

Subscriber access provided by American Chemical Society

Silylene-bridged ruthenium dimers via reactions of [(.eta.5-C5Me5)Ru(.mu.-OMe)]2 with silanes. Structure of {[(.eta.5-C5Me5)Ru]2(.mu.-SiPhOMe)(.mu.-OMe)(.mu.-H)}

Brian K. Campion, Richard H. Heyn, and T. Don Tilley

Organometallics, **1992**, 11 (11), 3918-3920• DOI: 10.1021/om00059a070 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on March 8, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00059a070>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Siiyiene-Bridged Ruthenium Dimers via Reactions of $[(\eta^5\text{-C}_5\text{Me}_5)$ Ru(μ -OMe)]₂ with Silanes. Structure of $\{[(\eta^5-C_5Me_5)Ru]\}\{(\mu-SiPhOMe)(\mu-OMe)(\mu-H)\}$

Brian K. Campion, Richard H. Heyn, and T. **Don Tilley'**

Department of Chemistry, 0506, University of California at San Diego, *9500 Gllman Drive, La Jolla, Califom& 92093-0506*

Received June 4, 1992

Summary; **Reaction of the coordinatively unsaturated** complex $[Cp*Ru(\mu\text{-}OMe)]_2$ with Ph_2SiH_2 produces $\{(\eta^5-P_1)\}$ C₅Me₅)Ru]₂(μ -SiPhOMe)(μ -OMe)(μ -H)}, via substitution of **a phenyl group on silicon by methoxide. The structure reveals a Ru-Ru double bond, d(Ru-Ru)** = **2.569 (5) A, which is brldged by** the **phenyi(methoxy)silylene ligand, a** methoxy group, and a hydride ligand (not located). Crystal **data: triclinic,** *a* = **11.157 (7) A,** *b* = **16.336 (8) A, c** = **16.792 (7)** \hat{A} , $\alpha = 74.39$ (4)^o, $\beta = 88.13$ (5)^o, $\gamma = 74.71$ $(5)^{\circ}$, $V = 2841$ (3) \mathring{A}^3 , $Z = 2$, and $R = 6.69\%$. The **related reaction with CyMeSiH, (Cy** = **cyclohexyl) takes a different course, but also proceeds via Si-0 bond for**mation to give CyMeSiH(OMe) and { \int Cp⁺Ru(μ - η ²-H-SiMe- Cy]₂(μ -H)(H)}.

The high lability of silicon compounds in the presence of transition metals can lead to condensation of more than
one metal about a bridging silicon ligand.¹ Examples one metal about a bridging silicon ligand. $¹$ </sup> include formation of μ -silylene ligands from secondary silanes² or disilanes,³ μ -Si $R_2(H)$ ligands with α -agostic Si–H–M interactions,⁴ μ -Si $\mathrm{R}_2(\mathrm{H})$ ligands with M–Si–H–M linkages,⁵ and μ -silylyne ligands.⁶ Such structures are probably important in a number of metal-mediated reactions of silicon compounds and in related heterogeneous processes on metal surfaces.' In pursuit of reactive, "highly metallated" silicon complexes, and coordination complexes of reactive silicon-based species, we have examined reactions of the electron-deficient, methoxybridged dimer $[Cp*Ru(\mu\text{-}OMe)]_2^8$ with secondary silanes. It seemed to us that the silanes might undergo condensation with the ruthenium centers beyond an initial Si-H oxidative addition. These reactions have afforded the complexes $\{ (\eta^5 - C_5Me_5)Ru]_2(\mu - SiPhOMe)(\mu - OMe)(\mu - H) \}$

and ${[Cp*Ru(\mu-\eta^2-H-SiMeCy)]_2(\mu-H)(H)}$ via Si-O bondforming processes. The formation of $\{[(\eta^5-C_5Me_6)Ru]_2(\mu SiPhOMe)(\mu\text{-}OMe)(\mu\text{-}H)$ } from $[Cp*Ru(\mu\text{-}OMe)]_2$ and $Ph₂SiH₂$ involves an interesting substitution of a phenyl group on silicon by methoxide. In general, we find that $[Cp*Ru(\mu\text{-}OMe)]_2$ is much more reactive toward silanes than the 16-electron complex $Cp^*(PPr_i^i)RuCl$.

Experimental Section

All operations were conducted under anaerobic and anhydrous conditions. Elemental analyses were performed by Mikroanalytishes Labor Pascher. Infrared spectra were recorded on a Perkin-Elmer 1330 spectrometer. NMR spectra were obtained with a GE QE-300 or a Varian UN-500 instrument. The methoxide $[Cp*Ru(\mu\text{-}OMe)]_2$ was obtained via a published procedure.^{8b}

(&-OMe)lz (0.095 g, 0.17 mmol) in benzene (25 mL) **was** added $Ph₂SiH₂$ (67 μ L, 0.35 mmol) in 25 mL of benzene. The resulting purple solution was **stirred** for 30 **min,** and then the volatilea were removed by vacuum transfer. The residue was extracted into pentane $(35 + 10 \text{ mL})$, and concentration and cooling $(-40 \degree C)$ of this solution gave the product **as** dark maroon crystals (mp 284-287 "C) in 42% yield (0.045 9). Anal. Calcd for $C_{28}H_{42}O_2SiRu_2$: C, 52.5; H, 6.61. Found: C, 53.1; H, 6.78. IR (benzene-d₆ solution, CaF₂ cell, cm⁻¹): 2978 m, 2945 m, 2892 s, 2780 w, 1478 m br, 1429 m, 1380 m, 1180 w br, 1095 **s** sh, 1078 8, 1028 **8.** ¹H NMR (300 MHz, benzene-d₆, 23 °C): δ -18.72 (8, 1 H, RuH), 1.63 *(8,* 30 HI Cp*), 3.72 (s,3 H, OMe), 3.73 *(8,* 3 H, OMe), 7.33,7.45,8.47 (m, *5* H, SiPh). 13C('H) NMR (75.5 MHz, benzene- d_6 , 23 °C): δ 10.94 (Cp*), 53.09 (SiOMe), 70.37 (μ -OMe), 85.48 (Cp^{*}), 127.39, 129.00, 149.25 (SiPh). ²⁹Si *NMR* (59.6 *MHz*, benzene- d_6 , INEPT, 23 °C): δ 211.12. $\{[(\eta^5-C_5Me_5)Ru]_2(\mu-SiPhOMe)(\mu-OMe)(\mu-H)\}$. To $[Cp*Ru-$

For the second isomer (formed slowly in benzene- d_6 solution from the above complex), the following data were determined. ¹H NMR (300 MHz, benzene- d_6 , 23 °C): δ -18.81 *(s, 1 H, RuH)*, 1.61 **(e,** 30 H, Cp*), 3.55 (s,3 H, OMe), 4.07 (s,3 H, OMe), 7.24, 7.45, 8.43 (m, 5 H, SiPh). ¹³C{¹H} NMR (75.5 MHz, benzene-d₆, 23 °C): δ 10.91 (Cp*), 52.60 (SiOMe), 77.39 (μ -OMe), 85.68 (Cp*), 127.38, 128.74, 146.98 (SiPh). ²⁹Si NMR (59.6 MHz, benzene-d_e, INEPT, 23 °C): δ 193.50.

 ${[\mathbf{Cp*Ru}(\mu-\eta^2-H-SiMeCy)]_2(\mu-H)(H)}$. To ${[\mathbf{Cp*Ru}(\mu\text{-}OMe)]_2}$ (0.26 g, 0.46 mmol) was added CyMeSiH₂ (220 μ L, 1.3 mmol) in benzene (25 mL). After 14 h of stirring, the resulting blood-red solution **was** evaporated to dryness and extracted with pentane (20 mL). Concentration and cooling (-30 "C) of the pentane solution gave the product **as** orange-yellow crystals (mp 247-248 $^{\circ}$ C) in 54% yield. Anal. Calcd for C₃₄H₆₂Si₂Ru₂: C, 56.0; H, 8.57. Found: C, 56.0; H, 8.59. IR (Nujol, CsI, cm⁻¹): 2050 w, 1261 m, 1241 **m,** 1163 w, 1028 8,992 w, 888 m, 817 w, 780 8,650 m, 430 w, 350 m br. ¹H NMR (300 MHz, benzene- d_6 , 23 °C): δ -14.1 (br s,4 H, RuH), 0.52 **(e,** 6 H, SiMe), 0.74, 1.35, 1.79,2.16 (m, 22 H, SiCy), 1.92 *(8,* 30 H, Cp*). 'H NMR (300 MHz, toluene-de, -70 "C): 6 -15.81 *(8,* 1 H, RuH), -13.81 *(8,* 2 H, SiHRu), -12.94 *(8,* 1 H, RuH), 0.48 **(a,** 6 H, SiMe), 0.64, 1.39, 2.01, 2.22 (m, 22 H, SiCy), 1.67 **(e,** 15 H, Cp*), 2.02 *(8,* 15 HI Cp*). IsC('H} NMR $(75.5 \text{ MHz}, \text{benzene-}d_6, 23 \text{ °C})$: δ 4.96 (SiMe), 12.49 (Cp*), 27.69, 29.42,31.02,39.03 (SiCy), 93.25 (Cp*). 29Sil'HJ *NMR* (99.30 *MHz,* toluene- $d_{\rm s}$, 23 °C, DEPT): δ 115.17. The silane CyMeSiH(OMe) was identified **as** a product by monitoring the reaction in benzene- d_6 by ¹H NMR spectroscopy.

X-ray Structure Determination of $\{(\eta^5 - C_5 M e_5)Ru\}_2(\mu SiPhOMe)(\mu\text{-}OMe)(\mu\text{-}H)$. A maroon crystal of approximate dimensions 0.25 **X** 0.25 **X** 0.40 mm was mounted under nitrogen

⁽¹⁾ For recent reviews of transition-metal silicon chemistry, see: **(a)** Tilley, T. **D.** In The Chemistry *of* Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989, Chapter 24, p 1415. (b) Tilley, T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991, Chapters 9 and 10, pp 245 and 309. (2) (a) Carré, F

⁽c) Wang, W. D.; Hommeltoff, S. **I.;** Eisenberg, R. Organometallics **1988. 7,2417.** (d) Wang, W. **D.;** Eisenberg, R. J. Am. Chem. SOC. **1990,112,**

^{1833. (}e) McDonald, R.; Cowie, M. Organometallics 1990, 9, 2468. (f) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 1917.
(3) (a) Brookes, A.; Knox, S. A. R.; Stone, F. G. A. J. Chem. Soc. A
(3) (a) Brookes, A.; K

^{(4) (}a) Auburn, M.; Ciriano, M.; Howard, J. A. K.; Murray, M.; Pugh, N. J.; **Spencer,** J. L.; Stone, F. **G.** A.; Woodward, P. J. Chem. SOC., Dalton $X_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8, Y_9, Y_1, Y_1, Y_2, Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8, Y_9, Y_{10}, Y_{11}, Y_{12}, Y_{13}, Y_{14}, Y_{15}, Y_{16}, Y_{17}, Y_{18}, Y_{19}, Y_{10}, Y_{11}, Y_{12}, Y_{13}, Y_{14}, Y_{15}, Y_{16}, Y_{17}, Y_{18}, Y_{19}, Y_{10}, Y_{11}, Y_{12}, Y_{13}, Y_{14}, Y_{15}, Y_{16}, Y$

^{108,4059.}

^{(6) (}a) Guebeth, P.; Vahrenkamp, H. Chem. Ber. **1985,118,1143.** (b) Kawano, Y.; Tobita, H.; Ogino, H. Angew. Chem., Int. Ed. Engl. **1991, 30, 843.**

⁽⁷⁾ Clarke, M. P.; Davidaon, I. M. T. *J.* Organomet. Chem. **1991,408, 149.**

^{(8) (}a) Koelle, U.; Kcasakowski, J. *J.* Chem. SOC., Chem. Commun. **1988,549.** (b) Loren, **S. D.;** Campion, B. K.; Heyn, R. H.; Tilley, T. **D.;** Bureten, B. E.; Luth, K. W. *J.* Am. Chem. *SOC.* **1989,111, 4712.**

Figure 1. ORTEP view of the molecular structure of $\{[(\eta^5 - C_5\mathbf{Me}_5)\mathbf{R}\mathbf{u}]_5(\mu-\mathbf{S}i\mathbf{P}\mathbf{h}\mathbf{O}\mathbf{M}\mathbf{e})(\mu-\mathbf{O}\mathbf{M}\mathbf{e})(\mu-\mathbf{H})\}.$

in a random orientation in a glass capillary and flame-sealed. Centering of **13** reflections from a rotation photograph provided the preliminary unit cell data. Further refinement of the unit cell data **was** provided by centering of **18** reflections obtained from a preliminary data set $(20^{\circ} \leq 2\theta \leq 30^{\circ})$. The selection of the triclinic cell was confirmed by axial photographs. Data were **collected with 8/28 scans (3^o** \leq 28 \leq 30°). The selection of the triclinic cell was confirmed by axial photographs. Data were collected with $\theta/2\theta$ scans (3^o \leq 29 \leq 40°), at a variable scan speed of of 3.0-19.5 \min^{-1} , using Mo Ka radiation ($\lambda = 0.71073$ Å), on a Siemens $R3m/V$ automated diffractometer equipped with a highly ordered graphite monochromator. Of the **6349** reflections measured, 5285 were independent $(R_{int} = 3.48\%)$ and 2063 were considered observed $(F_o > 6\sigma(F))$. The data were corrected for Lorentz and polarization effects, and for a slight decay in the intensity of three check reflections of **1.5%.** A semi-empirical absorption correction based on the ψ scan method was employed. The minimum and maximum transmission factors for the correction were **0.7839** and **0.8794,** respectively. The structure was solved by direct methods and refiied by full-matrix least **squares** methods. Refinement of a solution in the space group PI did not provide a chemically reasonable structure. Due to a **lack** of data, only the Ru and Si atoms were refiied anisotropically. The Ph rings and the C_5Me_5 rings (inner C atoms) were constrained to be rigid hexagons $(d(C-\overline{C}) = 1.42 \text{ Å})$ and pentagons $(d(C-C)) =$ **1.39** A), respectively. The hydrogen atoms were placed in idealized, calculated positions **(d(C-H)** = **0.96 A),** with a fixed thermal parameter. $R_F = 6.69\%$, $R_{wF} = 8.39\%$, GOF = 1.42, data/parameter = 8.8:1, largest $\Delta/\sigma = 0.152$, largest difference peak = 0.85 e \mathbf{A}^{-3} . All calculations made use of the Siemens SHELXTL PLUS computing package (Siemens Analytical X-ray Instruments, Inc., Madison, WI).

Results and Discussion

The methoxy dimer $[Cp*Ru(\mu\text{-}OMe)]_2$ and excess Ph2SiHz **(2** equiv) react in benzene to give a purple solution, from which a dark red crystalline compound can be isolated from pentane. This product was subsequently characterized **as** the silylene-bridged complex shown in eq **1.** The 'H NMR spectrum of the product revealed that

a **1:l** ratio of Cp* and methoxy groups was maintained in the product but that the methoxy groups had become inequivalent. A **2:l** ratio of Cp* to phenyl groups was observed **as** well **as** a single upfield hydride resonance (6 -18.72) that is consistent with a bridging hydride ligand.⁹ The ²⁹Si NMR spectrum for this compound contains a singlet at very low field $(\delta 211.12)$, suggesting the presence

Table **1.** Selected Bond Distances (A) and Angler (deg) for $\{[(\eta^5 \text{-} C_5 \text{Me}_5)Ru]_2(\mu\text{-}SiPhOMe)(\mu\text{-}OMe)(\mu\text{-}H)\}$

$\mathcal{L}(n - \mathcal{L}(\mu, \mathcal{L}))$			
(a) Bond Distances			
$Ru(1)-Ru(2)$	2.569(5)	$Ru(4)-O(2)$	2.077 (20)
Ru(3)–Ru(4)	2.569 (5)	$Si(1) - C(51)$	1.910 (24)
$Ru(1)-Si(1)$	2.309 (10)	$Si(2) - C(61)$	1.898 (23)
$Ru(2)-Si(1)$	2.288 (11)	$Si(1) - O(3)$	1.677(22)
$Ru(3)-Si(2)$	2.316 (10)	$Si(2)-O(4)$	1.677 (22)
$Ru(4)-Si(2)$	2.309 (12)	$O(3)-C(3)$	1.394(40)
$Ru(1) - O(1)$	2.090 (23)	$O(4)$ -C(4)	1.428(45)
$Ru(2)-O(1)$	2.095 (18)	$O(1) - C(1)$	1.420 (40)
Ru(3)–O(2)	2.096 (28)	$O(2) - C(2)$	1.482(41)
(b) Bond Angles			
$Ru(1)-O(1)-Ru(2)$	75.8 (7)	$O(3) - Si(1) - C(51)$	97.8 (11)
$Ru(3)-O(2)-Ru(4)$	76.0 (8)	$O(4) - Si(2) - C(61)$	98.1 (12)
$Ru(1) - Si(1) - Ru(2)$	68.0 (3)	$O(3) - Si(1) - Ru(1)$	122.9 (10)
$Ru(3) - Si(2) - Ru(4)$	67.5(3)	$O(3) - Si(1) - Ru(2)$	120.9(8)
$Ru(1)-O(1)-C(1)$	118.8 (19)	$O(4)$ -Si (2) -Ru (3)	123.5 (11)
$Ru(2)-O(1)-C(1)$	118.1 (21)	$O(4) - Si(2) - Ru(4)$	123.4 (10)
$Ru(3)-O(2)-C(2)$	117.1 (20)	$C(51) - Si(1) - Ru(1)$	124.9 (7)
$Ru(4)-O(2)-C(2)$	115.8 (19)	$C(51) - Si(1) - Ru(2)$	123.3 (9)
$O(1) - Ru(1) - Si(1)$	102.9 (7)	$C(61) - Si(2) - Ru(3)$	122.8 (7)
$O(1) - Ru(2) - Si(1)$	103.5 (6)	$C(61) - Si(2) - Ru(4)$	122.4 (10)
$O(2) - Ru(3) - Si(2)$	102.9 (7)	$Si(1) - O(3) - C(3)$	123.9 (19)
$O(2) - Ru(4) - Si(2)$	103.8(8)	$Si(2)-O(4)-C(4)$	126.2 (24)

of a terminal¹⁰ or bridging¹¹ silylene ligand. Also, the lack of significant J_{SiH} coupling eliminated the possibility of an n^2 -Si-H structure.

The molecular structure of ${[{(\eta^5\text{-}C_5Me_5)Ru]}_2(\mu\text{-}Si-}$ $PhOMe)(\mu\text{-}OMe)(\mu\text{-}H)$ (one of two independent molecules in the crystal) is shown in Figure **1,** and relevant geometrical parameters are listed in Table I. The short Ru-Ru distance of **2.569 (5) A** is consistent with the presence of a Ru $=$ Ru double bond. For comparison, the Ru-Ru single bond distance in the silylene-bridged complex $[{\rm (CO)}_3]$ - $(Me_3Si)Ru(\mu-SiMe_2)$ ₂ is 2.958 (3) Å.¹² Also the recently reported complexes $\{[\text{Cp*Ru}(\mu-\eta^2\text{-H-SiEt}_2)]_2(\mu\text{-H})(\text{H})\}$ and $[Cp*Ru(\mu-H)(\mu-SiPh_2)]_2$, obtained via addition of secondary silanes to $[Cp*Ru(\mu-H)₂]₂$, have single $(2.971-A)$ and double (2.665-A) Ru-Ru bond distances, respectively.^{4c} The Ru-Si bonds in $\{[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Ru}]_2 (\mu \text{-}SiPhO\text{Me}) (\mu \text{-} D_5 \text{Me})\}$ OMe) $(\mu$ -H)) are also very short (av 2.31 Å), given the observed range for Ru-Si single bonds in other complexes **(2.3-2.5 A).1** The bridging hydride ligand was not located in electron density maps. Finally, the Ru-O distances (av 2.09 Å) are similar to values seen for other alkoxy-bridged diruthenium complexes, e.g. $[Cp*Ru(\mu\text{-}OMe)]_2$ and $[Cp*-\text{-}A]$ $(CO)Ru(\mu-OEt)]_2^{8b}$

The complex $\{[(\eta^5\text{-}C_5\text{Me}_5)\text{Ru}]_2(\mu\text{-}Si\text{PhOMe})(\mu\text{-}\text{OMe})(\mu\text{-}E_5(\mu\text{-}D_5\text{Me})_1]$ H)) slowly and cleanly isomerizes in benzene-d, **(60%** conversion after **24** h at room temperature) to a new product that displays NMR spectra very similar to those for the starting compound. The ²⁹Si NMR chemical shift for this new product is at δ 193.50. We propose that this isomerization results from rearrangement of the bridging ligands such that the two methoxy groups point in the **same** direction (eq **2).** Related isomerizations involving bridge-to-terminal silylene transformations have been characterized for $\mathbf{Cp}_2\mathbf{Fe}_2(\mathbf{CO})_2(\mu\text{-CO})(\mu\text{-SiX}^t\mathbf{Bu})$ (X = Cl, Br, I, Me) complexes.¹³

Perhaps the most interesting feature of the reaction described above is the phenyl/methoxy substitution that occurs at silicon. Mechanistic details for this rather com-

(13) Tobita, H.; **Kawano,** *Y.;* Ogino, H. *Chem. Lett.* **1989,2166.**

⁽¹⁰⁾ Straw, D. A.; Grumbine, **S.D;** Tilley, T. D. J. *Am. Chem. SOC.* **1990,112, 7801.**

⁽¹¹⁾ Ueno, K.; **Hamashima,** N.; Shimoi, **M.;** *-0,* H. *Organometallics* **(12) Crc-zat,** M. M.; **Watkine,** S. F. *J. Chem. SOC., Dalton* Trans. **1972, 1991, 10, 959.**

^{2512.}

⁽⁹⁾ Moore, D. S.; Robinson, S. D. *Chem. SOC. Rev.* **1983,12,415.**

plex transformation are lacking at this time, but it is conceivable that the Si-0 bond is formed via oxidative addition of an H-SiHPh₂ bond, followed by Si-O reductive elimination to produce Ph₂SiHOMe as an intermediate.¹⁴ Cleavage of an SiPh bond has fewer precedents in stoichiometric processes¹⁵ but is observed in transitionmetal-catalyzed reactions that redistribute groups on silicon.¹⁶ The key Si-C bond cleavage step could occur via oxidative addition of the Si-C bond or by α -migration of the Ph group from silicon to ruthenium.

Addition of CyMeSiH₂ (Cy = cyclohexyl) to $[Cp*Ru(\mu-$ 0Me)l2 resulta in formation of a new complex, isolated **as** orange crystals from pentane, that does not possess methoxy groups. The elemental **analysis** and *NMR* spectra are consistent with a stoichiometry of $Cp^*Ru(SiMeCy)_2H_2$, and the mass spectrum contains a parent ion peak $([M]^+$ $= 730$) which indicates that the compound is dimeric. A ν_{RuH} stretching frequency at 2050 cm⁻¹ in the infrared spectrum can be assigned to a terminal Ru-H bond. The 29Si(1H) NMR DEPT spectrum contains **a** single peak at δ 115.17, which is at relatively low field but considerably upfield of the resonance for silylene-bridged $\{(\eta^5 - \eta^6)\}$ $C_5Me_5Ru]_2(\mu\text{-SiPhOMe})(\mu\text{-OMe})(\mu\text{-H})$. A highly symmetric structure is suggested by the room temperature **'H** NMR spectrum, which displays single sets of resonances for the Cp*, SiMeCy, and hydride ligands. However, the very broad single peak at δ -14.1 for the hydride ligands can be attributed to stereochemical nonrigidity at room temperature. Cooling a toluene- d_8 solution of the complex resulted in decoalescence of the hydride resonances at ca.

-15 "C, and the 'H *NMR* **spectrum** at **-70** "C contains two resonances for the Cp* ligands, and three singlets in the hydride region (δ -12.94, -13.81, and -15.81) in a 1:2:1 ratio. The above data are **all** consistent with the structure shown in eq 3. *Also,* the NMR spectra for this compound are remarkably similar to the analogous complex ${[Cp*Ru(\mu \eta^2$ -H-SiEt₂)]₂(μ -H)(H)}, which was recently characterized by X-ray diffraction. $\frac{1}{10}$

Cy **Me** \/ H-SI -PCyMeSiH(OMe) *\Lh* Mel 'cy - Cp'w flu-flu "CP' **(3)** [Cp'Ru@.OMe)], + 4CyMeSiH, **11** H-SI **-4**

The above reactions show that the electron-deficient ruthenium methoxide $[Cp*Ru(\mu\text{-}OMe)]_2$ can serve as a useful starting material for the synthesis of dinuclear **ru**thenium-silicon compounds. Furthermore, the facile transfer of an alkoxy group from ruthenium to silicon is demonstrated. Related alkoxy-transfer reactions with mononuclear complexes have been reported. For example, silanes HSiR₃ react with trans- $(\text{PR}'_3)_2(\text{CO})\text{IrOR}$ " (R' = Me, Ph) to give R₃SiOR" and $(\text{PR}'_3)_2(\text{CO})\text{IrH}_2(\text{SiR}_3)$.¹⁷

Acknowledgment is made to the National Science Foundation for support of this work. T.D.T. thanks the Alfred P. Sloan Foundation for a research fellowship **(198&92),** Union Carbide for an Innovation Recognition Program Award **(1991-2),** and the Mobil Foundation for a financial contribution. We **also** thank Nora Radu and John Walzer for recording NMR spectra.

Supplementary Material Available: For $\{[(\eta^5-C_5Me_5)-Ru]_2(\mu-SiPhOMe)(\mu-OMe)(\mu-H)\}$, tables of crystal data, data collection, and refinement parameters, bond **distancee** and angles, anisotropic displacement parameters, and hydrogen atom coordinates **(11** pages). Ordering information is given on any current masthead page.

OM9203183

[(3,5-(CF₃)₂C₆H₃)₄B]⁻[H(OEt₂)₂]⁺: A Convenient Reagent for Generation **and Stabilization of Cationic, Highly Electrophilic Organometallic Complexes**

M. Brookhart,' B. Grant, and A. F. Volpe, Jr.

Depsrtment of Chemktty, The University of North Carolina, Chapel HIII, North Carollna 27599

Recelved June 30, 1992

Summary: **A convenient synthesis of the easily handled,** crystalline oxonium acid $[(3,5-(CF₃),C₆H₃)₄B]$ ⁻[H(OEt₂)₂]⁺ **(1) is described. The** utllity **of this reagent for generatlon** and stabilization of highly electrophilic cationic transition**metal complexes through protonation reactions is iiiustrated by the preparation of stable, ether-free salts of** from C₅Me₅(P(OMe)₃)Co(C₂H₄). The incorporation of the noncoordinating counterion $[(3,5-(CF₃)₂ C₆H₃)₄B]$ ⁻ in or**ganometallic salts has several advantages relative to [BF,]- and [PF,]-, including high stability and solubility in relatively nonpolar organic solvents.** $[C_5\mathsf{Me}_5(\mathsf{P}(\mathsf{OMe})_3)\mathsf{CoCH}_2\mathsf{CH}_2(\mu\text{-}\mathsf{H})]^+[(3,5\text{-}\mathsf{(CF}_3)_2\mathsf{C}_6\mathsf{H}_3)_4\mathsf{B}]^-$

I. Introduction

The lack of reactivity and non-nucleophilic character of $[BF_4]^-$ and $[PF_6]^-$ have led to their widespread use as noncoordinating (or weakly coordinating)^{1,2} counterions supporting cationic organometallic complexes. With the

⁽¹⁴⁾ We have recently reported a related sequence that produces a Si-Cl bond: Campion, B. K.; Heyn, R. H.; Tilley, T. D. *J. Chem. Soc.*, *Chem. Commun.* **1992, 1201.**

⁽¹⁵⁾ Fernandez. M.-J.: Maitlis, P. M. J. *Chem. Soc., Dalton Trans.* **1984,2063.**

^{213.} (16) Curtis, M. D.; Epstein, P. **S.** Adu. *Organomet. Chem.* **1981,19,**

⁽¹⁷⁾ (a) Rappoli, B. J.; **Je,** T. S.; Churchill, M. R.; Thompson, J. S.; Atwood. J. D. *Ormnometallm* **1988.** *7.* **1939. (b)** Femandez. **M.** J.: Esteruelas, M. A.;Oro, L. A.; Apreda; **M.-C.;** Focea-Foces, C.; Cano, F: H. *Organometallics* **1987,** 6, **1751.**

⁽¹⁾ For examples of coordinated [BFJ and [PFJ see: (a) Honey- chuck, R. V.; He&, W. H. *Inorg. Chem.* **1989,28,2869. (b)** Honeychuck, R. V.; Hersh, W. H. J. Am. Chem. *SOC.* **1989,111,6056.** (c) Beck, W.; Sunkel, K. *Chem. Rev.* **1988,88,1405.**

⁽²⁾ For descriptions of other noncoordinating counterions see: (a) Shelley, K.; Reed, C. A.; Lee, **Y.** J.; Scheidt, W. R. J. Am. Chem. *SOC.* **1986,108,3117. (b)** Noirot, M. D.; Anderson, 0. P.; Straw, S. H. *Inorg. Chem.* **1987,26, 2216** and references therein.