shielding for the adjacent carbon of the phenyl substituent in the ¹³C NMR spectra of 2 are recorded compared to the corresponding values of the acyl carbonyl of the bridging benzovl complexes 1.

Conclusion. The reaction conditions described provide heterobimetallic complexes of chromium and manganese with σ, π -bridging benzene and benzoyl ligands in reasonable yields. The advantage of using lithiated arenes above those where anionic transition-metal precursors were employed is found in the stronger nucleophilicity of these reagents. The negative charge is highly localized on the arene ring and on the metalated carbon, instead of being delocalized over the whole complex, resulting in a very reactive reagent and a more general method for the preparation of bridged benzene or benzoyl dimers of chromium.

Whereas the formation of bridged benzoyl dimers is promoted by the smaller, stronger π -acceptor ligands (CO, $P(OMe)_3$, bridged benzene dimers are found with the larger and more basic PPh₃ ligand on the manganese. Furthermore, phenyl migration for the reaction with dppe is promoted during the chelation step of the bidentate ligand. Close correlation with these results were obtained by Herberhold,⁵¹ who showed that PPh₃ inhibits cyclopentadienyl migration in $Fe(\eta^5-C_5H_5)\{\eta^5-C_5H_4Mn(CO)_4 (PPh_3)$ and promotes it in $Fe(\eta^5-C_5H_5)\{\eta^5-C_5H_4C(0)\}Mn$ - $(CO)_3(dppe).$

Acknowledgment. S.L. and P.H.v.R. wish to acknowledge financial support from the Foundation for Research Development.

Registry No. 1a, 138090-85-4; 1b, 138128-53-7; 1c, 138090-86-5; 1d, 138090-87-6; 2, 57347-34-9; 3a, 138090-88-7; 3b, 138128-54-8; 3c, 138090-89-8; 3d, 138090-90-1; 4a, 138090-91-2; 4b, 138090-92-3; $(\eta^6 - C_6H_6)Cr(CO)_3$, 12082-08-5; $(\eta^6 - C_6H_5F)Cr(CO)_3$, 12082-05-2; $[Mn(CO)_5Br]$, 14516-54-2; $Mn(CO)_3(PPh_3)_2Br$, 14244-44-1; (η^6 - $(1,4-C_6H_4Br_2))Cr(CO)_3, 117939-67-0.$

Supplementary Material Available: For 1a and 3c, tables of bond distances, bond angles, anisotropic temperature factors, and hydrogen atom coordinates (11 pages); tables of observed and calculated structure factors (30 pages). Ordering information is given on any current masthead page.

(51) Herberhold, M.; Kniesel, H. J. Organomet. Chem. 1987, 334, 347.

Alkanediyl and Related Derivatives of Permethylhafnocene

John E. Bercaw and John R. Moss*,1

Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Received July 31, 1991

The reactions of $Cp_{2}^{*}HfH_{2}$ ($Cp^{*} = (\eta^{5}-C_{5}Me_{5})$) with α,ω -dienes (1,3-butadiene, 1,4-pentadiene, 1,5hexadiene and 1,6-heptadiene) in a 2:1 molar ratio yield the new binuclear alkanediyl derivatives Cp*2- $(H)Hf(CH_2)_nHf(H)Cp*_2$ (n = 4-7). The reactions of $Cp*_2HfH_2$ with the same dienes in a 1:1 molar ratio lead to the mononuclear compounds $Cp_{2}^{*}(H)Hf(\eta^{3}-CH_{2}CHCHCH_{3})$, $Cp_{2}^{*}HfCH_{2}(CH_{2})_{2}CH(CH_{3})$, $Cp_{2}^{*}-CH_{2}CH(CH_{3})$, $Cp_{2}^{*}-CH(CH_{3})$, $Cp_{2}^{$ HfCH₂(CH₂)₃CH(CH₃), and the α -hafna- ω -alkene Cp*₂(H)HfCH₂(CH₂)₄CH=CH₂, respectively. Allene reacts with Cp*₂HfH₂ (1:1) to cleanly afford the allyl hydride derivative, Cp*₂(H)Hf(η^3 -CH₂CHCH₂); reaction with a 1:2 ratio yields a mixture of products, one of which appears to be $Cp_{2}(H)Hf(CH_{2})_{3}Hf(H)Cp_{2}$. Reaction of $Cp_{2}^{*}HfH_{2}$ with acetylene yields $Cp_{2}^{*}(H)HfCH=CH_{2}$, which does not react with excess $Cp_{2}^{*}HfH_{2}$ to yield the ethanediyl derivative. 1,3-Pentadiene and $Cp_{2}^{*}HfH_{2}$ cleanly yield $Cp_{2}^{*}(H)Hf(\eta^{3}-CH_{2}CHCHCH_{2}CH_{3})$. The thermal stabilities and reactions of some of these derivatives with excess diene, ethylene, CO, H₂, and H₂O have been investigated. The possibility of extending this chemistry to the permethyltitanocene and permethylzirconocene systems has also been explored.

Introduction

Binuclear alkanediyl complexes may be useful models for hydrocarbons bound to metal catalyst surfaces in important reactions such as olefin polymerization and the Fischer-Tropsch reaction. They may also serve as precursors for the synthesis of bifunctional organic compounds. In recent years, the number of known transition-metal alkanediyl compounds has increased dramatically.^{2,3} Apart from the ethanediyl complexes of zirconium, $[Cp_2ZrCl]_2(\mu$ -CH₂CH₂) and $[Cp_2ZrCl(A]Et_3)]_2(\mu$ - CH_2CH_2 ,^{4a,b} and the novel complexes $M_2X_6(PEt_3)_4$ -

 (CH_2CH_2) (M = Zr, Hf; X = Cl, Br) prepared by Cotton and Kibala,^{4c} there are few such complexes known for the early transition metals. It was the object of this study to investigate the synthesis of alkanediyl complexes of some of the early transition metals and to compare their chemistry with that of the known mononuclear alkyl complexes.

Results and Discussion

Alkyl hydride complexes of hafnium have been previously prepared in our laboratories using the following route:

 $Cp*_{2}HfH_{2} + CH_{2} \longrightarrow Cp*_{2}Hf(H)(CH_{2}CH_{2}R)$ (1)

This reaction, formally 1,2 insertion of an olefin into a Hf-H bond, proceeds quantitatively and cleanly to yield the thermally stable mononuclear alkyl hydride complexes.

⁽¹⁾ Present address: Department of Chemistry, University of Cape Town, Private Bag, Rondesbosch 7700, South Africa

⁽²⁾ Moss, J. R.; Scott, L. G. Coord. Chem. Rev. 1984, 60, 171.
(3) Casey, C. P.; Audett, J. L. Chem. Rev. 1986, 86, 329.
(4) (a) Kaminsky, W.; Sinn, H. Liebigs Ann. Chem. 1975, 424 and 438.
(b) Kaminsky, W.; Kopf, J.; Sinn, H.; Vollmer, H. J. Angew. Chem., Int. Ed. Engl. 1976, 15, 629. (c) Cotton, F. A.; Kibala, P. A. Inorg. Chem. 1990, 2100 29. 3192.

⁽⁵⁾ Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. Organometallics 1985, 4, 97.

An adaptation of this route using 2 mol of $Cp_{2}HfH_{2}$ with an appropriate α, ω -diene may be expected to result in two insertions to yield the binuclear alkanediyl hydride complexes (eq 2).

Indeed, this synthetic strategy works well for n = 1-3. Reaction of $Cp*_2HfH_2$ with 1,4-pentadiene in a 2:1 molar ratio affords the 1,7-dihafnaheptane, $Cp*_2(H)$ -HfCH₂CH₂CH₂CH₂CH₂CH₂Hf(H)Cp*₂ (1), in good yields (ca. 80% by ¹H NMR spectroscopy; 61% isolated) (eq 3).

$$2Cp*_{2}HfH_{2} + CH_{2} \xrightarrow{\text{CHCH}_{2}CH} CH_{2}CH \xrightarrow{-78 \text{ to } +25 \text{ °C}} Cp*_{2}(H)HfCH_{2}(CH_{2})_{3}CH_{2}Hf(H)Cp*_{2} (3)$$

Similarly, reaction of a 2:1 molar ratio of $Cp_{2}HfH_{2}$ and 1,5-hexadiene yields the 1,8-dihafnaoctane, $Cp*_2(H)$ -HfCH₂(CH₂)₄CH₂Hf(H)Cp*₂ (2), in 89% isolated yield, whereas reaction with 1,6-heptadiene appears to cleanly produce 1,9-dihafnanonane, Cp*₂(H)HfCH₂- $(CH_2)_5 CH_2 Hf(H) Cp*_2$ (3) (eq 4).

$$2Cp*_{2}HfH_{2} + CH_{2} = CH(CH_{2})_{n}CH = CH_{2} \xrightarrow{25 \circ C} Cp*_{2}(H)HfCH_{2}(CH_{2})_{n+2}CH_{2}Hf(H)Cp*_{2} (4)$$

$$n = 2 (2)$$

$$n = 3 (3)$$

With smaller dienes the reaction with $Cp*_2HfH_2$ is less selective, and products other than the desired α, ω -dihafnaalkanes are generated. Thus, a mixture of unreacted $Cp*_{2}HfH_{2}, Cp*_{2}(H)HfCH_{2}CH_{2}CH_{2}CH_{2}Hf(H)Cp*_{2}$ (4), and the crotyl hydride derivative $Cp_{2}^{*}(H)Hf(\eta^{3}-CH_{2}CHCH)$ (CH₃)) (vide infra) were prepared from a 2:1 mixture of $Cp*_{2}HfH_{2}$ and butadiene. Due to its lower solubility, 4 may be isolated from this product mixture, albeit in only 14% yield. Similarly, reaction of a 2:1 mixture of $Cp*_2HfH_2$ and allene affords unreacted $Cp*_2HfH_2$ and the allyl hydride derivative, $Cp_2(H)Hf(\eta^3-CH_2CHCH_2)$ in addition to the desired 1,5-hafnapentane, $Cp_{2}^{*}(H)$ -HfCH₂CH₂CH₂Hf(H)Cp $_{2}^{*}(5)$. Unfortunately, 5 proved too unstable for isolation of an analytically pure sample.

Reaction of Cp*₂HfH₂ with 0.5 equiv of acetylene affords 0.5 equiv of unreacted dihydride along with 0.5 equiv of the new compound $Cp_{2}^{*}(H)HfCH=CH_{2}^{*}(6)$ (eq 5). Even

after extended reaction times there is no evidence for further reaction to yield the desired 1,4-dihafnabutane derivative, presumably due to unfavorable steric crowding of the bulky permethylhafnocene moieties. The vinyl hydride derivative 6 is obtained quantitatively (¹H NMR spectroscopy) by reaction of $Cp*_2HfH_2$ and acetylene (1:1) and may be isolated as a white microcrystalline solid (33%).⁶ 6 shows no tendency to reductive eliminate

ethylene even on heating at 80 °C for 5 days.

As a part of this study, we have also investigated the reactions of these dienes with a full 1 equiv of Cp*2HfH2. Reaction of allene (1:1) quantitatively affords the known allyl hydride derivative $Cp_{2}^{*}(H)Hf(\eta^{3}-CH_{2}CHCH_{2})$ (7)⁷ (eq 6). An X-ray crystal structure determination by Roddick

clearly established the η^3 coordination geometry for the allyl ligand. Similarly, reaction of butadiene and Cp*2HfH2 (1:1) quantitatively (¹H NMR spectroscopy) yields the crotyl hydride derivative 8 (eq 7). Room-temperature ¹H

NMR data, specifically, the single resonance for both $[\eta^5-C_5(CH_3)_5]$ ligands, the doublet for the methylene hydrogens, the doublet of triplets $({}^{3}J_{HH} = 17, {}^{3}J_{HH} = 10 \text{ Hz})$ for the 2-hydrogen [CH₂CHCH(CH₃)], and the doublet of quartets $({}^{3}J_{HH} = 17, {}^{3}J_{HH} = 6 \text{ Hz})$ for the 3-methine hy-drogen [CH₂CHCH(CH₃)], are indicative of a fluxional $[syn-\eta^3-CH_2CHCH(CH_3)]$ arrangement (Scheme I). As shown, the sterically preferred rearrangement from [Hf- $(\eta^3$ -CH₂CHCH(CH₃)] to [HfCH₂CH= $\tilde{C}H(CH_3)$] is sufficient to equate the methylene and pentamethylcyclopentadienyl hydrogens; however, rearrangement to the secondary η^1 -allyl intermediate [HfCH(CH₃)CH=CH₂] may also be occurring. Of course, the latter must be generated as the precursor to the crotyl hydride derivative in the reaction with butadiene, even though rapid (and reversible) addition to form the primary product [Cp*2-(H)HfCH₂CH₂CH=CH₂] almost certainly precedes eventual buildup of the thermodynamically stable tautomer 8. As noted above, when present in excess, Cp_2HfH_2 appears to trap $[Cp_{2}^{*}(H)HfCH_{2}CH_{2}CH=CH_{2}]$ as $Cp_{2}^{*}(H)$ - $HfCH_2CH_2CH_2CH_2Hf(H)Cp_2^*$ (4) competitively with its rearrangement to 8.

Whereas the reaction of Cp*2HfH2 with 1,4-pentadiene (2:1) does afford 1,7-dihafnaheptane (1) in good yield, a

⁽⁶⁾ The low isolated yield is due to the very high solubility of Cp*2-(H)HfCH=CH₂, even in petroleum ether.
 (7) Roddick, D. M. Ph.D. Thesis, California Institute of Technology,

¹⁹⁸⁴

1:1 mixture yields a quite different final product, the hafnamethylcyclopentane $Cp*_2HfCH_2CH_2CH_2CH(CH_3)$ (9) (ca. 70%), together with 1 (ca. 25%) (eq 8). The ¹H

NMR data (Table I) for 9 are not readily interpreted, even from selective decoupling experiments;⁸ however, the ¹³C NMR data (Table I) are quite distinctive. When a toluene- d_8 solution of Cp*₂HfH₂ and 1,4-pentadiene (1:1) is monitored by ¹H NMR spectroscopy, by beginning at -80 °C and then warming slowly to room temperature, two products are observed initially: a new compound exhibiting a η^5 -C₅Me₅ resonance at δ 1.92, assigned as Cp*₂-(H)HfCH₂CH₂CH₂CH=CH₂ (ca. 70%), and 1 (ca. 30%). At -40 °C the metallacycle 9 begins to appear as the 1hafna-5-hexene steadily decreases in concentration. At +20 °C the distribution of products is Cp*₂(H)- $HfCH_2CH_2CH_2CH=CH_2$ (ca. 6%), 9 (ca. 68%), and 1 (ca. 26%). These results suggest that the rates for formation of Cp*₂(H)HfCH₂CH₂CH₂CH=CH₂ from Cp*₂HfH₂ and 1,4-pentadiene and for formation of Cp*₂(H)-HfCH₂CH₂CH₂CH₂CH₂Hf(H)Cp*₂ from Cp*₂HfH₂ and Cp*₂(H)HfCH₂CH₂CH₂CH=CH₂ are comparable at low temperature, and that intramolecular olefin insertion for $Cp*_{2}(H)HfCH_{2}CH_{2}CH_{2}CH=CH_{2}$ to yield the hafnamethylcyclopentane 9 occurs only above -40 °C (eq 9).

Reaction of 1,3-pentadiene and $Cp*_2HfH_2$ (1:1) yields what appears from ¹H NMR data (Table I) to be the ethylallyl hydride derivative $Cp*_2(H)Hf(\eta^3-CH_2CHCH-(CH_2CH_3))$). Thus, this substrate behaves like a substituted butadiene (vide supra), with no indication of products that would arise from the reaction of $Cp*_2HfH_2$ with 1,4-pentadiene.

The reaction of $Cp*_2HfH_2$ with 1,5-hexadiene (1:1) proceeds similarly: initially a mixture of $Cp*_2(H)$ - $HfCH_2CH_2CH_2CH_2CH=CH_2$ and $Cp*_2(H)$ - $HfCH_2CH_2CH_2CH_2CH_2Hf(H)Cp*_2$ is generated, which on standing at room temperature for 4 days yields what appears from ¹H and ¹³C NMR data (Table I) to be hafnamethylcyclohexane 10 (eq 10).

Pure 11 is obtained only in the presence of excess 1,6heptadiene, whereas isolated samples of 11 slowly convert in solution to mixtures containing 3 and 1,6-heptadiene over several hours at room temperature.

The smaller carbon number members of the series of dihafnaalkanes also react slowly with excess α,ω -diene at room temperature over a period of 1-4 days to afford the same products observed by using a full equivalent of diene with Cp*₂HfH₂ (eqs 12-14).

The thermal stabilities of these α,ω -dihafnaalkanes $Cp*_2(H)HfCH_2(CH_2)_{n+2}CH_2Hf(H)Cp*_2$ (n = 0 (4), 1 (1), 2 (2)) are relatively high, considering that alkyl hydride derivatives generally undergo rapid reductive elimination of alkane.⁹ When heated in benzene- d_6 at 80 °C, di-

⁽⁸⁾ The assignments for 9 given in Table I are consistent with the results of selective ¹H-decoupling experiments, except for the unusually large ${}^{5}J_{\rm HH}$ observed between the α methylene and methine hydrogens (i.e. [HfCH₂CH₂CH₂CH₂CH(CH₃)]).

⁽⁹⁾ Parkin, G.; Bercaw, J. E. Organometallics 1989, 8, 1172.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table I. ¹ H and ¹³ C NMR Data ^a									
$ \begin{array}{c} C(CH_{3}) & 201 (a) & C(P_{3})(10) & 1713 &$	assgnt	δ, ppm	J, Hz	assgnt	δ, ppm	J, Hz				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{*}(CH_{*})_{*}$	2 01 (a)	$[Cp*_{2}HfH]_{2}(\mu-(CH_{2})_{5}$) (1) C.(CH.)	117.9					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HfH	12.71 (s)		$C_5(CH_3)_5$ $C_5(CH_3)_5$	11.9					
$\begin{aligned} & \text{HCH}_{i}^{i}CH_{i}$	HfCH ₂ HfCH ₂ CH	$0.18 (m)^{b}$		HfCH ₂	63.3 (t)	${}^{1}J_{\rm CH} = 111$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$HfCH_2CH_2CH_2$	$1.57 (quin)^{b}$	${}^{3}J_{\rm HH} = 7$	HfCH ₂ CH ₂ HfCH ₂ CH ₂ CH ₂	46.2 (t)	${}^{1}J_{\rm CH} = 120$ ${}^{1}J_{\rm CH} = 126$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			[Cp*,HfH],(u-(CH))) (2)		•••				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_5(CH_3)_5$	2.01 (s)	L-F 212(F (2/6	$C_5(CH_3)_5$	116.6					
$\begin{split} & \text{HCH}_{2}(\mathcal{L}_{2}, \mathcal{L}_{3}, & \text{Int} (D) & \text{HCH}_{2}(\mathcal{L}_{3}, & 22.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & 21.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & 21.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & 21.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & 21.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & 21.5 & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & 21.5 \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, \\ & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, \\ & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & \sqrt{2}, & $	HIH HfCH	12.77 (s) 0.10 (m)		$C_5(CH_3)_5$ HfCH ₂	11.7 63.5	${}^{1}J_{av} = 114$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HfCH ₂ CH ₂	1.07 (br)		HfCH ₂ CH ₂	24.5	${}^{1}J_{\rm CH} = 114$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$HfCH_2CH_2CH_2$	1.62 (br quin)		HfCH ₂ CH ₂ CH ₂	38.7	${}^{1}J_{\rm CH} = 123$				
$ \begin{array}{cccccc} C_{11}^{(12)} C_{$	C (CH)	1.00	$[Cp*_{2}HfH]_{2}(\mu-(CH_{2})_{7}$) (3)	110.0					
$ \begin{array}{ccccc} HCH_{4} & 0.05 (i) & HCH_{4}^{-1} & 63.4 \\ HCH_{4}CH_{4}CH_{4} & 1.68 (br) & HCH_{4}^{-1}CH_{2}^{-1} & 63.4 \\ HCH_{4}CH_{4}CH_{2}CH_{3} & 32.4 \\ HCH_{4}CH_{4}CH_{2}CH_{4} & 32.4 \\ HCH_{4}CH_{4}CH_{2}CH_{4} & 32.4 \\ HCH_{4}CH_{4}CH_{2}CH_{3} & 30.7 \\ \hline \\ C_{1}(CH_{4})_{5} & 12.5 \\ HCH_{4} & 12.70 (s) & C_{1}(CP_{4})_{1} (16.6 \\ C_{4}(CH_{3})_{1} & 16.6 \\ HCH_{4} & 12.70 (s) & C_{5}(CH_{3})_{1} & 16.6 \\ C_{4}(CH_{3})_{1} & 19.4 (s) & HCH_{7} & 0.22 (m) \\ HCH_{7}(CH_{2})_{1} & 1.84 (s) & HCH_{7} & 0.22 (m) \\ HCH_{4} & 1.29 (s) & \frac{1}{2} \\ C_{6}(CH_{3})_{5} & 1156 (s) & Hb & 6.03 (dd) & \frac{1}{2} \\ H_{4} & \frac{1.29}{2} \\ C_{6}(CH_{3})_{5} & 1156 (s) & Hb & 6.03 (dd) & \frac{1}{2} \\ H_{4} & \frac{1.29}{2} \\ C_{7}(CH_{3})_{5} & 1125 (s) & HcH_{7}(CH_{7}(TH_{1})_{2} \\ HH & 12.29 (s) & \frac{1}{2} \\ C_{7}(CH_{3})_{5} & 12.5 , 12.3 \\ HH & \frac{1.29}{2} \\ C_{7}(CH_{3})_{5} & 188 (s) & C_{7}^{-1} \\ HH & \frac{1.29}{2} \\ C_{7}(CH_{3})_{5} & 1.88 (s) & C_{7}^{-1} \\ HCH_{4} & 2.28 (s) & U_{4001} = 6 \\ C_{7}^{-1} \\ CHCH_{7}(CH_{7}, 13.6 (s) & \frac{1}{2} \\ C_{7}(CH_{3})_{5} & 11.5 , 1.2 \\ HCH_{7} & 2.28 (s) & C_{7}^{-1} \\ HCH_{7} & 2.28 (s) & U_{4001} = 6 \\ CHCH_{7} & 1.25 , 12.5 \\ HCH_{7} & 2.28 (s) & U_{4001} = 7 \\ C_{7}^{-1} \\ HCH_{7} & 2.28 (s) & C_{7}^{-1} \\ HCH_{7} & 2.28 (s) & C_{7}^{-1} \\ HCH_{7} & 2.28 (s) & U_{7}^{-1} \\ C_{7}^{-1} \\ CHCH_{7} & 1.31 (d) & J = 2 , 10 \\ HCH_{7} & 1.05 (s) & \frac{1}{2} \\ C_{7}(CH_{3})_{5} & 1152 , 11.7 \\ C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 1162 \\ HCH_{7} & 1.28 (s) & C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 12.5 \\ HCH_{7} & 1.28 (s) & C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 12.5 \\ HCH_{7} & 0.76 (m) \\ C_{7}(CH_{3})_{5} & 116 \\ HCH_{7} & 0.76 (m) \\ C_{7}(CH_{3})_{5} & 12.5 \\ C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 116 \\ C_{7}(CH_{3})_{5} & 12.5 \\ C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 116 \\ C_{7}(CH_{3})_{5} & 12.5 \\ C_{7}^{-1} \\ C_{7}(CH_{3})_{5} & 116 \\ C_{7}(CH_{3})_{5} & 12.5 \\ C_{7}^{-1} \\ C_{7}(CH$	HfH	12.84		$C_5(CH_3)_5$ $C_5(CH_3)_5$	116.6					
$\begin{array}{cccc} HiCH_{1}CH_{2}CH_{2}CH_{3} & HiCH_{2}CH_{2}CH_{4} & 24.3 \\ HICH_{2}CH_{2}CH_{2}CH_{4} & 43.2 \\ HICH_{2}CH_{2}CH_{2}CH_{4} & 43.2 \\ HICH_{2}CH_{2}CH_{2}CH_{4} & 43.2 \\ HICH_{2}CH_{2}CH_{2}CH_{4} & 116.6 \\ HIT & 12.20 & G & G & G & G & G & 12.3 \\ HICH_{2}CH_{2}CH_{2}CH_{4} & 0.12 & 0 & G & G & G & 12.3 \\ HICH_{2}CH_{2}CH_{2}CH_{2} & 0.31 & (br) & HICH_{2}CH_{4} & 0.4 & 0 & J_{2}GH = 112 \\ HICH_{2}CH_{2}CH_{2} & 0.31 & (br) & HICH_{2}CH_{4} & 0.12 & 0 & J_{2}GH = 112 \\ HICH_{2}CH_{2}CH_{2} & 0.31 & (br) & HICH_{2}CH_{4} & 0.22 & (m) \\ HICH_{2}CH_{2} & 0.31 & (br) & HICH_{2}CH_{4} & 0.22 & (m) \\ HICH_{2}CH_{2} & 0.31 & (br) & HICH_{2}CH_{4} & 0.02 & (m) \\ HIH & 1.84 & (a) & HICH_{2}CH_{4} & 1.05 & (m) \\ HIH & 1.29 & (a) & J_{2}HI = 13 \\ HIT & 2.29 & (a) & J_{2}HI = 13 \\ HIT & 2.29 & (a) & J_{2}HI = 13 \\ HIT & 2.29 & (a) & J_{2}HI = 12 \\ HICH_{2}C$	HfCH ₂	0.05 (t)		HfCH ₂	63.4					
$\begin{array}{ccccc} HiCH_{1}CH_{2$	HICH ₂ CH ₂ HICH ₂ CH ₂ CH ₂	1.06 (br q) 1.62 (br)		HfCH ₂ CH ₂	24.9					
$ \begin{array}{c} C_{1}(CH_{2})_{5} & 116.6 \\ H(CH_{2})_{5} & 12.2 \\ H(CH_{2})_{5} & 12.2 \\ H(CH_{2}CH_{2}) & 12.3 \\ H(CH_{2}CH_{2}) & 12.3 \\ H(CH_{2}CH_{2}) & 12.3 \\ H(CH_{2}CH_{2}) & 22.4 (1) \\ J_{CH} = 112 \\ H(CH_{2}CH_{2}) & 22.4 (1) \\ J_{CH} = 118 \\ \end{array} \right) \\ C_{1}(CH_{3})_{5} & 12.4 \\ H(CH_{2}CH_{2}) & 22.4 (1) \\ J_{CH} = 118 \\ \end{array} \\ \begin{array}{c} C_{1}(CH_{3})_{5} & 12.3 \\ H(CH_{2}CH_{2}) & 12.4 \\ H(CH_{2}CH_{2}) & 10.5 (m) \\ \end{array} \\ C_{1}(CH_{3})_{5} & 12.4 \\ H(H) & 12.8 (s) \\ \end{array} \\ \begin{array}{c} L_{1} = c_{1} \\ L_{1} \\ L_{2} = c_{1} \\ L_{1} \\ L_{1} \\ L_{2} = c_{1} \\ L_{1} \\ L_{2} \\ L_{1} \\ L_{2} \\ L_{1} \\ L_{2} \\ L_{1} \\ L_{2} \\ L_{2} \\ L_{2} \\ L_{1} \\ L_{2} \\$	HfCH ₂ CH ₂ CH ₂ CH ₂ CH ₂	1.02 (61)		HfCH ₂ CH ₂ CH ₂ CH ₂ CH ₂	30.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			[Cp*,HfH],(µ-(CH,))	. (4)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_5(CH_3)_5$	2.00 (s)		$C_5(CH_3)_5$	116.6					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HIH HfCH	12.70 (s) 0.12 (br)		$C_5(CH_3)_5$ HfCH ₀	12.3 64.9 (t)	$^{1}J_{\rm ev} = 112$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$HfCH_2CH_2$	0.91 (br)		HfCH ₂ CH ₂	32.4 (t)	${}^{1}J_{\rm CH} = 118$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$[Cp*_{2}HfH]_{2}(\mu-(CH_{2})_{3})$) (5) ^c						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_5(CH_3)_5$	1.94 (s)		HfCH ₂	0.02 (m)					
$\begin{array}{ccccccccccccc} & & & & & & & & & & & & &$	піл	1.84 (S)		HICH ₂ CH ₂	1.05 (m)					
$\begin{array}{cccc} C_{g}(CH_{g})_{g} & Hb & 6.03 \ (dd) & {}^{J}_{gHH} = 18 & {}^{J}_{gHH}(cia) = 4 & {}^{J}_{gHH}(cia) = 6 & {}^{J}_{g$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5}(CH_{3})_{5}$	1.95 (s)		Hb	6.03 (dd)	${}^{2}J_{\rm HH} = 18$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	На	12.99 (s) 6.60 (dd)	${}^{2}J_{m} = 17$	He	4 80 (dd)	${}^{8}J_{\rm HH}({\rm cis}) = 4$ ${}^{3}J_{\rm cur}({\rm cis}) = 4$				
$\begin{array}{cccc} \mathbb{C} P^{\bullet}_{\mathbf{z}}(\mathbf{H})H(fcrotyl)(8) & \mathbb{C} H_{\mathbf{z}}CH & 2.72 \ (dq) & {}^{J}_{JHH} = 6, 17 \\ H'H & 4.22 \ (s) & {}^{J}_{JHH} = 6 & CHCH_{L} & 3.75 \ (d) & {}^{J}_{JHH} = 6, 17 \\ CH_{S}CH & 2.35 \ (d) & {}^{J}_{JHH} = 6 & CHCH_{L} & 3.75 \ (d) & {}^{J}_{JH} = 10 \\ & \\ \mathbb{C} p^{\bullet}_{\mathbf{z}}H^{H}CH_{Z}CH_{C}CH_{C}CH_{Z}CH_{Z} & H(CH_{Z} & J, S) \ (d) & {}^{J}_{JH} = 10 \\ & \\ \mathbb{C} p^{\bullet}_{\mathbf{z}}H^{H}CH_{Z}CH_{C}CH_{C}CH_{Z}CH_{Z} & H(CH_{Z} & L, S) \ (t) & {}^{J}_{CH} = 118 \\ & \\ HCH_{C}CH_{C}CH_{Z}CH_{Z} & L, 2 2, $			${}^{3}J_{\rm HH}({\rm trans}) = 2$	22	1.00 (uu)	${}^{2}J_{\rm HH}({\rm trans}) = 22$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Cp* ₂ (H)Hf(crotyl) ((8)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_5(CH_3)_5$	1.82 (s)		CH ₃ CHCH	2.72 (dq)	${}^{3}J_{\rm HH} = 6, 17$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₃ CH	2.35 (d)	${}^{3}J_{\rm HH} = 6$	CHCH ₂ CHCH ₂	3.75 (dt) 1.05 (d)	${}^{3}J_{\rm HH} = 10, 17$ ${}^{3}J_{\rm HH} = 10$				
$\begin{array}{ccccc} Cp^*_2HICH_2CH_2CH(CH_3) (9) \\ C_8(CH_3)_5 & 1.89 (s) & C_8(CH_3)_5 & 12.5, 12.3 \\ HfCH_2 & 0.42 (m) & HfCH_2 & 45.9 (t) & J_{OH} = 118 \\ HfCH_2CH_2CH_2 & 1.74 (br m), 2.22 (br m) & HfCH_2CH_2CH_2 & 34.2 (t), 29.9 (t) & J_{OH} = 120, 123 \\ HfCH & 2.92 (tq) & J = 2, 10 & HfCH & 60.9 (d) & J_{OH} = 116 \\ CHCH_3 & 1.31 (d) & J = 2, 10 & HfCH_3 & 20.3 (q) & J_{OH} = 116 \\ CHCH_3 & 1.31 (d) & HfCH_3 & 20.3 (q) & J_{OH} = 112 \\ C_8(CH_3)_5 & 118.2, 117.7 & CHCH_4 & 2.65 (m) \\ HfH & 4.16 (s) & CH_3CH_2CHCH_2 & 3.73 (dt) & J_{HH} = 11, 10 \\ CH_3CH_2 & 2.59 (q) & 3J_{HH} = 7 & CH_3CH_2CHCHCH_2 & 1.03 (d) & 3J_{HH} = 11 \\ CH_3CH_2 & 2.59 (q) & 3J_{HH} = 7 \\ C_8(CH_3)_5 & 1.33 (s) & Cp^*_2HfH(CH_2)_4CH=CH_2 \\ C_8(CH_3)_5 & 1.33 (s) & HfCH_2 & 26.3 \\ HfCH_2 & 2.59 (q) & 3J_{HH} = 7 \\ C_8(CH_3)_5 & 1.33 (s) & HfCH_2CH_2CH_2 & 37.9 \\ HfCH_2CH_2CH_2CH_2 & 1.52 (quin) & HfCH_2CH_2CH_2 & 34.8 \\ CH=CH_2 & 5.94 (m) & CH=CH_2 & 138.3 \\ CH=CH_2 & 5.94 (m) & CH=CH_2 & 114.1 \\ C_6(CH_3)_5 & 1.25 (s) & C_8(CH_3)_5 & 12.5 & J_{OH} = 125 \\ CH=CH_2 & 5.1 (m) & CH=CH_2 & 114.1 \\ C_8(CH_3)_5 & 1.25 (s) & C_8(CH_3)_5 & 12.5 & J_{OH} = 126 \\ CHCH_2 & 1.22 (quin) & HfCH_2CH_2CH_2 & 34.8 \\ CH=CH_2 & 5.1 (m) & CH=CH_2 & 114.1 \\ C_6(CH_3)_5 & 1.25 (s) & C_8(CH_3)_5 & 12.5 & J_{OH} = 126 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 114.1 \\ C_8(CH_3)_5 & 1.25 (s) & C_8(CH_3)_5 & 12.5 & J_{OH} = 126 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 114.1 \\ CHCH_4CH_2 & 0.78 (m) & CH=CH_2 & 114.1 \\ CHCH_4CH_3 & 0.20 & J_{OH} = 126 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 0.33 & J_{OH} = 126 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 0.33 & J_{OH} = 126 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 0.33 & J_{OH} = 120 \\ CHCH_2 & 0.78 (m) & CH=CH_2 & 0.33 & J_{OH} = 121 \\ CHCH_3 & 0.10 (s) & HfCH_2CH_2 & 0.36 & J_{OH} = 118 \\ HfCH_4CH_4 & 1.04 (m) & HfCH_2CH_2 & 0.36 & J_{OH} = 121 \\ HfCH_4CH_3 & 0.0 & J_{OH} = 108 \\ CHCH_3 & 0.0 & J_{OH} = 108 \\ HfCH_3 & 0.0 & J_{OH} = 108 \\ HfCH_4CH_4 & 0.0 & HfCH_4CH_4 & 0.0 & J_{OH} = 121 \\ HfCH_3 & 0.0 & J_{OH} = 108 \\ HfCH_4 & 0.0 & HfCH_4CH_4 & 0.0 & J_{OH} = 108 $										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5}(CH_{3})_{5}$	1.89 (s)	$p_2HICH_2CH_2CH_2CH(C)$	$(\mathbf{y}) = C_{\mathbf{x}}(C\mathbf{H}_{\mathbf{y}})_{\mathbf{x}}$	12.5. 12.3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HfCH ₂	0.42 (m)	<i>a</i> .	HfCH ₂	45.9 (t)	${}^{1}J_{\rm CH} = 118$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HICH ₂ CH ₂ CH ₂ HICH	1.74 (br m), 2.22 2.92 (ta)	$(br m) \qquad I = 2 10$	$HfCH_2CH_2CH_2$ HfCH	34.2 (t), 29.9 (t) 60.9 (d)	${}^{1}J_{\rm CH} = 120, 123$ ${}^{1}J_{\rm CH} = 116$				
$\begin{array}{cccccc} C_{g}(CH_{g})_{5} & 118.2, 117.7 & CH_{3}(CH_{3})_{5} & CP_{2}(H)Hf (ethylallyl) \\ C_{6}(CH_{g})_{5} & 1.81 (s) & CH_{3}(CH_{2}CH & 2.65 (m) \\ CH_{3}(CH_{2}CH & 1.27 (t) & ^{3}J_{HH} = 7 & CH_{3}(CH_{2}CHCHCH_{2} & 1.03 (d) & ^{3}J_{HH} = 11, 10 \\ CH_{3}(CH_{2} & 2.59 (q) & ^{3}J_{HH} = 7 & CH_{3}(CH_{2}CHCHCH_{2} & 1.03 (d) & ^{3}J_{HH} = 11 \\ CH_{3}(CH_{2} & 2.59 (q) & ^{3}J_{HH} = 7 & CH_{3}(CH_{2}CHCHCH_{2} & 1.03 (d) & ^{3}J_{HH} = 11 \\ CP_{2}(CH_{3})_{5} & 1.93 (s) & C_{6}(CH_{3})_{5} & 12.5 & HfCH_{2} & 62.3 \\ HfCH_{2}(CH_{2}CH_{2}CH_{2} & 1.52 (quin) & HfCH_{2}CH_{2}CH_{2}CH_{2} & 37.9 & HfCH_{2}CH_{2}CH_{2}CH_{2} & 37.9 & HfCH_{2}CH_{2}CH_{2}CH_{2}CH_{2} & 34.8 \\ CH=CH_{2} & 5.94 (m) & CH=CH_{2} & 138.3 \\ CH=CH_{2} & 5.94 (m) & CH=CH_{2} & 114.1 \\ C_{6}(CH_{3})_{5} & 117 & CP_{2}^{*}HfCH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2} & 12.5 & ^{3}J_{CH} = 125 \\ HfCH_{2} & 0.78 (m) & C_{6}(CH_{3})_{6} & 12.5 & ^{3}J_{CH} = 125 \\ HfCH_{2} & 0.78 (m) & C_{6}(CH_{3})_{6} & 12.3 & ^{3}J_{CH} = 126 \\ CHCH_{2} & 1.82 (s) & C_{6}(CH_{3})_{6} & 12.3 & ^{3}J_{CH} = 126 \\ CHCH_{2} & 1.24 (dt) & J = 5, 14 & HfCH_{2} & 43.3 & ^{1}J_{CH} = 126 \\ CHCH_{2} & 1.24 (dt) & J = 5, 14 & HfCH_{2} & 43.3 & ^{1}J_{CH} = 126 \\ CHCH_{2} & 1.31, 2.74 & CHCH_{2} & 33.6 & ^{1}J_{CH} = 126 \\ CHCH_{2} CH_{2} & 1.31, 2.74 & CHCH_{2} & 33.6 & ^{1}J_{CH} = 118 \\ HfCH_{3} & 1.01 (s) & HfCH_{2} CH_{2} & 33.6 & ^{1}J_{CH} = 121 \\ CHCH_{3} & 1.01 (s) & HfCH_{3} & 20.0 & ^{1}J_{CH} = 118 \\ HfCH_{3} & 0.0 & ^{1}J_{CH} = 118 \\ HfCH_{3} & 0.0 & ^{1}J_{CH} = 124 \\ HfCH_{3} & 0.0 & ^{1}J_{CH} = 108 \\ C_{6}(CH_{3})_{5} & 118, 117.7 & CHCH_{3} & 20.0 & ^{1}J_{CH} = 124 \\ \end{array}$	CHCH ₃	1.31 (d)	0 - 2, 10	HfCH ₃	20.3 (q)	${}^{1}J_{\rm CH} = 125$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_5(\mathrm{CH}_3)_5$	118.2, 117.7								
$\begin{array}{ccccc} C_{8}CH_{3}C_{6}C(-H_{3}C_{6}C_{1}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}H_{2}C_{1}C_{1}C_{1}H_{2}C_{1}H_{2}C_{1}C_{1}C_{1}H_{2}C_{1}H_{2}C_{1}C_{1}C_{1}H_{2}C_{1}H_{2}C_{1}C_{1}C_{1}C_{1}H_{2}C_{1}H_{2}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1$	C (CH)	1 91 (-)	$Cp*_2(H)Hf$ (ethylall)	yl)	0.05 ()					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HfH	4.16 (s)		CH ₃ CH ₂ CH CH ₃ CH ₂ CHCH	2.65 (m) 3.73 (dt)	${}^{3}J_{\rm WW} = 11, 10$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂	1.27 (t)	${}^{3}J_{\rm HH} = 7$	CH ₃ CH ₂ CHCHCH ₂	1.03 (d)	${}^{3}J_{\rm HH} = 11$				
$\begin{array}{ccccccc} Cp^*_2HrH(CH_2)_4CH=\!\!-CH_2 \\ C_6(CH_3)_5 & 1.93 (s) & C_8(CH_3)_5 & 12.5 \\ H'H & 12.79 (s) & HrCH_2 & 62.3 \\ H'CH_2 & -0.04 & HrCH_2CH_2 & 24.2 \\ H'CH_2CH_2CH_2CH_2 & 1.52 (quin) & HrCH_2CH_2CH_2 & 37.9 \\ H'CH_2CH_2CH_2CH_2CH_2 & 3.12 (m) & HrCH_2CH_2CH_2CH_2 & 34.8 \\ CH=\!-CH_2 & 5.94 (m) & CH=\!-CH_2 & 138.3 \\ CH=\!-CH_2 & 5.1 (m) & CH=\!-CH_2 & 114.1 \\ C_6(CH_3)_5 & 117 \\ \hline \\ \hline \\ C_6(CH_3)_5 & 117 \\ \hline \\ \hline \\ C_6(CH_3)_5 & 1.85 (s), 1.82 (s) & C_5(CH_3)_5 & 12.5 & ^2J_{CH} = 125 \\ H'CH_2 & 0.78 (m) & C_6(CH_3)_5 & 12.3 & ^2J_{CH} = 126 \\ CHCH_2 & 0.78 (m) & C_6(CH_3)_5 & 12.3 & ^2J_{CH} = 126 \\ CHCH_2CH_2 & 0.78 (m) & C_6(CH_3)_5 & 12.3 & ^2J_{CH} = 126 \\ CHCH_2CH_2 & 0.313, 2.74 & CHCH_2 & 43.3 & ^1J_{CH} = 116 \\ CHCH_2CH_2 & 1.24 (dt) & J = 5, 14 & HrCH_2 & 62.9 & ^1J_{CH} = 116 \\ CHCH_2CH_2 & 0.104 (m) & HrCH_2CH_2 & 35.4 & ^1J_{CH} = 120 \\ HrCH_2 & 0.104 (m) & HrCH_2CH_2 & 33.6 & ^1J_{CH} = 121 \\ CHCH_3 & 1.01 (s) & HrCH_3 & 20.0 & ^1J_{CH} = 124 \\ \hline \\ $	CH ₃ CH ₂	2.59 (q)	°J _{HH} = 7							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.(CH.).	1.93 (a)	Cp* ₂ HfH(CH ₂) ₄ CH=	CH ₂	19.5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HfH	12.79 (s)		$HfCH_2$	62.3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HfCH2	-0.04		HfCH ₂ CH ₂	24.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$HfCH_2CH_2CH_2CH_2$	3.12 (m)		HfCH ₂ CH ₂ CH ₂ CH ₂	34.8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH=CH2	5.94 (m)		CH=CH₂	138.3					
$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$C_{\rm f} = C_{\rm H_2}$ $C_{\rm f} (CH_3)_5$	5.1 (m) 117		CH=CH ₂	114.1					
$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$. .	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{\delta}(CH_3)_{\delta}$	Cp*2 1.85 (s), 1.82 (s)	HICH2CH2CH2CH2CH	(CH_3) (10) $C_*(CH_*)_*$	12.5	${}^{2}J_{\rm out} = 125$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HfCH ₂	0.78 (m)	-	$C_5(CH_3)_5$	12.3	${}^{2}J_{\rm CH} = 126$				
HfCH2CH2 CHCH2 43.3 $J_{CH} = 120$ HfCH2CH2 CHCH2CH2 35.4 $J_{CH} = 118$ HfCH 1.04 (m) HfCH2CH2 33.6 $J_{CH} = 121$ CHCH3 1.01 (s) HfCH 64.8 $J_{CH} = 108$ C_5(CH3)_5 118.1, 117.7 CHCH3 20.0 $J_{CH} = 124$	CHCH ₂ CHCH ₂ CH ₂	1.24 (dt) 3 13 2 74	J = 5, 14	HfCH ₂	62.9 43 3	${}^{1}J_{\rm CH} = 116$				
HfCH1.04 (m)HfCH2CH233.6 $^{1}J_{CH}$ = 121CHCH31.01 (s)HfCH64.8 $^{1}J_{CH}$ = 108 $C_{5}(CH_{3})_{5}$ 118.1, 117.7CHCH320.0 $^{1}J_{CH}$ = 124	$HfCH_2CH_2$	0.10, 2.14		CHCH ₂ CH ₂	- 35.4	${}^{1}J_{\rm CH} = 118$				
$\begin{array}{cccc} HICH & 64.8 & {}^{1}J_{CH} = 108 \\ C_{5}(CH_{3})_{5} & 118.1, 117.7 & CHCH_{3} & 20.0 & {}^{1}J_{CH} = 124 \end{array}$	HfCH CHCH	1.04 (m)		HfCH ₂ CH ₂	33.6	${}^{1}J_{CH} = 121$				
	$C_5(CH_3)_5$	118.1, 117.7		CHCH ₃	04.8 20.0	$J_{CH}^{-1} = 108$ $J_{CH}^{-1} = 124$				

Table I (Continued)											
assgnt	δ, ppm	J, Hz	assgnt	δ, ppm	J, Hz						
	Cp *₀(H)Hf (C]	H ₂) ₅ CH=CH ₂ (11)								
$C_{5}(CH_{3})$	1.94 (s)		$C_5(CH_3)_5$	12.3							
HfH	12.81 (s)		HfCH	62.6							
HfCH ₂	-0.02 (m)		HfCH ₂ CH ₂	24.0							
$HfCH_2CH_2$	0.97 (quin)	${}^{3}J_{\rm HH} = 8$	HfCH ₂ CH ₂ CH ₂	38.5							
$HfCH_2CH_2CH_2$	1.45 (quin)	${}^{3}J_{\rm HH} = 8$	HfCH ₂ CH ₂ CH ₂ CH ₂	30.0							
$HfCH_2CH_2CH_2CH_2$	1.51 (quin)	${}^{3}J_{\rm HH} = 8$	HfCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	35.0							
CH-CH ₂	5.87 (m)		$CH = CH_2$	140.0							
$CH = CH_2$	5.05 (m)		$CH = CH_2$	114.5							
$C_5(CH_3)_5$	116.7										
$Cp*_{2}(H)Hf(CH_{2})_{4}CH_{3}$											
$C_{5}(CH_{3})_{5}$	1.95		$C_5(CH_3)_5$	116.7							
HfH	12.82 (s)		$C_{5}(CH_{3})_{5}$	12.3							
HfCH ₂	0.00 (t)		HfCH₂	62.8							
HfCH ₂ CH ₂	0.96 (m)		$HfCH_2CH_2$	23.6							
$HfCH_2CH_2CH_2$, $HfCH_2CH_2CH_2CH_2$	1.45 (m)		HfCH ₂ CH ₂ CH ₂	41.0							
CH ₃	1.02 (t)		HfCH ₂ CH ₂ CH ₂ CH ₂	24.3							
			СH ₃	15.2							
Cn* _a ZrCH _a CH _a CH _a CH _b CH _b CH _b CH _b											
$C_5(CH_3)_5$	1.83 (s)	2 2 0	$C_5(CH_3)_5$	118.8, 118.3							
ZrCH ₂	0.56 (m)		$C_5(CH_3)_5$	12.4, 12.2							
$\mathbf{ZrCH}_{2}\mathbf{CH}_{2}$, $\mathbf{ZrCH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{2}$	1.54 (dt), 1.45 (m), 0.87	(m)	ZrCH ₂	44.2							
CH	2.45 (m)		ZrCH ₂ CH ₂ CH ₂	36.4, 32.2							
CH ₃	1.08 (d)		ZrCH	57.8							
			CHCH3	20. 9							
		CH.CH.CH	-)								
C.(CH.).	1 81 1 79	201120112011(011	C.(CH.).	194 199							
CHCH	1.36 (dt)	J = 6.13	ZrCH	56 9							
ZrCH ₂ CH ₂ CH ₂ CH ₂	2.65 (m)	0 0, 10	CHCH	42.6							
CH	1.12 (m)		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	35.4. 33.5							
ZrCH _a , CHCH _a	0.84 (d)	J = 8	ZrCH	57.3							
$\overline{C_{5}(CH_{3})_{5}}$	118.6, 118.3		CHCH ₃	19.5							
•	[Cn*-Hf	$\Pi_{a}(\mu_{a}(CH_{a})_{a})$									
$C_{\epsilon}(CH_{2})_{\epsilon}$	1.98 (s)	-12(m-(()112/5/	HfCH ₂ CH ₂	1.61 (br quin)						
HfCH ₂	0.25 (m)		HfCH ₂ CH ₂ CH ₂	1.54 (br quin	í.						
				1.01 (01 qu m	/						

^a Measured in C_6D_6 unless otherwise stated; s = singlet, m = multiplet, quin = quintet, br = broad, t = triplet, d = doublet, q = quartet. ^b Assignments were confirmed by selective proton-decoupling experiments. ^c Sample is component of mixture and only identified by NMR spectroscopy.

hafnahexane 4 affords in less than 1 h a mixture of products consisting largely of $Cp_2^*HfH_2$ with other unidentified compounds. Dihafnaheptane 1 and dihafnaoctane 2 are considerably more stable; after ca. 20 h at 80 °C samples remain largely unchanged, with only traces of $Cp_2^*HfH_2$ being formed under these conditions. Their stabilities appear to be comparable to the pentyl hydride compound, $Cp_2^*(H)HfCH_2CH_2CH_2CH_3$, obtained quantitatively (¹H NMR spectroscopy) from reaction of $Cp_2^*HfH_2$ with 1-pentene.

The reactivities of these new compounds are quite reminiscent to those for the mononuclear alkyl hydride derivatives of permethylhafnocene.^{5,10} Thus, treatment of $Cp_2(H)HfCH_2CH_2CH_2CH_2CH_2Hf(H)Cp_2$ (1) with H_2 (4 atm) in benzene- d_6 yields Cp_2HfH_2 and pentane after 1 h at room temperature. Reaction with water again yields pentane, together with a mixture of $Cp_2Hf(OH)_2$ and $Cp_2Hf(H)(OH)$.¹¹ Ethylene (1:1 or 2:1, 25 °C) reacts with 1 over several days to produce several products, including $Cp_2(H)HfCH_2CH_3$. No ethylene polymerization occurs under these conditions. With CO (2 atm) 1 and 2 undergo rather complex reactions affording a multitude of products (¹H NMR spectroscopy).

The reactivities of $Cp*_2MH_2$ (M = Ti, Zr) with 1,4pentadiene and 1,5-hexadiene have also been investigated

(10) Roddick, D. M.; Bercaw, J. E. Chem. Ber. 1989, 122, 1579.

briefly. Both substrates react rapidly with $Cp_{2}^{*}TiH_{2}^{12}$ (2:1) in toluene- d_{8} to yield (likely paramagnetic) species exhibiting one or more broad resonances attributable to pentamethylcyclopentadienyl ligands. Thus, if dititanaalkanes are generated, they are unstable at room temperature.

Moderately stable products are obtained in reactions with permethylzirconocene dihydride. ¹H NMR spectra for reaction mixtures obtained by mixing Cp_2TH_2 with 1,4-pentadiene (2:1) in benzene- d_6 , thawing and warming to room temperature, revealed a mixture of Cp*2 $ZrCH_2CH_2CH_2CH(CH_3)$ and another compound (¹H NMR: δ 1.94 (Cp*) and 5.26 (ZrH)) which we believe to be the alkanediyl compound $Cp*_2(H)$ - $ZrCH_2CH_2CH_2CH_2CH_2Zr(H)Cp*_2$. The latter is rather labile, however, and decomposes after 30 min at room temperature. The former may be obtained in nearly quantitative yield (¹H NMR spectroscopy) from a mixture of $Cp*_2ZrH_2$ and 1,4-pentadiene (1:1) (see Table I). $Cp*_{2}ZrCH_{2}CH_{2}CH_{2}CH(CH_{3})$, too, is less stable than the hafnium analogue, decomposing completely after 1 day in solution to a multitude of products. The reaction sequence involving Cp*₂ZrH₂ and 1,5-hexadiene also appears similar to that for the hafnium system, and moderately stable

⁽¹¹⁾ Hillhouse, G. L.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5472.

⁽¹²⁾ Cohen, S. A.; Auburn, P. R.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 1136.

species tentatively identified as Cp_2^* ZrCH₂CH₂CH₂CH₂CH₂CH(CH₃) (see Table I) and $Cp_2^*(H)$ -ZrCH₂CH₂CH₂CH₂CH₂CH₂CH₂Zr(H)Cp $_2^*$ (¹H NMR: δ 1.93 (Cp*) and 5.36 (ZrH)) have been produced.¹³

Conclusions

The relatively robust nature of alkyl hydride derivatives of permethylhafnocene and their ready synthesis from alkenes and Cp*2HfH2 have permitted the synthesis of the first series of alkanediyl complexes of this metal and the only series of hydrido alkanediyl complexes, $L_n(H)M$ - $(CH_2)_m M(H)L_n$, so far as we are aware. The synthetic strategy of using α, ω -dienes and Cp*₂HfH₂ works well for 1,4-pentadiene, 1,5-hexadiene, and 1,6-heptadiene, but only if care is taken to assure that 2 equiv of Cp*₂HfH₂ are added. With smaller dienes the reactions are less selective, affording the allyl hydride or crotyl hydride in addition to the desired 1,5-dihafnapentane and 1,6-dihafnahexane, respectively. The vinyl hydride derivative, obtained from $Cp*_2HfH_2$ and acetylene, does not react further with $Cp*_2HfH_2$ to yield the desired 1,4-dihafnabutane. When a larger ratio of diene:Cp*2HfH2 is employed, mononuclear products, the allyl hydride, hafnamethylcycloalkane, or α -hafna- ω -alkene derivatives, are obtained. Treatment of the alkanediyl derivatives with additional diene affords these same mononuclear products, indicating that for $Cp*_{2}(H)HfCH_{2}(CH_{2})_{n}CH_{2}Hf(H)Cp*_{2}\beta H$ elimination to release $Cp*_{2}HfH_{2}$ is facile. The thermal stabilities of the α, ω -dihafnaalkanes are comparable to the mononuclear alkyl hydride derivatives of permethylhafnocene, and their reactivities with H_2 , H_2O , and ethylene are also similar. Thus, our results reveal no special influence of the ω hafnium substituent on the reactivity of these alkyl hydride derivatives of permethylhafnocene. The reactivity of permethylzirconocene dihydride with 1,4-pentadiene and 1,5-hexadiene is very similar, although the products $Cp_{2}^{*}(H)ZrCH_{2}(CH_{2})_{n}CH_{2}Zr(H)Cp_{2}^{*}(n = 3, 4)$ and $Cp*_2ZrCH_2(CH_2)_nCH(CH_3)$ (n = 2, 3) are less stable. No stable titanium analogues could be obtained in the reactions of the dienes with $Cp*_2TiH_2$, almost certainly due to the reduced stability of alkyl hydride derivatives of the 3d metal, Ti.

Experimental Section

General Considerations. All manipulations were carried out using high-vacuum lines and glovebox techniques. Solvents and reagents were dried, degassed, and purified as described previously.⁵

NMR spectra were recorded using a Varian EM 390 (90 MHz) or a JEOL GX400Q (¹H, 399.78 MHz; ¹³C, 100.38 MHz) spectrometer. Low-temperature NMR experiments were carried out using a JEOL FX90Q (¹H, 89.56 MHz) spectrometer. Infrared spectra were measured as Nujol mulls using KBr plates on a Beckman IR 4240 spectrophotometer.

Molecular weights were determined using the vapor-phase osmometry techniques developed by Singer and described by Clark.¹⁴

Mass spectra were recorded using a Du Pont 492B spectrometer at 70-eV ionizing voltage. Microanalyses were performed by the Caltech Microanalytical Laboratory.

The compounds $Cp_{*2}HfH_{2,5}Cp_{*2}ZrH_{2,15}$ and $Cp_{*2}TiH_{2,12}$ were prepared as previously reported. Ethylene, butadiene, and allene were purchased from Matheson, subjected to two freeze-pumpthaw cycles at -196 °C, and then vacuum-transferred at 25 °C. 1,4-Pentadiene, 1,5-hexadiene, and 1,6-heptadiene were purchased from Aldrich, dried over activated 4-Å molecular sieves, and then vacuum-transferred before use. Argon, nitrogen, and hydrogen were purified over MnO on vermiculite and activated molecular sieves.

NMR Tube Reactions. All of the reactions described were initially carried out in NMR tubes, and then representative reactions were carried out on a preparative scale.

The reactions in NMR tubes were carried out as follows: Approximately 20 mg of the starting material and 0.5 mL of the solvent, benzene- d_6 or toluene- d_8 was loaded into an NMR tube which was attached to a 14/20 ground glass joint. The tube was loaded in the glovebox and then sealed with a needle valve or calibrated glass bulb. Accurately known amounts of the volatile dienes or other reagents were then condensed into the evacuated tube at -196 °C. The tube was sealed and allowed to warm to room temperature with shaking. The NMR spectra of the reaction mixtures were then recorded. For reactions monitored at low temperatures, the sealed tubes, prepared as above, were stored at -78 °C and loaded into the NMR probe which had been precooled to the desired temperature with a reference tube.

 $Cp^*_2(H)Hf(CH_2)_5Hf(H)Cp^*_2$ (1). A sample of 1.00 g (2.22 mol) of $Cp^*_2HfH_2$ was weighed into a 50-mL flask and attached to a swivel-frit assembley in the glovebox. A 10-mL portion of toluene was then condensed onto this solid followed by 1,4-pentadiene (1.11 mmol) from a gas bulb. The reaction mixture was allowed to warm initially to -78 °C, was stirred at this temperature for 5 min, and then was warmed to room temperature and stirred for 1 h. The toluene was removed and 30 mL of petroleum ether condensed onto the pale yellow solid. The mixture was cooled to -78 °C and filtered. The resulting white solid was washed with 5 mL of petroleum ether and dried to give 0.65 g (61%) of 1: mp 165-169 °C; IR ν (Hf-H) 1604 cm⁻¹. Anal. Calcd for C₄₅H₇₂Hf₂: C, 55.72; H, 7.48; M, 970. Found: C, 56.01; H, 7.43; M, 976.

 $Cp_{*2}(H)Hf(CH_2)_6Hf(H)Cp_{*2}$ (2). A 50-mL flask was loaded with 0.495 g (1.10 mmol) of Cp*₂HfH₂ and the flask attached to a swivel-frit assembley. A 25-mL volume of petroleum ether was then condensed into the flask. The solution was cooled to -196 °C, and 1,5-hexadiene (0.55 mmol) was condensed into the flask. The flask was warmed to -78 °C, stirred at this temperature for 5 min, and then warmed to room temperature. The reaction mixture was stirred at room temperature for 1 h and then filtered. The solid product was washed with two portions each of 5 mL of petroleum ether and dried to give 0.48 g (89%) of the white microcrystalline solid 2: mp 195-200 °C. The product was recrystallized from toluene at -78 °C. IR: ν (Hf-H) 1612 (w), 1550 (sh) cm⁻¹. Anal. Calcd for C₄₆H₇₄Hf₂: C, 56.14; H, 7.58. Found: C, 56.49; H, 7.48.

 $Cp_{*2}(H)Hf(CH_2)_4Hf(H)Cp_{*2}^*$ (4). $Cp_{*2}HfH_2$ (0.43 g, 0.96 mmol) was weighed into a 25-mL flask of a swivel-frit assembley and 8 mL of petroleum ether condensed in at -78 °C. The solution was allowed to warm to room temperature and filtered to remove slight cloudiness. Butadiene (0.48 mmol) was condensed into the flask at -196 °C from a gas bulb, and the mixture was allowed to warm to -78 °C and was stirred at this temperature for 5 min. The reaction mixture was then allowed to warm to room temperature and was stirred for a further 30 min. The reaction flask containing a white suspension and pale yellow solution was then cooled to 0 °C for 30 min, and the white microcrystalline solid 4 was filtered off and dried to give 0.065 g (14%): mp 179-183 °C; IR ν (Hf-H) = 1620 cm⁻¹. Anal. Calcd for C₄₄H₇₀Hf₂: C, 55.28; H, 7.38. Found: C, 54.96; H, 7.33.

Cp*₂HfH(CH=CH₂) (6). The dihydride Cp*₂HfH₂ (0.50 g, 1.12 mmol) was weighed into a 25-mL flask and connected to a swivel-frit assembley in the glovebox. A 10-mL volume of petroleum ether was condensed into the flask at -78 °C, and the flask was then cooled to -196 °C. Acetylene (1.13 mmol) was condensed into the flask, which was allowed to warm to -78 °C with stirring at this temperature for 3 min. The reaction mixture was then allowed to warm to room temperature and was stirred for 30 min. The slightly cloudy solution was filtered and the solvent reduced from the filtrate to ca. 3 mL. This solution was cooled to -78 °C, and the resulting solid was filtered and dried to give 6 as white crystals: 0.18 g, (33%); mp 214-216 °C. Anal. Calcd for C₂₂H₃₄Hf: C, 55.40; H, 7.18. Found: C, 55.30; H, 7.05. On standing in the glovebox for 4 months, the ¹H NMR spectrum

⁽¹³⁾ The 7-zircona-1-heptene hydride, $Cp*_2(H)$ -ZrCH₂CH₂CH₂CH₂CH₂CH=CH₂, does not appear to build up in these reaction mixtures, however.

⁽¹⁴⁾ Clark, E. P. Ind. Eng. Chem., Anal. Ed. 1941, 13, 820.

⁽¹⁵⁾ Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716.

of 1 now showed that a new vinyl species had formed which may be $Cp*_2Hf(OH)CH=CH_2$: δ (C_6D_6) 1.80 (s) (Cp*), 4.18 (s) (OH) 6.83 (dd, $J_{\rm HH} = 20$ and 15 Hz) (CH₂=), 6.54 (dd, $J_{\rm HH} = 16$ and 5 Hz) (CH₂==), 5.39 (dd, $J_{\rm HH}$ = 20 and 5 Hz) (-CH==) ppm, as well as weak peaks at δ 1.85 (s) (Cp*) and 2.97 (s) (OH) ppm

corresponding to $Cp_{2}Hf(OH)_{2}$. $Cp_{2}HfH(crotyl)$ (8). A sample of 0.485 g (1.08 mmol) of Cp*2HfH2 was weighed into a 25-mL flask of a swivel-frit assembley, and 10 mL of toluene was condensed into the flask. The flask was cooled to -196 °C, and butadiene (1.09 mmol) was condensed in from a gas bulb. The reaction mixture was warmed to -78 °C, stirred for 10 min, and then allowed to warm to room temperature. The almost colorless solution was then stirred for 23 h at room temperature, during which time the solution turned yellow. The solvent was removed under reduced pressure, and 10 mL of petroleum ether was condensed in. The solution was filtered, concentrated, and then cooled to -78 °C when a pale yellow microcrystalline compound formed. This was filtered and dried to give 0.13 g (24%) of 8: mp 136–145 °C, IR ν (Hf–H) 1578 (w), 1624 (sh) cm⁻¹. Anal. Calcd for C₂₄H₃₈Hf: C, 57.08; H, 7.58. Found: C, 57.51; H, 7.66.

Cp*₂HfCH₂CH₂CH₂CH(CH₃) (9). A 50-mL flask was loaded with 0.52 g (1.15 mmol) of $Cp*_2HfH_2$, and 10 mL of toluene was condensed in at -78 °C. The solution was then cooled to -196 °C, and 1,4-pentadiene (1.15 mmol) was condensed in from a gas bulb. The reaction solution was allowed to warm to room temperature and was stirred at this temperature for 23 h. The solvent was removed to yield a yellow residue, and 15 mL of petroleum

ether was condensed in. The clear yellow solution was concentrated and cooled to -78 °C. The resulting solid was filtered off to give 0.34 g (57%) of lemon yellow crystals of 9: mp 166-171 °C. Anal. Calcd for C₂₀H₃₂Hf: C, 57.85; H, 7.77; M, 519. Found: C, 57.66; H, 7.51; M, 467. The mass spectrum showed peak envelopes with the most abundant peak of the envelope at 518 (M⁺): 485, 478 (M – C_3H_6)⁺, 466, 450 (M – C_5H_{10})⁺, and 223 (M $-C_5H_{10}$ ²⁺ (assignments in parentheses).

Acknowledgment. This work was supported by the National Science Foundation (Grant No. CHE-8600875) and by Shell Companies Foundation, which are gratefully acknowledged. J.R.M. thanks the University of Cape Town and FRD for support and Barbara Burger, Allan van Asselt, and A. Ray Bulls for help with some experiments.

Registry No. 1, 138060-38-5; 2, 138054-15-6; 3, 138054-16-7; 4, 138054-17-8; 5, 138054-18-9; 6, 138054-19-0; 7, 138054-20-3; 8, 138128-19-5; 9, 138054-21-4; 10, 138054-22-5; 11, 138054-23-6; Cp*₂HfH₂, 81956-87-8; Cp*₂(H)Hf(ethylallyl), 138054-24-7; Cp*2HfH(CH2)4CH=CH2, 138054-25-8; Cp*2(H)Hf(CH2)4CH3, 138054-26-9; Cp*₂ZrCH₂CH₂CH₂CH(CH)₃, 138054-27-0; $\begin{array}{l} Cp*_{2}ZrCH_{2}CH_{2}CH_{2}CH_{2}CH(CH_{3}), \ 138054-28-1; \ [Cp*_{2}HfI]_{2}(\mu-(CH_{2})_{5}), \ 138054-29-2; \ Cp*_{2}ZrH_{2}, \ 61396-34-7; \ Cp*_{2}TiH_{2}, \ 12701-41-6; \ Cp*_{2}(H)ZrCH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}Zr(H)Cp*_{2}, \ \ 138060-39-6; \ \end{array}$ 1,4-pentadiene, 591-93-5; 1,5-hexadiene, 592-42-7; butadiene, 106-99-0; acetylene, 74-86-2; 1,6-heptadiene, 3070-53-9; allene, 463-49-0.

Shape-Selective and Asymmetric Cyclopropanation of Alkenes Catalyzed by Rhodium Porphyrins

Jana L. Maxwell, Sean O'Malley, Kathlynn C. Brown, and Thomas Kodadek*

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

Received August 13, 1991

Rhodium porphyrins catalyze the cyclopropanation of simple alkenes by diazo esters. Functionalized catalysts that mediate selective cyclopropanation reactions might be of use in organic synthesis, particularly since the porphyrin catalysts generally provide syn cyclopropyl esters as the major product. In this report we examine the possibility of engineering shape selectivity and asymmetric induction into this system. We show that the iodorhodium derivative of an optically active macrocycle, the "chiral wall" porphyrin, does mediate the enantioselective cyclopropanation of prochiral olefins. Enantiomeric excesses of 10-60%are observed. In addition, the substrate selectivities of hindered (RhTMPI) and unhindered (RhTTPI) simple porphyrins were assessed. In both cases, mono-, di-, and trisubstituted aliphatic olefins undergo reaction at nearly equivalent rates but tetrasubstituted alkenes are cyclopropanated poorly, especially when the crowded catalyst is employed. In the case of bulkier aromatic alkenes, extremely high cis/trans substrate selectivity is observed. These observations have led to a model for the geometry of interaction between the putative metallocarbene and the alkene that rationalizes the relative reactivity of the many substrates investigated. The relevance of these results to the rational design of more selective asymmetric catalysts is also discussed.

Metalloporphyrins mediate a number of interesting stoichiometric and catalytic reactions, including olefin epoxidation¹⁻⁵ and cyclopropanation⁶, alkane hydroxylation,^{7,8} Diels-Alder cycloadditions,⁹ cleavage of amides,¹⁰ and a number of other processes. Recently, several laboratories have made progress toward engineering novel selectivities into these reactions for the purposes of mimicking the properties of certain heme-containing enzymes or creating novel reagents for organic synthesis.

Much of this activity has focused on alkene epoxidation and alkane hydroxylation systems which mimic the cytochrome P-450 family of monooxygenases, and a number of reports of interesting asymmetric and shape-selective

^{*} To whom correspondence should be addressed.

⁽¹⁾ Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032-1033.

⁽²⁾ Groves, J. T.; Kruper, W. J., Jr.; Haushalter, R. C. J. Am. Chem. Soc. 1980, 102, 6375–6377. (3) Traylor, T. G.; Marsters, J. C.; Nakano, T.; Dunlap, B. E. J. Am.

⁽³⁾ Iraylor, I. G., Warsters, J. C., Ivakano, T., Dunlap, B. E. J. Am. Chem. Soc. 1985, 107, 5537-5539.
(4) Collman, J. P.; Kodadek, T.; Raybuck, S. A.; Meunier, B. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 7039-7041.
(5) Groves, J. T.; Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790-5792.
(6) Callot, H. J.; Metz, F.; Piechoki, C. Tetrahedron 1982, 2365-2369.
(7) Smegal, J. A.; Hill, C. L. J. Am. Chem. Soc. 1983, 105, 3515-3521.
(8) Collman, J. P.; Tanaka, H.; Hembre, R. T.; Brauman, J. I. J. Am.

Chem. Soc. 1990, 112, 3689-3690.