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employed to increase kinetic stability toward external 
reagents, may be the key to suppressing germasilene and 
digermene isomerizations as well. 
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Summary: Octamethylbbtibde (4a), octamethylbibismole 
(4b), 2,2',5,5'-tetrakis(trlmethylsilyl~3,3',4,4'-tetramethy~ 
bistibole (sa), and 2,2',5,5'-tetrakis(trimethylsilyl)- 
3,3',4,4'-tetrameth~ib~~le (5b) have been prepared by 
the reductive coupling of their respective precursor phe- 
nyl- or bromopnictoles. The bibismoles are thermo- 
chromic, while the bistiboles are not. This Is the first 
observation of differing behavior between analogous di- 
stibines and dibismuthines with regard to thermochromic- 
ity. 

Certain distibines and dibismuthines display a dramatic 
color change upon melting.'V2 This change has been la- 
beled thermochromic, although it is associated with a phase 
change.2 The thermochromic compounds also show color 
changes on solvation. To date, when a dibismuthine has 
been thermochromic, ita antimony analog has also dis- 
played the same behavior and vice v e r ~ a . ~ , ~  However, 
there are no reasons to anticipate that this should always 
be the case. The crystal  structure^^-'^ of these thermo- 
chromic species, when available, reveal the pnictogen 
centers to be ordered in a stacked linear arrangement with 
short intermolecular pnictogen-pnictogen contacts (Figure 
1"J2). This packing arrangement is not observed in 
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nonthermochromic dipnictines13 and is believed to be re- 
sponsible for the thermochromic b e h a v i ~ r . ~ J ~  Since the 
van der Waals radius of bismuth (2.3 &lo is considerably 
greater than that of antimony (2.2 &,lo it seems likely that 
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dibismuthines might more readily achieve the intermole- 
cular contacta necessary for thermochromicity. Continuing 
our interest into the synthesis and unusual structural 
properties of main-group heterocycles,'6 we report here the 
first thermochromic dibismuthines which have nonther- 
mochromic distibine analogs. 

The bipnictoles 4 and 5 were prepared according to 
Scheme I. By use of the procedures of Fagan and Nu- 
gent,16 reaction of zirconacycles ll' with PhSbC12,1s 
PhBiBr2,19 or BiBr, in benzene or ether (3b), gave the 
known phenylpnictoles 2a,16 2b,16 and 3a20 and the bro- 
mobismole 3b.20921 After removal of solvent, the products 
were isolated simply by extraction with hexane or ether 
(3b), filtration to remove zirconocene dihalide, and con- 
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centration in vacuo (3b was recrystallized from ether). 
Compounds 2 and 3 were then coupled using standard 
 procedure^^^^^^^^ to give octamethylbistibole (4a), octa- 
methylbibismole (4b), 2,2',5,5'-tetrakis(trimethylsilyl)- 
3,3',4,4'-tetramethylbistibole (5a),2' and 2,2',5,5'-tetrakis- 
(trimethylsilyl)-3,3',4,4'-tetramethylbibismole (5b)21 in 
reasonable yield. 

Bistiboles 4a and 5a both show the colors and behavior 
typical of nonthermochromic distibinesa2 They form or- 
ange solids that melt23 to identically colored liquids and 
give orange/yellow solutions. In contrast, bibismoles 4b 
and 5b are thermochromic, forming lustrous deep green 
crystalline solids that melt23 reversibly to orange and red 
oils, respectively. Furthermore, compound 4b gives yel- 
low/orange solutions, while 5b appears red in hexane and 
benzene. 

The bipnictoles 4 and 5 have been characterized by 
spectroscopy ('H and 13C NMR and IR) and by elemental 
analysis. It is noteworthy that bibismole 5b gives a single 
sharp signal in the IH NMR spectrum for the protons of 
the trimethylsilyl groups, while its antimony analog Sa 
gives a very broad peak, indicative of restricted rotation.21 
This differing spectral feature of 5a and 5b is likely a 
consequence of the shorter pnictogen-pnictogen bond 
(Sb-Sb = 2.84-2.88 A; cf. Bi-Bi = 2.99-3.12 A)4-10J3 in the 
distibine forcing the trimethylsilyl groups of the two stibole 
rings into close proximity. Preliminary X-ray crystallo- 
graphic information2* suggests that, in the solid state, 
compound 4b displays a linear construction of bismuth 
atoms, as observed in other thermochromic compounds."O 

Ashe has prepared the antimony and bismuth 
2,2',5,5'-tetramethylbipnictoles and found them to be 
thermochromic.sv8 Addition of further methyl groups to 
the 3- and Cpositions of the bipnictoles, as in compounds 
4, is apparently a great enough change to prevent ther- 
mochromicity in the bistibole 4a but not in the bibismole 
4b. 

Compounds 4 and 5 importantly demonstrate, for the 
fmt time, that antimony and bismuth dipnictogen analogs 
can behave differently with regard to thermochromicity. 
Further results, from our laboratories, on distibine and 
dibismuthine compounds will be reported in due course. 
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174.7,35.3,2.9. IR: 2948,2894, 1562, 1519, 1427, 1402,1371,1311,1245, 
1212,1105,1032,994,838,778,753,731,686,629,540 cm-'. Anal. Calcd 
for ClzHuBrSizBi: C, 28.08; H, 4.71. Found: C, 27.92; H, 4.89. Prep 
aration of the  Bipnictoles 5a,b. To a suspension of finely ground 3 (a, 
1.181 mmol; b, 2 "01) in refluxing ammonia (ca. 75 mL) was added Na 
(2 equiv). Addition was completed over 10 min, and the reaction mixtures 
were vigorously stirred for a short time (3a, 60 min; 3b, 5 min). In the 
case of 3a, NH4Cl (1 equiv) was then added to remove phenylscdium. 
Subsequent dropwise addition of 1,2-dibromoethane (1 equiv) over 2-5 
min to the dark reaction solutions gave the dipnictoles as precipitates. 
The volatiles were then removed and the bipnictoles extracted with 
hexane (10-20 mL) followed by filtration. The products were purified 
by crystallization from hexane at  -80 "C (5b) and sublimation (5a and 
5b). 5a: yield 0.156 g, 0.23 mmol,38%; 'H NMR (C6D6) 8 2.07 (8, 12 H), 
0.29 (v br, 36 H) (the signal a t  0.29 ppm sharpened considerably when 
the spectrum was obtained at 65 "C); 13C(1H) NMR (CD2C12) 6 185.0, 
163.9, 24.1, 1.7; IR 2988, 2947, 2897, 2846, 1539, 1483, 1429, 1401, 1374, 
1312,1245,1113,1029,991,850,836,751,686,631,545 cm''. Anal. Calcd 
for CuHaSi4Sbl: C, 41.63; H, 6.99. Found C, 41.62; H, 7.06. 5b: yield 
0.562 g, 0.64 mmol, 64% (pure by 'H NMR); 'H NMR (CsDs) 6 2.03 ( 8 ,  
12 H), 0.30 (s, 36 H); 13C{'H) NMR 6 170.2, 32.4, 2.9 (carbon nuclei 
adjacent to bismuth centers are frequently not ob~erved);~ IR 2988,2947, 
2895,2845,1545,1486,1428,1399,1371,1243,1102,1029,990,834,780, 
749, 684, 628, 542 cm-'. Anal. Calcd for CuHlsSi4Biz (sublimed): C, 
33.25; H, 5.58. Found: C, 33.31; H, 5.72. 
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121-122 "C. 


