Cationic Lanthanide Alkyl Complexes. Evidence for an Unprecedented Tetraphenylborate Coordination Mode in $La(C_{\kappa}Me_{\kappa})$ (CH(SiMe₃)₂ BPh₄

Colin J. Schaverien

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B. V.), Postbus 3003,

1003 AA Amsterdam. The Netherlands

Received June 9, 1992

Summary: Reaction of $La(C_5Me_5)(CH(SiMe_3)_2)_2$ (1) with [PhNMe₂H]BPh, affords zwitterionic La(C₅Me₅){CH- $(SiMe₃)₂$ (BPh₄ (2a), which reacts irreversibly with THF to displace the coordinated tetraphenylborate and afford the first cationic lanthanide alkyl complex [La(C₅Me₅){CH- $(SiMe_a)₂$ (THF)₃ BPh₄ (3a).

A combination of the highly unsaturated Lewis acidic metal center, the vacant coordination site, and the reactivity of the M-R' bond in the cationic complexes [M- $(C_5R_5)_2R'^+$ (M = Zr, R = H;¹ M = Zr, R = Me;^{1d,2} M = Th, $R = Me^{3}$ are believed to be prerequisites for their olefin polymerization activity. This increasing interest in cationic Ti,⁴ Zr,^{1,2,5} and Th³ chemistry is, in part, associated with the realization that an important prerequisite is also a "noncoordinating" anion. Evidence suggests, however, that tetraphenylborates are not necessarily innocuous. For example, η^n -coordination⁶ of one phenyl ring has been proposed in $Zr(CH_2Ph)_3(\eta^n-C_6H_5)\overline{B}Ph_3^{\delta a}$ and $\overline{Cp'}_2ZrMe$ - (BPh_4) , cyclometalation occurs to afford $(C_5Me_5)_2Zr^+(m C_6H_4$)B⁻Ph₃,^{2a} and weak σ -Me coordination has been observed in $(\tilde{C}_5Me_5)_2Zr^+Me(\mu\text{-Me})B^-Ph_3$.^{1d} We report here the first examples of cationic lanthanide alkyl species, as well as an unprecedented coordination mode of the tetraphenylborate anion.

Results and Discussion

In order to access the chemistry of analogous cationic lanthanide alkyl complexes, a synthetic requirement is a monocyclopentadienyl precursor. We have previously

(1) (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc.
1986, 108, 1718. (b) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. Organometallics 1989, 8, 2892. (c) Jordan, R. F.; Bradley, P. K.; Bae (e) Hlatky, G. G.; Eckman, R. R.; Turner, H. W. Organometallics 1992, 11.1413

(3) (a) Lin, Z.; Le Marechal, J.-F.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127. Although ¹³C CPMAS NMR spectra were measured, C_{ipso} chemical shifts were not reported: (b) Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10, 840.

(4) (a) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. R.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219. (b) Bochmann, M.; Jaggar, A. J.; Nichols, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (c)
Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Short, R. L. Organo-
metallics 1987, 6, 2556. (d) Chien, J. C. W.; Llinas, G. H.; Rausch, M. D.; Lin, G.-Y.; Winter, H. H.; Atwood, J. L.; Bott, S. G. J. Am. Chem. Soc. 1991, 113, 8569.

(5) (a) Bochmann, M.; Karger, G.; Jaggar, A. J. J. Chem. Soc., Chem.
Commun. 1990, 1038. (b) Crowther, D. J.; Jordan, R. F.; Beenziger, N. C.; Verma, A. Organometallics 1990, 9, 2574. (c) Chien, J. C. W.; Tsai, W.-M.; Rausch, M. D. J. Am. Chem. Soc. 1991, 113, 8570. (d) Horton,
A. D.; Orpen, A. G. Organometallics 1991, 10, 3910. (d) Horton,

A. D., O., De evidence presented for Zr (CH₃Ph)₃(η ⁷-C_eH₃)BPh₃^{5s} suggests,
but does not unambiguously establish, η ⁸-phenyl group coordination. In $Cp'_{2}ZrMe(BPh_{4})$,⁷ the NMR evidence is consistent with η^{3} -phenyl coordination or with the rapid equilibration of two diastereomers with η^2 -
coordinated phenyl rings. η^6 -coordination of one phenyl ring of BPh₄-
is not common in electron-rich Ru(II) and Rh(I) chemistry. Kruger, G. J.; DuPreez, A. L.; Haines, R. J. J. Chem. Soc., Dalton. Trans. 1974, 1302
and references therein. Uson, R.; Lahuerta, P.; Reyes, J.; Oro, L. A.;
Foces-Foces, C.; Cano, F. H.; Garcia-Blanco, S. Inorg. Chim. Acta 1980, 42, 75.

(7) Horton, A. D.; Frijns, J. H. G. Angew. Chem., Int. Ed. Engl. 1991, 30, 1152.

Figure 1. (A) ¹³C CPMAS NMR spectrum of 2a (14728 scans; $X =$ hexane). (B) ¹³C CPMAS NMR spectrum of 3a (14916 scans).

developed a synthetic methodology to such a species.⁸⁴ Protonation of $La(C_5Me_5)(CH(SiMe_3)_{2})_{2}$ (1)^{8a} with [PhNMe₂H]BPh₄ (1 equiv) in toluene $(-30 \text{ to } +20 \text{ °C})$ cleanly affords a new complex 2a in 93% isolated yield with concomitant formation of 1 equiv of (uncoordinated)

^{(2) (}a) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. (b) Eshuis, J. J. W.; Tan, Y. Y.; Teuben, J. H.; Renkema, J. J. Mol. Catal. 1990, 62, 277.

^{(8) (}a) Van der Heijden, H.; Schaverien, C. J.; Orpen, A. G. Organometallics 1989, 8, 255. (b) Schaverien, C. J.; Nesbitt, G. J. J. Chem. Soc., Dalton Trans. 1992, 157.

 $PhNMe₂$ and $CH₂(SiMe₃)₂$ (by ¹H NMR). Characterization of 2a by ¹H NMR, variable-temperature ¹³C and ²⁹Si *NMR* spectroscopy, and elemental **analysis** indicated the absence of coordinating solvents and the stoichiometry La(C₆Me₅){CH(SiMe₃)₂}BPh₄. (See Scheme I). Compound **2a** is insoluble in hexane and C_6H_{12} but dissolves readily in benzene and toluene. It is soluble (and surprisingly stable) in CD_2Cl_2 and $C_2D_2Cl_4$, there being no evidence of decomposition and/or Cl⁻ abstraction after several hours at **25** "C.

The *NMR* data for the sterically unsaturated, formally &electron **[La(C6Mes)(CH(SiMe3)2}]+** fragment in **2a** are unexceptional, the chemical shifts ⁽¹H, ¹³C, and ²⁹Si) being only slightly perturbed from those in $1.^{8a,b}$ The tetraphenylborate phenyl groups **are** chemically equivalent, and **all ¹³C** *NMR* resonances remain sharp, down to -85 °C in solution (CD₂Cl₂). The ¹³C *NMR* chemical shift of the *ipso* **carbons** is **very** slightly solvent and temperature dependent (see Experimental Section). These C_{ipso} chemical shifts are perturbed upfield (albeit slightly) from those in the uncoordinated tetraphenylborate anion (ca. **6 164.0** ppm).^{1b,4c,7} The C_{ipso} peak shapes are also perturbed from that expected for the BPh_4 anion. We attribute this dependence to weak π -coordination of the anion and rapid inter- or intramolecular exchange in these weakly donor solvents (benzene, toluene, $\rm CH_2CH_2^{4b,10}$). This explanation is **also** consistent with the solid-state NMR **analysis.** The ¹³C CPMAS NMR spectrum of 2a (Figure 1A) displays two $CH(SiMe₃)₂$ methyl resonances in a 1:1 ratio due to rotation around each C_{α} -Si_β, exchanging methyl groups in the same (coordinated and uncoordinated) SiMe₃ group.^{8b} Single C_5Me_5 and C_5Me_5 peaks suggest that there are no magnetically inequivalent molecules present in the **crys**talline asymmetric unit cell giving rise to the multiple C_{iso} resonances observed. Four ipso carbon resonances of equal intensity and similar line shape (multiplets, all with ^{10,11}B coupling") are observed at 6 **170.4,167.3,159.5,** and **156.3** ppm (average = 163.4 ppm). We attribute this to a $(\eta^n C_6H_5$ ₂BPh₂ tetraphenylborate (in **2a**, 2*n* is necessarily **SlO),** giving a pseudotetrahedral **lanthanum** environment. This would give rise to just such a 1:1:1:1 ratio of BPh₄ C_{ipso} resonances, given the asymmetric^{8a} coordination of the $CH(SiMe₃)₂$ group.^{8b} Alternative structures for 2a, such as $La(C_5\widetilde{Me}_5)(CH(SiMe_3)_2)(\eta^n-C_6H_5)BPh_3$ or dinuclear $[La(C₆M**e**₅)|\mu-CH(SiMe₃)₂][2(BPh₄)₂$, are inconsistent with **the** (solution and **solid-state)** *NMR* evidence. Coordination of just *one* phenyl group would give rise to a **3:l** ratio of C_{ipso} resonances. In $Zr(CH_2Ph)_3(\eta^n-C_6H_5)BPh_3^{5a}$ and $\text{Cp}'_2\text{ZrMe}(\eta^2\text{-C}_6\text{H}_5)\text{BPh}_3$, τ -coordination results in the ipso carbon of the η ⁿ-phenyl group resonating at significantly lower field (δ 178.5–181.0 ppm) and gives a 3:1 ratio of $C_{\rm{ir}}$ resonances, **as** was **also** observed in the solid-state NMR of cyclometalated $(C_5Me_6)_2Zr^+(m-C_6H_4)B^-Ph_3.^{2a}$

Despite the electronic saturation in **2a,** no evidence for a Si₆-C-La interaction was obtained, there being no significant upfield %3i NMR chemical shift **(as** was observed between [(C₅H₅₎₂ZrC(SiMe₃)==CMe₂][B(p-C₆H₄F)₄]
and its MeCN adduct^{5d}), compared with THF adduct 3a temperature invariant **+25** to *-80* **"C; 3a 6 -10.79** ppm, $(1 \delta - 14.62 \text{ ppm}, C_7D_8, -40 \text{ °C}, ^{3b} 2a \delta - 10.54 \text{ ppm}, CD_2Cl_2,$ CD_2Cl_2 , 25 °C).

Reaction of **2a** with THF **(3** equiv) in toluene leads to irreversible displacement of coordinated tetraphenylborate and formation of cationic $[La(C₆Me₈)(CH(SiMe₃)₂] (THF)_{3}$]BPh₄ (3a) in high $(>85\%)$ isolated yield. (See Scheme I.) The ${}^{1}H$ and ${}^{13}C$ NMR spectra of both cation and anion are **similar** to those for **2a,** there being little significant perturbation of the chemical **shift** of diagnostic resonances. C_{ipco} resonates at δ 164.0 ppm $(-30 \text{ °C}, C_2D_2CI_4)$ and displays the expected 1:1:1:1 quartet¹¹ (J_{BC}) $=$ 49 Hz) indicative of a noncoordinated, tetrahedral BPh₄ anion.^{1b,4c,7} The phenyl region of the ¹³C CPMAS NMR spectrum of **Sa** is much simpler than that for **2a** (Figure **1B).** In particular, **just** one broad reaonauce at **6 164.0** ppm is observed for all tetraphenylborate C_{ipso} carbons. The CH(SiMe₃)₂ resonance was not observed. THF resonances in a **21** ratio are observed, consistent with a pseudooctahedral geometry with fac^{12} THF ligands, C_5Me_5 , the La-C σ -bond, and the SiMe₃-La secondary interaction of the $CH(SiMe₃)₂$ group occupying the other three sites (see crystal structures of 1^{8a} and $1\cdot THF^{8a}$).

To determine the influence of the coordinated anion,¹³
La(C₅Me₅){CH(SiMe₃)₃}B(p-tolyl)₄ (2b) and [La- $(C_5\text{Me}_5)$ $(CH(SiMe_3)_2)$ $(THF)_3$] $B(p\text{-}tolyl)_4$ **(3b)** were prepared using $[NH("Bu)_3]B(p-tolyl)_4$. In addition, and corroborating the formulation of **2a/b as** containing coordinated tetraphenylborate, incorporation of the poorer π -donor C₆H₄F group results in La(C₅Me₅){CH(SiMe₃)₂}- $B(p-C_6H_4F)_4$ (2c) {prepared from 1 and $[PhNMe₂H]B(p C_6H_4F_4$; δ 1.67 ppm, C_5Me_5 ; δ -0.12 ppm, $CH(\tilde{S}iMe_3)_2$ } being much lesa thermally stable than **2a/b.** In the solid state, 2c decomposes after 1 h at 25 °C. The relative instability of cationic zirconocene complexes with B(p- $C_6H_4F)_4$ as the counteranion has been reported.^{5d}

Consistent with the proposed stoichiometry, **2a** reacts with $LiCH(SiMe₃)₂$ (1 equiv) in benzene rapidly and quantitatively to give 1. **2a** is **also** a potentially useful precursor for the formation of the mixed species La- $(C_5Me_5)(CH(SiMe_3)_2)X$, which are inaccessible by other synthetic methodologies. Thus, reaction with Thus, reaction with $LiOC_6H_3$ ^tBu₂·OEt₂ (1 equiv) gives La(C₅Me₅){CH- $(SiMe₃)₂$ $(OC₆H₃^tBu₂)¹⁴$

Formation of such η ⁿ-phenyl ring stabilized complexes is very dependent on the nature of the attendant ligands.^{2,5a} For example, in contrast to $Zr(CH_2Ph)_4^{5a}$ and 1, Lu²CH- $(SiMe₃)₂$, does not react with $[PhNMe₂H]BPh₄$.

In conclusion, the extreme electronic and steric unsaturation created by protonation of 1 allows η ⁿ-coordination of two phenyl ringe in **2a,** rather than alternative pathways such as phenyl transfer^{1,7} to the metal, metalation,^{2a} or η^n -coordination^{5a,7} of just one phenyl group. Although, in the absence of X-ray diffraction data, the coordination mode of tetraphenylborate in **2** cannot be unequivocably established, the available *NMR* evidence strongly indicates $(\eta^2-C_6H_5)_2BPh_2$ coordination.

Experimental Section

All *experimente* **were performed** in **an** argon **atmaphere** *using* **Schlenk** type **glassware or** in **a Braun** single-station *drybox* **equipped** with **a** -40 **OC refrigerator under a nitrogen atmosphere. Elemental analm were performed** at **Analytieche Laboratonen, Elbach,** West **Germany. 'H NMR spectra were recorded on a**

⁽⁹⁾ Schaverien, C. J.; Van Mechelen, J. B. Organometallics 1991,10, 1704 and references **therein.**

⁽¹⁰⁾ Kulawiec, R J.; Crabtree, R. H. *Coord.* **Chem.** *Rev.* **1990,99 89 (11) The dipolar coupling of these** resonances **to quadrupolar ldJIB** confirms their assignment as C_{ipso}

⁽¹²⁾ Although a mer THF geometry is possible, this can be excluded
by assuming that a $CH(SiMe₃)₂$ group having a secondary Si-C-La interaction occupies two adjacent coordination sites, given the electronically unsaturated nature of 3a.

⁽¹³⁾ Deapita many efforts and mounting several crystals on the *dif-***fractometer, crystallization of 2a,b and 3a did not provide** crystals **suit**able for X-ray diffraction purposes. A. G. Orpen, personal communica**tion.**

⁽¹⁴⁾ Due to nonselective monosubstitution, La(C_5Me_8)(CH(SiMe₃)₂}-
(OC₆H₃^tBu₂) cannot be prepared, either by reaction of 1 with
HOC₆H₃^tBu₂ (1 equiv) or by reaction of La(C_5Me_5)(OC₆H₃^tBu₂) LiCH(SiMe₃)₂ (1 equiv).

Varian XL-200 or Varian VXR-300 spectrometer. ¹³C NMR spectra **were** at **76.4** or **126.76** *MHz* **on** the **Varian VXR-300** or a Bruker *600* spectrometer, reapectively. Chemical **ehifta are** in deuterated solvents. coupling **constants are** reported in hertz. Coupling constants (J_{C-H}) were obtained from gated (¹H NOE **enhanced) spectra.** Solvents **were** PA grade. **Ether,** hexane, and toluene **were dried** initially over **sodium** wire, and THF was **dried** over aolid **KOH** then they **were dmtilled from the** appropriate *drying reagent (sodium benzophenone ketyl for ether and THF,* sodium for hexane and toluene) under argon prior to use. Deu**terated** solvents **were** dried over **4-A** molecular eievea. Highresolution ¹³C CPMAS NMR spectra of 2a and 3a were measured using conditions previously described.^{8b} Cross-polarization contact t imes were 10 ms and the 90 $^{\circ}$ proton pulse was 3.3 μ s with a recycle delay of **4 e between pulsee.** Line broadening was **2** *Hz.* \mathbf{r} reported in parts per million and referenced to the residual protons

To a stirred solution of 0.471 g (0.79 mmol) of $\text{La}(\text{C}_5\text{Me}_5)(\text{CH} (SiMe₃)₂$ (1) in 20 mL to based at -40 °C was added 0.348 g (1) equiv) of [PhNMe2H]BPh, **as** a solid. **The** resulting euapenaion was allowed to warm to room temperature. The initially colorless supension became a light yellow solution concomitant with dissolution and reaction *of* [PhNM%H]BPb,. After **30 min** at 20 °C, the toluene was removed in vacuo and the lemon-yellow powder waahed with **2 X 5 mL** of hexane to remove residual PhNMe₂ and CH₂(SiMe₃)₂. Crystallization from 5 mL of tolu**ene/10 mL** of hexane at -40 °C afforded 0.555 g of 2a. Yield: **93%.** 'H **NMR** (C&D&l,, **25** OC): **d 7.37** (m, Ph), **7.2** (m, Ph), **2.02** $($ s, 15 **H**, C_bMe_b), -0.18 (s, 18 **H**, SiMe₃). The methyne resonance could not be unequivocably assigned. ¹³C NMR $(C_bD_6, 25 \text{ °C})$: **d** 161.5 (m, C_{ipco}) , 136.7 (C_o) , 129.3 (C_m) , 125.2 (C_p) , 124.7 (C_5Me_5) , **124.9 (Caed, 55.8** *(CH),* **12.55** (C@ed, **6.1** (SiMes). lac *NMR* **123.35** $(C_5\text{Me}_5)$, **11.2** $(C_5\text{Me}_5)$, **3.3 (SiMe₃).** ¹³C **NMR** $(CD_2Cl_2, -85)$ $^{\circ}$ C): δ 160.73 (br, C_{ipeo}), 134.84 (d, 155 Hz), 128.24 (d, 156 Hz), **124.22** (d, **161** Hz), **123.3** *(8,* **C&fe6), 51.78** (d, 96 *Hz, CH),* **11.4** Preparation of La(C₂Me₂)(CH(SiMe₂)₂)(η ⁿ-C₂H₄)₂BPh₂ (2a). 54.5 $(J_{CH} = 97$ Hz, CH), 12.1 (C_5Me_5) , 5.0 $(SiMe_3)$. ¹³C NMR $(C_2D_2Cl_4, 25 \text{ °C})$: δ 162.7 ("d", J_{BC} = 63 Hz), 136.4, 129.3, 125.2, $(CD_2Cl_2, -60$ °C): δ **161.1** ("d", $J_{BC} = 54$ Hz), 134.8, 128.1, 124.0,

(q, C&e& **2.3 (q,** SiMes). '*C CPMAS **NMR: d 170.4, 167.3,** 159.5, 156.3 (each m, C_{ipso}s), 146.5, 139.3-122.2 (phenyls), 125.3
 (C_cMe_s), 57.0 (v br, CH), 13.2 (C₆Me_s), 6.5 and 5.2 (SiMe_s). ¹³C CPMAS spectra were also measured with CP times of 0.5, 5.0, and 20 ms. Anal. Calcd for C₄₁H₅₄LaSi₂B: C, 65.42; H, 7.23. Found: C, **66.15;** H, **7.12.**

In the drybox, 0.04 g of La(C₆Me_B)(CH(SiMe₃)₂]BPh₄ (2a) was the **box** for *ca.* **1** h, yellow crystals began **to** precipitate. fir **6** h the aupematant liquor **wae** removed by pipet to yield [La- 5 h the supernatant liquor was removed by pipet to yield [La-
 $(C_5Me_5)CH(SiMe₉)_2(THF)_3]BPh_4$ (Sa). ¹H NMR $(C_6D_6, 25 \text{ °C})$;
 δ 3.64 (m, 12 H, THF), 1.94 (s, 15 H, C_5Me_5), 1.77 m, 12 H, THF), **-0.134 (e, 18** €3, SiMes). **The meth e** CH ~(#OLUI~ICB could not be unequivocably assigned. ¹³C NMR (C₂D₂Cl₄, -30 °C): 8 164.0
(1:1:1:1 q, J_{BC} = 49 Hz), 136.4 (d, 152 Hz), 126.2 (d, 159 Hz), 123.2 (C_5Me_5) , 122.1 (d, 162 Hz), 70.2 (t, 153 Hz, THF), 51.3 $(J_{\text{CH}} =$ 94 Hz, CH), 26.9 (t, 134 Hz, THF), 12.3 (C₆Me₅), 5.0 (SiMe₉). ¹²C (phenyls), **123.4 (CaMed, 1228 (ah,** Ph), **122.4 (ah,** Ph), **71.6 and 70.9** (THF), **26.0** and **25.7 (ah)** (THF), **11.6** (Caed, **7.5 d 4.9** C, **65.69;** H, **8.11.** Found: C, **86.52;** H, **7.94.** Preparation of $[La(C_5Me_5)]CH(SiMe_2)_2/(THF)_2]BPR_{K}$ (3a). dissolved in C_6D_6 and 40 μ L of THF added. After standing in CPMAS NMR: δ 164.0 (br, C_{lpac}s), 137.5, 135.8, 127.0, 126.0, 125.2 *(SiMe₃).* CH was not observed. Anal. Calcd for C₅₃H₇₃LaBO₃Si₂:

 δ 7.27 (d, 2 H, H_m), 6.82 (t, 1 H, H_p), 1.96 (s, 15 H, C_oMe_s), 1.44 (s, 18 H, CMe_s), 0.24 (s, 18 H, SiMe_s), 0.00 (s, 1 H, CH(SiMe_s)₂). **122.9 (CJMed, 126.1** (d, **158** *He),* **117.4** (d, **166** *Hz),* 66.86 **(d,97** *Hz, CH),* **34.68 (e, CMes), 31.80 (q,** CMe& **11.33 (q,** C&ed, **4.47** $(q, SIMe₃)$. **h(~Hca(SW&Ot&** 'H **N'MFt** *(CA* ²⁶*'0: 'Bc* **NMR (C@e,** *25* "(2): **d 162.3 (I), 136.6 (e), 128.3** (d, **169** *Hz),*

Acknowledgment. I thank **Dr.** A. D. Horton **(KSLA)** for kindly donating [PhNMe₂H]BPh₄, [PhNMe₂H]B(p- C_6H_4F ₄, and $[NH(^n\text{Bu})_3]B(p\text{-toly})_4$, and for helpful discussions. I also thank J. van Braam Houckgeest for running the **lsC CPMAS spectra.**

OM9203284

Oxygenatlon under UV Llght of Allylsilanes Catalyzed by Palladium(I I) and of $(n^3$ -Allyl)palladium Complexes: A Mechanistic Approach

Jacques Muzart' and Abdetkhalek Riahi

Unité de Recherche "Réarrangements Thermiques et Photochimiques" Associée au CNRS, *UFR Sciences, Université de Champagne-Ardenne, 51062 Reims, France RecelvedAprll 14, 1992*

Summary: The use of 1-phenyl-3-(trimethyisilyl)-1propene, 1-phenyl-1-(trimethylsilyi)-2-propene, and bis(μ chioro)bis((1,2,3- η^3)-1-phenylpropenyl)dipaliadium as sub**strates led us to reject a free-radical mechanism** *for* **the** title **reactions and to** retain **an incorporation of** *oxygen* **at the level** *of* **a** common **organopalledium intermediate.**

A few years *ago,* we showed that the irradiation **by** *UV* light of oxygenated solutions of either allylsilanes in the presence of palladium(II) (path a)¹ or $(\eta^3$ -allyl)palladium complexes (path b)² leads to the oxygenation of the allyl groups (Scheme I). In the absence of oxygen, the irradiation of $(\eta^3$ -allyl)palladium complexes induces the coupling of the aUyl ligands (Scheme I, path c)? **The in situ** formation of $(\eta^3$ -allyl)palladium complexes during the palladium-catalyzed oxidation of allylsilanes was sus**petted'** from literature **data' EPR6** and **CIDW studiea**

⁽¹⁾ Riahi, *A,* **Gwy, J.; Muzart, J.; Pete, J. P.** *Tetrahedron Lett.* **1986,** *26,839.*

^{(2) (}a) Muzart, J.; Pale, P.; Pete, J. P. J. Chem. Soc., Chem. Commun.
1981, 668. (b) Tetrahedron Lett. 1983, 24, 4567. (c) Muzart, J.; Pale, P.;
Pete, J. P. Rishi, A. *Bull, Soc. Chim. Er.* 1988, 231 **Pete, J. P.; Rib, A.** *Bull. SOC. Chm. Fr.* **1988,731.**

^{(3) (}a) Muzart, J.; Pete, J. P. J. Chem. Soc., Chem. Commun. 1980,
257. (b) Bull. Soc. Chim. Fr. 1984, 56 (Part II). (c) De Porter, B.; Muzart, **J.; Pete, J. P.** Organometallics **1963,2, 1494.**

^{(4) (}a) Kliegman, J. M. J. Organomet. Chem. 1971, 29, 73. (b) Yamamoto, K.; Shinohara, K.; Ohuchi, T.; Kumada, M. Tetrahedron Lett.
1974, 1153. (c) Itoh, K.; Fukui, M.; Kurachi, Y. J. Chem. Soc., Chem.
Commun. 1977, 500. (R. J. P.; Escudié, N.; Guérin, C. J. Organomet. Chem. 1984, 271, C7. (g)
Hayashi, T.; Yamamoto, A.; Iwata, T.; Ito, Y. J. Chem. Soc., Chem. Hayashi, T.; Yamamoto, A.; Iwata, T.; Ito, Y. J. Chem. Soc., Chem.
Commun. 1987, 398. (h) Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. J. Org. Chem. 1987, 51, 3772. (i) Fugami, K.; Oshima, K.; Utimoto, K.;

⁽⁶⁾ Crozet, M.; Muzart, J.; Pale, P.; Tordo, P. *J. Organomst.* **Chum.**

^{1983,244,191.} (6) Vemmwmh, G.; Marko, J.; Muznrt, J. *J. Chem. Soc., firkin Itanr.* **2 1986,383.**