligosilanes with other unidentified products. The oligosilanes were assigned by GC-MS to be $HM\Theta_{2m+1}Si_m$, $(1 \le m \le 7)$. From ¹H NMR and GC (OV-1701, FID, $HH\Theta_{2m+1}Si_m$ as an internal standar products. The oligosilanes were assigned by GC-MS to be $HMe_{2m+1}Si_m$ (1 $\leq m \leq 7$). From ¹H NMR and GC (OV-1701, FID, tetradecane **as** an internal standard), the approximate **amounta** of the oligosilanes were estimated at ≥ 25 , 2, 4, 4 (three isomers, 1:5:4), 3 (three isomers, 3:1:6), 0.5 (two isomers, 1:9), and ≤ 0.1 (two isomers, 2:3) \times 0.0015 mmol for $m = 1-7$, respectively (the figures in the parentheses represent the approximate ratios of the structural isomers distinguished by GC). The GC-MS spectral data $(m/z$ (relative intensity)) for $HMe_{2m+1}Si_m$ ($3 \le m \le 7$) were as follows. HMe₇Si₃: 190 (M⁺, 5), 175 (10), 131 (27), 116 (56), 102 (15), 101 (14), 73 (100), 59 (17), 45 (30), 43 (21). HMe₉Si₄: *²⁴⁸*(M+, 5), 174 **(40),** 159 (23), 131 *(W),* 116 **(34),** 73 (loo), 59 (21), 45 (30), 43 (18). $HM_{e_{11}}Si_5: 306 (M^+, 6), 233 (36), 217 (13), 173$ **(a),** 159 (25), 131 (17), 116 (25), 73 (loo), 59 (19), *45* **(24),** 43 (13). HMe₁₃Si₆: 364 (M⁺, 7), 305 (17), 290 (11), 233 (17), 231 (15), 217 (24), 215 (12), 173 (15), 171 (ll), 159 (15), 157 (14), 131 (ll), 73 (100), 59 (16), 45 (20). HMe₁₅Si₇ minor isomer (20 eV): 422 (M⁺₁ 13), 349 (32), 291 (16), 275 **(S),** 259 (17), 232 (47), 217 (loo), 201 (23), 173 (30), 159 (15). **HMe**₁₅Si₇ major isomer (20 eV): 422 (M⁺, 2), 349 **(44),** 291 (31), 275 (38), 232 (22), 217 (loo), 189 (12).

Reaction of Pt(PEt₃), with H₂MeSiSiMe₃. In a way similar to that of $HMe₂SiSiMe₃, H₂MeSiSiMe₃ (0.15 mmol) was treated$ with $Pt(PEt₃)₃ (0.05 mmol)$ in benzene- $d₆$ (0.30 mL). ¹H NMR after about 2 h indicated the formation of ${Me}_3SiH$ (\sim 0.02 mmol) at 0.02 (d, ${}^{3}J_{\text{HH}} \approx 3.6$ Hz, Si-CH₃) ppm and other Si-Me species at 0.0.7 ppm, with their Si-H protons being **observed** at 3.5-4.5 ppm. However, no proton signal for Pt-Si-CH₃ species was found. On the other hand, GC measurement of the solution showed the existence of the volatile compounds, some of which were **assigned** On the other hand, GC measurement of the solution showed the
existence of the volatile compounds, some of which were assigned
by GC-MS to be HMe_{2p+1}Si_p (1 $\leq p \leq 3$), H₂Me_{2p}Si_q (2 $\leq q \leq$
6) and H.Me. .Si (3 6), and Hamilton is the solution of the solution of which were assigned
by GC-MS to be HMe_{2p+1}Si_p $(1 \le p \le 3)$, $H_2Me_{2p}Si_q$ $(2 \le q \le 6)$, and $H_3Me_{2p-1}Si_r$, $(3 \le r \le 7)$. From 'H NMR and GC (OV-170
FID decaps as an **FID,** decane **as** an internal standard), the approximate amounta were estimated at $\geq 12, \leq 0.1, 1, 14, 0.2, 5$ (two isomers, 1:9), ≤ 0.1 , $≤0.1, 0.2, ≤0.1, 0.2$ (two isomers, 1:1), ≤0.1, and ≤0.1 $× 0.0015$

mmol for $p = 1-3$, $q = 2-6$, and $r = 3-7$, respectively. The GC-MS spectral data $(m/z$ (relative intensity)) of the oligosilanes (3 \leq $p, q,$ or $r \le 7$) were as follows. For $H\dot{M}e_{2p+1}Si_p$ ($p = 3$): $H\dot{M}e_7Si_3$ 190 (M', 17), 175 (16), 131 (lo), 116 (42), 102 (36), 101 (21), 73 p, q, or $r \le 7$) were as follows. For $HMe_{2p+1}Si_1$ ($p = 3$): HMe_7Si_1
190 (M⁺, 17), 175 (16), 131 (10), 116 (42), 102 (36), 101 (21), 73
(100), 59 (14), 45 (27), 43 (17). For $H_2Me_2Si_1$ (3 $\le q \le 6$):
 $H_2Me_6Si_3$ 17 (23), 45 (27), 43 (30); $H_2Me_8Si_4$ minor isomer 234 (M⁺, 5), 219 (11), 160 (loo), 145 (29), 131 (14), 129 (13), 115 (26), 73 (81), 59 (19), 45 (31), 43 (19); H₂Me₈Si₄ major isomer 234 (M⁺, 6), 219 (12), 160 $(100), 145 (34), 129 (13), 115 (27), 73 (60), 59 (17), 45 (23), 43 (16);$ H2Mel\$is (20 **eV)** 292 (M+, 5), 232 (9), 218 (loo), 203 (12), 160 (22), 144 (38); H₂Me₁₂Si₆ (20 eV) 350 (M⁺, 4), 276 (43), 261 (10), $202(100)$, 187 (11), 157 (11). For $H_3Me_{2r-1}Si_r$ (3 $\leq r \leq 7$): $H_3Me_5Si_3$ 162 (M+, 12), 147 (12), 116 (17), 101 (15), 88 (50), 73 (loo), 62 (14), 59 (21), 45 (28),43 (30); H3Me7Si4 (20 **eV)** 220 (M+, 31, 205 (8), 160 (16), 146 (100), 115 (12), 73 (11); $H_3Me_3Si_5$ (20 eV) 278 (M⁺, 2), 204 (100), 189 (12), 144 (44), 130 (22); H₃Me₁₁Si₆ (20 eV) 336 (M⁺, 4), 262 (54), 247 (12), 218 (12), 202 (42), 188 (100), 157 (16), 144 (15); H3Me13Si7 (20 **eV)** 394 (M+, 31,320 (541,260 (161,246 (loo), 231 (15), 202 (33), 187 (13), 172 (61).

Redistribution of 1 Catalyzed by 2. To a toluene- $d_{\rm A}$ (0.25) mL) solution of 2 (0.002 mmol) in an NMR tube cooled at about 0 "C was added **1** (0.20 mmol), and the tube was sealed under nitrogen. Monitoring the reaction by 'H NMR indicated the redistribution proceeded with 2 being apparently unchanged. The redistribution proceeded with 2 being apparently unchanged. The ¹H NMR signals of 2 were observed at 0.69 (d, ³J_{HH} ≈ 4 Hz, ³J_{HPt} ≈ 28 Hz, Si-CH₃), 0.87 (td, 2 ³J_{HH} ≈ ³J_{HP} ≈ 14.4 Hz, PCCH₃), and 1.75 (qd, ${}^{3}J_{\text{HH}} \approx {}^{2}J_{\text{HP}} \approx 7.2 \text{ Hz}$, 12 H, PCH₂) ppm, while the Si-H proton **was** not clearly **diathguiahed because** of the existence of Si-H protons of $H(SiMe₂)_nH$ at 3.2-5.0 ppm. After about 1 **4 an** equilibrium state was attained, and no more 'H *NMR change* was observed in the Si-Me region. By ¹H NMR at -30 \degree C, the amount of the formed Me_2SiH_2 in solution was estimated at 30 **X** 0.002 mmol. GC and GC-MS revealed the formation of H- (SiMe₂)_nH ($n \ge 2$) along with small amounts of several unidentified produde (the **total** of their GC **areas** (OV-101, TCD) was almcet the same as that of $H(SiMe₂)_{5}H$). The amounts of $H(SiMe₂)_{n}H$ $(n \geq 2)$ were estimated by GC (OV-101, TCD) using an internal standard (tetradecane) at 10, 30, 5 (the total of the two isomers (1:4) for H₂Me₈Si₄), 2, 1, and 0.3 \times 0.002 mmol for $n = 2-7$, respectively.

Thermolysis of 2. A toluene- d_8 (0.25 mL) solution of 2 (0.020 mmol) in a sealed NMR tube was left for about 15 **min** at room temperature. 'H NMR measurement showed the formation of $Me₂SiH₂ (\sim 5\%)$ without other Si-Me products. When the *NMR* tube was heated at 60 "C for 30 min, the color of the solution turned from colorless to light brown. 'H NMR of the resulting solution at -30 °C showed the formation of Me₂SiH₂ at -0.04 (t, J_{HH} = 4.1 Hz, Si-CH₃) ppm (22%), Me₂SiH at 0.02 (d, ³ J_{HH} = 3.6 Hz, Si-CH₃) ppm (10%), and (HMe₂Si)₂O at 0.14 (d, ${}^{3}J_{\text{HH}}^{\text{int}}$ = 2.8 Hz, Si-CH₃) ppm (4%). These products were additionally confirmed by GC and GC-MS. In GC (OV-101, 240 °C), no other volatile produde were detected. However, several **small** proton signals were observed in the 0.1-0.4 ppm region, presumably arising from some polymeric Si-Me species.

In a separate experiment, a toluene (0.29 mL) solution of **2** (0.021 mmol) was heated at 60 °C for 30 min in a closed Schlenk tube (43 mL) under nitrogen. Gas analysis of the vapor phase showed the formation of Me_2SiH_2 (30%) and H_2 (10%).

Reaction of **2 with 2,3-Dimethyl-l,3-butadiene or Tri**ethylsilane. To a toluene- d_8 (0.25 mL) solution of 2 (0.023 mmol) in an NMR tube cooled at about -30 "C was added **2,3-di**methyl-1,3-butadiene (0.069 mmol) or triethylsilane (0.046 mmol), and the tube was *sealed* under nitrogen. Heating the *NMR* tube at 60 "C for 30 min gave essentially the same products **as** those in the thermolysis of **2.** The product with silylene incorporation such as 1,1,3,4-tetramethyl-1-sila-3-cyclopentene or 1,1,1-tri**ethyl-2,2-dimethyldisilane** was not found by 'H NMR and/or GC-MS.

Reaction of 2 with Phenylacetylene. To a toluene- $d_{\rm B}$ (0.25) mL) solution of 2 (0.023 mmol) in an NMR tube cooled at about -30 °C was added phenylacetylene (0.069 mmol), and the tube was sealed under nitrogen. When the solution was heated at 60 OC for 30 min, a white precipitate of **4** was formed. The NMR tube was opened, and the precipitate was separated. Washing the precipitate with pentane and drying in vacuo gave a white

solid of **4** (0.011 mmol,46% yield). Pure 4 of pale yellow needle crystals for microanalysis and X-ray diffraction study was obtained by recrystallization from benzene-pentane $(v/v = 1/1)$ down to -10 OC. **4** mp 159-161 OC (under N2). 'H *NMR* (CDClJ: 6 0.21 **(e,** 3 H, SiCHJ, **0.48** (8, 3 H, SiCHJ, 0.96 **(td,** *9Jm* = *,JH~* = 14.8 *Hz*, 18 H, PCCH₃), 1.18-1.68 (m, 12 H, PCH₂), 6.83 (d, ¹)_{HP(trans)} (each m, 10 \textbf{H} , $\textbf{C}_6\textbf{H}_5$). ³¹P NMR (CDCl₃): δ -2.7 (¹J_{PPt} = 1741) *Hz).* IR (Nujol): 1510 (m), 1232 (m), 1038 (m), *868* (m), *836* (m), 760 **(a),** 716 (m), 698 (m), 570 (m) cm-'. Anal. Calcd for \approx 14.6 Hz, $^{3}J_{\text{HPt}} \approx$ 122.9 Hz, 2 H, CH=), 6.99–7.37 and 7.61–7.83 $C_{30}H_{48}P_2PtSi: C, 51.93; H, 6.97.$ Found: C, 52.33; H, 7.01.

'H **NMR** measurement before **opening** the *NMR* **tube** indicated the presence of Me_2SiH_2 in solution (-0.02 (t, $^3J_{\text{HH}} = 4.1$ Hz, Si-CH₃) ppm, \sim 5%). In addition, GC analysis (OV-1701) of the solution showed at least 20 peaks arising from unreacted phenylacetylene (A, ~ 0.007 mmol), styrene (B, ~ 0.004 mmol), and other volatile produds. The structures of the products except for $Me₂SiH₂$ and styrene were not fully confirmed yet because of the difficulty of their separation. However, some of them were tentatively assigned by GC-MS to be 1:1 adducts of Me₂SiH₂ with phenylacetylene (Cl, C2) and five- and six-membered silacycles such *BB* 1,l-dimethyl-2,4, l,l-dimethyl-2,5-, or 1,l-dimethyl-3,4 **diphenyl-l-sila-2,4-cyclopentadiene** (D), 1,l-dimethyl-2,4-, 1,ldimethyl-2,5-, 1,l-dimethyl-3,4, or **l,l-dmethyl-3,5-diphenyl-l**sila-2-cyclopentene (E) , 1,1,4,4-tetramethyl-2,5- or 1,1,4,4-tetramethyl-2,6-diphenyl-1,4-disila-2,5-cyclohexadiene (F), 1,1,4,4tetramethyl-2,5- or 1,1,4,4-tetramethyl-2,6-diphenyl-1,4-disila-2cyclohexene (G), and 1,1,4,4tetramethyl-2,5- or 1,1,4,4-tetra**methyl-2,6-diphenyl-1,4diaiicyclohexene** (H). The approximate GC area ratio of AB:C1:C2:D:E:F:G:H was estimated at \sim 20: \sim 100.6:0.6:5:3:8:141 (OV-1701, FID). The GC-MS spectral data (m/z (relative intensity)) of the products (C-H) are **as** follows. C1: 162 (M⁺, 26), 147 (100), 145 (29), 121 (38), 59 (21), 58 (22), 43 (22). C2 162 (M+, 28), 147 (loo), 145 (45), 121 (20), 59 (12), 58 (25), 43 (24). D: 262 (M⁺, 100), 247 (60), 145 (15), 105 (15), 43 (22). E: 264 (M⁺, 86), 249 (52), 205 (36), 204 (27), 173 (34), 161 (68), 145 (100), 135 (57), 121 (39), 59 (71), 43 (28). F: 320 **(M+,** *85),* 305 (loo), 203 (24), 173 (20), 145 (38), 73 (41), 43 (31). G: 322 (M⁺, 80), 263 (29), 218 (46), 161 (36), 135 (40), 73 (40), 43 (18). H: 324 (M+), fragment **peaks** could not be confirmed to have come from H because of the partial overlapping of the GC peak with G.

Thermolysis of **4.** A benzene-& (0.30 **mL)** solution of 4 (0.0014 mmol) in a sealed NMR tube was heated at 120 $^{\circ}$ C for 40 min.

The ¹H NMR signals for 4 disappeared, and new Si-CH₃ proton signals emerged at 0.24,0.41,0.45, and 0.55 ppm with an integral ratio of 2.9:3.1:1:3.5. GC and GC-MS **analyes** of the solution revealed the formation of **6 as** the sole volatile product. **6** was separated by short-path silica gel chromatography using hexane **as** eluent. The 'H NMR **spectrum** of **6** in CDC13 was in **good** agreement with the reported one²⁸ (in benzene- d_6 , 0.40 (Si-CH₃) and 6.24 (=CH) ppm). The yield of 6 was estimated at 30% by meane of the 'H NMR of the reaction mixture. The **GC-MS** fragmentation pattern of **6** was **the** same **as** that of the compound D formed in the reaction of **2** with phenylacetylene.

X-ray Crystallographic **Analysis** for **4.** A *crystal* **was** *sealed* in a glass capillary tube and an empirical absorption correction (\$ scan) was applied to the **data.** Cell constanta were obtained from 25 higher angle (30 < 28 < **40°)** reflections. The structure was solved by MULTAN 78,²⁹ and the program system UNICS III³⁰ was used for calculations. A total of 4211 reflections ($|F_0|$ $\geq 3\sigma|F_o|$ was used. Six hydrogen atoms were taken from a difference Fourier map; the remainder were located with calculated positions. Refinement was by full matrix least squares, $R = 0.0817$ $(R_w = 0.102)$; the position and temperature factors of hydrogen atoms were not **refiied.** Scattering factore for atoms were taken from ref 31.

Acknowledgment. We are indebted to Dr. Andrew J. Wynd who participated in the preliminary experiments.

Supplementary Material Available: Tables of the coordinates of hydrogen atoms, thermal parameters, complete bond lengths and angles, least-squares planes with atomic deviations, and angles between the planes for 4 (19 pages). Ordering information is given on any current masthead page.

OM920239R

Univereity of York, **England, and** Louvain, **Belgium, 1978.** (30) **Sakurai, T.;** Kobayaehi, K. *Rep. Inst. Phys. Chm. Res.* **1979,66, 69.**

 (31) *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., **1974;** Vol. IV.

Synthesis, Structure, and Reactivity of Allene Complexes of the - Chiral Rhenium Fragment $\left[(n^5\text{-}C_sH_s)Re(NO)(PPh_s) \right]$ ⁺

Jiaqi Pu, TangSheng Peng, Atta M. Arlf, and J. A. *Gladysz'*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received *My 11, 1992*

Reactions of the chlorobenzene complex $((\eta^5 \text{-} C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{Cl}C_6H_5))^+BF_4^-$ and excess (a) allene, (b) methylallene, and (c) 1,1-dimethylallene give the π adducts $((\eta^5 - C_5H_5)Re(NO)(PPh_3)(\eta^2 - H_2C - C - C_5H_3)Re(NO)(PPh_3)(\eta^2 - H_2C - C_5H_3)Re(NO)(PPh_3)(\eta^2 - H_2C - C_5H_3)Re(NO)(\eta^2 - H_2C - C_5H_3)Re(NO)(\eta^2 - H_2C - C_5H_3)Re(NO)(\eta^2 - H_2C - C_5H$ A. Gladysz*
City, Utah 84112
C₆H₆)]*BF₄⁻ and ex
C₆H₆)Re(NO)(PPh₃)
moclinic, $P2_1/n$, $a =$
ordinated = CH₂ gr
he free C=C linkage
he free C=C linkage

to the PPh₃ ligand, with a 23.7° angle between the Re—P bond and the Re—C—C plane. NMR data show
that the methyl groups in 1b,c occupy the less hindered positions on the free C—C linkages. Analogous reactions of **chiral1,3-dialkylallenes** give mixtures of diaetereomeric adducts with modest selectivities. Reaction of 1a and t -BuO-K⁺ in THF $(-80 \text{ to } +25 \text{ °C})$ gives the methylacetylide complex $(\eta^6$ -C₅H₅)Re- $(NO)(PPh_3)(C=CCH_3)$ (3, 92%). A similar reaction of la and CH₃Li gives the allenyl complex $(\eta^5 C_5H_5$)Re(NO)(PPh₃)(ČH=C=CH₂) (4, 70%), which upon treatment with HBF₄-OEt₂ gives mainly the propyne complex $[(\eta^5-C_5H_5)Re(NO)(\text{PPh}_3)(\text{HC} = \text{CCH}_3)]^+BF_4^-$ (5). Reaction of Li⁺[($\eta^5-C_5H_5$)Re(NO)(PPh₃)]⁻ to 4 at 67-80 °C. Thus, the conversion of 1a to 3 is proposed to involve 4 and 5 as intermediates.

The physical and chemical propertiea of transition-metal allene complexes have been the subject **of** numerous in-

vestigations.¹⁻⁴ Depending upon the $C=C-C$ substitution pattern, a diverse array of linkage isomers and ste-

⁽²⁸⁾ **Henry,** G. K.; Shinimoto, **R.;** Zhou, **Q.;** Weber, W. P. *J.* **Organo-**

met. Chem. 1988, 350, 3.
(29) Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, J.-P.;
Woolfson, M. M. MULTAN78. A system of Computer Programs for the Automatic Solution of **Crystal** Structures **from** X-ray Diffraction Data.