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Summary: Generation of “Cp,Zr” in the presence of
PhPH, results in P-H activation, affording the intermediate
Cp,Zr(PPhHH. C-H activation and subsequent C-C bond
formation vield the Zr(I111) diphosphide- and fulvalenide-
bridged complex [(n®-Cp)Zr(u?-PPhH)(-1°:n°-C5H,CsH,)].
(1). In the analogous reaction employing (2,4,6-f-
Bu,CgH,)PH,, the isolated product is the trimeric, phos-
phide-capped Zr(IV) species ((n>-CpXu-n"n°-Cp)Zr)(u®-P)
(2). C-H activation is evident as metalated Cp rings
bridge adjacent Zr atoms in a n':n*-fashion. This com-
pound 2 also represents a rare example of a trinuclear
organometallic species containing a capping phosphorus
atom. Further, the structure of 2 implies a mechanism
for the formation of 1 involving the initial formation of a
dimer in which the Zr centers are linked by 7':7%-Cp
moieties.

Despite the fact that the first metallocene Zr(IV) (i.e.
Cp.Zr(PR,);) and M(III) ([Cp,M(PR,)];, M = Ti, Zr)
phosphide complexes were formulated in the middle
1960s,! group 4 phosphides have drawn little attention in
comparison to the analogous metal amide systems.? It was
not until 1983 that Baker et al. published the first defi-
nitive spectroscopic and structural characterization of
group 4 phosphide complexes of the form Cp,M(PR,),.?
Since then, other workers have reported similar com-
pounds,*® while Baker et al. have also reported the hom-
oleptic early-metal phosphide complexes Li{[M(PCy,);] (M
= Zr, Hf) and Li[M(PCy,),] M = Ti, V). Subsequent
studies by the research groups of Bercaw,® Gambarotta,’
Hey,!% and Hillhouse!! have described related species of
the form Cp*Hf(PR,)X, (X = Cl, R, H), [Cp;M(z-PRJ)],,
Cp;M(PR);, and Cp,M(PRH)X (M =Zr, X = Cl; M = Hf,
X = Cl, H), respectively. Most recently we'?!3 and others!¢
have investigated the di- and mononuclear titanocene
phosphide systems [Cp,Ti(u-PRy)],, Li[Cp,Ti(PR,),],
Cp,Ti(PR,)(PMe;), and Cp,Ti(PR,).

Much of the known chemistry of early-metal phosphides
centers on the use of such species as synthetic precursors
to early-late heterobimetallics.!> As part of our efforts
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Figure 1. ORTEP drawing of 1 in the asymmetric unit. Thermal
ellipsoids at the 30% level are shown. All hydrogen atoms except
those on phosphorus are omitted for clarity. Zr1-P1 = 2.627 (4)
A, Zr1-P2 = 2.610 (4) A, Zr2-P1 = 2.609 (4) A, Zr2-P2 = 2.620
(4) A, P1-C21 = 1.83 (1) A, P2-C31 = 1.84 (1) A; P1-Zr1-P2 =
90.5 (1)°, P1-Zr2-P2 = 90.7 (1)°, Zr1-P1-Zr2 = 85.4 (1)°, Zrl-
%’2)—Zr2 = 85.5 (1)°, Zr1-P1-C21 = 127.7 (5)°, Zr2-P2-C31 = 128.1
5)°.

to more fully examine the chemistry of early-metal
phosphides, we have recently employed complexes of the
form Cp,Zr(PRH)H as precursors to phosphido- and
phosphinidene-bridged dimers.'®6 We now wish to report
results which demonstrate that, in some instances, the
Lewis acidity of complexes of the form Cp,Zr(PHR)H may
invoke activation of C~H bonds in the ancillary cyclo-
pentadienyl rings and in some cases result in subsequent
C—C bond formation.

The reaction of Cp,ZrCl, with 2 equiv of n-BuLi in THF
at —78 °C with subsequent warming to 25 °C has been used
as a means of generating zirconocene in situ.'’ Reaction
of “Cp,Zr” with PhPH, results in a darkly colored solution
which upon workup affords black crystals of 1 in a isolated
yield of 25%. The 'H NMR spectrum of 1 shows reso-
nances at 7.1, 5.49, 4.76, and 3.97 ppm attributable to
phenyl, cyclopentadienyl, and fulvalenide moieties.'®* No
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31P resonance was observable at 25 °C. A crystallographic
study of 1 showed it to be the species (CpZr(u-PHPh)),-
(u-n°n®-CoHg).!® An ORTEP drawing is shown in Figure
1. This dimeric Zr(III) species contains CpZr moieties
which are bridged by two phenylphosphido groups as well
as a fulvalenide moiety. The fulvalene ligand is slightly
bent with a 7.9° angle between the planes of the rings
which are linked at C1-C6 (1.47 (2) A). A small twist
between the adjacent rings is evidenced by the dihedral
angles C2-C1-C6-C10 = -5 (2)° and C5-C1-C6-C7 = 4
(2)°. This twist is more significant than that seen in
(CpZr(u-Cl))o(u-1%:n5-C,oHg)® and is attributed to the steric
demands of the bridging phosphido groups. The Zr-P
bond lengths were found to average 2.616 (6) A, which is
slightly shorter than the 2.672 (5) A found in the Zr(III)
dimer [Cp,Zr(u-PMe,)],.° This may be attributed in part
to the presence of the fulvalene ligand in 1, although the
basicity and the orientation of the phenyl substituents on
the P atoms toward the fulvalenide rings also accomodate
stronger Zr-P bonding. The P-Zr-P angles are found to
be 90.5 (1) and 90.7 (1)°, while the Zr-P-Zr angles are 85.4
(1) and 85.5 (1)°. These features are similar to those found
in the related Zr(III) dimer [Cp,Zr(u-PHCy)};:!¢ however,
the Zr,P, core of 1, unlike that of {Cp,Zr(u-PHCy)],, is not
planar; rather, the angle between the ZrP, planes is 30.60°.
The observed diamagnetism of 1 is consistent with anti-
ferromagnetic coupling of the Zr(III) centers, which are
3.549 (2) A apart. Previous studies of phosphido-bridged
Zr(ITT) dimers suggested a through-ligand mechanism!? for
such coupling, although a through-space or “super-long”
bond rationale has also been proposed.?’ In the present
compound 1, a 3'P resonance and 'H resonances attrib-
utable to the P-H hydrogen atoms were not observed.
These observations as well as the location of the P-H
hydrogen atoms in the crystallographic study confirm the
formation of 1 as a Zr(III) dimer and suggest a through-
ligand mechanism of antiferromagnetic exchange may be
operative.

In a related reaction, Mg was employed to reduce
Cp,ZrCl, in the presence of 1 equiv of (2,4,6-t-Bu;CeH,)-
PH, in THF at 25 °C. The solution became dark brown,
and the solvent was removed and replaced with benzene.
Upon the slow diffusion of hexane into the solution brown
crystals of 2 were deposited in approximately 10% yield.
The 3'P{!H} NMR spectrum shows a single resonance at
782.6 ppm. Moreover, the 3P spectrum shows no evidence
of P-H coupling, suggesting the loss of both hydrogen
atoms from the phosphorus atom. The 'H NMR spectrum
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Figure 2. ORTEP drawing of molecule 2. Thermal ellipsoids at
the 30% level are shown. Hydrogen atoms are omitted for clarity.
Zr1-P1 = 2.575 (1) A, Zr1-C10 = 2.288 (4) A; Zr1-P-Zrl’ = 90.14
(5)°, P-Zr1-C10 = 87.1 (1)°.
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shows only resonances attributable to cyclopentadienyl
protons; however, it also shows that both 7® and %55 cy-
clopentadienyl rings are present. These data together with
those from combustion analyses suggested the empirical
formulation of (CpyZr),P.1® An X-ray structural study'®
was essential in the determination of the precise molecular
architecture of 2. The results of the crystallographic study
are depicted in Figure 2. The compound 2 crystallizes in
the space group R3 with two independent molecules in the
unit cell. Thus, each of the molecules sits on a crystallo-
graphically imposed 3-fold axis. Each Zr center is =-
bonded to two cyclopentadienyl rings. In addition, one
of the rings is o-bonded to the adjacent Zr atom. Thus,
by virtue of the 3-fold symmetry, three o—= cyclo-
pentadienyl rings bridge the three Zr atoms. Completing
the coordination sphere of the three Zr atoms is a single
capping phosphorus atom.

The Zr-C distances to the w-cyclopentadienyl ring are
typical, averaging 2.531 (8) A, while the Zr-C o-bond is
2.288 (4) A. The Zr-P distance is 2.575 (1) A, which is
shorter than the Zr-P distances in either Cpy,ZrCl(u-P-
(2,4,6-Me;CgH,))ZrCICp, (2.617 (6) A) or [Cp,Zr(PCyH)],
(2.646 (4) A).1® The Zr-Zr separation is 3.6463 (8) A, which
is much longer than the W-W distances seen in the P-
capped tungsten trimer W(us-P) (u-OCH,-£-Bu);(OCH,-
t-Bu)s (W-W bonds: 2.757 (1) A).22 The Zr-P-Zr’ angle
is 90.14 (5)°. This is much smaller than the angles of 108.6
(7)° seen in [CpCo(u-P)],, where the P atoms also cap three
metal centers.?? Conversely, the Zr-P-Zr’ angle in 2 is

significantly smaller than the W-P-W’ angles seen in
W(ug-P) (u-OCH,-t-Bu)s(OCH-t-Bu)g (71.3 (1)°).2 These
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structural features of 2 result in a canted orientation of
the Cp,Zr units about the P atom. This precludes #-in-
teraction between the acceptor la, orbital on the Cp,Zr
fragments with the lone pair of electrons on P and thus
suggests that the capping P atom should be an effective
Lewis base. Reactivity studies addressing this issue are
in progress.

The mechanisms of the formation of 1 and 2 are the
subject of interest. It is clear that the initial reaction of
Cp,ZrCl, with n-BuLi generates “Cp,Zr” in situ.!” Oxi-
dative addition of P-H gives the reactive species Cp,ZrH-
(PRH). Such intermediates have been observed in related
reactions of “Cp*,Zr” with CyPH,.!¢ Hafnium analogues
of these species have been isolated and structurally
characterized by Vaughan and Hillhouse.!! In the case of
Cp,Zr(PPhH)H, this Lewis acidic intermediate undergoes
C-H activation, evolving H, and yielding a species in which
n%inl-cyclopentadienyl groups link two metal centers (3;
Scheme I). Subsequent rearrangement with the formation
of a C-C bond affords the product 1. The proposal of the
intermediate 3 is supported to some extent by the isolation
of 2, inasmuch as this species provides the first structural
precedent for such n%n'-cyclopentadienyl groups between
Zr centers.?* Further, Choukroun et al. have recently
reported the preparation of the related species
[(CpZrCl)(u-1°n'-C;H,)], via the thermolysis of Cp,ZrHCI
to (CpZrCl)o(u-n%:n°-CyHg),?® while Gambarotta et al.?8
have described the synthesis of (CpZrX)y(u-n®:n°-C,oHsg)
(X = SPh, Cl, Br) from a Zr(III) species formulated as
{CpZr(PMe,) (u-n1:n5-CsH,) 122" The activation of C-H
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bonds by Zr(IV) centers is also supported in principle by
recent reports of agostic H interactions with Cp,Zr(IV)
centers.”? In the case of 2, the details of the mechanism
of formation are not understood; however, it appears the
steric demands of the substituent on (2,4,6-t-BuyC;H,)PH,
preclude dimerization. Apparently, trimerization leads to
a stabilization of the 5':n5-C;H, links between the metal
centers. The requisite cleavage of the P~C bond may be
facilitated by the electron-deficient Zr centers. In a related
sense, Carty et al.? have shown that the formally unsat-
urated ruthenium species Rus(CO)g(u-PPh,)(u-H) exhibits
a weak interaction between an electron-deficient Ru atom
and one of the P-C bonds, which upon heating affords
Ru;(CO)¢(u-PPh,) (u-P) among other products. The de-
tails of this P-C bond activation and the mechanism of
formation of 2 are currently under study. Further, the
synthetic utility and the factors controlling P-H, C-H, and
P-C bond activation in early-metal phosphides are being
explored.
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