

^{*a*} Number-average molecular weight (M_n) , weight-average molecular weight (M_w) , and polydispersity (M_w/M_n) values of poly-(methyl acrylate) samples taken at different conversion levels.

benzene which was transferred via the vacuum line. After photolysis the sample was evacuated *to* dryness and subsequently redissolved in dry, degassed C_6D_6 (\sim 3 mL). Inside an inert atmosphere box the solution was syringed **into** a volumetric **flask** together with an additional 3 mL dry degassed C_6D_6 and 4 mL of methyl acrylate. Methyl acrylate was chromatographed on grade I basic alumina *to* remove inhibitor and degassed prior *to* addition. The mixture was exposed to visible light, and 1-2-mL samples were removed during the polymerization process by use of a syringe. The conversion for each sample was determined by **'H** NMR, and subsequently the solutions were evacuated to remove excess methyl acrylate and benzene solvent. The polymer residue was redissolved in THF for GPC measurement. **Results** from using methods A and B were in substantial agreement.

GPC Results. A refractive index (RI) detector was **used** in determining the number-average molecular weight (M_n) , the weight-average molecular weight $(M_{\rm w})$, and polydispersity $(M_{\rm w}/M_{\rm n})$ of each sample. The instrument was calibrated using monodispersed polystyrene standards. UV-vis detection $(\lambda = 420)$ nm) was used to determine the presence of the (TMP)Rh units in the polymer.

In **a** typical polymerization experiment, **4-5** samples were an**alyzed** with conversions varying from *5% to 80%.* At conversiona up *to* **40-50%,** polydispersity was in the **1.4-2.0** range and *M,* and M_n values increased with increasing conversion. At conversions greater than *50%*) the polydispersity became eignificantly larger $(2 < M_w/M_n < 4)$ with a parallel decrease in both M_w and *M,* values of the samples (Table 11). **UV-vis** detection at **420** nm indicated that a large portion of the (TMP)Rh units present in the system were attached to polymer chains but that some low molecular weight fragments containing (TMP)Rh occur at **all** stages of the polymerization.

Acknowledgment. We gratefully acknowledge support of this work by the National Science Foundation and by **E.I.** du Pont de Nemours and Co.

OM920196E

New Silane-Induced CO Activation in [**(q5-H,CC,H4)Mn(CO),*THF]: Formation of the Cycllc Bls(p-carbyne) Complex** (**q5-H3CC,H4) (CO)Mn(p-COSiH (t-Bu),),Mn(CO)** (**q5-H3CC5H4) and the CC-Coupling Reaction of the Slloxy-Carbyne Ligands**

Hermann Handwerker, Holger Beruda, Matthias Kleine, and Christian Zybill"

Anorganlsch-chemisches Institut, Technische Universitlit Miinchen, Lichtenbergstrasse 4, W-8046 Garching, Federal Republic of Germany

Received April 30, 1992

The labile complex $[(\eta^5-H_3CC_5H_4)Mn(CO)_2$ THF] (6) is generated by photolysis of $(\eta^5-H_3CC_5H_4)Mn(CO)_3$ **(5)** and subjected to oxidative addition reactions with various silanes. With (t-Bu),SiHCl **(7)** the cyclic bis(μ -carbyne) complex $(\eta^5-H_3CC_5H_4)(CO)Mn(\mu$ -COSiH(t-Bu)₂)₂Mn(CO)($\eta^5-H_3CC_5H_4$) (8) is formed in 15% yield. A systematic investigation of the product distribution in these reactions shows that the formation of $\text{bis}(\mu\text{-carbyn})$ complexes versus silylmetal hydrides is a strong function of the substituents at the silane. Reaction of $[(\eta^5-EtMe_4C_5)Mn(CO)_2\text{-}THF]$ (19) with 7 also gives, besides formation of the bis(μ -carbyne) complex [(η^5 -EtMe₄C₅)(CO)Mn(μ -COSiH(t-Bu)₂)₂Mn(CO)(η^5 -EtMe₄C₅)] (20), the triply bridged carbonyl complex $(\eta^5$ -EtMe₄C₅)Mn(μ -CO)₃Mn(η^5 -EtMe₄C₅) (22). A single-crystal X-ray structure determination of 8 shows a cyclic four-membered ring structure with a bond distance Mn-C15 (carbyne C) of **1.857** (2) A. The metallacycle is folded along the Mn-Mn bond $(2.565 (1)$ Å) which is in accordance with an all-trans geometry of the ring substituents. This ring geometry opens up a reaction pathway for 1,3-cis elimination r eaction of bis(siloxy)ethyne $[(t-Bu)_2HSiO\overline{C}]\overline{=}$ ₂ (9) via a CC-coupling reaction of both carbyne units as well **as** the elimination of disilyl peroxide [(t-B~)~HSi0-1, **(10).** Compound 8 crystal data: monoclinic, **c**2/c, $a = 31.283$ (3) Å , $b = 8.350$ (1) Å , $c = 16.312$ (2) Å , $\beta = 126.63$ (1)^o, $Z = 8$.

Introduction

The reductive coupling of metal-coordinated carbon monoxide is a current research objective, particularly with regard to the goal of CO conversion reactions (Fischer-Tropsch synthesis).' Key steps in the metal-mediated CO-coupling reaction are CO activation and reduction and subsequent CC coupling of the highly reactive carbyne units in the coordination sphere of a transition metal. Lippard has recently shown that the siloxycarbyne complex $[Ta(=COSiR_3)(CO)(dmpe)_2]$ **(2)** is a stable intermediate in the reduction of $[Ta(CO)_2(dmpe)_2Cl]$ (1) with Na/Hg in the presence of R_3SiCl to the acetylene complex $[Ta(R_3SiOC=COSiR_3)(dmpe)_2Cl]$ **(3).**^{2,3} A CO-bridged dinuclear **tantalum** siloxycarbyne complex **4** was **also** isolated from this reaction⁴ (eq 1). Similar results have been

^{~~ ~~} **(2) Vrtis, R.** N.; **Bott,** S. **G.; &din, L.; Lippard,** S. **J. Organometallics 1991,** *10.* **1364-1373.** (3) For η^2 -ketenyl intermediates see ref 1.

⁽¹⁾ Vrtis, R. N.; Lippard, S. **J.** *Isr. J. Chem.* **1990, 30, 331.**

 $(\eta^5-H_3CC_5H_4)(CO)\sqrt{Mn(\mu-COSiH(t-Bu)_2)_2}Mn(CO)(\eta^5-H_3CC)$
 $\frac{Na/Hq}{R_3SiCl}$
 $\frac{R_3SiCl}{R_3SiCl}$ $\frac{R_3SiCl}{R_3SiCl}$ $\frac{R_3SiCl}{R_3SiCl}$ $\frac{R_3SiCl}{R_3SiCl}$ $\frac{2}{R_3SiCl}$ **2 3** $[(dmpe)₂(CO)Ta=CC=O$ $-Ta(Me₃SIOC=COSiMe₃)(dmpe)₂]$ (1)

obtained by Chisholm for CC-coupling reactions of related tungsten complexes.⁵ In these cases, however, the addition of stoichiometric amounts of a reducing agent (e.g. Mg or Zn) proved to be neccessary for the reduction of CO.'

4

In this paper we wish to report a new silane-induced CO activation process in the reaction of $[(\eta^5-H_3CC_5H_4)Mn (CO)₂$.THF] (6) with $(t-Bu)₂SiHCl$ (7)⁶ for which a spontaneous reduction of the activated CO ligand by single electron transfer from the transition metal (formation of taneous reduction of the activated CO ligand by single
electron transfer from the transition metal (formation of
 $Mn(I) \rightarrow Mn(II)$) is observed. The cyclic bis(μ -carbyne) $\text{complex} \quad (\eta^5\text{-H}_3\text{CC}_5\text{H}_4)(\text{CO})\text{Mn}(\mu\text{-COSiH}(t\text{-Bu})_2)_2\text{Mn}$ $(CO)(n^5-H_3CC_5H_4)$ (8) thus formed is the dimerization product of a highly reactive 17e- terminal siloxycarbyne complex $[(\eta^5-H_3CC_5H_4)Mn(CO) \equiv \text{COSiR}_3]$ intermediate. *As* further consecutive reactions of 8, a thermally induced CC-coupling reaction of both carbyne units to form the bis(si1oxy)acetylene **9 as** well **as** a l,&cis elimination of disilyl peroxide **10** from 8 have been observed **as** competing process. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$.

Results and **Discussion**

Synthesis and **Spectroscopic Properties** of **8.** The synthetic procedures applied utilize the photochemical generation of the solvent-stabilized 16e⁻ species $[(\eta^5 H_3CC_5H_4)Mn(CO)_2\text{-}THF$ (6) by photolysis of $(\eta^5 H_3CC_5H_4)Mn(CO)_3$ (5). $[(\eta^5-H_3CC_5H)Mn(CO)_2\textrm{-}THF]$ (6) has been isolated in 90% yield (3 h, quantum yield 3.3%) and subjected to a further "dark reaction"' with *(t-*Bu)₂SiHCl (7) which resulted in formation of the cyclic bis(μ -carbyne) complex 8 and $[(\eta^5-H_3CC_5H_4)Mn^HCl]_n$ (eq 2). The bis(carbyne) complex 8 can be readily identified

 (2)

from its IR spectrum (v_{CO} 1934, 1883 cm⁻¹). The high

^{*a*} Reaction of the THF complex $CpMn(CO)₂$. THF (6). ^b Cophotolysis of 5 and silane in pentane. ^c Product distribution by ¹H NMR. ^d Overall yield with respect to 5.

volatility of 8 allows the observation of a mass spectrum with the molecular ion at m/e 666 (5%). The ¹³C NMR spectrum of 8 contains signals at 236.7 ppm for the coordinated CO ligand and 402.1 ppm for the μ -carbyne C atom. The observation of two bands for the v_{CO} mode is indicative of the formation of the cis-isomer of 8.

 $[(\eta^5-H_3CC_5H_4)MnCl]_n$ forms an insoluble white precipitate in pentane which **has** been characterized by elemental analysis, IR spectroscopy, and measurement of its EPR spectrum (g = 2.001). Further reactions of **5/6** with the sterically less bulky silanes $HSiCl_3$, Ph_2SiHCl , and Ph_2SiH_2 give the thermolabile bis $(\mu$ -carbyne) complexes 12 and 14, which have been spectroscopically characterized (Table I). In these cases, formation of the silyl hydrides **11, 13, 15,** and **16 as** products of an oxidative addition at the 16ecomplex generated from **6** (attack at Mn) becomes important. Modification of the geometry of the metal fragment has a strong influence on the product distribution: Introduction of the **ethylpentamethylcyclopentadienyl** substituent in $(\eta^5\text{-}EtMe_4C_5)Mn(CO)_3$ (18) and reaction of the photolytically generated species $[(\eta^5\text{-}EtMe_4C_5)Mn (CO)₂$.THF] (19) with $(t-Bu)₂SiHCl$ (7) yields the bis(μ carbyne) complex **20,** but also the carbonyl complex **22** with a manganese-manganese triple bond (eq 3). 8 The formation of **22** is only observed in the presence of **7,** which obviously plays an important role in the CO activation process.

Solid-state Structure of 8. A single-crystal X-ray structure analysis of 8 (Figure 1) confirms the molecular constitution of the compound deduced by spectroscopic methods and shows further structural details. The molecule is dimeric with a Mn -C15 (μ -carbyne) bond length of 1.857 (2) **A** and a Mn-Mn' bond distance of 2.565 (1) A; the latter one is typical for a Mn-Mn single bond? The Mn-C15 (carbyne) bond is short compared to known Mn-C single bonds, for example that in $(CO)_4$ MnC-**I**

 $(COOEt)C(HeBr)C(OEt)O$ is found to be 2.051 (26) \AA ⁹ For the acyclic carbine complex $[Cp(CO)₂Mn=C$ —CH= $CPh₂$ ⁺BF₄⁻ the MnC distance is 1.665 (5) Å;¹⁰ comparable

⁽⁴⁾ Vrtis, R. N.; Bott, S. G.; Lippard, S. J. *Organometallics* **1992,11, 270-277.**

^{(5) (}a) Chacon, S. T.; Chisholm, M. H.; Cook, C. M.; Hampden-Smith, M. J.; Streib, W. E. Angew. Chem. 1992, 104, 476; Angew. Chem., Int. Ed. Engl. 1992, 31, 462. (b) Bubro, W. E.; Chisholm, M. H. Adv. Organomet. *Chem.* **1987,27, 311.**

⁽⁶⁾ Weidenbruch, M.; Peter, W. *Angew. Chem.* **1975,87,670;** *Angew. Chem., Int. Ed. Engl.* **1975, 14,642.**

⁽⁷⁾ Karsch, H. H. *Habilitationsschrift;* Technische Universitat München: Garching, FRG, 1969; p 1.

⁽⁸⁾ Herrmann, W. A.; Serrano, R.; Weichmann, J. *J. Organomet. Chem.* **1983,246, C57.**

⁽⁹⁾ (a) Herrmann, W. A. *Angew. Chem.* **1974,86,895;** *Angew. Chem., Int. Ed. Engl.* **1974,13, 861.** (b) Herrmann, W. A.; Ziegler, M. L.; Serhadli, 0. *Organometallics* **1983,2,958-962.**

⁽¹⁰⁾ Kolobova, N. E.; Ivanov, L. L.; Zhvanko, 0. S.; Khitrova, 0. M.; Bataanov, A. S.; Struchkov, Y. T. *J. Organomet. Chem.* **1984,262,39-47.**

22 (3)

values for cyclic complexes of Mn are unknown. The coordination geometry at the C15 carbyne atom is trigonal planar with a bond angle Mn- $C15-Mn'$ of 87.2 $(1)^{\circ}$. In contrast to known structures of related metallacycles, e.g. in $W_2(\mu\text{-CSiMe}_3)_2(O-i\text{-Pr})_4$, the four-membered ring in 8 is folded along the Mn-Mn' bond with an angle of 18.45° (Figure 2). Further bond distances and angles are given in Tables **11-IV.**

The two methylcyclopentadienyl substituents are located in cis positions; this cis-isomer is exclusively formed according to eq 2. Also, extended photolysis of **cis-8** at **254** nm in methylcyclohexane or thermal treatment of **8** at **50** ^oC does not induce any isomerization process.¹¹⁻¹³ The cis-isomer features an all-trans position of the substituents at the ring **as** the sterically most favored arrangement.

Mechanism of Carbyne Complex Formation. A prerequisite for CO activation in **6** is an 0 attack of the silane at the coordinated carbonyl ligand. This activation

 $\text{SiH}(t-\text{Bu})_2\text{Mn}(\text{CO})(\eta^5-\text{H}_3\text{CC}_5\text{H}_4)$ (8) and the crystal number**ing** scheme used **(ORTEP,** displacement ellipsoids at the 50% probability level; hydrogen atoms omitted for clarity).

Figure 2. Side view of 8 showing the folding of the metallacycle.

step induces the reduction of CO by formal electron step induces the reduction of CO by formal electron
transfer $Mn \rightarrow C$ and yields a highly reactive 17e⁻ inter-
modiate silemportance complex which dimension to give 8 mediate siloxycarbyne complex which dimerizes to give **8.**

Examples for a similar reaction pathway are well documented in the literature. Berry and Bercaw have reported CO activation in $Cp^*(OC)Fe(\mu-CO)_2Fe(CO)Cp^*$ (24) by ${^8Cp^*}_2ZrN_2}_{2}$ (23) and subsequent reductive CC coupling to form **25** (eq 4).14 **A** particularly instructive example

⁽¹¹⁾ Cotton, F. A.; Hanson, B. E. In *Rearrangements in Ground and Excited States;* **de Mayo, P., Ed.;** *Academic Press:* **New York, 1980; p 379.**

⁽¹²⁾ *An* **isomerization process is possible by the Cotton Adams mechanism and requires opening of the Mn-Cl5 bond. However,** this **process could not be observed.**

⁽¹³⁾ Berry, D. H.; Bercaw, J. E.; Jircitmo, A. J.; Mertes; K. B. *J. Am. Chem. SOC.* **1982,** *104,* **4712.**

Table 11. Crystal Structure Data for 8

 ${}^aR = \sum (||F_o| - |F_c||)/\sum |F_o|$. ${}^bR_w = [\sum w(|F_o| - |F_c|)^2/\sum wF_o^2]^{1/2};$ *w* = $1/\sigma^2(F_o)$; function minimized $\sum_w (|F_o| - |F_c|)^2$.

with respect to the mechanism of the CC-coupling reaction stems from the work of Herrmann et al. (eq 5).⁹ Reaction

of the carbonyl complex **26** with the mercury diazomethane 27 gives the highly reactive 17e⁻ intermediate carbyne complex 28 which dimerizes to form the $bis(\mu$ -carbyne) complex **30.** In this case, the intermediate carbyne complex **28** has been trapped by reaction with the mercury diazomethane **29** to form the cyclic vinylidene complex **31. 31 was also** characterized by a single-crystal X-ray structure analysis.

Further insight into the reaction mechanism of the CO activation process of eq **2** is provided by variation of the substituent pattern of the introduced silane (Table I): The yield of μ -carbyne complex (O attack of the silane) compared to silyl hydride formation **(Mn** attack of the silane)

"Estimated standard deviations in units of the last significant figure are given in parentheses.

Table IV. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters for 8

atom	x/a	y/b	z/c	$U(\mathrm{eq})$, A^2
Mn	0.47717(1)	0.21777(3)	0.65353(2)	0.017
C1	0.41085(8)	0.3733(3)	0.5416(2)	0.034
C1A	0.3568(1)	0.3865(4)	0.5173(3)	0.056
C ₂	0.45524(9)	0.4681(3)	0.6104(2)	0.034
C3	0.49695(9)	0.4279(3)	0.6047(2)	0.031
C4	0.4791 (1)	0.3070(3)	0.5325(2)	0.060
C5	0.4255 (1)	0.2718(3)	0.4934(2)	0.043
Si	0.37974(2)	0.07763(7)	0.76204(4)	0.019
C6	0.33439(9)	0.2212(3)	0.7659(2)	0.031
C7	0.3175 (2)	0.1447(5)	0.8287(3)	0.065
C8	0.2853(1)	0.2660(5)	0.6599(2)	0.060
C9.	0.3661(1)	0.3722(4)	0.8211(3)	0.043
C10	0.35001(8)	$-0.1087(3)$	0.6806(2)	0.022
C11	0.3225(2)	$-0.0699(4)$	0.5677(2)	0.042
C12	0.3963(1)	$-0.2239(3)$	0.7175(2)	0.036
C13	0.3098 (1)	$-0.1926(4)$	0.6915(2)	0.022
C14	0.47138(8)	0.0092(3)	0.6279(1)	0.023
011	0.46702(7)	$-0.1256(2)$	0.6072(1)	0.036
01.	0.40507(5)	0.1799(2)	0.7113(1)	0.023
C ₁₅	0.54733(7)	0.1919(2)	0.7674(1)	0.016

 $^{a}U_{eq} = {}^{1}/_{3}\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}a_{i}^{*}a_{j}.$

is a function of the Lewis acidity of the silane. However, even when the strongly acidic HSiCl₃ as reagent, the product ratio **12:13** is still **1:9.**

⁽¹⁴⁾ Prolonged photolysis of 5 in N_2 atmosphere also gave formation
of the N_2 complex $(\eta^5-H_3CC_5H_4)Mn(CO)_2N_2$: (a) Sellmann, D.;
Kleinschmitt, D. Z. Naturforsch. 1977, 32B, 795-801. (b) Sellmann, D.
Angew. Chem. 1 *15,* 695.

The stability of the carbyne complexes is strongly dependent upon the steric requirements of the silane used, and only the tert-butyl-substituted derivatives are stable for prolonged periods. Photolysis of **5** in a nonstabilizing hydrocarbon solvent gives lower yields of 8 and only traces of $(\eta^5\text{-}\text{H}_3\text{CC}_5\text{H}_4)\text{Mn}\text{H(CO)}_2\text{SiH}(t\text{-Bu})_2$ (11), which underlines a strong solvent influence.

Previous investigations of the photolysis reactions of **5** in the presence of various **silanes** only showed the products Metal silyl hydride formation, however, becomes the main reaction path with sterically less hindered silanes.16

The insertion reaction of 16e⁻ complexes into the Si-H bond has been investigated by Graham,¹⁷ Schubert,¹⁸ and Crabtree;¹⁹ theoretical work on the insertion mechanism has been performed by Saillard²⁰ and Lichtenberger.²¹ By variation of the Lewis basicity of the metal complex respectively with the Lewis acidity of the silane, different stages of the Si-H insertion reaction have been observed either with a side-on coordination of the Si-H (3c2e) bond and $a \mu$ -H bridge (A) or a conventional hydride structure (B) as ground-state geometry. For $(\eta^5\text{-}H_3CC_5H_4)MnH (CO)_2$ SiHPh₂ (15) a structure (A) with a 3c2e μ -H bond has been proposed. The bond has been shown to be formed by a donor interaction of a σ -Si-H orbital with an empty d-orbital of the metal. 22

In this paper, a further reaction channel involving CO In this paper, a further reaction channel involving CO
activation by 0 attack of the silane (C) and subsequent
carbyne complex formation by electron transfer Mn \rightarrow C
and dimensation of the formad 1707 intermediate to a and dimerization of the formed 17e⁻ intermediate to a stable bis(μ -carbyne) complex 8 is described (Chart I). This reaction mode sheds new light on the mechanism of the Si-H activation reaction of the 16e⁻ complex $[(\eta^5 H_3CC_5H_4)Mn(CO)_2$ **·THF**] (6).

Ligand-Coupling Reactions. CC-coupling reactions of carbyne ligands are of great interest and have been observed so far for a variety of acyclic, terminal bis(carbyne) complexes. In most cases, the complexes are generated at low temperatures **as** reactive intermediates. In this paper, evidence is provided for a coupling reaction of two carbyne units in a cyclic system. **An** important factor for this CC-coupling reaction is the folding of the metallacycle **8,** which has not been observed in related systems e.g. $W_2(\mu$ -CSiMe₃)₂(O-*i*-Pr)₄. The observed ring geometry in 8 **allows** the two carbyne C atoms to come into proximity (nonbonding distance $C15-C15'$ of 2.662 (2) Å) which opens up a reaction channel for transannular CC-coupling re**actions. Indeed, a thermolysis reaction** of **8** gives **the** bis(si1oxy)acetylene **9 as** the product of a CC bond for-

(18) Schubert, U.; Miiller, J.; At, H. G. *Organometallics* **1987,6,469. (19) Luo, X. L.; Crabtree, R. H.** *J. Am. Chem. SOC.* **1989,111, 2527. (20) Rabaa, H.; Saillard, J. Y.; Schubert, U.** *J. Organomet. Chem.* **1987,330,397.**

(21) Lichtenberger, D. L.; Rai-Chaudhuri, A. *J.* **Am.** *Chem. SOC.* **1989, 111, 3538.**

(22) Lichtenberger, D. L.; Rai-Chaudhuri, A. *J. Am. Chem. SOC.* **1990, 112, 2492-2497.**

Figure 3. Thermogravimetric analysis of 8. See test for details.

mation reaction between the two carbyne units: Thermogravimetric investigations of 8 in a He gas flow coupled with quadrupole mass spectroscopy in the temperature range from 78 (onset) to 200 °C give evidence for the formation of **bis(di-tert-butylsi1oxy)acetylene (9)** in ca. 21% yield and bis(di-tert-butylsilyl) peroxide **(10)** in 79% yield (Figure 3).²³

Pyrolysis of 8 at 180 $^{\circ}$ C/10⁻⁴ Torr also results in bis-(si1oxy)acetylene **9** (1.7%) formation **as** well **as** 1,3-cis elimination of the silyl peroxide (3.3%) **10** as a competing processes. Furthermore, $(\eta^5-H_3CC_sH_4)Mn(CO)_3$ (5) Furthermore, $(\eta^5\text{-}H_3CC_5H_4)Mn(CO)_3$ (5) (39.4%) , $H_3CC_5H_3SiH(t-Bu)_2 (18.8\%)$ (32) and $(t-Bu)_2O$ (36.9%) (33) are observed (eq 6).

Experimental Section

All **experiments have been performed under an atmosphere of dry argon; air-sensitive materials were handled by standard Schlenk techniques. The solvents were dried by distillation from** NaK alloy or P₄O₁₀. Residual water content was determined by **Karl Fischer titration and was generally below 3.5 ppm. The preparation of di-tert-butylchlorosilane has been deacribed in the**

⁽¹⁵⁾ (a) Herrmann, W. A.; Voss, E.; Guggolz, E.; Ziegler, M. L. *J. Organomet. Chem.* **1985,284,47. (b) Smith, R. A.; Bennett, M. J.** *Acta Crystallogr.* **1977,33,1113.**

⁽¹⁶⁾ Schubert, U.; Scholz, G.; Müller, J.; Ackermann, K.; Wörle, B.; **Stansfield, R. F. D.** *J. Organomet. Chem.* **1986,306, 303-326. (17) Hart-Daviea, A. J.; Graham, W. A.** *G. J.* **Am.** *Chem. SOC.* **1971,93,**

^{4388.}

⁽²³⁾ Analysis of the residue (38% Mn) did not reveal any definitive compounds.

literature;⁶ all other chemicals were commerically available.

Spectra. IR spectra were recorded on a Nicolet FT 5DX instrument **as** KBr pellets, a Nujol suspension, or a solution in **0.1** mm KBr **cells.** 'H, '%, and %i *NMR* spectra were recorded on a JEOL GX **400** spectrometer at **400.01,53.5,** and **36.0** MHz and a JEOL FX 270 instrument at 270.1 MHz ⁽¹H). ²⁹Si NMR spectra were partially recorded with DEPT and INEPT pulse programs. 'H and 13C chemical shifts were measured using the solvent references as standard; ²⁹Si chemical shifts were referenced to external Me4Si in the same solvent.

UV irradiation was performed in a quartz apparatus with a **150-W** *Hg* high-pressure immersion lamp with a flux of **15 W** *(254* nm), which corresponds to **0.115** (mol equiv)/h. The reactions had quantum yields of approximately **3-4%.**

TG-MS analysis was done on a Perkin-Elmer TGA 7 instrument with a heating rate of 5 °C min⁻¹ in a dynamic He atmosphere coupled with a QMG **420 mass** spedrometer (Balzers); EPR spectra were measured on a Jeol **JES RE2X** spectrometer at room temperature.

Microanalyses were carried out at Mikroanalytisches Laboratorium der Technischen Universität München by Ms. U. Graf and M. Barth.

 $(\eta^5\text{-}\mathrm{H}_3\mathrm{CC}_5\mathrm{H}_4)(\mathrm{CO})\mathrm{Mn}(\mu\text{-}\mathrm{COSiH}(t\text{-}\mathrm{Bu})_2)\mathrm{Mn}(\mathrm{CO})(\eta^5\text{-}\mathrm{H}_3\text{-}$ $CC₆H₄$ ^{(8)}, Bis[carbonyl(μ -di-tert-butylsiloxycarbyne)-**(q6-methylcyclopentadienyl)manganese].** A solution of **2.0** $g(12.7 \text{ mmol})$ of $(\eta^5-H_3CC_5H_4)\text{Mn}(\text{CO})_3$ in 270 mL of THF was photolyzed for **3** h at -60 "C in a quartz apparatus equipped with a **150-W** Hg high-pressure immersion lamp. The mixture was allowed to warm to room temperature and the solvent removed in high vacuum. The residue contained crude **6** which was purified by washing with pentane. **6** was dissolved again in **150** mL of THF, the solution was cooled to -70 °C, and 5.0 mL (24.7 mmol) of $HCISi(t-Bu)$ ₂ was added. The mixture was allowed to warm to room temperature and stirred for an additional **10** h until the the formation of 8 (IR: v_{CO} 1924, 1871 cm⁻¹) was completed. Photolytic reactions were **also** monitored by volumetric measurement of the evolved CO. $v_{\rm CO}$ bands of $[(\eta^5\text{-H}_3CC_5\text{H}_4)\text{Mn}(\text{CO})_2\text{-}THF]$ had disappeared and

After removal of the THF in vacuum, **8** was separated from the Mn(I1) product by filtration. The solvent (and any residual $(t-Bu)_{2}SiHCl$ and $(\eta^{5}-H_{3}CC_{5}H_{4})Mn(CO)_{3}$) was removed in high vacuum $(5 \times 10^{-5}$ bar). 8 was crystallized from pentane at -78 °C in 15% yield (referenced to $(\eta^5\text{-}H_3CC_5H_4)Mn(CO)_3$ (5)); mp **181** "C dec.

8: 'H NMR **(270** MHz, CDC13, **22** OC, TMS) **6 1.20 (a, 18** H, *t*-Bu), 2.15 (s, 3 H, CH₃), 3.90, 4.70 (m, 4 H, Cp), 4.95 (s, 1 H, SiH); ¹³C NMR (67.8 MHz, CDCl₃, 23 °C) δ 14.4 (q, ¹J(¹H¹³C) = 130.6 (d, 'J(lH1%) = **176.8** *Hz),* **87.8** (d, 'J('H1%) = **168.5** *Hz, Cp),* **101.9 (s, MeCp), 236.7 (s, CO), 402.1 (s,** μ **-C)**; ²⁹Si NMR **(53.3 MHz**, CDCl_3 , $\dot{22}$ °C) δ 19.7 (m, ¹J(¹H²⁹Si) = 205.9 Hz, ³J(¹H²⁹Si) = 6.3 *HZ).* **IR** *(cm-',* pentane): **1934 (a), 1883** *(8) (VCO).* **MS** (EI, **70** eV; *m/e* (relative intensity)) *666* (M+, *5%,* **correct** isotope distribution). Anal. Calcd for C₃₂H₂₂O₄Mn₂Si₂ (M_r 666.81 g/mol): C, 57.84; H
7.86. Found: C, 56.91; H, 7.75. [(η ⁵-H₃CC₅H₄)MnCl]_n EPR (THF): $g = 2.001$. Anal. Calcd for $C_8H_{16}Cl_2MnO_2$ *(M_r* 270.06) g/mol): C, **35.58;** H, **5.97;** C1, **26.26.** Found C, **36.12;** H, **5.99;** C1, **26.21.** *HZ,* CHJ, **19.9** *(8, t-Bu),* **27.4** (9, 1J('H'3C) = **127.0** *HZ, t-Bu),* **86.6**

X-ray Structure Determination of 8. A suitable single crystal of 8 was grown from a pentane solution at -78 °C. The crystal was sealed into a glass capillary under argon at dry ice temperature. A summary of the crystal data and important numbers pertinent to data collection and structure refinement is given in Table II. The integrated intensities were collected on a Syntex **P2'** diffractometer with graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71069$ Å, scan speed (in θ) 0.7-29.3°/min). Repeated measurement of three standard reflections did not indicate significant crystal decay or misalignment during data collection. No correction for absorption or L_p effects was applied. by Fourier techniques. The non-hydrogen atoms were refined with anisotropic displacement parameters in one large block. *AU* hydrogen atoms were found and refined isotropically. Atomic form factors for neutral, isolated atoms were those of Cromer and Waber;²⁴ those for hydrogen were based on the bonded, spherical The structure of 8 was solved by direct methods and completed

model of Stewart, Davidson, and Simpson.2s The programs used included SHELXS-86% (structure solution), **SHELX-7627** (refinement), and ORTEP²⁸ (molecular drawings), as well as locally written routines. Tables III and IV contain the bond distances and angles and atomic coordinates with equivalent isotropic displacement parameters; Figures **1** and **2** show the molecular structure of 8 and the crystallographic numbering scheme adopted. Further data for the structure determination are available **as** supplementary material.

Cophotolysis of $(\eta^5\text{-H}_3CC_5H_4)\text{Mn(CO)}_3$ (5) and $(t-$ **Bu)₂SiHCl (7) in Pentane.** A 3.15-mL (20.0-mmol) sample of $(\eta^5-H_3CC_5H_4)Mn(CO)_3$ (5) and 40.0 mL (198 mmol of HClSi(t-Bu)₂ (7) were dissolved in 200 mL of pentane and photolyzed (highpressure Hg immersion lamp, **150 W,** quartz apparatus) for **3** h at -70 °C. The resulting yellow mixture was allowed to warm to room temperature which resulted in intensifcation of the color of the solution. The mixture was concentrated to **20** mL in vacuum and worked up **as** described for **8.** Spectroscopic investigations showed the formation of **8** in **7%** yield beaides traces (0.1%) of $(\eta^5\text{-H}_3CC_5H_4)\text{MnH(CO)}_2\text{SiCl}(t\text{-Bu})_2$ (11). Prolonged photolysis under N_2 yielded the N_2 complex $(\eta^5-H_3CC_5H_4)Mn (CO)_2N_2$: IR (cm⁻¹, THF) 2165 (ν_{NN}) , 1980, 1923

(\$-H&C6H4)MnH(CO)zSiC1(*t* **-Bu)z (11), (Chloro-di-tertbutylsilyl)dicarbonylhydrido(η⁹-methylcyclopentadienyl)-**
 manganese. ¹H NMR (270 MHz, C₆D₆, 22 °C, TMS): δ -11.3 **4** H, *Cp).* IR (cm-', THF): **1987 (81, 1928 (e)** *(VCO).* Anal. Calcd for C₁₈H₂₈ClMnO₂Si (M_r 368.86 g/mol): C, 52.10; H, 7.11. Found: C, **51.31;** H, **7.09.** $(8, 1 \text{ H}, \text{Mn-H}), 1.15$ $(8, 18 \text{ H}, t-Bu), 1.50$ $(8, 3 \text{ H}, \text{CH}_3), 4.0$ $(8,$

Reaction of $(\eta^5 \text{-} H_3CC_6H_4)Mn(CO)_2\text{-}THF$ **(6) with HSiCl₃.** A 2.0-mL (12.7-mmol) sample of $(\eta^5\text{-}H_3CC_5H_4)Mn(CO)_3$ (5) was photolyzed at -78 °C for 3 h until 5 was converted in ca. 90% yield to **6.** Then **1.3 mL (12.7** "01) of HSiC13 in **10 mL** of THF' was added, and the reaction mixture was stirred for an additional **2** h at room temperature. *All* volatile components were removed in vacuum, and the mixture was worked up **as** described for **8.** The μ -bis(carbyne) complex 12 was identified spectroscopically; however, attempts to isolate **12** were not successful due to the lability of the compound. The spectroscopically determined yield of 12 in the crude reaction mixture was 2.9% . $(\eta^5-H_3CC_5H_4)$ - $(CO)Mn(\mu$ -COSiHCl₂)₂Mn(CO)(η^5 -H₃CC₅H₄) (12): ¹H NMR $(C_6D_6, 270 \text{ MHz}, 22 \text{ °C})$ δ 2.20 (s, 3 H, CH₃), 4.0, 4.75 (4 H, C_p), **6.1** (8, **1** H, *SiH);* IR (THF) **1930** (a), **1875** *(8) (VCO).*

(q5-H3CC5H4)MnH(CO)zSiC13 (13) was crystallized from the mother liquor of **12** in **26.1%** yield in the form of yellow crystals; mp **112** OC. 'H NMR (CsDs, **270** MHz, **22** "C): 6 **-10.4** *(8,* **1** H, **(81, 1965** *(8) (VCO).* Anal. Calcd for C&,MnC1302Si *(M,* **325.53** g/mol): C, **29.52;** H, **2.48;** C1, **32.67.** Found: C, **28.91;** H, **33.01.** MnH , 1.55 (s, 3 H, CH₃), 3.95 (s, 4 H, Cp). IR (cm⁻¹, THF): 2017

Reaction of **6 with PhzSiHCl and PhzSiHz.** A 5.0-mL (16.6-mmol) sample of $(\eta^5\text{-}H_3CC_5H_4)Mn(CO)_3$ (5) in 250 mL of THF was photolyzed at -60 °C for 3 h until 90% conversion of **5** to **6** was achieved. The **1.5** mL **(7.6** mmol) of HClSiPh, was added, and the mixture was worked up **as** described for **8.** The μ -bis(carbyne) complex $(\eta^5-H_3CC_5H_4)(CO)Mn(\mu$ -COSiH-THF was photolyzed at -60 °C for 3 h until 90% conversion of
5 to 6 was achieved. The 1.5 mL (7.6 mmol) of HClSiPh₂ was
added, and the mixture was worked up as described for 8. The
 μ -bis(carbyne) complex $(\eta^5-H_3CC_5H$

 $\text{Ph}_2\text{pMn}(\text{CO})(\eta^5\text{-}\text{H}_3\text{CC}_5\text{H}_4)$ (14) could not be isolated in pure form due to its thermal instability; 2.1% yield (spectroscopically de-

termined). $(\eta^5-H_3CC_5H_4)(CO)Mn(\mu\text{-}COSiHPh_2)_2Mn(CO)(\eta^5$ - $H_3CC_5H_4$) (14): ¹H NMR (C₆D₆, 22 °C) δ 2.15 (s, 3 H, CH₃), 3.90, **4.70** (m, 4 H, Cp) 6.1 (s, 1 H, SiH), 7.2-7.8 (m, 10 H, C_6H_5); IR (cm-l, THF) **1888** (81, **1933** *(8) (VCO).*

The mother liquor of 14 contained cis - $(\eta^5$ -H₃CC₅H₄)Mn- $(CO)_2$ HSiClPh₂ (16) in 4.9% yield. ¹H NMR $(C_6D_6, 22 \text{ °C})$: δ -11.6 **(s, 1 H, MnH), 1.33 (s, 3 H, CH₃), 3.90 (s, 4 H,** *Cp***), 7.2-7.8**

tional Laboratory: Oak Ridge, TN, 1976.

⁽²⁴⁾ Cromer, D. T.; Weber, J. T. *Acta Crystallogr.* **1965,** *18,* **104.**

⁽²⁵⁾ Stewart, R. F.; Davidson, E. R.; Simpson, W. T. *J. Chem. Phys.* **1965,42,3175.**

⁽²⁶⁾ Sheldrick, *G.* **M. In** *Crystallographic Computing 3;* **Sheldrick,** *G.* **M.. Krtiger. C., Goddard, R., Eds.; Oxford University Press: Oxford, England; 1985.**

⁽²⁷⁾ Sheldrick. *G.* **M.** *SHELX-76. Proaram for* **Crystal** *Structure Determination;* **University** of **Cambridge: -Cambridge,-England, 1976. (28) Johnson, C. K. ORTEP-11. Report ORNL-5138; Oak Ridge Na-**

 $(m, 10 \text{ H}, \text{C}_6H_5)$. IR (cm⁻¹, THF): 1987 (s), 1930 (s) (ν_{CO}) .¹⁴ Anal. Calcd for C₂₀H₁₈ClMnO₂Si (M, 408.84 g/mol): C, 58.76; H, 4.44; C1, **8.67.** Found C, **59.01;** H, **4.54;** C1, 8.58.

During prolonged photolysis, also traces of $trans-(\eta^5-)$ H3CC5H4)Mn(C0)2HSiClPhz appeared **as** a secondary product of the photochemical rearrangement of the cis-isomer. 'H NMR **4** H, *Cp),* **7.2-7.8** (m, **10** H, IR *(cm-',* THF): **1953 (8)** *(VCO).* In the case of the reaction of $5/6$ with Ph_2SiH_2 , the reaction *(CP,* **22 "C):** 6 **-11.5 (8, 1** H, MnH), **1.32 (6, 3** H, *CH3),* **3.89 (8,**

mixture of $(\eta^5-H_3CC_5H_4)(CO)Mn(\mu-COSiHPh_2)_2Mn(CO)(\eta^5+$ $H_3CC_5H_4$) (0.7% yield) (14) and $(\eta^5-H_3CC_5H_4)Mn(\overline{CO})_2HSiHPh_2$ **(6.3%** yield) **(15)** was subjected to column chromatography **(silica** gel, column of 40-cm height and 2-cm diameter, **-20 "C)** which allowed isolation of 15. $(\eta^5-H_3CC_5H_4)MnH(CO)_2SiHPh_2$ (16): ¹H $(s, 4 H, Cp)$, 7.3-7.9 (m, 10 H, C_6H_5).¹⁴ Anal. Calcd for C_{20} -H19MnOzSi *(M,* **374.394** g/mol): C, **64.34;** H, **4.86.** Found: C, **65.12;** H, **4.90.** NMR (C_6D_6 , 22 °C) δ -11.0 (s, 1 H, MnH), 1.5 (s, 3 H, CH_3), 4.0

TGMS Analysis of 8. A sample of **3.754** *mg* of **8** was heated on a thermobalance TGA **7** (Perkin-Elmer) in **a** dynamic He atmosphere. The instrument was coupled to a QMG **420** quadrupole mass spectrometer (Balzers). A temperature program was applied with a heating rate of *5* deg min-'. In the temperature range from **78** (onset) to **200 "C,** formation of bis(di-tert-buty1)silyl peroxide (heating time 22.0 min, 79% overall yield, $m/e = 318$ **(2%,** M+)) and **bis(di-tert-butylsi1oxy)ethyne** (heating time **26** min, **21%** overall yield, m/e = **342** *(5%,* M') **as** well **as** CO formation were observed (80 **"C).**

Pyrolysis of 8. A **1.3-g** sample of **8** was heated to **180** "C at **lo4 Torr** for **3** h. The volatile products were condensed at **-196 OC** onto a cooling finger. The condensate was separated into its components by either GC-MS or preparative GC. The following products were obtained. MS (EI, **70** eV, m/e (relative intensity)): CpMn(CO)_{3} (39.4% yield), 218 (M⁺, 3%); $\text{MeCpSiH}(t\text{-Bu})_{2}$ **(18.8%), 222** (M+, **2%);** (t-Bu2HSi)20 **(36.9%), 302** (M+, **3%);** $(t-Bu_2HSi-O-)_2$ (3.3%), 318 $(M^+, 2\%)$; $(t-Bu_2HSiOC=)_2$ (1.7%), 342 $(M^+, 4\%)$

 $(\eta^5\text{-EtMe}_4\text{C}_5)\text{Mn}(\text{CO})_3$ (18), $(\eta^5\text{-Ethyletramethylcyclo-}$ **pentadienyl)manganese Tricarbonyl.** A 2.70-g (6.92-mmol) sample of $Mn_2(CO)_{10}$ and 10 mL of $EtMe_4C_5H$ were heated to 180 **OC** for **25** h. The formed brown mixture was cooled to room temperature, and **all** volatile components were removed in a high vacuum. The product was subjected to column chromatography on **silica** gel and eluted with pentane. **18** was isolated in the second intense yellow fraction (the first, slightly yellow fraction contained only impurities). **18** formed bright yellow crystals from pentane at -78 °C in 56% yield $(2.23 \text{ g}, 7.74 \text{ mol})$. ¹H NMR $(C_6D_6, 21 \text{ °C})$: δ 0.75 (tr, 3 H, CH₃CH₂), 1.51–1.55 (m, 12 H, C₅Me₄), 2.00 (q, 2 Handwerker et al.

H, CH₃CH₂). ¹³C NMR (C₆D₆, 23 °C): δ 9.7 (q, CH₃, ¹J(¹H¹³C) = 127 Hz, 9.9 (q, ¹J(¹H¹³C) = 127 Hz, CH₃), 15.3 (q × tr, ¹J(¹H¹³C) = 127 Hz, ²J(¹H¹³C) = 4.8 Hz, CH₃), 18.7 (tr × q, $(cm^{-1},$ pentane): 2009 (s) 1927 (s) (ν_{CO}) .⁸ $\text{Hz, }^2\text{J}(\text{H}^{13}\text{C}) = 4.2 \text{ Hz}, \text{CH}_2$, 95.6, 100.7 (s, Cp), 227 (s, CO). **IR**

Photolysis of $(\eta^5\text{-EtMe}_4\text{C}_5)\text{Mn}(\text{CO})_3$ (18) and Reaction with $(t - Bu)_{2}$ **SiHCl.** A 0.60-g (2.08-mmol) sample of $(\eta^{5}$ -EtMe₄C₅)-Mn(C0)3 **(18)** dissolved in **270** mL of THF was photolyzed for **30** min with a high-pressure Hg immersion lamp, and **2.10** mL **(10.4** mmol) of (t-Bu),SiHCl at **-40 "C** was added. The formed red solution was **stirred** for **an** additional **3** h and allowed to warm to room temperature. All volatile components were removed in vacuum $(5 \times 10^{-2}$ bar); the residue was dissolved in pentane and separated from precipitated $[(\eta^5\text{-}EtMe_4C_5)MnCl]_n$ (21) by filtration. **20** crystallized **as** red needles from pentane. Yield 8%; mp **134 ^oC.** ¹H NMR $(C_6D_6, 22$ ^oC): δ 0.95 (tr, 3 H, ³J(¹H¹H) = 7.2 **Hz,** $CH_3CH_2)$, **1.21** (s, 18 **H**, t-Bu), 1.60, 1.95 (s, 12 **H**, C_5Me_4), $(cm^{-1}, THF): 1889$ (s), 1934 (s), (ν_{CO}) . Anal. Calcd for $C_{42}H_{72}$ -Mnz04Siz *(M,* **807.08** g/mol): **C, 62.50;** H, **8.99.** Found C, **62.31;** H, **8.91.** 2.50 (q, 2 H, 3 J(¹H)^H) = 7.2 Hz, CH₃CH₂), 4.92 (s, 1 H, SiH). IR

 $(\eta^5\text{-}\mathrm{Et}\mathrm{Me}_4\mathrm{C}_5)\mathrm{Mn}(\mu\text{-}\mathrm{CO})_3\mathrm{Mn}(\eta^5\text{-}\mathrm{Et}\mathrm{Me}_4\mathrm{C}_5)$ (22), $\mathrm{Bis}(\eta^5\text{-}\mathrm{C}_5)$ Ethyltetramethylcyclopentadienyl)tris(μ -carbonyl)di**manganese.** $(\eta^5\text{-EtMe}_4C_5)_2Mn_2(CO)_3$ (22) was isolated from the Fithylitetramethylcyclopentadienyl)tris(μ -carbonyl)di-
manganese. $(\eta^5$ -EtMe₄C₅)₂Mn₂(CO₎₃ (22) was isolated from the
reaction mixture of 18 described above by column chromatography
on silice *sel*/pentens in on **silica** gel/pentane in **7%** yield **as** dark green crystals. Mp: **152** ${}^{\circ}$ C. ¹H NMR (C₆D₆, 22 ^oC): δ 1.55 (s, br, 3 H, CH₃CH₂), 1.65 6 **9.2** (q, 'J('H13C) = **127** Hz, CH3), **9.4** (4, 'J('H13C) = **127** Hz, CH_3 , 14.7 (q \times tr, ¹J(¹H¹³C) = 127 *Hz*, ²J(¹H¹³C) = 4.7 Hz, *C*H₃), 18.1 (tr \times q, $^{1}J(^{1}H^{13}C) = 128$ Hz, $^{2}J(^{1}H^{13}C) = 4.3$ Hz, CH_{2}), 91.8, 95.3 (s, $C_{5}Me_{4}Et$), 271.0 (s, μ -CO). IR (cm⁻¹, pentane): 1782 ($\nu_{\mu}c_{0}$). 95.3 (s, C_5Me_4Et), 271.0 (s, μ -CO). IR (cm⁻¹, pentane): 1782 $(\nu_{\mu\text{CO}})$.
Anal. Calcd for $C_{25}H_{34}O_3Mn_2$ (M_r 492.42 g/mol): C, 60.98; H, **6.96.** Found: **61.02;** H, **6.96.** $($ s, 12 H, CH_3), 2.05 (s, br, 2 H, CH_2). ¹³C NMR $(C_6D_6, 23$ °C):

Acknowledgment. This work has been supported by Deutache Forschungsgemeinschaft and Fonds der Chemischen Industrie. We are grateful to Dr. U. Küsthard for the recording of **an** EPR spectrum. Furthermore, Professor H. Schmidbaur encouraged us with many helpful comments.

Supplementary Material Available: Tables of hydrogen atom coordinates and isotropic displacement parameters and bond distancea and angles for **4 (3** pages). Ordering information is given on any current masthead page.

OM920236E