Enthalpies of Formation and Bond Energies in Lithium, Beryllium, and Boron Derivatives. 2. Dative, Single, and Triple Bonds

Michel Sana,*,1 Georges Leroy, and Claude Wilante

Laboratoire de Chimie Quantique, Université Catholique de Louvain, Bâtiment Lavoisier, Place Louis Pasteur, 1, Bte 35, B-1348 Louvain-la-Neuve, Belgium

Received March 11, 1991

For a set of small XYH_n singlet-state molecules (where X stands for Li, Be, or B and Y is one of the second-row atoms), we have calculated the enthalpies of formation at the MP4(sdtq)/6-311++G(3df,2p) level by using MP2(full)/6-31G(d,p) fully optimized structures. At this level of theory, the heats of formation are expected to be in the range of the so-called "chemical accuracy" (± 1 kcal/mol). Some alkyl derivatives of the previous XYH_n compounds have been studied at the RHF/6-31G(d) level (with fully optimized geometries). The theoretical enthalpies of formation reproduce the available experimental results quite satisfactorily. In addition to compounds with usual dative single bonds, we also describe molecules with covalent (nondative) single B-N and B-O bonds. We use all the available (experimental and theoretical) data to calculate new bond energies for lithium, beryllium, and boron derivatives.

Introduction

Although many features of electron-deficient compounds have been established by a number of experimental and theoretical investigations, accurate thermochemical properties remain undetermined, at least for the simplest derivatives. Except for LiOH, BeHF, and BH₂OH, very few enthalpies are known for lithium-, beryllium-, and boronbased materials (XYH_n) . Most often, those species cannot be handled easily. For example, $BH_3 \cdot NH_3$ is stable but not easily vaporized² and it rapidly decomposes when the temperature increases. BH₂NH₂ is unstable;³ its lifetime was reported to be several minutes, and it prefers to exist as cyclic oligomers or polymers.⁴ BHNH may have a fairly long lifetime under arc discharge⁵ but is difficult to observe under other conditions. Therefore, direct determination of the energy content for such species is not easy. Nevertheless, a few alkyl and fluoro derivatives of the previously mentioned XYH_n molecules have been investigated with success.

From a theoretical point of view, difficulties arise because correlation effects account for a significant part of the energy content and can become a dominant part of reaction heats.⁶ Therefore, it is not surprising to observe large discrepancies in the calculated dissociation energies depending on the theoretical method in use. This has specially been pointed out for diborane(6)^{6,7} and for molecules with weak dative bonds. For example, the dissociation energy of ammonia-borane is predicted to be 46 kcal/mol at the HF/6-31G level, 21 kcal/mol at the HF/6-31G* level,⁸ and 35 kcal/mol when the correlation energy is taken into account.⁹

The aim of this work is to calculate accurate $(\pm 1 \text{ kcal/mol})$ heats of formation for the smallest lithium-,

(1) Research Director, National Fund for Scientific Research (Belgium).

- (2) Hu, M. G.; Geanangel, R. A.; Wendlandt, W. W. Thermochim. Acta 1978, 23, 249.
- (3) Sugie, M.; Harutoshi, H.; Matsumura, C. J. Mol. Spectrosc. 1987, 123, 286.
 (4) Sugie, M.; Takeo, H.; Matsumura, C. Chem. Phys. Lett. 1979, 64,
- 573.
 (5) Kawashima, Y.; Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1987,
- 87, 6331.
 (6) Redmon, L. T.; Purvis, G. D., III; Bartlett, R. J. J. Am. Chem. Soc.
 1979, 101, 2856.
- (7) Ruscic, B.; Mayhew, C. A.; Berkowitz, J. J. Chem. Phys. 1988, 88, 5580.
- (8) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 3402.
 - (9) Binkley, J. S.; Thorne, L. R. J. Chem. Phys. 1983, 79, 2932.

beryllium- and boron-containing compounds not investigated in a previous study.¹⁴ We also want to check the consistency of our theoretical values with available thermochemical data for the corresponding alkyl and fluoro derivatives. A target accuracy of ± 2 kcal/mol should be considered a satisfactory goal.

Theoretical Enthalpies of Formation of XYH_n Compounds

We consider first a series of singlet XYH_n molecules containing at least one lithium, beryllium, or boron atom. Results concerning BeBH (${}^{3}\Sigma^{-}$), BeCH₂ (${}^{3}B_{1}$), HBBH $({}^{3}\Sigma_{g}^{-})$, B₂ $({}^{3}\Sigma_{g}^{-})$, HBC $({}^{3}\Sigma^{-})$, and BCH $({}^{3}\Pi)$ may be found elsewhere. ${}^{8,10-12}$ In our previous papers, 13,14 we described in detail, and carefully checked, a method to obtain accurate standard heats of formation (ΔH_f) for small molecules. Let us summarize here the main features of this method. (i) The energies are calculated at the fourth order of Møller–Plesset perturbation theory (MP4 with single, double, triple, and quadruple replacements) using the 6-311++G(3df,2p) basis set.¹⁵ (ii) The MP4 energies are single-point calculations on MP2 fully optimized structures at the 6-31G(d,p) level. (iii) The classical formalism of statistical thermodynamics is used to obtain the thermal correction (TC = ZPE + $\Delta H(0-298.15 \text{ K})$), assuming motion separation, ideal gas, rigid rotator, and harmonic potential approximations. (iv) The TC calculation is based on scaled theoretical harmonic frequencies at the HF/6-31G(d,p) level using optimized structures; as theoretical frequencies are known to be overestimated by approximately 10%, the following scaling procedure¹¹ (in cm^{-1}) is used:

$\nu(\text{exptl}) \approx -45.99 + 0.92227[\nu(\text{theor})]$

This method can be referred to as MP4(sdtq)/6-311++-G(3df,2p)//MP2(full)/6-31G(d,p) energies + TC at scaled HF/6-31G(d,p)//HF/6-31G(d,p) level. Both MP2 struc-

- (13) Sana, M.; Leroy, G. J. Mol. Struct. 1989, 187, 233.
 (14) Part 1: Sana, M.; Leroy, G.; Wilante, C. Organometallics 1991,
- (14) Part 1: Sana, M.; Leroy, G.; Whante, C. Organometatucs 1991, 10, 264.
- (15) Binkley, J. S.; Whiteside, R. A.; Raghavachari, K.; Seeger, R.; DeFrees, D. J.; Schlegel, H. B.; Frisch, M. J.; Pople, J. A. Gaussian-82; Carnegie-Mellon University: Pittsburgh, PA, 1982. Frish, M.; et al. Gaussian-86; Carnegie-Mellon University: Pittsburgh, PA, 1982.

⁽¹⁰⁾ Dill, J. D.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 6159.

⁽¹¹⁾ Sana, M.; Leroy, G. Theor. Chim. Acta 1990, 77, 383.

⁽¹²⁾ Sana, M.; Leroy, G.; Henriet, Ch. J. Chim. Phys. Phys. Chim. Biol. 1990, 87, 1.

Table I. Standard Heats of Formation at 298.15 K (kcal/mol) for Reference Species and a Series of XYH. Compounds^a

compd	state	E(MP4)	reacn ^b	$\Delta H_{\rm f}({\rm theor})$	$\Delta H_{\rm f}({\rm exptl})$	BDE ^c
H ₂	${}^{1}\Sigma_{a}$ +	-1.170 23	exptl value ¹⁹		0	
LĨH	${}^{1}\Sigma^{P}$	-8.02007	exptl value ¹⁹		33.61 ± 0.01	
BeH	${}^{2}\Sigma^{+}$	-15.19254	theor value ¹³	81.62		
BeH_2	${}^{1}\Sigma_{g}^{+}$	-15.84410	theor value ¹⁴	39.31		
BH	¹ Σ	-25.22417	$BH + H \rightarrow B + H_2$	104.11	105.8 ± 2^{19}	
BH_2	${}^{2}A_{1}$	-25.85884	theor value ¹³	75.96	(48 ± 15^{19})	
BH_3	${}^{1}\mathbf{A'}_{1}$	-26.53278	theor value ¹⁴	21.94	$(22-26^7)$	
CH_2	³ B ₁	-39.07345	$CH_2 \rightarrow C + H_2$	94.62	92.4 ± 1^{19}	
CH_3	${}^{2}A_{1}$	-39.755 96	exptl value ¹⁷		35.1	
CH_4	${}^{1}\mathbf{T}_{2}$	-40.43246	exptl value ¹⁹		-17.90 ± 0.08	
NH	³ Σ ⁻	-55.05800	$NH + H \rightarrow N + H_2$	87.15	(90 ± 4^{19})	
NH_2	${}^{2}B_{1}$	-55.79093	exptl value ¹⁹		45.5	
NH_3	${}^{1}A_{1}$	-56.471 38	exptl value ¹⁹		-10.97 ± 0.1	
OH	${}^{2}\Pi$	-75.63621	exptl value ¹⁹		9.32 ± 0.3	
H_2O	${}^{1}A_{1}$	-76.33301	exptl value ¹⁹		-57.8 ± 0.01	
HLi•NH ₃	${}^{1}A_{1}$	-64.52373	$LiH\cdot NH_3 \rightarrow LiH + NH_3$	3.02		19.62
HLi-OH ₂	-	-84.38027	LiH•OH ₂ → LiH + H ₂ O	-39.91		15.72
H₂Be∙NH̃₃	${}^{1}A'$	-72.35410	$H_2Be \cdot NH_3 \rightarrow BeH_2 + NH_3$	5.15		23.20
HBeNH ₂ 14	$^{1}A_{1}$	-71.18258	$HBeNH_2 + H_2 \rightarrow BeH_2 + NH_3$	1.79		125.33
BeNH	¹Σ∔	-69.86042	BeNH + $H_2 \rightarrow HBeNH_2$	94.55		70.04
H ₂ Be•OH ₂	${}^{1}A_{1}$	-92.20775	$H_2Be \cdot OH_2 \rightarrow BeH_2 + H_2O$	-36.00		17.52
H ₂ B·BH ₂ ¹⁴	${}^{1}\mathbf{E}^{}$	-51.88981	$BH_2BH_2 + H_2 \rightarrow 2BH_3$	45.35		106.58
HBH ₂ BH ¹⁴		-51.89276	$HBH_2BH + H_2 \rightarrow 2BH_3$	43.90		108.03
$H_2BH_2BH_2$		-53.13417	$H_2BH_2BH_2 \rightarrow 2BH_3$	5.10	$6.5 - 17.3^{19}$	38.79
$\mathbf{H}_{2}^{T}\mathbf{B}\cdot\mathbf{C}\mathbf{H}_{3}^{14}$	${}^{1}\mathbf{A}'$	-65.78912	$BH_2CH_3 + H_2 \rightarrow BH_3 + CH_4$	5.00		106.07
$HB \cdot CH_2$	${}^{1}A_{1}$	-64.53815	$BHCH_2 + H_2 \rightarrow BH_2CH_3$	50.57		147.63
$H_3B \cdot NH_3$	${}^{1}A_{1}$	-83.05464	$BH_3 \cdot NH_3 \rightarrow BH_3 + NH_3$	-17.52		28.49
$H_2 B \cdot N H_2^{-14}$	${}^{1}A_{1}$	-81.88500	$BH_2NH_2 + H_2 \rightarrow BH_3 + NH_3$	-23.01		144.48
HB·NH	${}^{1}\Sigma^{+}$	-80.657 96	$BHNH + H_2 \rightarrow BH_2NH_2$	7.05		185.90
$H_3B \cdot OH_2$	-	-102.88924	$BH_3 \cdot OH_2 \rightarrow BH_3 + H_2O$	-47.42		11.56
H₂B·OH ¹⁴	${}^{1}A'$	-101.74636	$BH_2OH + H_2 \rightarrow BH_3 + H_2O$	-68.73	-69.4 ³⁵	154.01
HBO	¹ Σ ⁺	-100.55899	BHO + $H_2 \rightarrow BH_2OH$	-62.90	-20 ± 20^{21}	228.25
				-6022	-198.3 ± 3^{19}	

^a The energies (au) are obtained at the MP4(sdtq)/ $6-311++G(3df,2p)//MP2(full)/6-31G^{**}$ level. The thermal corrections are introduced as mentioned in the text. ^bFor the atoms, we employ (in kcal/mol) $\Delta H_f(H) = 52.103$, $\Delta H_f(Li) = 38.074$, $\Delta H_f(Be) = 77.438$, $\Delta H_f(N) = 112.973$, $\Delta H_f(C) = 171.288$, and $\Delta H_f(O) = 59.553$ from ref 19 and $\Delta H_f(B) = 134.49$ from ref 18. ^cBDE according to $H_nX-YH_m \rightarrow XH_n + YH_m$, as denoted by the hyphen in column 1; for $H_nXH_2XH_n$ compounds, the BDE corresponds to $H_nXH_2XH_n \rightarrow 2XH_{n+1}$.

tures and thermal corrections have been previously reported for atoms and hydrides 13 for $B_2H_n{}^{16}$ and $BXH_n{}^{12}$ compounds, and for various lithium and beryllium derivatives.¹¹ The enthalpies of formation obtained by this procedure are reported in Table I. A typical example is given below.

The enthalpy of formation of LiH·NH₃ is calculated using the reaction (see Table I)

$$LiH \cdot NH_3 \rightarrow LiH + NH_3$$

then

$$\Delta H_{\rm f}({\rm LiH}\cdot{\rm NH}_3) = \Delta H_{\rm f}({\rm LiH}) + \Delta H_{\rm f}({\rm NH}_3) - \Delta H_{\rm r}(298.15)$$

where

$$\Delta H_r = E_{MP4}(\text{LiH}) + E_{MP4}(\text{NH}_3) - E_{MP4}(\text{LiH}\cdot\text{NH}_3) + \text{TC}(\text{LiH}) + \text{TC}(\text{NH}_3) - \text{TC}(\text{LiH}\cdot\text{NH}_3)$$

Very few comparisons with experimental values are available. As pointed out previously,¹⁴ our theoretical approach reproduces the experimental $\Delta H_{\rm f}$ of LiOH (-57.3 kcal/mol versus -56 from kcal/mol from 19) and BH₂OH

(-68.7 kcal/mol theoretically versus -69.4 kcal/mol from Pedley³⁵). For HBO, our value (-63 kcal/mol) is very different from the experimental results $(-20^{21} \text{ or } -198)$ kcal/mol¹⁹). Nevertheless, it is close to the theoretical value recommended by Page (-60 kcal/mol²²). For ammonia-borane (NH₃·BH₃), the BDE (bond dissociation energy or $\Delta H_{\text{dissociation}}$ at 298.15 K) reported in Table I (28.5 kcal/mol) compares well with the theoretical value of Ahlrichs²³ (27.6 kcal/mol at DZP + CEPA level) and Binkley⁹ (28.7 kcal/mol at TZP + MP4 level) but not at all with less accurate ab initio calculations: $35.2 \text{ kcal/mol}^{24}$ (MP2/6-31G*), 34.7 kcal/mol⁹ (MP4/6-311G**), 41.7 $kcal/mol^{25}$ (HF/3-21G), and 44.7 $kcal/mol^{26}$ (HF/4-31G). The bond strengths of $LiH\cdot NH_3$ and $LiH\cdot OH_2$ (BDE in Table I) are also in agreement with the values calculated by Schleyer (respectively 21.8 and 15.7 kcal/mol^{27,28}). For

- (22) Page, M. J. Phys. Chem. 1989, 93, 3639.
 (23) Zirz, C.; Ahlrichs, R. J. Chem. Phys. 1981, 75, 4980.
 (24) McKee, M. L. Inorg. Chem. 1988, 27, 4241.
 (25) Hirota, F.; Miyata, K.; Shibata, S. J. Mol. Struct. 1989, 201, 99.
 (20) U.M. K.; Miyata, K.; Shibata, S. J. Mol. Struct. 1989, 201, 99.
- (26) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1976, 98, 7208.
- (27) Kaufman, E.; Tidor, B.; Schleyer, P. v. R. J. Comput. Chem. 1986, 7. 334.
- (28) Sannigrahi, A. B.; Kar, T.; Niyogi, B. G.; Hobza, P.; Schleyer, P.
- v. R. Chem. Kev. 1990, 90, 1061.

⁽¹⁶⁾ Sana, M.; Leroy, G.; Henriet, Ch. J. Mol. Struct. 1989, 187, 233.
(17) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493. Heneghan, S. P.; Knoot, P. A.; Benson, S. W. Int. J. Chem. Kinet.

^{1981,} *13*, 677. (18) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.;

Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. J. Phys. Chem. Ref. Data, Suppl. 1982, 11(2), 2–123. This reference is chosen for $\Delta H_{\rm f}({\rm B})$ even if more recent recommendations are available: it is a compromise between the JANAF recommendation¹⁹ and the Storms result (Storms, E; Muller, B. J. Chem. Phys. 1977, 81, 318) recommended by Ruscic on various considerations which favor the highest values for $\Delta H_{sub}(B)$;⁷ this value also corresponds to the value used in our previous works.^{11-14,16}

⁽¹⁹⁾ Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N.; JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data Suppl. 1985, 14.

⁽²⁰⁾ Pedley, J. D.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; 2nd ed.; Chapman and Hall: London, 1986. Pedley, J. B.; Rylance, J. Sussex-N.P.L. Computer Analyzed Thermochemical Data: Organic and Organometallic Compounds; University of Sussex: Sussex, U.K., 1977.

⁽²¹⁾ Stull, D. R.; Prophet, H. JANAF Thermochemical Tables. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 1971, (Engl. Transl.) NSRDS-NBS 37.

diborane(6) (B_2H_6) , the electronic energy reported in Table I is one of the best values available at the present time.²⁹ The obtained BDE compares well with the previous value of Page.²⁹ Nevertheless, our diborane(6) heat of formation (5.1 kcal/mol) remains smaller than the JANAF recommended value $(9.8 \pm 4 \text{ kcal/mol})^{19}$ selected from values in the range 6.5-17.3 kcal/mol) but is larger than the theoretical value of Page (2.7 kcal/mol²⁹). It must also be remembered that $\Delta H_{\rm f}({\rm B}_{2}{\rm H}_{6})$ depends on $\Delta H_{\rm f}({\rm B})^{18}$ as well as on $\Delta H_{\rm f}(\rm BH_3)$. Furthermore, the comparison between theoretical and experimental data favors the highest $\Delta H_{\rm f}$ value for B and the lowest ΔH_f for borane(3) and diborane(6). We feel that the accuracy of the enthalpies of formation reported in Table I is in the range of ± 1 kcal/mol as in the case of more classical species.¹³ In the following sections, we give indirect evidence of the quality of the results reported in Table I.

Enthalpies of Formation of Alkyl Derivatives

Let us now consider a few methyl and fluoro derivatives. Some of them are experimentally known. The molecules under consideration are now too large to be studied by the previous MP4 procedure. Therefore, we use the less expansive isodesmic approach,³⁰ neglecting the thermal corrections. Isodesmic reaction energies are usually small and depend very little on the temperature (usually TC does not contribute more than ± 1 kcal/mol to the isodesmic heat of reaction). The electronic energies have been calculated at the HF/6-31G(d) level with fully optimized structures. The results obtained are collected in Table II. The enthalpies of formation are given at room temperature, as the theoretical energy changes of the isodesmic reactions are practically equal to the corresponding enthalpy changes at 298.15 K. Being calculated from ΔH_{f} (298.15 K), the BDE's are also given at 298.15 K. Table III makes it possible to compare the theoretical gas-phase results and the corresponding experimental values. A satisfactory agreement between the two series of data can be observed. The results of Table II show some interesting regularities in the bond strengths. It can be observed that the $H_3B \cdot NH_nMe_{3-n}$ (n = 1-3) complexation energies are very close to each other. The mean value is 31.22 kcal/mol for n in the range 1-3. This value is 2.73 kcal/mol largerthan the corresponding value for the unsubstituted compound (BDE(H₃B·NH₃) = 28.49 kcal/mol). For the B-

(32) Tel'noi, V. I.; Rabinovich, I. B. Russ. Chem. Rev. (Engl. Transl.)

(33) Cox, J. D.; Pilcher, D. Thermochemistry of Organic and Organometallic Compounds; Academic Press: New York, 1970.
(21) Corr S. R. J. Phys. Chem. 1955, 69, 1010.

(35) Brown, H. C.; Taylor, M. D. J. Am. Chem. Soc. 1947, 69, 1332.

methyl derivatives, the BDE depends on the number of methyl groups. Each CH_3 lowers the binding energy by approximately 4.5 kcal/mol (the B-N bond length increases concurrently by increments of 0.02 Å). Those observations can be summarized as

$$BDE(H_3B\cdot NH_{3-n}Me_n) = BDE(H_3B\cdot NH_3) + 2.73(1 - \partial_n)$$
(1a)
$$\partial_n = 0 \text{ except } \partial_n = 1$$

$$BDE(H_{3-n}(Me)_{n}B\cdot NH_{3}) = 28.28 - 4.53n$$

$$\approx BDE(H_{3}B\cdot NH_{3}) - 4.53n$$
(1b)
 $r = 0.999$

Relations (1) enable us to deduce the complexation energy of the trimethylamine-trimethylborane from the ammonia-borane dissociation energy:

BDE((CH₃)₃B·N(CH₃)₃) = $28.28 - (4.53 \times 3) + 2.73 =$ 17.43 kcal/mol

This result corresponds to the value obtained from the experimental heat of formation (-52.6 kcal/mol³⁶) i.e. 17.80 kcal/mol. Haaland's review⁵⁴ has already reported this trend of methyl substitution. This author mentions that the dissociation enthalpy is reduced by replacement of three H atoms on the acceptor center with three methyl groups and that, on the donor side, only the first substitution is significant. Numerical values reported by Haaland are also based on McCoy's work,37 but using different data for diborane, this author obtains different BDE's. Similarly, the following relations are deduced for BO

derivatives:

$$BDE(H_3B\cdot OH_{2-n}Me_n) = BDE(H_3B\cdot OH_2) + 1.96(1 - \partial_n)$$
(2a)

$$\partial_n = 0 \operatorname{except} \partial_0 = 1$$

BDE(H_{3-n}(Me)_nB·OH₂) = 11.41 - 2.90n
$$\approx BDE(H_3B\cdotOH_2) - 2.90n$$
(2b)

$$r = 0.992$$

The application of relations (2) for $(CH_3)_3B \cdot O(CH_3)_2$ yields $BDE((CH_3)_3B \cdot O(CH_3)_2) = 11.41 - (2.90 \times 3) + 1.96 =$ 4.67 kcal/mol

versus 4.23 kcal/mol from Table II.

Studies on corresponding beryllium and lithium compounds are scarce, and, to our knowledge, no experimental thermochemical data have been reported. Thus, we can only hope that the values given in Table II are not worse for Be and Li compounds than those for boron species. Relations such as (1) or (2) also exist in the Li and Be series:

$$BDE(H_{2}Be \cdot NH_{3-n}Me_{n}) =$$
23.47 (±0.99) ≈ BDE(H_{2}Be \cdot NH_{3}) ∀ n = 1, 3 (3a)
BDE(H_{2-n}(Me)_{n}Be \cdot NH_{3}) = 23.09 - 3.30n
≈ BDE(H_{2}Be \cdot NH_{3}) - 3.30n
(3b)
r = 0.998

BDE(HLi·NH_{3-n}Me_n) = 19.91 - 0.90n

$$\approx$$
 BDE(HLi·NH₃) - 0.90n
(4)
 $r = 0.980$

⁽²⁹⁾ Redmon, L. T.; Purvis, G. D., III; Bartlett, R. J. J. Am. Chem. Soc. 1979, 101, 2856. Ortiz, J. V.; Lipscomb, W. N. Chem. Phys. Lett. 1983, 103, 59. DeFrees, D. J.; Raghavachari, K.; Schlegel, H. B.; Pople, J. A.; Schleyer, P. v. R. J. Chem. Phys. 1987, 91, 1859. Page, M.; Adams, G.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1987, 91, 2676. Curtis, L. A.; Pople, J. A. J. Chem. Phys. 1988, 89, 4875. McKee, M. L. Inorg. Chem. 1988, 27, 4241. Horn, H.; Ahlrichs, R.; Kölmel, C. Chem. Phys. Lett. 1988, 150, 263. Stanton, J. F.; Lipscomb, W. N.; Bartlett, R. J. J. Am. Chem. Soc. 1988, 111, 5165. Barone, V.; Minichino, C. Theor. Chim. Acta 1989, 76, 53. McKee, M. L. J. Phys. Chem. 1990, 94, 435 and references therein. See also ref 7 for a recent review

⁽³⁰⁾ Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796

⁽³¹⁾ Many HF/6-31G(d)//HF/6-31G(d) energies (au) and heats of formation (kcal/mol) for the isodesmic reactions come from Table II in ref 14. The unpublished energies (au) are as follows: LiHNH₃, -64.206 33; LiHOH₂, -84.027 58; BeH₂NH₃, -71.986 01; BeH₂OH₂, -91.804 88; BH₃N-H₃, -82.611 82; BH₃OH₂, -102.415 26; BeNH, -69.545 75; BHCH₂, -64.218 62; BHNH, -80.291 87; BHO, -100.166 15; BH₂BH₂, -51.634 70 $(\Delta H_f = 45.35^{14}); B_2H_6, -52.81240; HBH_2BH, -51.60229; LiH, -7.98098 (\Delta H_f = 33.61^{19}); NF_3, -352.54006 (\Delta H_f = 31.57^{19}). See also: Carnegie-Mellon Quantum Chemistry Archive, 3rd ed.; 1983.$

⁽³⁶⁾ Guest, M. F.; Pedley, J. B.; Horn, M. J. Chem. Thermodyn. 1969, 1, 345. (37) McCoy, R. F.; Bauer, S. H. J. Am. Chem. Soc. 1956, 78, 2061.

⁽³⁸⁾ Dewar, M. J. S.; Jie, C.; Zoebisch, E. G.Organometallics 1988, 7, 513.

___ 1.000

	Table II.	ΔH_t 's and BDE's at 298.15 K (kcal/mol) for the Methylated Derivative	Sa		
compd	E(6-31G*)	isodesmic reacns	$\Delta E_{\rm r}^{\ d}$	$\Delta H_{\rm f}^{\ d}$	BDE ^d
CH ₃ Li•NH ₃	-103.238 24	$CH_3Li \cdot NH_3 + LiH \rightarrow LiH \cdot NH_3 + CH_3Li$	-1.74	-3.62	17.89
HLi-NH ₂ CH ₃	-103.23125	$\text{HLi} \cdot \text{NH}_2\text{CH}_3 + \text{NH}_3 \rightarrow \text{HLi} \cdot \text{NH}_3 + \text{CH}_3\text{NH}_2$	-0.35	8.84	19.28
$HLi \cdot NH(CH_3)_2$	-142.25864	$\mathrm{HLi}\cdot\mathrm{NH}(\mathrm{CH}_3)_2 + \mathrm{NH}_3 \rightarrow \mathrm{HLi}\cdot\mathrm{NH}_3 + \mathrm{NH}(\mathrm{CH}_3)_2$	-1.37	10.93	18.25
$HLi \cdot N(CH_3)_3$	-181.287 15	$HLi \cdot N(CH_3)_3 + NH_3 \rightarrow Li H \cdot NH_3 + N(CH_3)_3$	-2.58	10.91	17.04
$CH_3LI \cdot N(CH_3)_3$	-220.31890 -199.05079	$CH_{3}Li\cdot N(CH_{3})_{3} + LiHNH_{3} \rightarrow HLi\cdot N(CH_{3})_{3} + CH_{3}Li\cdot NH_{3}$	-0.10	4.37	15.21
HLIOHCH.	-123.05972	$H_{1,0}H_{1,2} + OH_{1,2} + H_{1,0}H_{1,2} + CH_{1,0}H_{1,2}$	-1.59	-40.70	14.13
HLi-O(CH _a)	-162.07777	$HLi O(CH_{2})_{0} + OH_{2} \rightarrow Li H OH_{2} + CH_{3}OH_{3}$	-2.38	-23 72	13 34
CH _a Li _• O(CH _a) ₂	-201.10967	$CH_{a}Li \cdot O(CH_{a})_{a} + LiH \cdot OH_{a} \rightarrow LiH \cdot O(CH_{a})_{a} + CH_{a}Li \cdot OH_{a}$	-0.15	-30.36	11.60
CH ₃ BeH·NH ₃	-111.03077	$CH_3BeH \cdot NH_3 + BeH_2 \rightarrow BeH_2 \cdot NH_3 + HBeCH_3$	-3.33	-9.55	19.87
$(CH_3)_2Be \cdot NH_3$	-150.07498	$(CH_3)_2Be \cdot NH_3 + BeH_2 \rightarrow H_2Be \cdot NH_3 + CH_3BeCH_3$	-6.59	-23.89	16.61
H ₂ Be-NH ₂ CH ₃	-111.013 25	$BeH_2 NH_2 CH_3 + NH_3 \rightarrow BeH_2 NH_3 + CH_3 NH_2$	1.11	9.50	24.31
$H_2Be \cdot NH(CH_3)_2$	-150.04207	$BeH_2 \cdot NH(CH_3)_2 + NH_3 \rightarrow BeH_2 \cdot NH_3 + CH_3 NHCH_3$	0.99	10.70	24.19
$H_2Be \cdot N(CH_3)_3$	-189.06930	$H_2Be \cdot N(CH_3)_3 + NH_3 \rightarrow H_2Be \cdot NH_3 + N(CH_3)_3$	-1.03	11.49	22.17
$(CH_3)_2Be \cdot N(CH_3)_3$	-267.155.63	$(CH_3)_2Be \cdot N(CH_3)_3 + H_2Be \cdot NH_3 \rightarrow H_2Be \cdot N(CH_3)_3 + (CH_3)_2Be \cdot NH_3$	-1.66	-15.89	13.93
CH ₃ BeH·OH ₂	-130.850.08	$CH_3BeH \cdot OH_2 + BeH_2 \rightarrow BeH_2 \cdot OH_2 + HBeCH_3$	-3.06	-50.97	14.46
	-169.89472	$(CH_3)_2$ Be· $OH_2 + BeH_2 \rightarrow CH_3$ Be $CH_3 + H_2$ Be· OH_2	-6.04	-65.58	11.48
	-130.832.80	$Ben_2 \cup H \cup H_3 + \cup H_2 \rightarrow Ben_2 \cup H_2 + \cup H_3 \cup H$	2.04	-28.43	19.56
$(CH) B_{2}O(CH)$	-109.007.09	$(C\mathbf{H}) \mathbf{B}_{2} \cap (C\mathbf{H}) + \mathbf{D}_{2} \rightarrow \mathbf{D} \mathbf{H}_{2} \cap (C\mathbf{H}) \rightarrow \mathbf{C} \mathbf{H} \mathbf{B}_{2} \cap \mathbf{C} \mathbf{H} \rightarrow \mathbf{C} \mathbf{H} \mathbf{B}_{2} \cap \mathbf{C} \mathbf{H} \rightarrow \mathbf{C} \mathbf{H} \mathbf{D}_{2} \cap \mathbf{U} \rightarrow \mathbf{C} \mathbf{H} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} D$	-0.92	-21.27	16.09
BeNCH.	-108 578 30	$(CH_3)_2$ De $O(CH_3)_2$ + De H_2 + OH_2 -> OH_3 De OH_3 + OH_3OOH_3 + H_2 De OH_2 BaNCH ₂ + CH ₂ NH ₂ -> BaNH + CH ₂ NHCH ₂	-9.00	-40.01	0.01
H _a BH _a BHCH _a	-91.856.22	$H_{a}BH_{a}BHCH_{a} + BH_{a}CH_{a} \rightarrow H_{a}BH_{a}BH_{a} + BH(CH_{a})_{a}$	-4 44	~7.90	- 34 84
CH.HBH.BHCH.	-130.905 18	$CH_{2}HBH_{2}BHCH_{2} + 2BH_{2}CH_{2} \rightarrow H_{2}BH_{2}BH_{2} + 2BH(CH_{2})_{2}$	-5.65	-24.14	34.13
H ₂ BH ₂ B(CH ₃) ₂	-130.90277	$H_2BH_2B(CH_3)_2 + 2BH_2CH_3 \rightarrow H_2BH_2BH_2 + 2BH(CH_3)_2$	-7.16	-22.63	32.12
(CH ₃) ₂ BH ₂ BHCH ₃	-169.94994	$(CH_3)_2BH_2BHCH_3 + 3BH_2CH_3 \rightarrow H_2BH_2BH_2 + 3BH(CH_3)_2$	-9.25	-37.98	30.52
$(CH_3)_2BH_2B(CH_3)_2$	-208.99327	$(CH_3)_2BH_2B(CH_3)_2 + 4BH_2CH_3 \rightarrow H_2BH_2BH_2 + 4BH(CH_3)_2$	-14.24	-50.60	25.70
CH ₃ BH ₂ BH	-90.651 79	$CH_3BH_2BH + BH_2CH_3 \rightarrow HBH_2BH + BH(CH_3)_2$	-0.87	27.33	120.93
CH ₃ BH ₂ BCH ₃	-129.69968	$CH_{3}BH_{2}BCH_{3} + 2BH_{2}CH_{3} \rightarrow HBH_{2}BH + 2BH(CH_{3})_{2}$	-2.75	11.76	132.82
CH ₃ B·CH ₂	-103.27406	$CH_3BCH_2 + BH_2CH_3 \rightarrow BHCH_2 + BH(CH_3)_2$	2.86	30.27	-
HB-CHCH ₃	-103.252.30	$BHCHCH_3 + BH_2CH_3 \rightarrow BHCH_2 + BH_2CH_2CH_3$	-1.03	46.38	-
HB-C(CH ₃) ₂	-142.28276	$BHU(UH_3)_2 + BH_2UH_3 \rightarrow BHUH_2 + BH_2UH(UH_3)_2$	0.33	44.24	-
CH B.C(CH.)	-142.300 90	$CH_3DURUH_3 + DRUH_2 \rightarrow CH_3DUR_2 + DRURUH_3$	-0.53	20.62	-
$CH_{3}B^{*}C(CH_{3})_{2}$	-101.00000	$CH_{3}BC(CH_{3})_{2} + BH_{1} \rightarrow BH_{2}NH_{1} + BH_{2}CH_{2}$	-1.02	24.90	- 99 59
(CH _a) _a BH ₂ NH _a	-160.699.04	$(CH_{3})_{0}BH_{1}NH_{2} + BH_{2} \rightarrow BH_{2}NH_{2} + BH_{2}OH_{3}$	-9.46	-49.50	20.00
$(CH_{a})_{a}B\cdot NH_{a}$	-199.74240	$(CH_{3})_{2}B_{1}NH_{3} + BH_{3} \rightarrow BH_{3}NH_{3} + B(CH_{3})_{2}$	-13.59	-55 17	14.90
H ₃ B·NH ₂ CH ₃	-121.64173	$BH_{3}NH_{3}CH_{3} + NH_{3} \rightarrow BH_{3}NH_{3} + CH_{3}NH_{3}$	2.79	-14.84	31.28
H ₃ B·NH(CH ₃) ₂	-160.67163	$BH_{3} \cdot NH(CH_{3})_{2} + NH_{3} \rightarrow BH_{3} \cdot NH_{3} + CH_{3}NHCH_{3}$	3.34	-14.32	31.83
$H_3B \cdot N(CH_3)_3$	-199.70005	$BH_3 \cdot N(CH_3)_3 + NH_3 \rightarrow N(CH_3)_3 + BH_3 \cdot NH_3$	2.07	-14.27	30.56
$CH_3BH_2 OH_2$	-141.46099	$CH_{3}BH_{2} OH_{2} + BH_{3} \rightarrow BH_{3} OH_{2} + BH_{2}CH_{3}$	-3.56	-60.80	8.00
$(CH_3)_2BH \cdot OH_2$	-180.50904	$(CH_3)_2BH \cdot OH_2 + BH_3 \rightarrow BH_3 \cdot OH_2 + BH(CH_3)_2$	-5.35	-76.46	6.21
$(CH_3)_3B\cdot OH_2$	-219.55697	$(CH_3)_3 B \cdot OH_2 \rightarrow OH_2 + B(CH_3)_3$	2.49	-89.59	2.49
	-141.443 19	$BH_3 \cup H \cup H_3 + \cup H_2 \rightarrow BH_3 \cup H_2 + \cup H_3 \cup H$	2.04	-39.84	13.60
$\Pi_3 \mathbf{D} \cdot \mathbf{U} (\mathbf{U} \Pi_3)_2$	-180.47224	$D\Pi_3 \cup (\Box\Pi_3)_2 + \Pi_2 \cup \rightarrow B\Pi_3 \cup \Pi_2 + \Box\Pi_3 \cup \Box\Pi_3$	1.87	-35.48	13.43
CH_{3}	-119 346 24	$(CH_3)_3 D O (CH_3)_2 + DH_3 + H_2 O \rightarrow DH_3 O H_2 + D (CH_3)_3 + CH_3 O CH_3$ $CH_BNH + CH_CH_3 \rightarrow HBNH + BH(CH_3)_3$	-7.33	-12.52	4.23
HB-NCH.	-119.326.01	$BHNCH_{a} + CH_{a}NH_{a} \rightarrow BHNH + CH_{a}NHCH_{a}$	3.10	4 91	-
CH ₂ B.NCH ₂	-158.37943	$CH_{\circ}BNCH_{\circ} + BH_{\circ}CH_{\circ} + CH_{\circ}NH_{\circ} \rightarrow BHNH + BH(CH_{\circ})_{\circ} + CH_{\circ}NHCH_{\circ}$	4.80	-14.12	-
CH ₃ B·O	-139.224 83	$CH_{3}BO + BH_{2}CH_{3} \rightarrow BHO + BH(CH_{3})_{2}$	4.89	-85.23	219.24
F ₃ B·NH ₃	-379.41253	$BF_3 NH_3 + BH_3 \rightarrow BH_3 NH_3 + BF_3$	-2.98	-307.89	25.51
F ₃ B·OH ₂	-399.220 55	$BF_3 OH_2 + BH_3 \rightarrow BH_3 OH_2 + BF_3$	-0.11	-340.66	11.45
H ₃ B·NF ₃	-178. 9 31 41	$BH_3NF_3 + NH_3 \rightarrow BH_3NH_3 + NF_3$	-22.65	-15.46	5.84
NH ₂ BH ₂ ·NH ₃ ^b	-137.67181	$NH_2BH_2 \cdot NH_3 + BH_3 \rightarrow BH_2NH_2 + BH_3 \cdot OH_2$	-24.53	-37.9455	3.96
$NH_2BH_2 OH_2^c$	-157.50243	$NH_2BH_2 OH + BH_3 \rightarrow BH_3 NH_3 + BH_2NH_2$	-7.48	-84.89	4.08
$NH_2B(CH_3)_2 \cdot NH_3^\circ$	-215.761.22	$NH_2B(CH_3)_2 NH_3 + BH_3 \rightarrow NH_2BH_2 NH_3 + BH(CH_3)_2$	-8.09	-64.25	-1.38
HOBH OF C	-107.01069	$\mathbf{n} \mathbf{O} \mathbf{D} \mathbf{n}_3 + \mathbf{B} \mathbf{H}_3 \rightarrow \mathbf{B} \mathbf{H}_3 \mathbf{N} \mathbf{H}_3 + \mathbf{B} \mathbf{H}_2 \mathbf{O} \mathbf{H}$	-17.26	-91.60	11.23
HOBH.OH.	-177 299 07	$HOBH_{1}OH_{2} + BH_{3} \rightarrow BH_{3}OH_{2} + BH_{2}OH$	-0.49	-100.27	-3 3V
HOB(CH _a) _a NH _a ^b	-235.607.43	$HOB(CH_1)_{\bullet}NH_2 + BH_2 \rightarrow HOBH_{\bullet}NH_2 + BH(CH_1)_2$	-4.00	120.90 -110.96	-3.30
(CH ₃) ₂ B(OCH ₂).NH ₂ ^b	-274.631 68	$(CH_2)_2BOCH_2 \cdot NH_2 + BH_2 \rightarrow (CH_2)_2BOCH_2 + BH_2 \cdot NH_2$	-22.70	-111.94	5.79
BH ₂ F·NH ₃ ^b	-181.533 69	$BH_{0}F \cdot NH_{3} + BH_{3} \rightarrow BH_{0} \cdot NH_{3} + BH_{0}F$	-6.43	-109.62	22.06
BH₂F∙OH₂ ^Ď	-201.343 20	$BH_2FOH_2 + BH_3 \rightarrow BH_3OH_2 + BH_2F$	-2.62	-143.32	8.94
$(CH_3)_2 BF \cdot NH_3^b$	-259.62900	$(CH_3)_2BF\cdot NH_3 + BH_3 \rightarrow BH_2F + (CH_3)_2BH\cdot NH_3$	-1.35	-139.62	15.48
(CH ₃) ₂ BF·OH ₂ ⁶	-279.44718	$(CH_a)_aBF \cdot OH_a + BH_a \rightarrow BH_aF \cdot OH_a + BH(CH_a)_a$	1.05	-178.77	7.79

^a Total energies (au) and ΔE_r values (kcal/mol) are at the HF/6-31G(d)//HF/6-31G(d) level. ^bTetrahedral boron atom. ^cPlanar boron atom (molecular complex). ^d ΔE_r , ΔH_f , and BDE are calculated using data reported in Tables I–III of ref 14 and from unpublished values given in ref 31. BDE refers to the bond quoted in column 1 by a hyphen (see also footnote b of Table I).

Thus, the (CH₃)₂Be·N(CH₃)₃ and CH₃Li·N(CH₃)₃ BDE's could be estimated respectively as

 $BDE(H_2Be \cdot NH_3) - (3 \times 3.30) = 13.30 \text{ kcal/mol}$

(versus 15.21 kcal/mol from Table II).

We can extend the use of relations (1a) and (2a) for BF_3 derivatives. Substituting BF_3X for BH_3X , one writes

(versus 13.92 kcal/mol from Table II) and

 $BDE(F_3B \cdot NMe_3) = BDE(F_3 \cdot NH_3) + 2.73 =$ 28.24 kcal/mol

 $BDE(CH_{3}Li\cdot NH_{3}) - (3 \times 0.90) = 15.9 \text{ kcal/mol}$

versus 27.33^{36} or 26.6^{37} for the experimental values and

$$BDE(F_{3}B \cdot OMe_{2}) = BDE(F_{3}B \cdot OH_{2}) + 1.96 = 13.41 \text{ k}$$

versus 12.79³⁶ or 13.90³⁹ for the experimental values. The complexation energy for $F_3B \cdot OH_2$ reported here (11.45 kcal/mol) is lower than that proposed by Archibald (16.73 kcal/mol⁴⁰) or by Pradeep (34.4 kcal/mol⁴¹). Actually, our result seems to be more reliable compared with the experimental complexation energy of $F_3 B \cdot O(CH_3)_2$ (12.8,³⁶⁻³⁸ 13.9 kcal/mol³⁹). Moreover, methyl substitution usually lowers the $B \leftarrow X$ bond strength (see $BF_3 \cdot NH_3$ and $BF_3 \cdot N$ - $(CH_3)_3$). The binding energy of F_3B ·NH₃ is also slightly lower (25.5 kcal/mol) than that of $H_3B\cdot NH_3$ (28.5 kcal/ mol); therefore, we do not expect a stronger bond strength in $F_3B \cdot OH_2$ than in $H_3B \cdot OH_2$.

For BF₃·NH₃, our ΔH_f value combined with the experimental value in the solid state $(\Delta H_{\rm f}({\rm BF}_3\cdot{\rm NH}_3,{\rm cr}) = -323.6$ kcal/mol³⁶) gives a sublimation enthalpy of 15.7 kcal/mol, which seems reasonable $(\Delta H_{\text{subl}}(BH_3 \cdot N(CH_3)_3) = 14 \text{ kcal/mol},^{37} \Delta H_{\text{vap}}(BF_3 \cdot O(CH_3)_2) = 13.1 \text{ kcal/mol}^{39}).$

BH₃·NF₃ has never been isolated, and the explosive character of the B₂H₆-NF₃ mixture could preclude its existence.⁴² The strong electron-withdrawing tendency of fluorine atoms reduces the donor ability of the nitrogen. Therefore, the lone-pair basicity and the dative $N \rightarrow B$ bond strength become weaker. The BDE decreases to 5.84 kcal/mol. If, in ammonia-borane and B-trifluoro ammonia-borane, the boron center has a tetrahedral environment, it becomes trigonal in N-trifluoro ammonia-borane as in borane(3). This confirms the weak dative character of the nitrogen in this compound.

Bond Energies in Alkyl Derivatives

A series of bond energies involving Li, Be, and B have been calculated using a simple thermochemical model.⁴³ The heat of atomization decomposes to a sum of bond energies $(E_{\rm b})$ augmented with a term which measures the deviation with respect to the additive scheme, namely the so-called "stabilization energy" (SE):

$$\Delta H_{\rm a} = \sum E_b + SE \tag{5}$$

Details on how to build the bond energy table can be found elsewhere.^{14,43,44} We consider the bond terms $E_{\rm b}({\rm XY})$ for each multiplicity of the bond, where X and Y stand for heavy atoms, and $E_b(XH)_n^Y$ for X-H single bonds. The subscript "n" is an integer depending on the number of adjacent X-H bonds; for C-H bonds, it may be replaced by the characters p, s, or t when n = 3, 2, or 1, respectively. $E_{b}(XH_{n/max}^{Y})$ gives the number of X-H bonds (n) and the maximum possibilities (max) according to the X center hybridization. It is used to avoid confusion when different situations can be considered. The superscript Y corresponds to the occurrence of one X-Y bond adjacent to the X-H bond; when Y stands for C, the superscript is omitted. We also write

$$E_{\rm b}(\rm XH)_n^{\rm Y} = E_{\rm b}(\rm XH)_n + \Delta(\rm XH)_n^{\rm Y}$$
(6a)

$$E_{b}(XH)_{n}^{Y,Z} = E_{b}(XH)_{n} + \Delta(XH)_{n}^{Y} + \Delta(XH)_{n}^{Z}$$
(6b)

Table IV collects the bond energies. They are obtained by a least-squares fit procedure⁴⁵ on data given in Table

(45) Sana, M. QCPE Bull. 1981, 1, 17.

Table III. Direct Comparison of Theory versus Experiment (Values in kcal/mol)

compd	property ^a	theor	exptl	ref
H ₃ B·NH ₂ CH ₃	$\Delta H_{\rm f}$	-14.84	-13 ± 1	32
$H_3B\cdot NH(CH_3)_2$	$\Delta H_{ m f}$	-14.32	-14 ± 1	32
$H_3B \cdot N(CH_3)_3$	ΔH_{f}	-14.28	-20.3	32, 33
	BDE	30.56	31.5	37
	BDE		32.3	34
$(CH_3)_3B\cdot NH_3$	$\Delta H_{ m f}$	-55.17	-54.1	36-38
	BDE	14.90	13.75	35
$(CH_3)_2BH_2B(CH_3)_2$	BDE⁰	25.70	25	37

^aBDE values are relative to B-N or B-O bonds. ^bDissociation in 2 BH(CH₃)₂.

Table IV. New Bond Energies (kcal/mol)

bond	E _b	Δ	bond	Eb	Δ
dative LiN bond	l environi	nent (dative LiO bond	i environi	ment
$E_{\rm b}({\rm LiH})^{\rm N}$	58.35	1.79	$E_{\rm b}({\rm LiH})^0$	58.23	1.66
$E_{\rm b}(\rm NH)_{\rm n}^{\rm Li}$	94.29	0.88	$E_{\rm b}({\rm OH})_{2/2}^{\rm Li}$	111. 9 0	1.12
$E_{\rm b}(\rm NH)s^{\rm Li}$	92.70	1.15	$E_{\rm b}({\rm OH})_{1/2}^{-1/2}$	110.76	2.73
$E_{\rm b}(\rm NH)_{\rm t}^{\rm Li}$	91.66	1.12	,-		
$E_{\rm b}({\rm Li}-{\rm N})$	15.23		E _b (Li←O)	11.86	
dative BeN bon	d environ	ment (dative BeO bon	d environ	ment
$E_{b}(BeH)_{2/2}^{N}$	74.87	3.71	$E_{\rm b}({\rm BeH})_{2/2}^{\rm O}$	74.69	3.53
$E_{\rm b}({\rm BeH})_{1/2}^{\rm N}$	75.05	3.67	$E_{\rm b}({\rm BeH})_{1/2}{}^{\rm O}$	74.87	3.49
$E_{\rm b}(\rm NH)_{\rm p}^{\rm Be}$	94.04	0.62	$E_{\rm b}({ m OH})_{2/2}$	111.64	0.86
E _b (NH)s ^{Be}	92.85	1.30	$E_{\rm b}({\rm OH})_{1/2}^{\rm Be}$	111.44	3.40
$E_{\rm b}(\rm NH)_{t}^{\rm Be}$	92.85	2.32	,		
E _b (Be⊷N)	14.34		E _b (Be←O)	9.24	
dative BN bond	l environr	nent	dative BO bond	environn	nent
$E_{\rm b}(\rm BH)_{\rm p}^{\rm N}$	94.00	4.38	$E_{\rm b}(\rm BH)_{\rm p}^{\rm O}$	92.22	2.60
$E_{\rm b}({\rm BH}){\rm s}^{\rm N}$	93.75	4.01	$E_{\rm b}({\rm BH}){\rm s}^0$	91.36	1.63
$E_{b}(BH)_{t}^{N}$	93.77	3.85	$E_{\rm b}^{\rm O}({\rm BH})_{\rm t}^{\rm O}$	91.72	1.80
$E_{\rm h}(\rm NH)_{\rm n}^{\rm B}$	92.62	0.80	$E_{\rm b}({\rm OH})_{2/2}^{\rm B}$	111.38	-0.40
$E_{\rm b}(\rm NH)s^{\rm B}$	91.84	0.30	$E_{\rm h}({\rm OH})_{1/2}^{-\mu}$	108.77	0.74
$\tilde{E_{\rm b}}(\rm NH)_{\rm t}^{\rm B}$	91.52	0.99			
E _b (B←N)	17.58		E _b (B←O)	5.21	
triple BeN bond	environn	nent	triple BO bond	environn	nent
E _b (Be≔N)	57.46		$E_{\rm b}({\rm B_t-H})^{\rm O}$	84.33	-5.59
			$E_{b}(B\equiv 0)$	224.72	
triple BN bond	environn	nent d	double BC bond	environr	nent
$E_{\rm h}({\rm B_t}-{\rm H})^{\rm N}$	87.33	-2.59	$E_{\rm h}(\rm C_d-H)_2^{\rm B}$	101.84	1.54
$E_{\rm h}(\rm N_t-H)^{\rm B}$	89.81	-0.73	$E_{h}(C_{d}-H)_{1}^{B}$	102.85	3.07
$E_{\rm b}({\rm B}\equiv{\rm N})$	167.63		$E_{\rm b}({\rm B_d}-{\rm H})$	86.88	-3.04
-			$E_{b}(B=C)$	121.21	
BHB bond	in >BH ₂ B	(BHB bond	in –BH ₂ E	}-
$E_{\rm b}({\rm B_bH})_1^{>{\rm BH_2B}<}$	93.14	3.48	$E_{\rm h}({\rm B_h}{\rm H})^{-{\rm B}{\rm H}_2{\rm B}}$	90.60	0.67
$E_{\rm b}(B_{\rm b}H)_2^{>BH_2B<}$	92.52	2.10	ф. Б .		
$E_{b}(>BH_{2}B<)$	205.85		$E_{\rm h}(-{\rm BH_2B}-)$	252.47	

II. These values are used in Table V to estimate some atomization enthalpies and to compare them with available experimental values. The theoretical $\Delta H_{\rm f}$ or BDE (depending on the experimentally reported property) seems to be overestimated by no more than 0.6 kcal/mol.

The standard deviation of the error does not exceed 1.2 kcal/mol. If we consider the difficulties in obtaining accurate experimental heats of formation, we can be convinced of the overall quality of the theoretical values, including those of Table I (values in Table I being used in Table II). In the case of X-H bonds, where X stands for an atom involved in a dative bond, one observes an increase $(\Delta(XH) > 0)$ of the bond energy compared with the normal X-H term. The variations can reach 4.3 kcal/mol. We summarize this conclusion as

$$\langle \Delta(\text{XH})_n^{\text{Y}} \rangle = 3.0 \pm 1.0 \text{ kcal/mol}$$

X = Li, Be, B; Y = N, O

$$\langle \Delta(\mathbf{XH})_n^{\mathbf{Y}} \rangle = 1.0 \pm 0.9 \text{ kcal/mol}$$

 $\mathbf{X} = \mathbf{N}, \mathbf{O}; \mathbf{Y} = \mathbf{Li}, \mathbf{Be}, \mathbf{B}$

⁽³⁹⁾ Laubengayer, A. W.; Finlay, G. R. J. Am. Chem. Soc. 1943, 65, 884.

⁽⁴⁰⁾ Archibald, R. M.; Armstrong, D. R.; Perkins, P. G. J. Chem. Soc., (40) Archibald, R. M.; Armstrong, D. R.; Perkins, P. G. J. Chem. Soc.,
Faraday Trans. 2 1973, 69, 1793.
(41) Pradeep, T.; Rao, C. N. R. J. Mol. Struct. 1989, 200, 339.
(42) Geanangel, R. A.; Shore, S. G. Prep. Inorg. React. 1966, 3, 123.
(43) Leroy, G. Int. J. Quantum Chem. 1983, 23, 271.

⁽⁴⁴⁾ Leroy, G.; Sana, M.; Wilante, C. J. Mol. Struct. 1990, 226, 307. See also ref 14.

 Table V. Prediction of Atomization Energy Based on the Bond Energies (kcal/mol)

compd	$\begin{array}{l} \Sigma E_{\rm b} \approx \\ \Delta H_{\rm a} \text{-} \\ (\text{theor}) \end{array}$	ΔH_{a} -(exptl)	orig	in of exptl value	refª
$H_2B\cdot N(C_2H_5)_3$	2246.32	2245.95	$\Delta H_{\rm f}$	-32.5 ± 0.5	32
		2246.05	ΔH_{*}	-33.	33
(CH ₃) ₂ BH· N(CH ₃) ₂	1977.43	1979.06	BDE	23.4	37
(CH ₃) ₃ B·NH ₂ - CH ₂	1715.22	1714.66	BDE	17.64	35
(CH ₃) ₃ B·N- H(CH ₃) ₃	1990.19	1990.54	BDE	19.26	35
$(CH_3)_3 B \cdot N - H_2(C_2 H_3)$	1997.05	1996.19	BDE	18.	35
$(CH_3)_3B\cdot N - H(C_2H_5)_2$	2553.85	2551.48	BDE	16.31	35
$(CH_3)_3 \mathbf{B} \cdot \mathbf{N} (C - H_3)_3$	2265.45	2265.64	$\Delta H_{\rm f}$	-52.6	36
0.0		2265.67	BDE	17.62	37
$F_3B \cdot N(CH_3)_3$	1591.73	1591.58	$\Delta H_{\rm f}$	-304.4	36
•		1590.85	BDE	26.6	37
$F_3B \cdot O(CH_3)_2$	1235.63	1234.36	$\Delta H_{\rm f}$	-328.2	36-38
		1235.46	BDE	13.9	39
$F_3B \cdot O(C_2H_5)_2$	1802.86	1801.31	BDE	12.5	39
$(\check{C}H_3)_2\check{B}H_2\check{B}-$ $(CH_3)_2$	1734.17	1733.47	BDE⁵	25	37

^a BDE values are relative to B-N or B-O dative bonds; for the calculation of ΔH_a from BDE, the ΔH_f values are taken from ref 20, except $\Delta H_f(B(CH_3)_3)$, ³³ $\Delta H_f(BF_3)$, ³⁶ and $\Delta H_f(CH_3BHCH_3)$.¹⁴ ^b Dissociation in 2 BH(CH₃)₂.

Finally, Table IV contains two types of BH_2B ($B_{H}^{H}B$) bonds. They are denoted > $BH_2B <$ and $-BH_2B-$. The first can be found in normal diborane(6) and the latter in bridged diborane(4), namely $H_2BH_2BH_2$ and HBH_2BH , or their derivatives. We prefer to consider those bonds as diprotonated > $B=B<^{2-}$ double bonds and $-B=B^{-2-}$ triple bonds, respectively. A single B-B bond only exists in H_2BBH_2 (which is 1.5 kcal/mol higher in energy than its isomer HBH_2BH at the MP4(sdtq)/6-311++G-(3df,2p)//MP2(full)/6-31G(d,p) level;¹⁴ other theoretical works also report smaller differences^{12,46,47}). Including the single B-B bond energy calculated in ref 14, we write the sequence (kcal/mol)

$$E_{\rm b}(>B-B<) = 68.29 < E_{\rm b}(>BH_2B<) = 205.85 < E_{\rm b}(-BH_2B-) = 252.47$$

The triple bond ($-BH_2B_-$), which contains six electrons between the two borons, has an energy lower than the sum of single and double bonds, as in the case of C–C bonds. Half of the value obtained for the double bond is close to the values reported for BHB bond strength in some other works (105–108 kcal/mol^{48–50}). For single B–B bond energy Sanderson also uses 68 kcal/mol.⁵¹ This value comes from the $B_2(^{3}\Sigma_{g}^{-})$ dissociation energy. Other values have been proposed for this bond energy (kcal/mol):

$$BDE(B_2(^{3}\Sigma_g^{-})) = 70.7 \pm 8,^{19} 62.5,^{52} 64.7,^{12} 64.8^{53}$$

Figure 1. Two $HOBH_2 \leftarrow OH_2$ structures: (a) water-hydroxyborane, (b) *B*-hydroxy water-borane.

116.49

Figure 2. Relation between bond energies and bond lengths: the case of B–O and B–N.

Table VI. B-N and B-O Bond Energies (kcal/mol)

bond	B-0	B-N	bond	B-0	B-N
dative	5.21	17.58	double ¹⁴	129.92	106.70
single	119.05	90.89	triple	224.72	167.63

Single B-O and B-N Bonds

Let us now consider HOBH₂·OH₂. As shown in Figure 1, we find two nuclear structures (both are really minima, their Hessian matrix being positively defined). The first, the more stable one, is a molecular complex between BH₂OH (which remains planar) and water. In the second, the boron has a tetrahedral environment. This is a hydroxy derivative of water-borane. The sp³ character of the boron atom reduces its electron-withdrawing tendency. The B vacancy has already been fulfilled by one of the water lone pairs in HOBH₂-OH₂ (or by the ammonia lone pair in HOBH₂-NH₃). This means that there is a single covalent B-O bond which could have an strength intermediate between those of dative (as in BH₃-OH₂) and double (as in BH₂=OH) B-O bonds.

⁽⁴⁶⁾ Curtiss, L. A.; Pople, J. A. J. Chem. Phys. 1989, 90, 4314.
(47) Ruscic, B.; Schwarz, M.; Berkowitz, J. J. Chem. Phys. 1989, 91, 4576.

⁽⁴⁸⁾ Fehlner, T. P.; Housecroft, C. E. Boranes and Heteroboranes in Molecular Structure and Energetics. In Chemical Bonding Models; Liebman, J. F., Greenbey, A., Eds.; VCH: Weinheim, Germany, 1986; Vol. 1, Chapter 6.

 ⁽⁴⁹⁾ Gunn, S. R.; Green, L. G. J. Phys. Chem. 1961, 65, 2173.
 (50) Wade, K. Electron Deficient Compounds; Nelson: London, 1971;

p 62. (51) Sanderson, R. T. Chemical Bonds and Bond Energy; Academic Press: New York, London, 1971.

⁽⁵²⁾ Deutch, P. W.; Curtiss, L. A.; Pople, J. A. Chem. Phys. Lett. 1990, 174, 33.

⁽⁵³⁾ Unpublished result: based on MP4(sdtq)/6-311++G(3df,2p)// MP2(full)/6-31G(d,p) energy of $B_2(^{3}\Sigma_{g}^{-})$ (-49.20754 au) and thermal corrections reported in ref 14. This gives 204.19 kcal/mol as the heat of formation.

⁽⁵⁴⁾ Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 992.

In HOBH₂—X, the increase of the B—X dative bond strength enhances the single-bond character of the B–O bond. This is why we prefer using ammonia derivatives (rather than water compounds) to calculate the single-bond energies. With $\Delta H_f((CH_3)_2BOCH_3 \cdot NH_3)$ from Table II and bond energies from ref 14, one writes (assuming SE-((CH₃)₂BOCH₃·NH₃) = 0):

 $\Delta H_{a}((CH_{3})_{2}BOCH_{3}\cdot NH_{3}) = 6E_{b}(CH)_{p}^{B} + 2E_{b}(B-C) + 3E_{b}(CH_{p}^{O} + E_{b}(C-O) + 3E_{b}(NH)_{p}^{B} + E_{b}(B-N) + E_{b}(B-O) = (6 \times 101.66) + (2 \times 77.17) + (3 \times 95.87) + 91.66 + (3 \times 92.62) + 17.58 + E_{b}(B-O)$

One obtains $E_{\rm b}(\rm B-O) = 119.05~kcal/mol$. This value is 10.87 kcal/mol lower than the value previously reported for the B=O double bond (see Table VI). Let us mention that the use of $(\rm CH_3)_2\rm BOH\cdot\rm NH_3$ instead of $(\rm CH_3)_2\rm BOC-H_3\cdot\rm NH_3$ for evaluating the B-O bond strength does not change the result significantly (in this case, $E_{\rm b}(\rm B-O) = 118.68~kcal/mol$). These bond energies correlate with the bond lengths (see Figure 2).

We also find a single covalent B-N bond. This bond appears in $NH_2BH_2 \leftarrow NH_3^{55}$ or in $NH_2B(CH_3)_2 \leftarrow NH_3$. From the following relation, we deduce the value of E_b -(B-N):

 $\Delta H_{a}((CH_{3})_{2}BNH_{2}\cdot NH_{3}) =$

 $\begin{aligned} & 6E_{b}(CH)_{p}^{B} + 2E_{b}(B-C) + 2E_{b}(NH)_{2}^{B} + 3E_{b}(NH)_{p}^{B} + \\ & E_{b}(B-N) + E_{b}(B-N) = (6 \times 101.66) + (2 \times 77.17) + \\ & (2 \times 94.88) + (3 \times 92.62) + 17.58 + E_{b}(B-N) \end{aligned}$

It is found that $E_{\rm b}(\rm B-N) = 90.89~\rm kcal/mol$. This value is 15.81 kcal/mol lower than the value obtained for the corresponding double bond ($E_{\rm b}(\rm B-N) = 106.70~\rm kcal/mol$). It also corresponds to a rough estimate of Haaland⁵⁴ (91–92 kcal/mol or 88 ± 2 kcal/mol). Finally, for the B-F bond, only one bond term is found. We determined a B-F bond

strength of 157.52¹⁴ and 157.82 kcal/mol for $(CH_3)_2BF$ and $(CH_3)_2BF\cdot NH_3$, respectively. In the latter molecule, however, the B-F length is significantly greater (1.39 Å) than in the former compound (1.33 Å). Nevertheless, dimethylfluoroborane has an sp² arrangement around the boron atom. The boron is sp³ in ammonia-dimethylfluoroborane. For $(CH_3)_2BF\cdot OH_2$, one obtains 160.90 kcal/mol for the B-F bond. It is 3 kcal/mol greater than for the previous B-F bonds. This stronger character of B-F must be related to the less dative tendency of the water lone pair, compared with that of ammonia.

Conclusion

In this theoretical study, we consider several electrondeficient compounds not studied in a recent paper.¹⁴ Accurate heats of formation have been obtained for the simplest boron, beryllium, and lithium adducts. Methyl and fluoro derivatives of the previous molecules have also been investigated, in order to have a larger number of comparisons with experimental values at our disposal. Finally, our bond energy table has been completed with new terms coming from the molecules considered in this work. They can be useful in calculating the stabilization energy according to eq 5 for larger compounds. Despite the limited number of tests of our theoretical results, we are convinced that the ΔH_f values reported are reliable. The quality of our theoretical predictions has been established whenever accurate experimental values have been available, especially for $B \leftarrow N$ and $B \leftarrow O$ derivatives. Moreover, all the reported values seem consistent with each other through isodesmic reactions as well as through the thermochemical model in use. In the case of Be and Li compounds, there is no reason to think our heats of formation are more suspicious than those determined for boron species. Finally, some support for single B-O and B-N bonds has been obtained from calculations on various substituted ammonia- and water-borane species. They are respectively 11 and 16 kcal/mol weaker than the corresponding π -dative double bonds.

Acknowledgment. We thank the National Fund for Scientific Research (Belgium) for research grants in the field of supercomputing technologies.

⁽⁵⁵⁾ $\Delta H_f(\mathrm{NH}_2\mathrm{BH}_2\mathrm{NH}_3)$ has been recalculated at the MP4(sdtq)/6-31+G(2df,p)//MP₂(full)/6-31G(d,p) + TC (HF/6-31G*//HF/6-31G*) level to check the accuracy of the value reported in Table II. From NH₃BH₂NH₂ + H₂ \rightarrow NH₃NH₃ + NH₃ one obtains $\Delta H_f(\mathrm{NH}_3\mathrm{BH}_2\mathrm{NH}_2)$ = -37.36 kcal/mol, and NH₃BH₂NH₂ + BH₃ \rightarrow NH₃NH₃ + NH₂BH₂ yields $\Delta H_f(\mathrm{NH}_3\mathrm{BH}_2\mathrm{NH}_2)$ = -38.41 kcal/mol, versus -37.94 kcal/mol from Table II at the 6-31G* level.