

Subscriber access provided by American Chemical Society

Cyclopentadienyl carbon-hydrogen activation in zirconocene phosphide complexes

Jianwei Ho, and Douglas W. Stephan

Organometallics, **1992**, 11 (3), 1014-1016• DOI: 10.1021/om00039a004 • Publication Date (Web): 01 May 2002

Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink<http://dx.doi.org/10.1021/om00039a004>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Cyclopentadienyl C-H Activation in Zirconocene Phosphide Complexes

Jianwei **Ho** and Douglas W. Stephan'

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received November 22, 199 1

Summary: Generation of "Cp₂Zr" in the presence of **PhPH, results** in P-H activation, affording **the** intermediate Cp₂Zr(PPhH)H. C-H activation and subsequent C-C bond formation yield the Zr(III) diphosphide- and fulvalenidebridged complex $[(\eta^5$ -Cp)Zr(μ^2 -PPhH)(μ - η^5 : η^5 -C₅H₄C₅H₄)]₂ (1). In the analogous reaction employing **(2,434-** $Bu₃C₆H₂)PH₂$, the isolated product is the trimeric, phosphide-capped Zr(IV) species $((\eta^5$ -Cp) $(\mu$ - η^1 : η^5 -Cp)Zr)₃ $(\mu^3$ -P) (2). C-H activation is evident as metalated Cp rings bridge adjacent Zr atoms in a $\eta^1:\eta^5$ -fashion. This compound 2 also represents a rare example of a trinuciear organometallic species containing a capping phosphorus atom. Further, the structure of 2 implies a mechanism for the formation of 1 involving the initial formation of a dimer in which the Zr centers are linked by $\eta^1:\eta^5$ -Cp moieties.

Despite the fact that the first metallocene $Zr(IV)$ (i.e. $\text{Cp}_2\text{Zr}(\text{PR}_2)_2$ and M(III) ($[\text{Cp}_2\text{M}(\text{PR}_2)]_2$, M = Ti, Zr) phosphide complexes were formulated in the middle 1960s,' group 4 phosphides have drawn little attention in comparison to the analogous metal amide systems? It was not until 1983 that Baker et **al.** published the first definitive spectroscopic and structural characterization of group 4 phosphide complexes of the form $\mathrm{Cp}_2\mathrm{M}(\mathrm{PR}_2)_2$.³ Since then, other workers have reported similar compounds,⁴⁻⁶ while Baker et al. have also reported the hom-
oleptic early-metal phosphide complexes $Li[M(PCy_2)_5]$ (M = Zr, Hf) and Li[M(PCy₂)₄] (M = Ti, V).⁷ Subsequent studies by the research groups of Bercaw,⁸ Gambarotta,⁹ Hey,¹⁰ and Hillhouse¹¹ have described related species of the form $Cp^*Hf(PR_2)X_2$ (X = Cl, R, H), $[Cp_2M(\mu-PR_2)]_2$, $\text{Cp}_2\text{M}(\text{PR})$ ₃, and $\text{Cp}_2\text{M}(\text{PRH})\text{X}$ (M = Zr, X = Cl; M = Hf, $X = \text{Cl}, \text{H}$), respectively. Most recently we^{12,13} and others¹⁴ have investigated the di- and mononuclear titanocene phosphide systems $[Cp_2Ti(\mu-PR_2)]_2$, Li $[Cp_2Ti(PR_2)_2]$, $\text{Cp}_2\text{Ti}(\text{PR}_2)(\text{PMe}_3)$, and $\text{Cp}_2\text{Ti}(\text{PR}_2)$.

Much of the known chemistry of early-metal phosphides centers on the use of such species **as** synthetic precursors to early-late heterobimetallics.¹⁵ As part of our efforts

-
- (6) Benac, B. L.; Jones, R. A. Polyhedron 1989, 8, 1774.

(7) Baker, R. T.; Krusic, P. J.; Tulip, T. H.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 6763.

(8) Roddick, D. M.; Santarsiero, B. D.; Bercaw,
-
-
-
-
- (10) Hey, E.; Bott, S. G.; Atwood, J. L. Chem. Ber. 1988, 121, 561.
(11) Vaughan, G. A.; Hillhouse, G. L. Organometallics 1989, 8, 1760.
(12) Dick, D. G.; Stephan, D. W. Can. J. Chem. 1991, 69, 1146.
(13) Dick, D. G.; Step
- **(14)** Baker, R. T. Personal communication.

Figure 1. ORTEP drawing of **1 in the asymmetric unit. Thermal** ellipsoids at the 30% level are shown. All hydrogen atoms except those on phosphorus are omitted for clarity. $Zr1-P1 = 2.627(4)$ **those on phosphorus are omitted** for clarity. **Zrl-P1** ⁼**2.627 (4) A, Zrl-P2** ⁼**2.610 (4) A, Zr2-P1** = **2.609 (4) A, Zr2-P2** = **2.620 (4) A, Pl-C21** = **1.83 (1) A, P2-C31** = **1.84 (1) A; Pl-Zrl-P2** = **90.5 (l)', Pl-Zr2-P2** = **90.7 (l)', Zrl-P1-Zr2** = **85.4 (l)', Zrl-** $P2-Zr2 = 85.5 \ (1)^\circ$, $Zr1-P1-C21 = 127.7 \ (5)^\circ$, $Zr2-P2-C31 = 128.1$ (5) ^o.

to more fully examine the chemistry of early-metal phosphides, we have recently employed complexes of the form Cp2Zr(PRH)H **as** precursors to phosphido- and phosphinidene-bridged dimers.16 We now wish **to** report results which demonstrate that, in some instances, the Lewis acidity of complexes of the form $\text{Cp}_2\text{Zr}(\text{PHR})\text{H}$ may invoke activation of C-H bonds in the ancillary cyclopentadienyl rings and in some cases result in subsequent C-C bond formation.

The reaction of Cp,ZrCl, with **2** equiv of n-BuLi in THF at -78 "C with subsequent warming to 25 "C **has** been used **as** a means of generating zirconocene in situ." Reaction of "Cp₂Zr" with PhPH₂ results in a darkly colored solution which upon workup affords black crystals of **1** in a isolated yield of 25%. The 'H NMR spectrum of **1** shows resonances at **7.1,** 5.49, 4.76, and 3.97 ppm attributable to phenyl, cyclopentadienyl, and fulvalenide moieties.18 No

⁽¹⁾ (a) Ellerman, J.; Poersch, P. Angew. Chem., Int. Ed. Engl. **1967, 6, 355.** (b) Issleib, K.; Hackert, H. **Z.** Naturforsch. **1966,21B, 519.**

⁽²⁾ Cardin, D. J.; Lappert, M. F.; Raston, C. L.; Riley, P. I. In Com-prehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon

Press: New York, **1982;** Vol. **3. (3)** Baker, **R.** T.; Whitney, J. F.; Wreford, S. S. Organometallics **1983, 2, 1049.**

⁽⁴⁾ Wade, **S.** R.; Wallbridge, M. G. H.; Willey, G. R. J. Chem. Soc., Dalton Trans. **1983, 2555.**

⁽⁵⁾ Weber, L.; Meine, G.; Boese, R.; Augart, N. Organometallics **1987, 6, 2484.**

^{(15) (}a) Stephan, D. W. Coord. Chem. Rev. 1989, 95, 41. (b) Targos, T. S.; Rosen, R. P.; Whittle, R. R.; Geoffroy, G. L. Inorg. Chem. 1985, 24, 1375. (c) Baker, R. T.; Tulip, T. H.; Wreford, S. S. Inorg. Chem. 1985, 24, 1379. (d) Gelmini, L.; Matassa, L. C.; Stephan, D. W. *Inorg. Chem.*
1985, 24, 2585. (e) Gelmini, L.; Stephan, D. W. *Inorg. Chim. Acta* 1986, 25, 1222.
111, L.17. (f) Gelmini, L.; Stephan, D. W. *Inorg. Chem.* 1986, 2

⁽¹⁷⁾ (a) Swanson, D. R.; Negishi, E. Organometallics **1991,10,825.** (b) Negishi, **E.;** Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. **1986,27,** 2829. The species Cp_2ZrH is proposed as an intermediate in the Mg reduction of Cp_2ZrCl_2 arising from cyclopentadienyl C-H activation by " Cp_2Zr ". (Samuel, E. *Inorg. Chem.* 1983, 22, 2967.) Whi the formation of Cp₂ZrH requires 48 h, whereas evidence of P-H activation by "Cp₂Zr" is observed upon addition of phosphine.

(18) Spectral data for 1: ¹H NMR (C_eD₆, 25 °C) δ 7.1 (br m, Ph), 5.49 (s, Cp), 4.7

^{3.6} Hz; 13C(lHJ NMR (C6D6, **25** "C) *6* **137.77, 136.74, 129.07, 125.42** (Ph), Found C, **58.10;** H, **4.30.** Spectral data for **2:** 31P NMR (THF, **25** "C) ⁶**782.6** ppm (relative **to 85%** H3P04); **IH** NMR (C@s, **25** "C) 6 **6.21** *(8,* Cp), **5.65 (m, 2** H), **5.20** (m, **2 H). Anal.** Calcd C, **52.06,** H, **3.93.** Found C, **51.90;** H, **3.80. 95.36** (Cp), **113.97, 93.71,87.60** (C1,,He). **Anal.** Calcd: C, **58.33; H, 4.59.**

 ${}^{31}P$ resonance was observable at 25 °C. A crystallographic study of 1 showed it to be the species $(\mathrm{CpZr}(\mu\text{-}PHPh))_{2}$ - $(\mu_{\tau} \eta^5 : \eta^5 - C_{10}H_8)$.¹⁹ An ORTEP drawing is shown in Figure 1. This dimeric Zr(III) species contains CpZr moieties This dimeric Zr(III) species contains CpZr moieties which are bridged by two phenylphosphido groups **as** well **as** a fulvalenide moiety. The fulvalene ligand is slightly bent with a 7.9° angle between the planes of the rings which are linked at Cl-C6 (1.47 (2) **A).** A small twist between the adjacent rings is evidenced by the dihedral (2) ^o. This twist is more significant than that seen in $(\text{CpZr}(\mu\text{-}Cl))_2(\mu\text{-}n^5;\eta^5\text{-}C_{10}H_8)^{20}$ and is attributed to the steric demands **of** the bridging phosphido groups. The Zr-P bond lengths were found to average 2.616 (6) **A,** which is slightly shorter than the 2.672 **(5) A** found in the Zr(II1) dimer $[CD_2Zr(\mu-PMe_2)]_2$.⁹ This may be attributed in part to the presence of the fulvalene ligand in 1, although the basicity and the orientation of the phenyl substituents on the P atoms toward the fulvalenide rings also accomodate stronger Zr-P bonding. The P-Zr-P angles are found to be 90.5 (1) and 90.7 (1)^{\degree}, while the Zr-P-Zr angles are 85.4 (1) and 85.5 (1) $^{\circ}$. These features are similar to those found in the related Zr(III) dimer $[Cp_2Zr(\mu-PHCy)]_2$:¹⁶ however, the $\rm Zr_2P_2$ core of 1, unlike that of $\rm [Cp_2Zr(\mu\text{-}PHCy)]_2$, is not planar; rather, the angle between the ZrP_2 planes is 30.60°. The observed diamagnetism of **1** is consistent with antiferromagnetic coupling of the Zr(II1) centers, which are 3.549 (2) **A** apart. Previous studies of phosphido-bridged $Zr(III)$ dimers suggested a through-ligand mechanism¹² for such coupling, although a through-space or "super-long" bond rationale has also been proposed.²¹ In the present compound 1, a 31P resonance and 'H resonances attributable to the P-H hydrogen atoms were not observed. These observations **as** well **as** the location of the P-H hydrogen atoms in the crystallographic study confirm the formation of 1 as a Zr(II1) dimer and suggest a throughligand mechanism of antiferromagnetic exchange may be operative. angles C2–C1–C6–C10 = -5 (2)^o and C5–C1–C6–C7 = 4

In a related reaction, Mg was employed to reduce Cp_2ZrCl_2 in the presence of 1 equiv of $(2,4,6-t-\text{Bu}_3\text{C}_6\text{H}_2)$ -PH₂ in THF at 25 °C. The solution became dark brown, and the solvent was removed and replaced with benzene. Upon the slow diffusion of hexane into the solution brown crystals of **2** were deposited in approximately 10% yield. The ³¹P^{[1}H] NMR spectrum shows a single resonance at 782.6 ppm. Moreover, the 31P spectrum shows no evidence of P-H coupling, suggesting the loss of both hydrogen atoms from the phosphorus atom. The ¹H NMR spectrum

5, 2514.

Figure **2.** ORTEP drawing of molecule **2.** Thermal ellipsoids at the 30% level are shown. Hydrogen atoms are omitted **for** clarity. **Zrl-P1** = **2.575 (1)** A, **Zrl-C10** = **2.288 (4)** A; **Zrl-P-Zrl'** = **90.14** $(5)^\circ$, **P-Zr1-C10** = 87.1 (1)°.

shows only resonances attributable to cyclopentadienyl protons; however, it also shows that both η^5 and $\eta^1:\eta^5$ cyclopentadienyl rings are present. These data together with those from combustion analyses suggested the empirical formulation of $(Cp_2Zr)_{3}P^{18}$ An X-ray structural study¹⁹ was essential in the determination of the precise molecular architecture of **2.** The results of the crystallographic study are depicted in Figure 2. The compound **2** crystallizes in the space group *R3* with two independent molecules in the unit cell. Thus, each of the molecules sits on a crystallographically imposed 3-fold axis. Each Zr center is *a*bonded to two cyclopentadienyl rings. In addition, one of the rings is σ -bonded to the adjacent Zr atom. Thus, by virtue of the 3-fold symmetry, three $\sigma-\pi$ cyclopentadienyl rings bridge the three Zr atoms. Completing the coordination sphere of the three Zr atoms is a single capping phosphorus atom.

The Zr–C distances to the π -cyclopentadienyl ring are typical, averaging 2.531 (6) A, while the $Zr-C \sigma$ -bond is 2.288 (4) **A.** The Zr-P distance is 2.575 (1) **A,** which is shorter than the Zr-P distances in either $\mathrm{Cp}_2\mathrm{ZrCl}(\mu\text{-}P\text{-}$ $(2,4,6\text{-Me}_3\text{C}_6\text{H}_2)$)ZrClCp₂ (2.617 (6) Å) or $[\text{Cp}_2\text{Zr}(\text{PCyH})]_2$ (2.646 (4) The Zrn-Zr separation is 3.6463 (8) **A,** which is much longer than the W-W distances seen in the Pcapped tungsten trimer $W_3(\mu_3-P)(\mu\text{-}OCH_2-t-Bu)_3(OCH_2-t)$ ~-Bu)~ (W-W bonds: 2.757 (1) **A).''** The Zr-P-Zr' angle is 90.14 (5)[°]. This is much smaller than the angles of 108.6 (7)° seen in $[CpCo(\mu-P)]_4$, where the P atoms also cap three metal centers.23 Conversely, the Zr-P-Zr' angle in **2** is significantly smaller than the W-P-W' angles seen in $\text{W}_3(\mu_3-\text{P})(\mu-\text{OCH}_2-t-\text{Bu})_3(\text{OCH}_2-t-\text{Bu})_6$ (71.3 (1)^o).²² These

⁽¹⁹⁾ Crystal data: 1, C₃₂H₃₀P₂Zr₂, black blocks, triclinic, space group $P2_1/n$ **,** $a = 9.998$ **(3) Å,** $b = 16.560$ **(10) Å,** $c = 16.794$ **(5) Å,** $\beta = 95.69$ **(3)^o,** $V = 2766$ (4) A^3 , $D_c = 1.58$ g cm⁻³, $Z = 4$, $\mu = 8.744$ cm⁻¹; 2, $C_{30}H_{27}P$ -
 $Zr_3-C_6H_6$, brown blocks, tetragonal, space group $R\overline{3}$, $a = 14.681$ (2) \overline{A} , c = 23.928 (3) \overline{A} , $V = 4466$ (1) 0.5-mm capillaries under N₂ for crystallographic study. A Rigaku AFC6-S **four-circle diffractometer was employed to collect the data (20 range** 4.5-50°) in each case. Three standards were collected every 150 reflec**tions and in each case showed no evidence of crystal decay. The initial solutions for** both **structures were obtained from the automated Patterson solution portion of** SHELXS-88 **and remaining atoms found and refined by employing the TEXSAN software package from MSC running on a VAX 3520 workstation. The positions of the hydrogen atoms in the cyclopentadienyl and phenyl groups in 1 and 2 were calculated and their** contributions included but not refined. In the case of 1, the hydrogen
atoms on phosphorus were located in a difference map at 1.40 Å from P.
Refinement: 1, 1885 data with $I > 3\sigma(I)$, 225 variables, $R = 0.0567$, $R_w = 0.05$

⁽²¹⁾ Rohmer, M. M.; **Benard, M.** *Organometallics* **1991,** *10,* **157.**

⁽²²⁾ Chisholm, M. **H.; Folting, K.; Pasterczyk,** J. W. *Inorg. Chem.* **1988,27, 3058.**

⁽²³⁾ Simon, *G.* **L.; Dahl,** L. F. *J. Am. Chem. SOC.* **1973,** *95,* **2175.**

structural features of **2** result in a canted orientation of the Cp₂Zr units about the P atom. This precludes π -interaction between the acceptor $1a_1$ orbital on the Cp₂Zr fragments with the lone pair of electrons on P and thus suggests that the capping P atom should be an effective Lewis base. Reactivity studies addressing this issue are in progress.

The mechanisms of the formation of **1** and **2** are the subject of interest. It is clear that the initial reaction of Cp_2ZrCl_2 with n-BuLi generates " Cp_2Zr " in situ.¹⁷ Oxidative addition of P-H gives the reactive species Cp_2ZrH- (PRH). Such intermediates have been observed in related reactions of "Cp*₂Zr" with CyPH₂.¹⁶ Hafnium analogues of these species have been isolated and structurally characterized by Vaughan and Hillhouse.¹¹ In the case of Cp,Zr(PPhH)H, this Lewis acidic intermediate undergoes C-H activation, evolving H_2 and yielding a species in which η^5 : η^1 -cyclopentadienyl groups link two metal centers (3; Scheme I). Subsequent rearrangement with the formation of a C-C bond affords the product **1.** The proposal of the intermediate 3 is supported to some extent by the isolation of **2,** inasmuch **as** this species provides the first structural precedent for such $\eta^5:\eta^1$ -cyclopentadienyl groups between Zr centers.24 Further, Choukroun et al. have recently reported the preparation of the related species $\rm [(CpZrCl)(\mu$ - $\eta^5:\eta^1\text{-}C_5H_4)]_2$ via the thermolysis of $\rm Cp_2ZrHCl$ to $(\text{CpZrCl})_2(\mu\text{-}\eta^5\eta^5\text{-C}_{10}\text{H}_8)^{25}$ while Gambarotta et al.²⁶ have described the synthesis of $\left(\frac{CpZrX}{2}(\mu - \eta^5; \eta^5 - C_{10}H_8) \right)$ and **(X** = SPh, C1, **Br)** from a Zr(II1) species formulated **as** $[CDZr(PMe₃)(\mu-\eta^{1}\eta^{5}-C_{5}H_{4})]_{2}^{27}$ The activation of C-H

(27) Kool, L. B.; Rausch, M. D.; **Alt,** H. G.; Herberhold, M.; Thewalt, U.; Honold, B. J. *Organomet. Chem.* **1986, 310, 27.**

bonds by Zr(IV) centers is **also** supported in principle by recent reports of agostic H interactions with $Cp_2\bar{Z}r(IV)$ centers.28 In the case of **2,** the details of the mechanism of formation are not understood; however, it appears the steric demands of the substituent on $(2,4,6-t-Bu₃Cl₆H₂)PH₂$ preclude dimerization. Apparently, trimerization leads to a stabilization of the $\eta^1:\eta^5$ -C₅H₄ links between the metal centers. The requisite cleavage of the P-C bond may be facilitated by the electron-deficient **Zr** centers. In a related sense, Carty et al.²⁹ have shown that the formally unsaturated ruthenium species $Ru_3(CO)_9(\mu-PPh_2)(\mu-H)$ exhibits a weak interaction between an electron-deficient Ru atom and one of the P-C bonds, which upon heating affords $Ru_{6}(CO)_{16}(\mu-PPh_{2})(\mu-P)$ among other products. The details of this P-C bond activation and the mechanism of formation of **2** are currently under study. Further, the synthetic utility and the factors controlling P-H, C-H, and P-C bond activation in early-metal phosphides are being explored.

Acknowledgment. Financial support from the NSERC of Canada is gratefully acknowledged.

Registry No. 1, 138858-82-9; 2, 138858-84-1; Cp₂ZrCl₂, 1291-32-3; PhPH₂, 638-21-1; (2,4,6-t-Bu₃C₆H₂)PH₂, 83115-12-2.

Supplementary Material Available: Tables **of** crystallographic **data, poeitional** and thermal parameters for non-hydrcgen atoms, hydrogen atom positional parameters, and bond **distances** and angles for 1 and 2 (10 pages); listings of $10F_o$ and $10F_c$ (23 pages). Ordering information is given on any current masthead page.

- *Am. Chem. SOC.* **1974,96, 7586. (30)** Baker, E. C.; Raymond, **K.** N.; Marks, T. J.; Wachter, W. A. *J.*
	- **(31)** Guggenberger, L. J. *Znorg. Chem.* **1973,12, 294.**

 (24) $\eta^1:\eta^5$ -cyclopentadienyl groups are also present in $[Cp_2Th(\eta^5:\eta^1-$

Cp)]₂,³⁰ **[CpNbH**(η ⁵: η ¹-Cp)]₂,³¹ and **[CpTi(PMe₃)**(η ⁵: η ¹-Cp)]₂.²⁵ (25) Choukroun, R.; Raoult, Y.; Gervais, D. *J. Organomet. Chem.* **1990**, **(26)** Wielstra, Y.; Gambarotta, S.; Spek, A. L.; Smeeta, W. J. J. Or- **391, 189.**

ganometallics **1990, 9, 2142.**

⁽²⁸⁾ Bullock, R. M.; Lemke, F. R.; Szalda, D. J. *J. Am. Chem. Soc.* **1990,112,3244.**

⁽²⁹⁾ MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. *Znorg. Chem.* **1983. 22, 1409.**