Hydro- and Carbozirconation of Multiple-Bonded Low-Coordinated Phosphorus Species

Nathalie Dufour, Anne-Marie Caminade, Mario Basso-Bert, Alain Igau, and Jean-Pierre Majoral*

Laboratoire de Chimie de Coordination du CNRS, UPR 8241 Liée par Conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique de Toulouse, 205 Route de Narbonne, 31077 Toulouse Cedex, France

Received July 30, 1991

Hydrozirconation of phosphaimines RP=NR' (2a-c) $(2a, R = N(SiMe_3)_2, R' = SiMe_3; 2b, R = N-content Network (SiMe_3)_2, R' = N-content Network (SiMe_3)_2, R' = N-content Network (SiMe_3)_3, R' = N-content Network (SiMe$ $(SiMe_3)(tBu), R' = tBu; 2c, R = tetramethylpiperidino, R' = SiMe_3), phosphaalkene (Me_3Si)_2NP=C(H)SiMe_3 (17), or bis(imino)phosphorane (Me_3Si)_2NP(=NSiMe_3)_2 (30) by means of Cp_2ZrHCl takes place with the$ formation either of the three-membered rings zirconaazaphosphirane $Cp_2Zr(Cl)N(R')P(H)R$ (3a-c) and zirconaphosphirane $Cp_2Zr(Cl)C(H)(SiMe_3)P(H)N(SiMe_3)_2$ (18) or the four-membered ring zirconadiaza-phosphetidine $Cp_2Zr(Cl)N(SiMe_3)P(H)[N(SiMe_3)_2]N(SiMe_3)$ (31). Similarly, carbozirconation of phosphaimine 2a leads to the zirconaazaphosphirane $Cp_2Zr(Me)N(SiMe_3)P(Me)N(SiMe_3)_2$ (7). On the other hand, hydrozirconation of 2a with Cp_2ZrH_2 or hydrozirconation of the thioiminophosphorane $Me_3Si-(tBu)NP(=S)(=NtBu)$ (13) gives rise respectively to the acyclic phosphine $(Me_3Si)_2NP(H)NHSiMe_3$ (6) or to the acyclic phosphine sulfide $Me_3Si(tBu)NP(S)HN(H)tBu$ (10b). Addition of Cp_2ZrHC1 to the chlorophosphaalkene $\hat{Cl}P = C(SiMe_3)_2$ (19) affords the diphosphene $(Me_3Si)_2CHP = PCH(SiMe_3)_2$ (20) and the diphosphirane (Me₃Si)₂CHPC(SiMe₃)₂PH (21). An easy hydride-chlorine exchange involving Cp₂ZrHCl and free or complexed halogenated phosphines is observed and allows obtention of the corresponding P-H phosphines. Ligand exchange occurs when the zirconaphosphirane 18 is treated either with the phosphaimine 2a or the bis(imino)phosphorane 30, leading to the zirconaazaphosphirane 3a or the zirconadiazaphosphetidine 31, respectively. Synthesis of stable cationic cyclic zirconium species, the zirconaazaphosphirane cations $[(CH_3C=N)Cp_2ZrN(SiMe_3)P(H)[N(SiMe_3)_2][X]$ (15, 16) (15, X = CF₃SO₃; 16, X = BPh₄) or the $zirconadiazaphosphetidine \ cation \ [(CH_3C=N)Cp_2ZrN(SiMe_3)P(H)[N(SiMe_3)_2]N(SiMe_3)][CF_3SO_3] \ (38),$ involving dissociation of a covalent zirconium-oxygen bond, are also reported.

Introduction

The chemistry of the group 4 metals in their higher oxidation states is characterized by their propensity to form strong bonds with hard donor atoms such as chlorine, fluorine, oxygen, or nitrogen. These strong metal-heteroatom interactions are often the driving force for many reactions involving compounds containing oxygen or nitrogen. Hydrozirconation, by means of Cp₂ZrHCl or Cp₂ZrH₂, of unsaturated organic species is also well-known and can be compared to hydroboration with alkylboranes.

As we have a longstanding interest both in the chemistry of unsaturated main group element species¹ and in the behavior of anionic or neutral metallic hydrides,² it appeared extremely interesting to explore the reactivity of zirconium derivatives such as Cp₂ZrHCl, Cp₂ZrH₂, or Cp₂ZrMe₂ toward halogenated or nonhalogenated low-coordinated phosphorus species such as iminophosphanes RP=NR', phosphaalkenes $RP=CR'_2$, or bis(imino)phosphoranes $RP(=NR')_2$.

Such a study was of potential interest for several reasons. In particular we wished to know whether the presence of $\lambda^2 \sigma^3$ - or $\lambda^3 \sigma^5$ -phosphorus (λ = coordination number; σ = valency for phosphorus) facilitates the hydrozirconation and eventually the carbozirconation and allows the formation of small rings possessing phosphorus-zirconium dative bonds. A few three-membered rings³ including in one case a phosphorus-carbon-zirconium ring⁴ have been prepared so far, but none of the reported experiments involved Cp₂ZrHCl or Cp₂ZrMe₂ and low-coordinated heavier main-group elements. In our case, the polarity of phosphorus-nitrogen or phosphorus-carbon double bonds would play a key role.

We also wanted to know whether it is possible to take advantage of the high halophilicity of zirconium to initiate hydride-halogen exchange and therefore to prepare phosphorus derivatives difficult to obtain via classical reactions.

Last, it was also of interest to check whether the presence of phosphorus-zirconium or nitrogen-zirconium bonds makes easier to a certain extent the dissociation of the strong zirconium-chlorine or zirconium-oxygen bonds and helps in the stabilization of new cationic zirconium derivatives.

In previous communications,⁵ we have reported a simple quantitative preparation of zirconaazaphosphiranes and zirconaphosphiranes and some preliminary results concerning the reactivity of these derivatives.

⁽¹⁾ See for example: Roques, C.; Mazières, M. R.; Majoral, J.-P.; Sanchez, M.; Foucaud, A. Organometallics 1989, 54, 5535. Majoral, J.-P.; Sanchez, M.; Foucaud, A. Organometatuts 1955, 97, 0000. Majora, J., Roques, C.; Mazières, M. R.; Jaud, J.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1989, 1496. Dufour, N.; Caminade, A.-M.; Majoral, J.-P. Tetrahedron Lett. 1989, 30, 4813. Caminade, A.-M.; Roques, C.; Dufour, N.; Colombo, D.; Gonce, F.; Majoral, J.-P. Tetrahedron Lett. 1989, 30, 0820. Destando L. Majoral, J.-P. Tetrahedron Lett. 1989, 30, 1980. 6869. Bertrand, G.; Majoral, J.-P.; Baceiredo, A. Acc. Chem. Res. 1986, 19, 17 and references therein.

⁽²⁾ See for example: Attali, S.; Dahan, F.; Mathieu, R.; Caminade A.-M.; Majoral, J.-P. J. Am. Chem. Soc. 1988, 110, 1990. Galindo del Pozo, A.; Caminade, A.-M.; Mathieu, R.; Majoral, J.-P. J.Chem. Soc., Chem. Commun. 1988, 574. Caminade, A.-M.; Majoral, J.-P. J.Chem. Soc., M.; Mathieu, R.; Attali, S.; Grand, A. Organometallics 1987, 6, 1459. Mathieu, R.; Caminade, A.-M.; Majoral, J.-P.; Daran, C. J. Am. Chem. Soc. 1986, 108, 8007 and references therein.

⁽³⁾ See for example: Nigishi, E.; Takamashi, T. Synthesis 1988, 1.1. Erker, G.; Schlund, R.; Krüger, C. Organometallics 1989, 8, 2349. Bu-chwald, S. L.; Wannamaker, M. W.; Watson, B. T. J. Am. Chem. Soc. 1989, 111, 776. Hey, E.; Müller, U. Z. Naturforsch 1989, 44B, 1538. Erker, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 397 and references therein.

⁽⁴⁾ Karsch, H. H.; Denbelly, B.; Hofmann, J.; Pieper, U.; Müller, G.

^{(5) (}a) Majoral, J.-P.; Dufour, N.; Meyer, F.; Caminade, A.-M.; (5) (a) Majoral, J.-P.; Dufour, N.; Meyer, F.; Caminade, A.-M.; Choukroun, R.; Gervais, D. J. Chem. Soc., Chem. Commun. 1990, 507.
(b) Dufour, N.; Majoral, J.-P.; Caminade, A.-M.; Choukroun, R.; Dromzee, Y. Organometallics 1991, 10, 45.

Herein we describe full details of this work as well as the following: (i) the preparation of new cationic zirconium phosphorus cyclic compounds, (ii) the first example of carbozirconation of dicoordinated phosphorus species, (iii) the direct transformation of zirconaphosphirane 18 to zirconaazaphosphirane 3a or zirconadiazaphosphetidine 31 involving an unusual ligand exchange, and (iv) the easy hydride-chlorine exchange involving Cp_2ZrHCl and free or complexed halogenated phosphines.

Results and Discussion

Addition of the hydride Cp₂ZrHCl (1) to a THF solution of phosphaimines $2\mathbf{a}-\mathbf{c}$ at 0 °C afforded in nearly quantitative yield the zirconaazaphosphiranes $3\mathbf{a},\mathbf{b}$ (two isomers due to the presence of two different substituents on the exocyclic nitrogen atom) or $3\mathbf{c}$ (Scheme I), fully characterized by NMR, IR, and mass spectrometry (see Experimental Section) and in one case ($3\mathbf{a}$) by single-crystal X-ray diffraction studies.^{5b}

A 1-2 addition of Cp_2ZrHCl to the phosphorus nitrogen double bond of **2a**-c followed by cyclization is a reasonable postulation to explain the formation of these derivatives although an insertion of the phosphaimine into a Zr-H bond with transient formation of a metallaiminophosphorane RP(H)(ZrCp_2Cl)=NR' (4) cannot be totally ruled out. Nevertheless no example of such a metallaphosphorane has been reported so far.

Such a cyclization was not observed when the phosphaimine 2a was reacted with Cp_2ZrH_2 under the same experimental conditions. Two new species can be distinguished by ³¹P NMR spectroscopy: 5, $\delta = 12.8$ ppm (d, ¹J_{PH} = 212 Hz), and 6, $\delta = 33.9$ ppm (d, ¹J_{PH} = 214 Hz). Pentane extraction allowed us to isolate 6, while 5 disappeared during workup. This may be ascribed to the loss of the Cp₂ZrH fragment (hydrolysis of the zirconium nitrogen bond) and, therefore, transformation of 5 into 6 (Scheme I). Derivative 6 was already prepared by hydrogenation of 2a using lithium aluminum hydride or borane-dimethylamine as reducing agent.⁶ ³¹P and ¹H NMR data for 5 are in agreement with a linear structure and not a cyclic structure—similar to 3a, 3b, or 3c, which would have presented higher direct phosphorus-hydrogen coupling constant (see above). Indeed, ¹J_{PH} values of \approx

10a:

10b:

200-240 Hz are typical of secondary phosphines of the $R_2NP(H)R$ type. Therefore, it seems that a zirconaazaphosphirane with a Zr-H bond—if formed—is not stable and rearranges into the corresponding linear form.

Scheme III

Co₂ZrHCl

t-Bu

⊁Bu

3a.b

Interestingly, treatment of 2a with Cp₂ZrMe₂ led to the zirconaazaphosphirane 7 (Scheme I). NMR data suggest a cyclic structure for 7. Thus, the ¹H NMR spectrum exhibits two doublets for the Cp groups at 5.54 and 5.68 ppm with phosphorus-hydrogen coupling constants of 2.1 and 1.4 Hz. Similar J_{PH} values were observed for the zirconaazaphosphirane 3a (2.7 and 1.9 Hz). The ³¹P{H} resonance for 7 (+35.3 ppm) is \approx 50-70 ppm upfield from the region expected for diamidoalkylphosphanes [(Me₃Si)₂NP(Me)N(BMe₂)SiMe₃, 103.5 ppm;⁷ MeP-(NMe₂)₂, 86.4 ppm; EtP(NMe₂)₂, 99.9 ppm; C₆H₁₁P-(NMe₂)₂, 107.1 ppm].⁸ The presence of a methyl group on phosphorus and on zirconium is confirmed by ¹³C NMR spectroscopy.

Formation of 7 is of particular interest since this reaction is the first example of carbozirconation of an unsaturated main group element species. Dimethyldicyclopentadienylzirconocene was previously reported to react with ketenes, isocyanates, carbodiimides, etc., which insert into a Zr-Me bond with concomitant methylation on the sp² carbon.³

We have already reported^{5b} ring-opening reactions involving zirconaazaphosphiranes 3a, b and $Fe_2(CO)_9$, S_8 , or Se (Scheme II). While a transient intermediate 8b can be detected by ³¹P NMR spectroscopy in the case of treatment of 3b with $Fe_2(CO)_9$, we were not able to characterize an intermediate in the case of the addition of S_8 to 3a: only the phosphane sulfide 10a was isolated. One can postulate that reaction of 3a with S_8 proceeded with ring-opening, sulfurization on phosphorus with formation either of the corresponding four-membered ring 11 or the linear N-zirconium species 12. Hydrolysis of 11 or 12 afforded 10a (the oxide $(Cp_2ZrCl)_2O$ was isolated). In the hope of generating a four-membered ring analogous to the hypothetical species 11, Cp₂ZrHCl was added to the thioiminophosphorane 13 (Scheme III). ³¹P NMR spectra of the resulting mixture revealed the presence of a major signal at 31.4 ppm besides that of a minor peak at 52.1 ppm. Successive extractions with pentane allowed the isolation of the major derivative, which was identified as

X=S R=N(SiMe₂)₂ R'=SiMe₂

10c: X=Se R=N(SiMe₃)₂ R'=SiMe₃

10b

X=S R=N(SiMe3)(t-Bu) R'=t-Bu

⁽⁷⁾ Cowley, A. H.; Kilduff, J. E.; Wilburn, J. C. J. Am. Chem. Soc. 1981, 103, 1575.

⁽⁸⁾ Gruchfield, M. M.; Dungan, C. H.; Letcher, J. H.; Mark, V.; Van-Wazer, J. R. Top. Phosphorus Chem. 1967, 5, 227 and references therein.

the phosphane sulfide 10b. Formation of 10b might be explained by hydrolysis of the very unstable four-membered ring 11.

All these examples reported reactions involving ring opening of three- or four-membered rings. However ring retention was observed when **3a** was added to (trimethylsilyl)trifluoromethanesulfonate or methyltrifluoromethanesulfonate in dichloromethane (Scheme IV). The corresponding zirconazaphosphirane 14 possessing a Zr–O covalent bond was formed as well as trimethylchlorosilane.^{5b} Dissociation of the Zr–O bond occurred when dichloromethane was replaced by a more polar solvent such as acetonitrile: the ionic zirconium ring 15 was thus quantitatively obtained. IR spectroscopy confirmed the existence of an ionic triflate ($\nu_{SO_3} = 1270 \text{ cm}^{-1}$ to be compared to $\nu_{Zr-OSO_2} = 1377 \text{ cm}^{-1}$ characteristic of a covalently bound triflate in 14⁹). The equivalent conductance of 15, viz. 95 mho cm² equiv⁻¹, clearly indicated the ionic character of this derivative.

An easy exchange of anion took place when 15 was reacted with NaBPh₄ in acetonitrile giving rise to complex 16, which could be directly obtained by reacting the zirconaazaphosphirane 3a with NaBPh₄ in acetonitrile. Conductimetry measurements also confirmed the ionic character of 16 (equivalent conductance 70 mho cm² equiv⁻¹). Interestingly, a neutral form can be directly generated without the intervention of solvent effect. Indeed, treatment of 15 in acetonitrile with sodium azide resulted in the formation of the cyclic zirconium azide 3d $(\nu_{N_3} = 2084 \text{ cm}^{-1}; \text{ no conductivity was observed for 3d}).$ Noteworthy is the fact that 3d was not formed when 3a was treated with sodium azide in tetrahydrofuran or acetonitrile (Scheme IV). Proofs of ring retention in compounds 3d and 14-16 are given by large phosphorus-proton coupling constants ${}^{1}J_{PH}$ from 330 to 377 Hz and by small phosphorus-Cp coupling constants from 1.8 to 2.8 Hz.

Hydrozirconation of phosphaalkenes is also reported. We demonstrated⁵ that addition of Cp_2ZrHCl (1) to a tetrahydrofuran solution of the phosphaalkene 17 at -20 °C gave the metallacycle 18 in near-quantitative yield, while treatment of 1 with the P-halogenated phosphaalkene 19 afforded the diphosphene 20 as the major product of the reaction, the diphosphirane 21, and some not yet identified products (Scheme V). Formation of 18 can formally be viewed as a 1-2 addition of 1 onto the phosphorus-carbon double bond followed by cyclization. Formation of 20 can be regarded as the result of a reverse 1-2 addition of the zirconium hydride to the P-C double

Scheme V

bond with transient formation of 22 followed by Cp_2ZrCl_2 elimination. Derivative 21 might result from the insertion of a phosphinidene (Me₃Si)₂CHP on the phosphoruscarbon double bond of 19, the resulting P-halogenated three-membered ring 23 reacting with Cp_2ZrHCl to give 21. Compound 21 can also be prepared directly by reaction of 23 independently prepared² with tributyltin hydride. Such a chlorine-hydride exchange initiated with 1 is not astonishing, since 1 easily reacted with halogenated phosphorus derivatives whatever the coordination mode of phosphorus. For example, addition of 1 to 24, 25 (one isomer), or 26 afforded 27, 28 (one isomer), or 29 in excellent yields (Scheme VI).

Of interest was the obtention of the secondary phosphine tungsten complex 29 by treatment of the corresponding halogenophosphaalkene complex 26 with Cp_2ZrHCl . Beside the expected chlorine-hydrogen exchange, hydrogenation of the phosphorus carbon double bond occurred.

It should be pointed out that no carbozirconation took place when the phosphaalkene 17 was reacted with Cp_2ZrMe_2 .

Surprisingly, a quite unusual exchange ligand occurred when a stoichiometric amount of phosphaimine 2a was added to a THF solution of the zirconaphosphirane 18 at room temperature. ³¹P NMR spectra of the resulting mixture consisted of a singlet at +33.3 ppm characteristic of the zirconaphosphirane 3a and a singlet at 309.2 ppm due to the recovered phosphaalkene 17 (Scheme VII). An analogous exchange took place when 18 was reacted with the bis(imino)phosphorane 30, leading to 17 and to the new four-membered ring 31 in which the zirconium is bonded to two nitrogen atoms, a chlorine atom, and two Cp groups. Evidence for the formation of 31 was confirmed by NMR

⁽⁹⁾ Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1990, 112, 2673 and references therein.

spectrometry (see Experimental Section). It is worth noting that no exchange ligand occurred when the zirconaphosphirane 18 was mixed with the phosphaalkyne P=C-tBu (32), although 32 even reacted at -50 °C with Cp₂ZrHCl to give the expected 1-2 addition product.¹⁰ It should be also noted that no exchange took place when 3a was treated with the bis(imino)phosphorane 30 or when the four-membered ring 31 was added to the phosphaimine 2a. Although the three-membered ring was the only detectable product when the phosphaalkene 17 was reacted with Cp_2ZrHCl , it is clear that 18 existed in equilibrium with the starting reagents, the equilibrium being largely displaced toward the cyclic form (Scheme VII). Therefore, the polarity of the double bond seems to be the driving force in this type of reaction, the polarity of the phosphorus-nitrogen bond being higher than that of the phosphorus-carbon double or triple bond.

Compound 31 can be directly obtained by reacting the bis(imino)phosphorane 30 with Cp₂ZrHCl in solution at -20 °C (Scheme VIII). Up to now, organometalation of 30 was observed in the reactions with alkyl or aryl derivatives of main-group or transition elements. Indeed,

treatment of ZrCl₄ with 30 or its lithium salt¹¹ or with (bis(trimethylsilyl)amino)diphenyl((trimethylsilyl)imino)phosphorane (33)¹² afforded the heterocycles 34-36 (Scheme VIII).

Reaction of 31 with Me₃SiOTf (OTf = OSO_2CF_3) in dichloromethane readily afforded the triflate derivative 37. Chemical and spectroscopic properties for this yellow light solid suggested the presence of a covalent Zr-O bond. This derivative was soluble in nonpolar solvents, and the infrared spectrum in dichloromethane contained a band at 1322 cm⁻¹ that could be attributed to the triflate group. A slight shielding effect was observed on the ³¹P NMR spectrum, which showed a doublet at -2.3 ppm with ${}^{1}J_{PH}$ = 538 Hz. Evaporation of dichloromethane followed by dissolution of the resulting powder in acetonitrile led to the dissociation of the Zr-O bond and the formation of the corresponding ionic zirconium adduct 38 (Scheme IX). The infrared spectrum of 38 in acetonitrile was consistent with the presence of ionic triflate, since the band at 1322 cm^{-1} disappeared on behalf of the one at 1279 cm^{-1} (see above). ³¹P, ¹H, and ¹³C NMR data were consistent with the cyclic ionic structure. Conductimetry measurements in acetonitrile also indicated the ionic nature of 38. In this case, the equivalent conductance of 38 measured for a 0.01 M solution at 24 °C was 106 mho cm² equiv⁻¹. This value compared well with the value found for 15 and 16 (see above).

Derivatives 15, 16, and 38 are the first examples of ionic zirconium phosphorus ring systems reported.

Hydrozirconation of bis(imino)phosphorane 30 was also performed with Cp₂ZrH₂ in THF and led to the P-H species 39 (Scheme X). Although the experimental values did not allow us to choose between a cyclic structure A or the corresponding linear form B, the polarity of the remaining phosphorus-nitrogen double bond in B strongly

⁽¹⁰⁾ Majoral, J.-P.; Dufour, N.; Caminade, A.-M.; Regitz, M. Unpublished results.

⁽¹¹⁾ Romanenko, V. D.; Shulgin, V. F.; Skopenko, V. V.; Markowskii, (11) Romanenko, V. D.; Shugen, V. F., Skopenko, V. V.; Matwashi,
 L. N. Zh. Obshch. Khim. 1985, 55, 538. Markowskii, L. N.; Romanenko,
 V. D.; Shulgin, V. F.; Ruban, A. V.; Chernega, A. N.; Antipin, M. Yu;
 Struchkov, Yu. T. Zh. Obshch. Khim. 1985, 55, 1752. Niecke, E.; Kröher,
 R.; Pohl, S. Angew. Chem., Int. Ed. Engl. 1977, 16, 864.
 (12) Witt, M.; Stalke, D.; Henkel, T.; Roesky, H. W.; Sheldrick, G. M.

J. Chem. Soc., Dalton Trans. 1991, 663.

suggested cyclization and formation of the expected four-membered ring as usually observed (see Scheme VIII and ref 11). Attempts to obtain suitable crystals for X-ray analysis nevertheless failed and did not permit an unambiguous choice.

Conclusion

Hydrozirconation with Cp₂ZrHCl of $\lambda^2 \sigma^3$ -phosphorus species such as phosphaimines 2a-c, phosphaalkene 17, or $\lambda^3 \sigma^5$ -phosphorus compounds such as bis(imino)phosphorane 30 proceeded with concomitant cyclization giving rise to functionalized three- and four-membered rings. Moreover, Cp₂ZrMe₂ reacted with 2a affording a new example of carbozirconation in main group element chemistry. Ring opening and ring retention of some of these species were reported allowing the synthesis of the corresponding linear phosphine sulfides or complexes and the preparation of the first cationic cyclic zirconium phosphorus derivatives.

The halophilicity of zirconium has to be taken into account to explain the particular reaction observed between the P-halogenated phosphaalkene 17 and Cp₂ZrHCl. This halophilicity also allowed an easy hydride-chlorine exchange between free or complexed halogenated phosphines and the Schwartz reagent. The higher polarity of the phosphorus-nitrogen double bond compared to the phosphorus-carbon double bond led to unusual ligand exchanges and direct transformation of the zirconaphosphirane 18 to the zirconaazaphosphirane 3a or the zirconadiazaphosphetidine 31.

Experimental Section

General Methods. All experiments were performed in an atmosphere of dry argon. Dry and oxygen-free solvents were used at all times.

¹H and ¹³C NMR spectra were recorded on a Bruker WM 250 or a Bruker AC 80 spectrometer. ¹H and ¹³C NMR chemical shifts are reported in part per million relative to Me₄Si as internal reference. ³¹P NMR spectra were obtained on a Bruker WM 250 or a Bruker AC 80 instrument. Downfield shifts are expressed with a positive sign, in parts per million, relative to external 85% H_3PO_4 . Infrared spectra were recorded on a Beckman IR 10 or Perkin-Elmer 225 spectrometer, using polystyrene for calibration. Mass spectra were obtained on a Varian MAT 311 A instrument. Compounds 1,¹³ 2a,¹⁴ 2b,¹⁵ 2c,¹⁶ 13,¹⁵ 17,¹⁷ 19,¹⁸ 24,¹⁶ 25,¹⁹ 23,¹⁹ 26^{20} and 30^{21} were prepared according to the literature.

Synthesis of Zirconaazaphosphiranes 3a,b. A stoichiometric amount of Cp₂ZrHCl was added to a solution of phosphaimine 2a-c (1 mmol) in THF (15 mL) at -20 °C. Dissolution and therefore reaction of Cp₂ZrHCl started at 0 °C. After stirring of the solution under argon for 15 min, the solvent was removed under reduced pressure and the resulting orange mixture was treated with 2×5 mL of pentane. Upon evaporation of pentane, 3a (80%), 3b (two isomers, 80%), and 3c (75%) were obtained as air- and moisture-sensitive white powders.

3a: ³¹P NMR (C_6D_6) δ 33.3 (d, ¹ J_{PH} = 318 Hz); ¹H NMR (C_6D_6) $\delta 0.35$ (s, 18 H, N[Si(CH₃)₃]₂), 0.53 (s, 9 H, NSi(CH₃)₃), 5.85 (d,

N. Zh. Obshch. Khim. 1984, 54, 465; J. Gen. Chem. USSR 1984, 54, 415. (11) Niecke, E.; Schoeller, W. W.; Wildbredt, D. A. Angew. Chem., Int.

- (11) Niecke, E.; Schoeuer, W. W.; Wildbredt, D. A. Angew. Chem., Int. Ed. Engl. 1981, 20, 131.
 (18) Yoshifuji, M.; Toyota, K.; Inamoto, N.; Hirotsu, K.; Higuchi, T. Tetrahedron Lett. 1985, 26, 6443.
 (19) Caminade, A.-M.; Majoral, J.-P.; Mathieu, R.; Yeung Lam Ko, Y.
 Y. C. J. Chem. Soc., Chem. Commun. 1987, 639.
 (20) Majoral, J.-P.; Dufour, N. Unpublished results.
 (21) Nicoke F. Elick W. Angew. Chem. Chem. J. M. Elicker, 12, 124
- (21) Niecke, E.; Flick, W. Angew. Chem., Int. Ed. Engl. 1974, 13, 134.

 $J_{\rm PH}$ = 2.7 Hz, 5 H, Cp), 5.99 (d, $J_{\rm PH}$ = 1.9 Hz, 5 H, Cp), 6.64 (d, ${}^{1}J_{PH} = 318 \text{ Hz}, 1 \text{ H}, PH$; ${}^{13}C \text{ NMR} (C_{6}D_{6}) \delta 3.9 (s, Si(CH_{3})_{3}), 110.2$ (s, Cp), 111.1 (s, Cp); mass spectrum m/e 534. Anal. Calcd for C₁₉H₃₈ClN₂PSi₃Zr: C, 42.54; H, 7.14; N, 5.22. Found: C, 42.40; H, 7.11; N, 5.22.

3b: two isomers in 70:30 ratio. Isomer 1: ³¹P NMR (C₆D₆) δ 3.5 (d, ¹J_{PH} = 335 Hz); ¹H NMR (C₆D₆) δ 0.35 (d, ⁴J_{PH} = 1.1 Hz, 9 H, $NSi(CH_3)_3$, 1.30 (d, ${}^{4}J_{PH} = 1.1$ Hz, 9 H, $C(CH_3)_3$), 1.36 $(d, {}^{4}J_{PH} = 2.0 \text{ Hz}, 9 \text{ H}, C(CH_{3})_{3}), 5.80 (d, J_{PH} = 2.6 \text{ Hz}, 5 \text{ H}, Cp),$ 5.96 (d, $J_{PH} = 1.6$ Hz, 5 H, Cp), 6.56 (d, ${}^{1}J_{PH} = 332$ Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 7.1 (s, Si(CH₃)₃), 32.1 (d, ³J_{CP} = 5.4 Hz, C- $\begin{array}{l} (CH_{3})_{3}, 33.8 \ (d, {}^{3}J_{CP} = 12 \ Hz, C(CH_{3})_{3}), 56.0 \ (d, {}^{5}J_{CP} = 0.5 \ Hz, 9 \ (CH_{3})_{3}), 36.0 \ (d, {}^{5}J_{CP} = 12 \ Hz, C(CH_{3})_{3}), 56.0 \ -57.0 \ (m, C(CH_{3})_{3}), 109.9 \ (s, Cp), 111.1 \ (s, Cp). \ Isomer 2: \ {}^{31}P \ MMR \ (C_{6}D_{6}) \ \delta -12.0 \ (d, {}^{4}J_{PH} = 0.5 \ Hz, 9 \ (d, {}^{4}J_{PH} = 0.5 \ Hz$ H, NSi(CH₃)₃), 1.13 (s, 9 H, C(CH₃)₃), 1.44 (s, 9 H, C(CH₃)₃), 5.89 (d, $J_{PH} = 2.0$ Hz, 5 H, Cp), 6.09 (d, $J_{PH} = 1.9$ Hz, 5 H, Cp), 6.41 (d, ${}^{1}J_{PH} = 334.0$ Hz, 1 H, PH); ${}^{13}C$ NMR (C₆D₆) δ 6.4 (s, Si(CH₂)₃), 31.8 (d, ${}^{3}J_{CP} = 4.8$ Hz, C(CH₃)₃), 33.3 (d, ${}^{3}J_{CP} = 7.6$ Hz, C(CH₃)₃), 56.0-57.0 (m, C(CH₃)₃), 111.2 (s, Cp), 113.8 (s, Cp); mass spectrum m/e 502. Anal. Calcd for C₂₁H₃₈ClN₂PSiZr: C, 50.02; H, 7.59; N, 5.56. Found: C, 49.69; H, 7.55; N, 5.31.

3c: ³¹P NMR (C_6D_6) δ 22.0 (d, ¹ J_{PH} = 307 Hz); ¹H NMR (C_6D_6) δ 0.47 (s, 9 H, N[Si(CH₃)₃]₂), 1.26 (s, 12 H, C(CH₃)₂), 1.32 (s, 6 b 0.47 (s, 9 H, N(S1CH₃)₃)₂), 1.26 (s, 12 H, C(CH₃)₃), 1.32 (s, 6 H, CH₂), 5.74 (d, $J_{PH} = 2.6$ Hz, 5 H, Cp), 5.96 (d, $J_{PH} = 1.8$ Hz, 5 H, Cp), 6.67 (d, ${}^{1}J_{PH} = 307$ Hz, 1 H, PH); 13 C NMR (C₆D₆) δ 4.4 (d, ${}^{3}J_{CP} = 2.5$ Hz, Si(CH₃)₃), 17.7 (s, CCH₃), 30.0–35.0 (m, CH₂), 43.6 (d, ${}^{2}J_{CP} = 4.8$, CCH₃), 109.8 (s, Cp), 112.1 (s, Cp); mass spectrum m/e 514. Anal. Calcd for C₂₂H₃₈ClN₂PSiZr: C, 51.18; H 7.42: N 5.442. Found: C 50.79; H 7.72: N 5.40 H, 7.42; N, 5.43. Found: C, 50.78; H, 7.72; N, 5.40.

3d: ³¹P NMR (CH₂Cl₂) δ 33.8 (d, ¹J_{PH} = 330 Hz); ¹H NMR $(C_6D_6) \delta 0.33 (s, 18 H, N[Si(CH_3)_3]_2), 0.41 (s, 9 H, NSi(CH_3)_3),$ 5.90 (d, $J_{PH} = 2.7$ Hz, 5 H, Cp), 6.10 (d, $J_{PH} = 1.8$ Hz, 5 H, Cp), 6.90 (d, ${}^{1}J_{PH} = 330$ Hz, 1 H, PH); ${}^{13}C$ NMR (C₆D₆) δ 3.9 (s, Si(CH₃)₃) 110.1 (s, Cp), 111.4 (s, Cp); IR (CH₂Cl₂) 2084 (ν_{N_3}) cm⁻¹.

Synthesis of Diaminophosphane 6. A stoichiometric amount of Cp₂ZrH₂ was added to a solution of 1 mmol of phosphaimine 2a (278 mg) in 15 mL of toluene at -20 °C. The reaction started at room temperature. After being stirred for 15 min, the pink solution was stripped in vacuo leaving a red oil. The colorless diaminophosphane 6⁶ (50%) was extracted with 2×5 mL of pentane.

Synthesis of Zirconaazaphosphirane 7. A THF solution (10 mL) of Cp₂ZrMe₂ (251 mg, 1 mmol) was added to a solution of the phosphaimine 2a (278 mg, 1 mmol) in 20 mL of THF at -20 °C. The mixture was stirred for 30 min at room temperature and the solvent evaporated. The resulting orange oil was washed twice with 3 mL of a 1/1 CH₃CN/Et₂O solution giving rise to 7 (85%) as a white powder: ³¹P̃ NMR (C_6D_6) δ 35.3 (s); ¹H NMR $(C_6D_6) \delta 0.29 \text{ (s. 18 H, N[Si(CH_3)_3]_2)}, 0.32 \text{ (s. 9 H, NSi(CH_3)_3)}, 1.41 \text{ (d. }^2J_{PH} = 4.6 \text{ Hz}, 3 \text{ H, PCH}_3); 5.54 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); 5.68 \text{ (d. }J_{PH} = 1.4 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, 5 \text{ H}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ NM} (C_6D_6) \delta 5.1 \text{ (d. }J_{PH} = 2.1 \text{ (d. }J_{PH} = 2.1 \text{ Hz}, \text{Cp}); {}^{13}\text{C} \text{ (d. }J_{PH} = 2.1 \text{ (d.$ ${}^{3}J_{CP} = 5.0 \text{ Hz}, \text{Si}(CH_3)_3), 6.7 (d, {}^{3}J_{CP} = 2.5 \text{ Hz}, \text{Si}(CH_3)_3), 20.4 (d, {}^{2}J_{CP} = 6.6 \text{ Hz}, \text{ZrCH}_3), 23.4 (d, {}^{1}J_{CP} = 8.4 \text{ Hz}, \text{PCH}_3), 106.9 (s, Cp), 109.1 (s, Cp); mass spectrum <math>m/e 513 (M^+ - CH_3)$. Anal. Calcd for C₂₁H₄₃N₂PSi₃Zr: C, 47.58; H, 8.18; N, 5.29. Found: C, 47.37; H, 8.08; N, 5.14.

Synthesis of Phosphane Complexes 9a,b. Excess of Fe₂(CO)₉ (2 equiv) was added to a solution of the metallacycle 3a or 3b (0.8 mmol) in 10 mL of THF at -30 °C. The resulting solution was stirred overnight at room temperature. Evaporation of the solvent, followed by extraction with pentane $(2 \times 10 \text{ mL})$, resulted in dark-brown oils: 9a (59%); 9b (50%).

9a: ³¹P NMR (C_6D_6) δ 87.6 (d, J_{PH} = 407 Hz); ¹H NMR (C_6D_6) δ 0.01 (s, 9 H, Si(CH₃)₃), 0.29 (s, 18 Hz, N[Si(CH₃)₃]₂), 7.72 (dd, ${}^{1}J_{PH} = 407.0 \text{ Hz}, {}^{3}J_{HH} = 8.0 \text{ Hz}, 1 \text{ H}, \text{PH}); {}^{13}\text{C} \text{ NMR} (C_6D_6) \delta 2.5$ (s, Si(CH₃)₃), 3.8 (s, Si(CH₃)₃), 215.1 (d, ${}^{2}J_{CP} = 21.3 \text{ Hz}, \text{CO}); \text{mass}$ spectrum m/e 448. Anal. Calcd for $C_{13}H_{29}\text{FeN}_{2}O_4\text{PSi}_{3}$: C, 34.81; H, 6.52; N, 6.25. Found: C, 34.76; H, 6.47; N, 6.19.

9b: ³¹P NMR (C_6D_6) δ 65.4 (dd, ¹ J_{PH} = 435 Hz, ² J_{PH} = 20 Hz); ¹H NMR (C_6D_6) δ 0.26 (s, 9 H, Si(CH₃)₃), 0.97 (s, 9 Hz, C(CH₃)₃), 1.16 (s, 9 H, C(CH₃)₃) 7.90 (dd, ¹J_{PH} = 435 Hz, ³J_{HH} = 7 Hz, 1 H, PH); ¹³C NMR (C_6D_6) δ 5.6 (s, Si(CH₃)₃), 30.0 (d, ³J_{PC} = 4.2 Hz, C(CH₃)₃), 33.1 (d, ³J_{PC} = 4.7 Hz, C(CH₃)₃), 54.3 (d, ³J_{PC} = 4.2) 13.4 Hz, $C(CH_3)_3$, 58.4 (s, $C(CH_3)_3$), 215.2 (d, ${}^2J_{CP} = 20.8$ Hz, CO); mass spectrum m/e 416. Anal. Calcd for $C_{15}H_{29}FeN_2O_4PSi:$ C, 43.27; H, 7.02; N, 6.73. Found: C, 43.19; H, 7.11; N, 6.64.

⁽¹³⁾ Buchwald, S. L.; Lamaire, S. J.; Nielsen, R. B.; Watson, B. T.;
King, S. M. Tetrahedron Lett. 1987, 28, 3895.
(14) Niecke, E.; Flick, W. Angew. Chem., Int. Ed. Engl. 1973, 12, 585.
(15) Scherer, O.; Kuhn, N. Angew. Chem., Int. Ed. Engl. 1974, 13, 811.
(16) Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V.; Markowskii, L.

Synthesis of Phosphane Sulfides 10a⁶ and 10b, from Metallacycles 3a and 3b. Powdered sulfur (0.9 mmol) in 10 mL of toluene was added to a solution of 0.6 mmol of metallacycle 3a (167 mg) or 3b (148 mg) at room temperature, and the mixture was stirred for 2 days. After filtration, the resulting solution was concentrated. The slightly yellow 10b, or green 10a, product, which turned out to depose slowly in THF and benzene, was obtained in quantitative yield.

10a: ³¹P NMR (C_6D_6) δ 36.3 (d, ¹J_{PH} = 534 Hz); mass spectrum m/e 312. Anal. Calcd for $C_9H_{29}N_2PSSi_3$: C, 34.57; H, 9.35; N, 8.96. Found: C, 34.17; H, 9.29; N, 8.52.

10b: ³¹P NMR (C_6D_6) δ 31.40 (d, ¹ $J_{PH} = 536$ Hz); ¹H NMR (C_6D_6) δ 0.44 (s, 9 H, Si(CH₃)₃), 1.15 (s, 9 Hz, HNC(CH₃)₃), 1.48 (s, 9 H, SiNC(CH₃)₃), 8.20 (d, $J_{PH} = 536$ Hz, 1 H, PH); mass spectrum m/e 280. Anal. Calcd for $C_{11}H_{29}N_2PSSi$: C, 47.10; H, 10.42; N, 9.99. Found: C, 47.35; H, 10.39; N, 9.80.

Synthesis of 10b from Thioiminophosphorane 13. Cp_2ZrHCl (2 mmol) was added at once to a solution of thioiminophosphorane 13 (2 mmol, 556 mg) in 20 mL of THF. The resulting green solution was stirred at -20 °C for 30 min. Evaporation of the solvent followed by extraction with pentane (2 × 5 mL) afforded a yellow green residue identified as 10b (50%).

Synthesis of 10c from Metallacycle 3a. An excess of selenium (1.5 equiv) was added at room temperature to a solution of 0.6 mmol of metallacycle 3a (167 mg) in 10 mL of toluene. The heterogeneous solution was stirred for 2 days. After filtration, the resulting solution was concentrated to give a pale yellow powder washed with pentane (2 × 10 mL) identified as 10c (45%). ³¹P NMR (C₆D₆): δ 19.60 (ddd, ¹J_{PH} = 521 Hz, ²J_{PH} = 7 Hz, J_{PSE} = 761 Hz); ¹H NMR (C₆D₆) δ 0.09 (d, ⁴J_{PH} = 0.6 Hz, 9 H, Si(CH₃)₃), 0.31 (d, ⁴J_{PH} = 0.6 Hz, 18 H, N[Si(CH₃)₃]₂), 8.09 (d, ¹J_{PH} = 521.0 Hz, 1 H, PH); mass spectrum m/e 360. Anal. Calcd for C₉H₂₉N₂PSeSi₃: C, 30.06; H, 8.13; N, 7.79. Found: C, 30.46; H, 8.28; N, 7.65.

Synthesis of Zirconazaphosphirane 14.^{5b} Me₃SiOSO₂CF₃ (1 mmol, 222 mg) was added dropwise with stirring to the zirconazaphosphirane (1 mmol, 536 mg) in 20 mL of CH₂Cl₂ at -20 °C. A pale yellow solution was formed within seconds. The reaction mixture was warmed to room temperature for 15 min. The solvent was removed in vacuo giving rise to a yellow powder, which was washed with 2 × 10 mL of ether. 14 was obtained as a waxlike white substance (65%): ³¹P NMR (C₆D₆) δ 40.9 (d, ¹J_{PH} = 353 Hz); ¹H NMR (C₆D₆) δ 0.30 (s, 18 H, N[Si(CH₃)₃]₂), 0.32 (s, 9 H, NSi(CH₃)₃), 5.96 (d, J_{PH} = 2.7 Hz, 5 H, Cp), 6.11 (d, J_{PH} = 1.8 Hz, 5 H, Cp), 6.89 (d, ¹J_{HP} = 353.0 Hz, 1 H, P-H); ¹³C NMR (C₆D₆) δ 2.7 (d, ³J_{CP} = 2.6 Hz) and 4.1 (br s, NSi(CH₃)₃), 110.5 (d, J_{PC} = 1.2 Hz, Cp), 111.4 (s, Cp), 120.2 (q, ¹J_{CF} = 319.0 Hz, CF₃SO₃); IR (KBr) 1377 (ν_{SO_3}) cm⁻¹. Anal. Calcd for C₂₀H₃₈F₃N₂O₃PSSi₃: C, 36.95; H, 5.89; N, 4.31. Found: C, 36.86; H, 5.77; N, 4.18.

Synthesis of Cation 15 from $14.^{5b}$ Evaporation of a dichloromethane solution of 14 gave a yellow residue, which was dissolved in acetonitrile giving rise to the ionic structure 15: ³¹P NMR (CD₃CN) δ 28.9 (d, ¹J_{PH} = 377 Hz); ¹H NMR (CD₃CN) δ 0.28 (s, 9 H, NSi(CH₃)₃), 0.53 (s, 18 H, N[Si(CH₃)₃]₂), 2.09 (s, free CH₃CN due to the CD₃CN-CH₃CN fast exchange, coordinated CH₃CN is not seen in CD₃CN solution), 6.16 (d, J_{PH} = 2.6 Hz, 5 H, Cp), 6.27 (d, J_{PH} = 1.7 Hz, 5 H, Cp), 7.18 (d, ¹J_{HP} = 377.0 Hz, 1 H, P-H); ¹³C NMR (CD₃CN) δ 3.1 (d, J_{CP} = 2.6 Hz) and 4.3 (s, NSi(CH₃)₃), 110.6 and 111.5 (s, Cp), 120.2 (q, ¹J_{CF} = 319.0 Hz, CF₃SO₃); IR (CD₃CN) 1270 (ν_{SO_3} ionic) cm⁻¹. Anal. Calcd for C₂₂H₄₁F₃N₃O₃PSSi₃Zr: C, 38.24; H, 5.98; N, 6.08. Found: C, 38.11; H, 5.91; N, 5.94. Removal of acetonitrile followed by addition of THF allowed one to recover 14.

Synthesis of Cationic Zirconaazaphosphirane 16.^{5b} (i) From Zirconaazaphosphirane 3a. An excess of NaBPh₄ (682 mg, 2.00 mmol) was added to a solution of zirconaazaphosphirane 3a (879 mg, 1.64 mmol) in 25 mL of acetonitrile at 0 °C. A light yellow color developed during the dissolution of NaBPh₄. The mixture was allowed to react at room temperature. Volatiles were removed, and the yellow residue was extracted with 2 × 10 mL of dichloromethane, affording a yellow powder 16 (72%): ³¹P NMR (CH₃CN) δ 29.1 (d, ¹J_{PH} = 377 Hz); ¹H NMR (CD₃CN), δ 0.41 (s, 9 H, NSi(CH₃)₃), 0.66 (s, 18 H, N[Si(CH₃)₃]₂), 2.09 (s, free CH₃CN; coordinated CH₃CN in CD₂Cl₂ solution, 1.60 (s, 3 H)), 6.19 (d, J_{PH} = 2.6 Hz, 5 H, Cp), 6.30 (d, J_{PH} = 1.8 Hz, 5 H, Cp), 7.23 (m, 12 H, p, m (C_6H_5)₄B), 7.29 (d, ${}^1J_{PH}$ = 377.0 Hz, 1 H, PH), 7.59 (m, 8 H, *o*-H (C_6H_5)₄B); 13 C NMR (CD₃CN) δ 3.5 and 4.7 (s, NSi(CH₃)₃), 110.7 and 111.6 (s, Cp); (C_6H_5)₄B at 123.0 (s), 126.9 (q, ${}^{1}J_{CB}$ = 2.7 Hz), 137 (s), and 165.1 (q, J_{BC} = 50.0 Hz); IR (CH₂Cl₂) ν_{CN} 2302 and 2253 cm⁻¹ (free CH₃CN), 2281 (coordinated CH₃CN) cm⁻¹. Anal. Calcd for C₄₅H₆₁BN₃PSi₃Zr: C, 62.76; H, 7.14; N, 4.88. Found: C, 62.64; H, 7.10; N, 4.76.

(ii) From Cationic Zirconaazaphosphirane 15. The reaction was carried out as above with $2 \text{ mmol of NaBPh}_4$ (682 mg) and 1.64 mmol of zirconaazaphosphirane (1.04 mg).

Synthesis of Zirconaphosphirane 18. A stoichiometric amount of Cp₂ZrHCl was added to a solution of 1 mmol of phosphaalkene 17 (277 mg) in 20 mL of THF at -20 °C with stirring for 15 min. The reaction started when the temperature reached ~0 °C as indicated by an orange coloration of the reaction mixture. The mixture was stirred for 30 min at room temperature and stripped in vacuo, leaving an orange oil. 18 (78%) was obtained as an air- and moisture-sensitive white powder after extraction with 2 × 15 mL of pentane followed by filtration: ³¹P NMR (C₆D₆) δ 42.60 (d, J_{PH} = 346 Hz); ¹H NMR (C₆D₆) δ 0.26 (s, 18 H, N[Si(CH₃)₃]₂), 0.40 (s, 9 H, CSi(CH₃)₃), 5.74 (d, J_{PH} = 1.8 Hz, 5 H, Cp), 5.81 (d, J_{PH} = 2.4 Hz, 5 H, Cp), 5.88 (dd, ¹J_{PH} = 343.0 Hz, ³J_{HH} = 15.0 Hz, 1 H, PH), 7.34 (dd, ²J_{PH} = 18.0 Hz, ³J_{HH} = 15.0 Hz, 1 H, CH); ¹³C NMR (C₆D₆) δ 42.4, 4.7 (s, Si(CH₃)₃), 108.4 (s, Cp), 110.4 (s, Cp); mass spectrum m/e 533. Anal. Calcd for C₂₀H₃₉ClNPSi₃Zr: C, 44.86; H, 7.34; N, 2.62. Found: C, 44.54; H, 7.30; N, 2.37.

Synthesis of Diphosphene 20 and Diphosphirane 21. A stoichiometric amount of Cp₂ZrHCl (258 mg, 1 mmol) was added to a solution of phosphaalkene 19 (326 mg, 1 mmol) in 20 mL of THF at -80 °C. An orange color developed at -50 °C during the dissolution of Cp₂ZrHCl. The mixture was allowed to react at 0 °C for 30 min and at room temperature for 15 min. ³¹P NMR spectra clearly indicated the formation of 20 (δ ⁽³¹P) = 309.4 ppm),²² as the major product of the reaction, and 21.

Synthesis of Diphosphirane 21 from Diphosphirane 23. A stoichiometric amount of Bu₃SnH (60 mg) was added to a solution of diphosphirane 23 (85 mg, 0.2 mmol) in 10 mL of THF at -10 °C. The reaction mixture was warmed to room temperature. The color changed from orange to yellow. The mixture was stirred for 5 h at room temperature. At the end of the reaction, the solution was evaporated to dryness and diphosphirane 21 was purified by chromatography on Florisil with pentane as eluent (75%): ³¹P NMR (C₆D₆) δ -244.9 (dd, ¹J_{PH} = 149 Hz, ¹J_{PP} = 161 Hz), -134.4 (d, ¹J_{PH} = 161 Hz); ¹H NMR (C₆D₆) δ 0.14 (d, ⁴J_{PH} = 2.6 Hz, 9 H, C(SiMe₃)₂), 0.23 (d, ³J_{PH} = 1.1 Hz, 9 H, CH(SiMe₃)₂), 0.37 (d, ⁴J_{PH} = 1.95 Hz, 9 H, CH(SiMe₃)₂); ¹³C NMR (C₆D₆) δ 1.2, 1.6, 3.4, 3.5 (Si(CH₃)₂), 7.7 (d, ¹J_{CH} = 84.6 Hz, CH), 22.5 (dd, ¹J_{CP} = 72.0 Hz, ¹J_{CP} = 79.0 Hz, CSi(CH₃)₃).

Synthesis of Diaminophosphane 27. To a solution of chlorophosphine 24 (1.51 g, 4.1 mmol) in 20 mL of THF was added with stirring 1 equiv of Cp₂ZrHCl. The brown solution was stirred overnight. After removal of the solvent, the product was extracted with pentane, affording an orange oil, 27 (80%): ³¹P NMR (C₆D₆) δ 44.4 (d, ¹J_{PH} = 219 Hz); ¹H NMR (C₆D₆) δ 0.33 (d, ⁴J_{PH} = 0.7 Hz, 9 H, Si(CH₃)₃), 1.30 (s, 12 H, C-CH₃), 1.38 (s, 6 H, CH₂), 6.63 (d, ¹J_{PH} = 219.0 Hz, PH); mass spectrum *m/e* 332. Anal. Calcd for C₁₅H₃₇N₂PSi₂: C, 54.16; H, 11.21; N, 8.42. Found: C, 54.50; H, 11.16; N, 8.69.

Synthesis of Diphosphirane Complex 28. A stoichiometric amount of Bu₃SnH (1.16 g, 4 mmol) was added to a solution of diphosphirane complex, 25, in hexane at -10 °C. The reaction mixture was warmed to room temperature and stirred for 2 h. Then the solution was controlled by ³¹P NMR. 28: ³¹P NMR (C₆D₆) δ -124.1 (d, ¹J_{PP} = 239 Hz), -92.3 (dd, ¹J_{PH} = 334 Hz, ¹J_{PP} = 239 Hz).

Synthesis of Secondary Phosphine Tungsten Complex 29. Cp₂ZrHCl (257 mg, 1 mmol), complex 26 (548 mg, 1 mmol), and THF were mixed at -40 °C. The resulting brown solution was stirred from -40 °C to room temperature for 2 h. The solvent then was removed in vacuo. Extraction with pentane (2×5 mL) afforded a waxlike brown substance, 29 (80%): ³¹P NMR (C₆D₆)

⁽²²⁾ Escudié, J.; Couret, C.; Ranaivonjatovo, H.; Satgé, J. J. Chem. Soc. 1984, 24, 1621.

 δ -116.5 (tdd, ${}^{1}J_{PH}$ = 333 Hz, ${}^{2}J_{PH}$ = 6 Hz, J_{PW} = 219 Hz); ${}^{1}H$ NMR ($C_{6}D_{6}$) δ -0.08 and 0.28 (s, 18 H, Si(CH₃)₃), 1.1 (d, J_{HH} = 7.0 Hz, 1 H, CH), 4.08 (dd, J_{PH} = 333.0 Hz, J_{HH} = 6.0 Hz, 2 H, H₂P). Anal. Calcd for C₁₂H₂₁O₅PSi₂W: C, 27.91; H, 4.10. Found: C, 27.72; H, 4.00.

Synthesis of Zirconadiazaphosphetidine 31. Cp₂ZrHCl (257 mg, 1 mmol) was added to a solution of 1 mmol of (bis(trimethylsilyl)amino)bis((trimethylsilyl)imino)phosphorane 30 (453 mg) in 15 mL of THF at -20 °C. The yellow solution was stirred at this temperature for 30 min. After extraction of the solvent, the yellow residue was washed with benzene. The complex then precipitated as a white powder (82%): ³¹P NMR (C₆D₆) δ 2.8 (d, ¹J_{PH} = 517 Hz); ¹H NMR (C₆D₆) δ 0.16 (s, 18 H, N[Si(CH₃)₃]₂), 0.43 and 0.61 (s, 9 H, N-Si(CH₃)₃), 6.31 (s, 5 H, Cp), 7.54 (d, ¹J_{PH} = 517.0 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 0.1 (d, ³J_{CP} = 8.2 Hz, Si(CH₃)₃), 6.2 (d, ³J_{CP} = 4.6 Hz, Si(CH₃)₃), 8.0 (d, ³J_{CP} = 4.1 Hz, Si(CH₃)₃), 114.3 (s, Cp), 116.3 (s, Cp); mass spectrum m/e 621. Anal. Calcd for C₂₂H₄₇ClN₃PSi₄Zr: C, 42.37; H, 7.60; N, 6.74. Found: C, 42.15; H, 7.25; N, 6.55.

Synthesis of Zirconadiazaphosphetidine Triflate 37. Me₃SiOSO₂CF₃ (222 mg, 1 mmol) was added dropwise with stirring to 31 (621 mg, 1 mmol) in 20 mL of CH₂Cl₂ at -20 °C. A clear yellow solution was formed within seconds. The reaction mixture was warmed to room temperature over 30 min. The solvent then was removed in vacuo to give a yellow light solid, 37 (75%): ³¹P NMR (C₆D₆) δ -2.3 (d, ¹J_{PH} = 538 Hz); ¹H NMR (C₆D₆) δ 0.27-0.55 (m, 36 H, Si(CH₃)₃), 6.56 (s, 5 H, Cp), 6.59 (s, 5 H, Cp), 7.42 (d, ¹J_{PH} = 538.0 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 3.9 (d, ³J_{CP} = 4.3 Hz, Si(CH₃)₃), 4.9 (s, Si(CH₃)₃), 115.3 (s, Cp), 116.8 (s, Cp), 120.0 (q, ⁻¹J_{CF} = 320.0 Hz, CF₃SO₃). Anal. Calcd for C₂₃H₄₇F₃N₃O₃PSSi₄Zr: C, 37.47; H, 6.43; N, 5.70. Found: C, 37.06; H, 6.34; N, 5.61; IR (KBr) 1322 (ν_{SO_3}) cm⁻¹.

Synthesis of Cationic Zirconadiazaphosphetidine Triflate 38. Zirconadiazaphosphetidine triflate 37 was dissolved in acetonitrile. 38: ³¹P NMR (CD₃CN) δ 1.6 (d, ¹J_{PH} = 536 Hz); IR (CD₃CN) 1279 (ν_{SO_2} ionic) cm⁻¹.

(CD₃CN) 1279 (ν_{SO_3} ionic) cm⁻¹. **Synthesis of Zirconadiazaphosphetidine 39.** Cp₂ZrH₂ (1 mmol) was added at once to a solution of 1 mmol of (bis(trimethylsilyl)amino)bis((trimethylsilyl)imino)phosphorane (**30**) in 15 mL of toluene at -20 °C. The yellow solution was stirred for 30 min at this temperature. After extraction of the solvent, the yellow residue was washed with pentane. The complex **39** (80%) precipitated as a white powder: ³¹P NMR (C₆D₆) δ -2.9 (dd, ¹J_{PH} = 509 Hz, ²J_{PH} = 40 Hz); ¹H NMR (C₆D₆) δ 0.24, 0.30, 0.33, 0.40 (s, 36 H, Si(CH₃)₃), 4.68 (d, ³J_{PH} = 40.0 Hz, 1 H, ZrH), 7.31 (d, ¹J_{PH} = 509.0 Hz, 1 H, PH), 5.74 (s, 5 H, Cp); 5.82 (s, 5 H, Cp); ¹³C NMR (C₆D₆) δ 4.0-5.0 (m, Si(CH₃)₃), 104.3 (s, Cp), 105.6 (s, Cp). Anal. Calcd for C₂₂H₄₈N₃PSi₄Zr: C, 44.85; H, 8.21; N, 7.13. Found: C, 45.03; H, 7.97; N, 7.45.

Registry No. 1, 37342-97-5; 2a, 50732-21-3; 2b, 53787-01-2; 2c, 72821-01-3; 3a, 128337-85-9; 3b, 131104-31-9; 3c, 138694-46-9; 3d, 138753-35-2; 6, 63104-54-1; 7, 138694-47-0; 9a, 131104-37-5; 9b, 131104-33-1; 10a, 63104-56-3; 10b, 138694-44-7; 10c, 63104-57-4; 13, 53973-90-3; 14, 131104-34-2; 15, 131104-36-4; 16, 131130-18-2; 17, 76173-65-4; 18, 128337-84-8; 19, 79454-85-6; 20, 96043-64-0; 21, 128429-18-5; 23, 113389-13-2; 24, 90500-31-5; 25, 113192-44-2; 26, 138694-50-5; 27, 138694-45-8; 28, 138694-48-1; 29, 138694-49-2; 30, 52111-28-1; 31, 138694-51-6; 37, 138694-52-7; 38, 138694-45-49; 39A, 138694-56-1; 39B, 138694-55-0; Cp₂ZrH₂, 37342-98-6; Cp₂ZrMe₂, 12636-72-5; Fe₂(CO)₉, 15321-51-4; Me₃SiOSO₂CF₃, 27607-77-8.

Silaheterocycles. 14.¹ Regiospecific Cycloaddition Reactions of Dichloroneopentylsilene with Cyclohexa-1,3-diene. A Novel 7-Silabicyclo[4.2.0]oct-2-ene \rightarrow 2-Silabicyclo[2.2.2]oct-5-ene Rearrangement

Norbert Auner,* Claudia Seidenschwarz, and Norbert Sewald

Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching, Germany

Received August 15, 1991

In the presence of cyclohexa-1,3-diene (2), dichloroneopentylsilene (1), generated in situ from trichlorovinylsilane and t-BuLi, favors the regioselective formation of the anti/syn isomeric [2+2] cycloadducts (3, 74%) over the [4+2] addition, leading to the endo/exo isomer Diels-Alder compounds 4 (26%). On standing, the thermodynamically less stable silacyclobutane derivatives 3 completely isomerize to give the [4+2] products within several weeks. Possible reaction pathways, including a zwitterionic intermediate A, are discussed. In contrast, the dimethyl- and diphenyl-substituted [2+2] adducts (7, 8), available from 3 by substitution reactions, show different isomerization behavior. They cannot be transformed into the Diels-Alder compounds, but the syn [2+2] isomers slowly form the thermodynamically more stable anti derivatives at room temperature. On thermolysis they yield open-chain products by a retro ene reaction. The high synthetic potential of strongly electrophilic 1 is demonstrated by the comparison of the cycloaddition behavior with diorgano-substituted neopentylsilenes $R_2Si=CHCH_2Bu-t$: Reaction of $Me_2Si=CHCH_2Bu-t$ with 2 favors the [4+2] product formation, while $Ph_2Si=CHCH_2Bu-t$ yields the Diels-Alder adducts exclusively.

Introduction

Our investigations on the cycloaddition behavior of dichloroneopentylsilene, Cl_2Si —CHCH₂Bu-t (1), formed by treating vinyltrichlorosilane with t-BuLi in nonpolar solvents,² revealed some surprising results, which have not

been obtained in earlier work for diorgano-substituted derivatives by the group of Jones.³ With cyclopentadienes,⁴ aromatic dienes such as naphthalene⁵ and

Part 13: Auner, N.; Penzenstadler, E. Z. Naturforsch., in press.
 Auner, N. Z. Anorg. Allg. Chem. 1988, 558, 55.

⁽³⁾ Jones, P. R.; Lim, T. F. O.; Pierce, R. A. J. Am. Chem. Soc. 1980, 102, 4970. Jones, P. R.; Lim, T. F. O. *Ibid.* 1977, 99, 8447. See also: Auner, N., J. Organomet. Chem. 1987, 336, 83; Z. Anorg. Allg. Chem. 1988, 558, 87. References 22 and 16.

⁽⁴⁾ Auner, N. J. Organomet. Chem. 1988, 353, 275.