Hydro- and Carbozirconation of Multiple-Bonded Low-Coordinated Phosphorus Species

Nathalie Dufour, Anne-Marie Caminade, Mario Basso-Bert, Alain Igau, and Jean-Pierre Majoral^{*}

Laboratohe **de** *Chlmie* **de** *cowdnatlon du CNRS, UPR 8241 Lih par Conventions ^B I'Université Paul Sabatier et à l'Institut National Polytechnique de Toulouse, 205 Route* **de** *Mrbonne, 31077 Touiouse Cedex, France*

Received Ju& 30, 199 1

Hydrozirconation of phosphaimines $RP = NR'$ (2a-c) (2a, $R = N(SiMe₃)_2$, $R' = SiMe₃$; 2b, $R = N-$ (SiMe₃)(tBu), R' = tBu; 2c, R = tetramethylpiperidino, R' = SiMe₃), phosphaalkene (Me₃Si)₂NP=C(H)SiMe₃
(17), or bis(imino)phosphorane (Me₃Si)₂NP(=NSiMe₃)_z (30) by means of Cp₂ZrHCl takes place with the formation either of the three-membered rings zirconaazaphosphirane Cp,Zr(Cl)N(R')P(H)R (3a-c) **and** zirconaphosphirane Cp₂Zr(Cl)C(H)(SiMe₃)P(H)N(SiMe₃₎₂ (18) or the four-membered ring zirconadiaza-
phosphetidine Cp₂Zr(Cl)N(SiMe₃)P(H)[N(SiMe₃₎₂]N(SiMe₃) (31). Similarly, carbozirconation of phos-
phosphetidin phaimine 2a leads to the zirconaazaphosphirane $\text{Cp}_2\text{Zr}(\text{Me})N(\text{SiMe}_3)P(\text{Me})N(\text{SiMe}_3)_2$ (7). On the other hand, hydrozirconation of 2a with $Cp_2\bar{Zr}H_2$ or hydrozirconation of the thioiminophosphorane Me₃Si-(tBu)NP(=S)(=NtBu) (13) gives rise respectively to the acyclic phosphine $(Me_3Si)_2NP(H)NHSi{Me}_3(6)$ or to the acyclic phosphine sulfide Me₃Si(tBu)NP(S)HN(H)tBu (10b). Addition of Cp₂ZrHCl to the chlorophosphaalkene ClP=C(SiMe₃)₂ (19) affords the diphosphene (Me₃Si)₂CHP=PCH(SiMe₃)₂ (20) and the diphosphirane (Me₃Si)₂CHPC(SiMe₃)₂PH (21). An easy hydride-chlorine exchange involving Cp₂ZrHCl and free or complexed halogenated phosphines is observed and allows obtention of the corresponding P-H phosphines. Ligand exchange occurs when the zirconaphosphirane 18 is treated either with the phosphaimine 2a or the bis(imino)phosphorane 30, leading to the zirconaazaphosphirane 3a or the zirconadiazaphosphetidine 31, respectively. Synthesis of stable cationic cyclic zirconium species, the zirconaazaphosphirane $\text{cations } [(\text{CH}_3\text{C}=\text{N})\text{Cp}_2\text{ZrN}(\text{SiMe}_3)\text{P(H)}[\text{N}(\text{SiMe}_3)_2][\text{X}] \text{ (15, 16) (15, X = CF_3\text{SO}_3; 16, X = BPh_4}) \text{ or the}$ zirconadiazaphosphetidine cation $[(CH_3C=N)Cp_2ZrN(SiMe_3)P(H)[N(SiMe_3)_2]N(SiMe_3)][CF_3SO_3]$ (38), involving dissociation of a covalent zirconium-oxygen bond, are also reported. *Organometallics* 1992, 11, 1131–1137
 21181
 21 *Organometallics* 1992, 11, 1131–1137
 Carbozirconation of Multiple-Bonded
 Coordinated Phosphorus Species

Caminade, Mario Basso-Bert, Alain Igau, and Jean-Pierre Nimie de Coordination du CNRS, UPR 8241 Liée par Conv Organometallics 1992, 11, 1131–1137
 and Carboz/Irconation of Multiple-Bonded
 OW-Coordinated Phosphorus Species

Marie Caminade, Mario Basso-Bert, Alain Igau, and Jean-Pier

Marie Caminade, Mario Basso-Bert, Alain Ig

Introduction

The chemistry of the group **4** metals in their higher oxidation states is characterized by their propensity to form strong bonds with hard donor atoms such **as** chlorine, fluorine, oxygen, or nitrogen. These strong metal-heteroatom interactions are often the driving force for many reactions involving compounds containing oxygen or nitrogen. Hydrozirconation, by means of Cp_2ZrHCl or CpaH,, of unsaturated organic species is **also** well-known and *can* be compared to hydroboration with alkylboranes.

As we have a longstanding interest both in the chemistry of unsaturated main group element species' and in the behavior of anionic or neutral metallic hydrides, 2 it appeared extremely interesting to explore the reactivity of zirconium derivatives such as Cp_2ZrHCl , Cp_2ZrH_2 , or Cp,ZrMez toward halogenated or nonhalogenated low-coordinated phosphorus species such **as** iminophosphanes $RP=NR'$, phosphaalkenes $RP=CR'_{2}$, or bis(imino)phosphoranes $RP(=\!\!N\!R')_2$.

Such a study was of potential interest for several reasons. In particular we wished to know whether the presence of $\lambda^2 \sigma^3$ - or $\lambda^3 \sigma^5$ -phosphorus (λ = coordination number; σ =

valency for phosphorus) facilitates the hydrozirconation and eventually the carbozirconation and allows the formation of small rings possessing phosphorus-zirconium dative bonds. A few three-membered rings³ including in one case a phosphorus-carbon-zirconium ring⁴ have been prepared so far, but none of the reported experiments involved Cp_2ZrHCl or Cp_2ZrMe_2 and low-coordinated heavier main-group elements. In **our** case, the polarity of phosphorus-nitrogen or phosphorus-carbon double bonds would play a key role.

We **also** wanted to know whether it is possible to take advantage of the high halophilicity of zirconium to initiate hydride-halogen exchange and therefore to prepare phosphorus derivatives difficult to obtain via classical reactions.

Last, it waa also of interest to check whether the presence of phosphorus-zirconium or nitrogen-zirconium bonds makes easier to a certain extent the dissociation of the strong zirconium-chlorine or zirconium-oxygen bonds and helps in the stabilization of new cationic zirconium derivatives.

In previous communications,⁵ we have reported a simple quantitative preparation of zirconaazaphosphiranes and zirconaphosphiranes and some preliminary results concerning the reactivity of these derivatives.

⁽¹⁾ See for example: Roques, C.; Mazières, M. R.; Majoral, J.-P.; **Sanchez, M.; Foucaud, A.** *Organometallics* **1989**, 54, 5535. Majoral, J.-P.; Roques, C.; Mazières, M. R.; Jaud, J.; Sanchez, M. J. Che*m. Soc., Chem.*
C*ommun. 1989, 1496. Dufour, N.; Cam*inade, A.-M.; Majoral, J.-P.
Tetrahedron Lett. 1989, 30, 4813. Caminade, A.-M.; Roques, C.; Dufour,
N.; Col **6869. Bertrand, G.; Majoral, J.-P.; Baceiredo, A.** *Acc. Chem. Res.* **1986, 19, 17 and references therein.**

⁽²⁾ See for example: Attali, *S.;* **Dahan, F.; Mathieu, R.; Caminade,** A.-M.; Majoral, J.-P. J. Am. Chem. Soc. 1988, 110, 1990. Galindo del
Pozo, A.; Caminade, A.-M.; Mathieu, R.; Majoral, J.-P. J.Chem. Soc.,
Chem. Commun. 1988, 574. Caminade, A.-M.; Majoral, J.-P.; Sanchez,
M.; Mathieu, R.; *SOC.* **1986,** *108,* **8007 and references therein.**

⁽³⁾ See for example: Nigishi, E.; Takamashi, T. Synthesis 1988, 1.1. Erker, G.; Schlund, R.; Krüger, C. Organometallics 1989, 8, 2349. Bu-chwald, S. L.; Wanamasker, M. W.; Watson, B. T. J. Am. Chem. Soc. 1989, 111, 776. H **therein.**

⁽⁴⁾ Karsch, H. H.; Denbelly, B.; Hofmann, J.; Pieper, U.; MiUler, G.

J. Am. Chem. Soc. 1988, 110, 3654.

(5) (a) Majoral, J.-P.; Dufour, N.; Meyer, F.; Caminade, A.-M.;
Choukroun, R.; Gervais, D. J. Chem. Soc., Chem. Commun. 1990, 507.

(b) Dufour, N.; Majoral, J.-P.; Caminade, A.-M.; Chouk

Herein we describe full details of this work **as** well **as** the following: (i) the preparation of new cationic zirconium phosphorus cyclic compounds, (ii) the first example of carbozirconation of dicoordinated phosphorus species, (iii) the direct transformation of zirconaphosphirane **18** to zirconaazaphosphirane **3a** or **zirconadiazaphosphetidine 31** involving an **unusual** ligand exchange, and (iv) the easy hydride-chlorine exchange involving Cp₂ZrHCl and free or complexed halogenated phosphines.

Results and Discussion

Addition of the hydride Cp,ZrHCl **(1)** to a THF solution of phosphaimines **2a-c** at 0 "C afforded in nearly quantitative yield the zirconaazaphosphiranes **3a,b** (two isomers due to the presence of two different substituents on the exocyclic nitrogen atom) or **3c** (Scheme I), fully characterized by NMR, IR, and mass spectrometry (see Experimental Section) and in one case **(3a)** by single-crystal X-ray diffraction studies.^{5b}

A **1-2** addition of Cp2ZrHC1 to the phosphorus nitrogen double bond of **2a-c** followed by cyclization is a reasonable postulation to explain the formation of these derivatives although an insertion of the phosphaimine into a Zr-H bond with transient formation of a metallaiminophosphorane RP(H)(ZrCp₂Cl)=NR' (4) cannot be totally ruled out. Nevertheless no example of such a metallaphosphorane has been reported so far.

Such a cyclization was not observed when the phosphaimine 2a was reacted with Cp₂ZrH₂ under the same experimental conditions. Two new species can be distinguished by ³¹P NMR spectroscopy: $5, \delta = 12.8$ ppm (d, $\tilde{H}_{\text{PH}} = 212 \text{ Hz}$, and **6**, $\delta = 33.9 \text{ ppm}$ (d, $^1J_{\text{PH}} = 214 \text{ Hz}$). Pentane extraction allowed us to isolate **6,** while **5** disappeared during workup. This may be ascribed to the loss of the Cp,ZrH fragment (hydrolysis of the zirconium nitrogen bond) and, therefore, transformation of **5** into **6** (Scheme I). Derivative **6** was already prepared by hydrogenation of **2a** using lithium aluminum hydride or borane-dimethylamine **as** reducing agent? **31P** and 'H NMR data for 5 are in agreement with a linear structure and not a cyclic structure-similar to **3a, 3b, or 3c,** which would have presented higher direct phosphorus-hydrogen coupling constant (see above). Indeed, $^1J_{\text{PH}}$ values of \approx

200-240 Hz are typical of secondary phosphines of the R,NP(H)R type. Therefore, it seems that a zirconaazaphosphirane with a Zr-H bond-if formed-is not stable and rearranges into the corresponding linear form.

Interestingly, treatment of 2a with Cp₂ZrMe₂ led to the zirconaazaphosphirane **7** (Scheme I). NMR data suggest a cyclic structure for **7.** Thus, the 'H NMR spectrum exhibits two doublets for the Cp groups at **5.54** and **5.68** ppm with phosphorus-hydrogen coupling constants of **2.1** and 1.4 Hz. Similar J_{PH} values were observed for the zirconaazaphosphirane **3a (2.7** and **1.9** Hz). The 31P(H) resonance for $7(+35.3 \text{ ppm})$ is $\approx 50-70 \text{ ppm}$ upfield from the region expected for diamidoalkylphosphanes $[(Me₃Si)₂NP(M_e)N(BMe₂)SiMe₃, 103.5 ppm;⁷ MeP (NMe₂)₂$, 86.4 ppm; EtP($NMe₂)₂$, 99.9 ppm; $C₆H₁₁P (NMe₂)₂$, 107.1 ppm³. The presence of a methyl group on phosphorus and on zirconium is **confirmed** by *'3c NMR* spectroscopy.

Formation of **7** is of particular interest since this reaction is the first example of carbozirconation of an unsaturated main group element species. Dimethyldicyclopentadienylzirconocene wa8 previously reported to react with ketenes, isocyanates, carbodiimides, etc., which **insert** into a Zr-Me bond with concomitant methylation on the $sp²$ carbon.³

We have already reported^{5b} ring-opening reactions involving zirconaazaphosphiranes **3a,b** and Fe,(CO)9, **S8,** or Se (Scheme 11). While a transient intermediate **8b** can be detected by ³¹P NMR spectroscopy in the case of treatment of **3b** with $Fe₂(CO)₉$, we were not able to characterize an intermediate in the case of the addition of *S8* to **3a:** only the phosphane sulfide **10a** was isolated. One can postulate that reaction of 3a with S₈ proceeded with ring-opening, sulfurization on phosphorus with formation either of the corresponding four-membered ring **11** or the linear N-zirconium species **12.** Hydrolysis of **11** or **12** afforded **10a** (the oxide (Cp,ZrCl),O was isolated). In the hope of generating a four-membered ring analogous to the hypothetical species **11,** Cp,ZrHCl was added to the thioiminophosphorane 13 (Scheme III). ³¹P NMR spectra of the resulting mixture revealed the presence of a major signal at **31.4** ppm besides that of a minor peak at **52.1** ppm. Successive extractions with pentane allowed the isolation of the major derivative, which was identified as

(6) Niecke, E.; Ringel, G. *Angew. Chem., Int. Ed. Engl.* **1977,16,486.**

⁽⁷⁾ Cowley, A. H.; Kilduff, J. E.; Wilburn, J. C. *J. Am. Chem.* Sac. **1981,** *103,* **1575.**

⁽⁸⁾ Grutchfield, M. M.; Dungan, C. H.; Letcher, J. H.; **Mark,** V.; Van-Wazer, J. R. Top. *Phosphorus Chem.* **1967,5,** *227* **and** references therein.

the phosphane sulfide **lob.** Formation of **10b** might be explained by hydrolysis of the very unstable four-membered ring **11.**

All these examples reported reactions involving ring opening of three- or four-membered rings. However ring retention **was** observed when **3a** was added to (tri**methylsily1)trifluoromethanesulfonate** or methyltrifluoromethanesulfonate in dichloromethane (Scheme **IV).** The corresponding zirconaazaphosphirane **14** possessing a Zr-0 covalent bond was formed as well as trimethylchlorosilane.^{5b} Dissociation of the Zr-O bond occurred when dichloromethane was replaced by a more polar solvent such **as** acetonitrile: the ionic zirconium ring **15** was thus quantitatively obtained. IR spectroscopy confirmed the existence of an ionic triflate $(\nu_{\text{SO}_3} = 1270 \text{ cm}^{-1} \text{ to be com-}$ pared to $v_{Zr-OSO_2} = 1377$ cm⁻¹ characteristic of a covalently bound triflate in **149).** The equivalent conductance of **15,** viz. **95** mho cm2 equiv-l, clearly indicated the ionic character of this derivative.

An easy exchange of anion took place when **15** was reacted with $NaBPh_4$ in acetonitrile giving rise to complex **16,** which could be directly obtained by reacting the zirconaazaphosphirane **3a** with NaBPh, in acetonitrile. Conductimetry measurements also confirmed the ionic character of **16** (equivalent conductance **70** mho cm2 equiv⁻¹). Interestingly, a neutral form can be directly generated without the intervention of solvent effect. Indeed, treatment of **16** in acetonitrile with sodium azide resulted in the formation of the cyclic zirconium azide **3d** $(v_{\text{N}_3} = 2084 \text{ cm}^{-1})$; no conductivity was observed for 3d). Noteworthy is the fact that **3d** was not formed when **3a** was treated with sodium azide in tetrahydrofuran or acetonitrile (Scheme IV). Proofs of ring retention in compounds **3d** and **14-16** are given by large phosphorue-proton coupling constants $^{1}J_{\text{PH}}$ from 330 to 377 Hz and by small phosphorus-Cp coupling constants from **1.8** to **2.8** Hz.

Hydrozirconation of phosphaalkenes is also reported. We demonstrated⁵ that addition of Cp_2ZrHCl (1) to a tetrahydrofuran solution of the phosphaalkene **17** at **-20** OC gave the metallacycle **18** in near-quantitative yield, while treatment of **1** with the P-halogenated phosphaalkene **19** afforded the diphosphene **20 aa** the major product identified products (Scheme V). Formation of 18 can formally be viewed **as** a **1-2** addition of **1** onto the phosphorus-carbon double bond followed by cyclization. Formation of **20** can be regarded **as** the result of a reverse **1-2** addition of the zirconium hydride to the P-C double

bond with transient formation of 22 followed by Cp₂ZrCl₂ elimination. Derivative **21** might result from the insertion of a phosphinidene $(Me_3Si)_2CHP$ on the phosphoruscarbon double bond of **19,** the resulting P-halogenated three-membered ring 23 reacting with Cp_2ZrHCl to give **21.** Compound **21** *can* **also** be prepared directly by reaction of **23** independently prepared2 with tributyltin hydride. Such a chlorine-hydride exchange initiated with **1** is not astonishing, since **1** easily reacted with halogenated phosphorus derivatives whatever the coordination mode of phosphorus. For example, addition of **1** to **24,25** (one isomer), or **26** afforded **27, 28** (one isomer), or **29** in excellent yields (Scheme VI).

Of interest was the obtention of the secondary phosphine tungsten complex **29** by treatment of the corresponding halogenophosphaalkene complex 26 with Cp₂ZrHCl. Beside the expected chlorine-hydrogen exchange, hydrogenation of the phosphorus carbon double bond occurred.

It should be pointed out that no carbozirconation took place when the phosphaalkene **17** waa reacted with $\mathrm{Cp}_2\mathrm{ZrMe}_2.$

Surprisingly, a quite unusual exchange ligand occurred when a stoichiometric amount of phosphaimine **2a** was added **to** a THF solution of the zirconaphosphirane **18** at room temperature. 31P NMR spectra of the resulting mixture consisted of a singlet at **+33.3** ppm characteristic due to the recovered phosphaalkene 17 (Scheme VII). An analogous exchange took place when **18** was reacted with the bis(imino)phosphorane **30,** leading to **17** and **to** the new four-membered ring **31** in which the zirconium is bonded to two nitrogen atoms, a chlorine atom, and two Cp groups. Evidence for the formation of **31** was confirmed by NMR

⁽⁹⁾ Straus, D. A.; Wang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tdey, T. D.; Rheingold, A. L.; Geib, S. J. *J. Am. Chem.* **Soc. 1990, 112, 2673 and references therein.**

spectrometry (see Experimental Section). It is worth noting that no exchange ligand occurred when the zirconaphoephirane **18** was mixed with the phosphaalkyne P=C-tBu (32), although 32 even reacted at -50 °C with Cp2ZrHC1 to give the expected **1-2** addition product.'O It should be **ale0** noted that no exchange took place when **3a** was treated with the bis(imino)phosphorane 30 or when the four-membered ring **31** was added **to** the phosphaimine **2a.** Although the three-membered ring was the only detectable product when the phoephaalkene **17** was reacted with Cp,ZrHCl, it is clear that **18** existed in equilibrium with the starting reagents, the equilibrium being largely displaced toward the cyclic form (Scheme VII). Therefore, the polarity of the double bond seems to be the driving force in this type of reaction, the polarity of the phosphorus-nitrogen bond being higher than that of the phoephorus-carbon double or triple bond.

Compound **31** *can* be directly obtained by reacting the bis(imino)phosphorane 30 with Cp₂ZrHCl in solution at **-20** "C (Scheme VIII). Up to now, organometalation of **30** was observed in the reactions with alkyl or aryl derivatives of main-group or transition elements. Indeed,

treatment of $ZrCl₄$ with 30 or its lithium salt¹¹ or with (bis(**trimethylsilyl)amino)diphenyl(** (trimethylsily1)imino)phosphorane **(33)12** afforded the heterocycles **34-36** (Scheme VIII).

Reaction of 31 with Me₃SiOTf (OTf = OSO_2CF_3) in dichloromethane readily afforded the triflate derivative **37.** Chemical and spectroscopic properties for **this** yellow light solid **suggested** the presence of a covalent Zr-0 bond. This derivative was soluble in nonpolar solvents, and the infrared spectrum in dichloromethane contained a band at **1322** cm-' that could be attributed to the trif'late group. A slight shielding effect was observed on the 31P NMR spectrum, which showed a doublet at -2.3 ppm with $^{1}J_{\text{PH}}$ = **538** Hz. Evaporation of dichloromethane followed by dissolution of the resulting powder in acetonitrile led to the dissociation of the Zr-0 bond and the formation of the corresponding ionic zirconium adduct 38 (Scheme IX). The infrared **spectrum** of **38** in acetonitrile was consistent with the presence of ionic triflate, since the band at **1322** cm-' disappeared on behalf of the one at **1279** cm-' (see above). 31P, 'H, and 13C NMR **data** were consistent with the cyclic ionic structure. Conductimetry measurements in acetonitrile **also** indicated the ionic nature of 38. In **this** *case,* the equivalent conductance of **38** measured for a **0.01** M solution at **24** "C was **106 mho** cm2 equiv'. **This** value compared well with the value found for **15** and **16** (see above).

Derivatives 15, 16, and 38 are the first examples of ionic zirconium phosphorus ring systems reported.

Hydrozirconation of bis(imino)phosphorane 30 was also performed with $\rm{Cp_{2}ZrH_{2}}$ in THF and led to the P-H species **39** (Scheme **X).** Although the experimental values did not allow **us** to choose between a cyclic structure A or the corresponding linear form B, the polarity of the remaining phosphorus-nitrogen double bond in B strongly

⁽¹⁰⁾ Majoral, J.-P.; Dufour, **N.; Caminade, A.-M.; Regitz, M. Unpublished results.**

⁽¹¹⁾ Romanenko, V. D.; Shulgin, V. F.; Skopenko, V. V.; Markowskii, L. N. Zh. Obshch. Khim. 1985, 55, 538. Markowskii, L. N.; Romanenko, V. D.; Shulgin, V. F.; Ruban, A. V.; Chernega, A. N.; Antipin, M. Yu; Struchkov, Yu.

J. Chem. Soc., Dalton Trans. **1991,663.**

suggested cyclization and formation of the expected four-membered ring **as** usually observed **(see** Scheme VIII and ref 11). Attempts to obtain suitable crystals for X-ray analysis nevertheless failed and did not permit an unambiguous choice.

Conclusion

Hydrozirconation with Cp₂ZrHCl of $\lambda^2 \sigma^3$ -phosphorus species such as phosphaimines $2a-c$, phosphaalkene 17, or $\lambda^3\sigma^5$ -phosphorus compounds such as bis(imino)phosphorane **30** proceeded with concomitant cyclization giving rise to functionalized three- and four-membered rings. Moreover, Cp₂ZrMe₂ reacted with 2a affording a new example of carbozirconation in main group element chemistry. Ring opening and ring retention of some of these species were reported allowing the synthesis of the corresponding linear phosphine sulfides or complexes and the preparation of the first cationic cyclic zirconium phosphorus derivatives.

The halophilicity of zirconium **has** to be taken into account to explain the particular reaction observed between the P-halogenated phosphaalkene 17 and Cp₂ZrHCl. This halophilicity also allowed an easy hydride-chlorine exchange between **free** or complexed halogenated phosphines and the Schwartz reagent. The higher polarity of the phosphorus-nitrogen double bond compared to the phosphorus-carbon double bond led to unusual ligand exchanges and direct transformation of the zirconaphosphirane **18** to the zirconaazaphosphirane **3a** or the zirconadiazaphosphetidine **31.**

Experimental Section

General Methods. All experiments were performed in an atmosphere of *dry* argon. Dry and oxygen-free solvents were used at **all** times.

'H and 13C NMR spectra were recorded on a Bruker WM **250** or a Bruker AC *80* spectrometer. 'H and '% *NMR* chemical **shifts** are reported in part per million relative to Me4Si **as** internal reference. 31P NMR spectra were obtained on a Bruker WM **250** or a Bruker AC 80 instrument. Downfield shifts are expressed with a positive **sign,** in parts per million, relative to extemal *85%* H3P04. Infrared spectra were recorded on a Beckman IR **10** or Perkin-Elmer **225** spectrometer, using polystyrene for calibration. Mass spectra were obtained on a Varian MAT **311** A instrument. Compounds **1,13 2a,14 2b,15 2c,16 13,15 17," 19,lS 24,16 25,19 23,19 26,20** and **30''** were prepared according to the literature.

Synthesis of **Zirconaazaphosphiranes 3a,b.** A stoichiometric amount of Cp₂ZrHCl was added to a solution of phosphaimine **2a-c (1** mmol) in THF **(15** mL) at **-20** "C. Dissolution and therefore reaction of Cp₂ZrHCl started at 0 °C. After stirring of the solution under argon for **15** min, the solvent was removed under reduced pressure and the resulting orange mixture was treated with 2×5 mL of pentane. Upon evaporation of pentane, **3a** (go%), **3b** (two isomers, **80%),** and **3c (75%)** were obtained **as** air- and moisture-sensitive white powders.

 δ 0.35 (s, 18 H, N[Si(CH₃)₃]₂), 0.53 (s, 9 H, NSi(CH₃)₃), 5.85 (d, **3a:** ³¹P *NMR* (C_6D_6) δ 33.3 (d, ¹J_{PH} = 318 Hz); ¹H *NMR* (C_6D_6)

 $J_{\rm PH}$ = 2.7 Hz, 5 H, Cp), 5.99 (d, $J_{\rm PH}$ = 1.9 Hz, 5 H, Cp), 6.64 (d, $^{1}J_{\rm PH}$ = 318 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 3.9 (s, Si(CH₃)₂), 110.2 \mathbf{c} (s, Cp), 111.1 \mathbf{c} , Cp); mass spectrum m/e 534. Anal. Calcd for C19H&1N2PSi3Zr: C, **42.54;** H, **7.14;** N, **5.22.** Found C, **42.40;** H, **7.11;** N, **5.22.**

3b: two isomers in 70:30 ratio. Isomer 1: ³¹P NMR (C₆D₆) δ 3.5 (d, ¹J_{PH} = 335 Hz); ¹H NMR (C₆D₆) δ 0.35 (d, ⁴J_{PH} = 1.1 Hz , 9 H, NSi(CH₃)₃), 1.30 (d, ${}^4J_{PH} = 1.1$ Hz, 9 H, C(CH₃)₃), 1.36 $(d, {}^4J_{\text{PH}} = 2.0 \text{ Hz}, 9 \text{ H}, \text{C}(\text{CH}_3)_3), 5.80 \ (d, J_{\text{PH}} = 2.6 \text{ Hz}, 5 \text{ H}, \text{Cp}),$ 5.96 (d, $J_{\text{PH}} = 1.6$ Hz, 5 H, Cp), 6.56 (d, $^{1}J_{\text{PH}} = 332$ Hz, 1 H, PH); ¹³C NMR (C_6D_6) δ 7.1 (s, Si $(CH_3)_{\delta}$), 32.1 (d, $\delta J_{CP} = 5.4$ Hz, C- $(CH₃)₃$, 33.8 (d, ${}^{3}J_{CP} = 12$ Hz, C(CH₃)₃), 56.0-57.0 (m, C(CH₃)₃), **109.9** (s, Cp), **111.1** (s, Cp). **Isomer 2:** ${}^{31}P$ NMR (C_6D_6) δ -12.0 (d, ¹J_{PH} = 334 Hz); ¹H NMR (C_6D_6) δ 0.29 (d, ⁴J_{PH} = 0.5 Hz, 9 H , NSi(CH₃)₃), 1.13 (s, 9 **H**, C(CH₃)₃), 1.44 (s, 9 **H**, C(CH₃)₃), 5.89 (d, $J_{PH} = 2.0$ Hz, 5 H, Cp), 6.09 (d, $J_{PH} = 1.9$ Hz, 5 H, Cp), 6.41 (d, $^1J_{PH} = 334.0$ Hz, 1 H, PH); ¹³C NMR (C_eD_e) δ 6.4 (s, Si(CH₂)₂), (1.8 1 3.7 = 4.9 U_p C(CH₃)), 22.9 (4.3 3 J_p = 5.6 U_p C $56.0-57.0$ $(m, C(CH₃)₃$, **111.2** $(s, Cp),$ **113.8** (s, Cp) ; mass spectrum *m/e* 502. Anal. Calcd for C₂₁H₃₈ClN₂PSiZr: C, 50.02; H, 7.59; N, **5.56.** Found: C, **49.69;** H, **7.55; N, 5.31.** 31.8 $(d, {}^{3}J_{CP} = 4.8$ Hz, $C(CH_3)_{3}$, 33.3 $(d, {}^{3}J_{CP} = 7.6$ Hz, $C(CH_3)_{3}$,

 δ 0.47 (s, 9 H, N[Si(CH₃)₃]₂), 1.26 (s, 12 H, C(CH₃)₂), 1.32 (s, 6 4.4 $(d, {}^{5}J_{CP} = 2.5$ Hz, \overline{Si} $(CH_3)_3$, 17.7 (s, CCH_3) , 30.0-35.0 (m, CH_2) , 43.6 (d, $^{2}J_{CP} = 4.8$, CCH_3), 109.8 (s, Cp), 112.1 (s, Cp); mass spectrum m/e 514. Anal. Calcd for $C_{22}H_{38}CIN_2PSiZr$: C, 51.18; H, **7.42;** N, **5.43.** Found: C, **50.78;** H, **7.72;** N, **5.40. 3c:** ³¹P NMR (C_6D_6) δ 22.0 $(d, {}^1J_{PH} = 307 \text{ Hz})$; ¹H NMR (C_6D_6) H, CH_2 , 5.74 $(d, J_{PH} = 2.6 \text{ Hz}, 5 \text{ H}, \text{Cp})$, 5.96 $(d, J_{PH} = 1.8 \text{ Hz},$ $5 H$, Cp), 6.67 (d, \overline{J}_{PH} = 307 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ

(C6D6) 6 **0.33** *(8,* **18** H, N[Si(CH3)3]z), **0.41** *(8,* **9** H, NSi(CH3)3), $Si(CH_3)_3)$ **110.1** (s, Cp), **111.4** (s, Cp); **IR** (CH_2Cl_2) **2084** (ν_{N_2}) cm⁻¹. **3d:** ³¹P NMR (CH₂Cl₂) δ 33.8 (d, ¹J_{PH} = 330 Hz); ¹H NMR 5.90 $(d, J_{PH} = 2.7 \text{ Hz}, 5 \text{ H}, \text{Cp}), 6.10$ $(d, J_{PH} = 1.8 \text{ Hz}, 5 \text{ H}, \text{Cp}),$ 6.90 (d, \hat{J}_{PH} = 330 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 3.9 (8,

Synthesis of Diaminophosphane 6. A stoichiometric amount of Cp2ZrHz was added to a solution of **1** mmol of phoephaimine **2a** (278 mg) in 15 mL of toluene at -20 °C . The reaction started at room temperature. After being stirred for **15** min, the pink solution was stripped in vacuo leaving a red oil. The colorleas diaminophosphane 6^6 (50%) was extracted with 2×5 mL of pentane.

Synthesis of Zirconaazaphosphirane 7. A THF solution **(10** mL) of Cp,ZrMe, **(251** mg, **1** mmol) was added to a solution of the phosphaimine **2a (278** mg, **1** mmol) in **20** mL of THF at -20 °C. The mixture was stirred for 30 min at room temperature and the solvent evaporated. The resulting orange oil was washed twice with $3 \text{ mL of a } 1/1 \text{ CH}_3\text{CN/Et}_2\text{O}$ solution giving rise to **7** (85%) as a white powder: ³¹P NMR (C_6D_6) δ 35.3 (s); ¹H NMR (C,&) 6 **0.29** *(8,* **18** H, N[Si(CH3)3]2), **0.32** *(8,* **9** H, NSi(CHJ3), ${}^{3}J_{CP} = 5.0$ Hz, $\text{Si}(CH_3)_3$, 6.7 (d, ${}^{3}J_{CP} = 2.5$ Hz, $\text{Si}(CH_3)_3$), 20.4 $(d, {}^{2}J_{CP} = 6.6 \text{ Hz}, Zr\check{CH}_3)$, 23.4 $(d, {}^{1}J_{CP} = 8.4 \text{ Hz}, PCH_3)$, 106.9 **(s, Cp)**, 109.1 **(s, Cp)**; mass spectrum m/e 513 **(M⁺** - CH₃). Anal. Calcd for C₂₁H₄₃N₂PSi₃Zr: C, 47.58; H, 8.18; N, 5.29. Found: C, **47.37;** H, 8.08; N, **5.14.** 1.41 (d, ${}^{2}J_{\text{PH}}$ = 4.6 Hz, 3 H, PCH₃); 5.54 (d, J_{PH} = 2.1 Hz, 5 H, Cp), 5.68 $(d, J_{PH} = 1.4 \text{ Hz}, 5 \text{ H}, Cp)$; ¹³C NMR (C_6D_6) δ 5.1 $(d,$

Synthesis of Phosphane Complexes 9a,b. Excess of Fe₂(CO)₉ **(2** equiv) was added to a solution of the metallacycle **3a** or **3b** (0.8 mmol) in 10 mL of THF at -30 °C. The resulting solution was **stirred** overnight at room temperature. Evaporation of the solvent, followed by extraction with pentane $(2 \times 10 \text{ mL})$, resulted in dark-brown oils: **9a (59%); 9b (50%).**

9a: ³¹P NMR (C_6D_6) δ 87.6 (d, $J_{PH} = 407$ Hz); ¹H NMR (C_6D_6) 6 **0.01 (s,9** H, Si(CH3)3), **0.29 (s,18** Hz, N[Si(CH3)&), **7.72** (dd, $(8, \widetilde{Si}(CH_3)_3)$, 3.8 $(8, \widetilde{Si}(CH_3)_3)$, 215.1 $(d, \sqrt[2]{C_P} = 21.3$ *Hz*, \widetilde{CO}); mass spectrum *m/e* 448. Anal. Calcd for C₁₃H₂₉FeN₂O₄PSi₃: C, 34.81; H, **6.52;** N, **6.25.** Found C, **34.76;** H, **6.47;** N, **6.19.** $J_{\text{PH}} = 407.0 \text{ Hz}, \, ^3J_{\text{HH}} = 8.0 \text{ Hz}, \, ^1\text{ H}, \, ^1\text{ H}, \, ^1\text{ C} \text{ NMR}$ (C_6D_6) δ 2.5

4¹, **1,** 0.15.
435 Hz, ² J_{PH} = 20 Hz); H NMR (C₆D₆) *b* 0.26 (s, 9 H, Si(CH₃)₃), 0.97 (s, 9 Hz, C(CH₃)₃), **1.16 (s, 9 H, C(CH₃)₃) 7.90 (dd, ¹J_{PH} = 435 Hz, ³J_{HH} = 7 Hz, 1** H, PH); ¹³C NMR (C₆D_e) δ 5.6 (s, Si(CH₃)₃), 30.0 (d, $^3J_{\rm PC} = 4.2$
Hz, C(CH₃)₃), 33.1 (d, $^3J_{\rm PC} = 4.7$ Hz, C(CH₃)₃), 54.3 (d, $^2J_{\rm PC} =$
13.4 Hz, C(CH₃)₃), 58.4 (s, C(CH₃)₃), 215.2 (d, **43.27; H, 7.02; N, 6.73. Found: C, 43.19; H, 7.11; N, 6.64. 43.27; H, 7.02; N, 6.73. Found: C, 43.19; H, 7.11; N, 6.64. 9b:** ³¹P NMR (C_6D_6) δ 65.4 (dd, ¹ J_{PH} =

⁽¹³⁾ Buchwald, 5. L.; Lamaire, S. J.; **Nielsen,** R. **B.; Watson, B. T.; King, S. M.** *Tetrahedron Lett.* **1987,28, 3895.**

⁽¹⁴⁾ Niecke, E.; Flick, W. *Angew. Chem., Int. Ed. Engl.* 1973, *12*, 585.
(15) Scherer, O.; Kuhn, N. *Angew. Chem., Int. Ed. Engl.* 1974, *13,* 811.
(16) Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V.; Markowskii, L.

N. *Zh. Obshch. Khim.* **1984,54,466;** *J. Gen. Chem. USSR* **1984,54,415. (17) Niecke, E.; Schoeller, W.** W.; **Wildbredt, D. A.** *Angew. Chem., Int.*

Ed. Engl. **1981,20, 131.**

⁽¹⁸⁾ Yoshifuji, M.; Toyota, K.; Inamoto, N.; Hirotsu, K.; Higuchi, T.
Tetrahedron Lett. 1985, 26, 6443.
(19) Caminade, A.-M.; Majoral, J.-P.; Mathieu, R.; Yeung Lam Ko, Y.
C. J. Chem. Soc., Chem. Commun. 1987, 639.
(20) Ma

⁽²¹⁾ Niecke, E.; Flick, W. *Angew. Chem., Int. Ed. Engl.* **1974,13,134.**

Synthesis of Phosphane Sulfides loa6 and lob, from Metallacycles 3a and 3b. Powdered sulfur (0.9 mmol) in 10 mL of toluene was added to a solution of **0.6** mmol of metallacycle **3a (167** *mg)* or **3b (148** *mg)* at room temperature, and the mixture was stirred for **2** days. After fitration, the resulting solution was concentrated. The slightly yellow **lob,** or green **loa,** product, which turned out to depose slowly in THF and benzene, was obtained in quantitative yield.

10a: ³¹P NMR (C_6D_6) δ 36.3 (d, $^1J_{\text{PH}} = 534$ Hz); mass spectrum m/e 312. Anal. Calcd for $C_9H_{29}N_2PSSi_3$: C, 34.57; H, 9.35; N, **8.96.** Found: C, **34.17;** H, **9.29;** N, **8.52.**

 (C_6D_6) δ 0.44 (s, 9 H, Si(CH₃)₃), 1.15 (s, 9 Hz, HNC(CH₃)₃), 1.48 (e, θ H, SiNC(CH₃)₃), 8.20 (d, $J_{PH} = 536$ Hz, 1 H, PH); mass spectrum m/e 280. Anal. Calcd for C₁₁H₂PN₂PSSi: C, 47.10; H, **10.42; N, 9.99. Found: C, 47.35; H, 10.39; N, 9.80. 10b:** ³¹P NMR (C_6D_6) δ 31.40 (d, ¹J_{PH} = 536 Hz); ¹H NMR

Synthesis of 10b from Thioiminophosphorane 13. Cp,ZrHCl **(2** mmol) was added at once to a solution of thioiminophosphorane **13 (2** mmol, **556** mg) in **20** mL of THF. The resulting green solution was stirred at **-20** "C for **30** min. Evaporation of the solvent followed by extraction with pentane **(2 x 5 mL)** afforded a yellow green residue identified **as lob** *(50%).*

Synthesis of 1Oc from Metallacycle 3a. An excess of selenium **(1.5** equiv) was added at room temperature to a solution of **0.6** mmol of metallacycle **3a (167** *mg)* in **10 mL** of toluene. The heterogeneous solution was stirred for **2** days. After filtration, the resulting solution was concentrated to give a pale yellow powder washed with pentane $(2 \times 10 \text{ mL})$ identified as $10c$ (45%) .
³¹P NMR (C_6D_6) : δ 19.60 (ddd, 'J_{PH} = 521 Hz , ²J_{PH} = 7 *Hz, J_{PS}*. $= 761$ Hz); ¹H NMR (C_eD_e) δ 0.09 (d, $\gamma_{\text{PH}} = 0.6$ Hz, 9 H, Si(CH₂)₂), 0.31 **(d,** $\mathbf{v}_{\text{PH}} = 0.6 \text{ Hz}$ **, 18 H, N[Si(CH₃)₃]₂), 8.09 (d, ¹**_{PH} = 521.0 *9.14 19.14 19.14* Hz, **1** H, PH); mass spectrum m/e **360.** Anal. Calcd for C&d2PSeSi3: C, **30.06;** H, **8.13;** N, **7.79.** Found: C, **30.46;** H, **8.28;** N, **7.65.**

Synthesis of Zirconaazaphosphirane 14.^{5b} Me₃SiOSO₂CF₃ (1 mmol, **222** mg) was added dropwise with stirring to the zirconaazaphosphirane $(1 \text{ mmol}, 536 \text{ mg})$ in $20 \text{ mL of } CH_2Cl_2$ at -20 ^oC. A pale yellow solution was formed within seconds. The reaction mixture was warmed to room temperature for **15** min. The solvent **was** removed in vacuo giving **rise** to a yellow powder, which was washed with **2 X 10** mL of ether. **14** was obtained **as** a waxlike white substance (65%): ³¹P NMR (C₆D₆) δ 40.9 (d, ¹J_{PH} $= 353$ Hz); ¹H NMR (C₆D₆) δ 0.30 (s, 18 H, N[Si(CH₃)₃]₂), 0.32 **(~,9** H, NSi(CH3)3), **5.96** (d, JpH = **2.7** Hz, **5** H, Cp), **6.11** (d, JpH $= 1.8$ Hz, 5 H, Cp), 6.89 (d, 1 *J_{HP}* = 353.0 Hz, 1 H, P-H); ¹³C NMR (C_6D_6) δ 2.7 (d, ${}^3J_{CP} = 2.6$ Hz) and 4.1 (br s, NSi(CH₃)₃), 110.5 (d, Jpc = **1.2** Hz, Cp), **111.4** (8, Cp), **120.2** (4, *'JCF* = **319.0** Hz, $CF₃SO₃$; IR (KBr) 1377 $(\nu_{SO₃})$ cm⁻¹. Anal. Calcd for $C_{20}H_{38}F_3N_2O_3PSSi_3$: C, 36.95; H, 5.89; N, 4.31. Found: C, 36.86; H, **5.77;** N, **4.18.**

Synthesis of Cation 15 from 14.^{5b} Evaporation of a dichloromethane solution of **14** gave a yellow residue, which was diasolved in acetonitrile giving rise to the ionic structure **15:** 31P 0.28 (s, 9 H, NSi(CH₃)₃), 0.53 (s, 18 H, N[Si(CH₃)₃]₂), 2.09 (s, free CH3CN due to the CD3CN-CH3CN fast exchange, coordinated CH3CN is not seen in CD3CN solution), **6.16** (d, JPH ⁼**2.6** Hz, NMR (CD₃CN) δ 28.9 (d, $^1J_{PH}$ = 377 Hz); ¹H NMR (CD₃CN) δ 5 H, Cp), 6.27 (d, J_{PH} = 1.7 Hz, 5 H, Cp), 7.18 (d, ¹ J_{HP} = 377.0
Hz, 1 H, P-H); ¹³C NMR (CD₃CN) δ 3.1 (d, J_{CP} = 2.6 Hz) and **1.7 Hz, 5 H, Cp), 7.18 (d,** ${}^{1}J_{\text{HP}}$ **4.3** *(8,* NSi(CH&), **110.6** and **111.5** *(8,* Cp), **120.2** (9, *'JCF* = **319.0** Hz , $CF₃SO₃$); IR (CD₃CN) 1270 $(\nu_{SO₃}$ ionic) cm⁻¹. Anal. Calcd for C₂₂H₄₁F₃N₃O₃PSSi₃Zr: C, 38.24; H, 5.98; N, 6.08. Found: C, **38.11;** H, **5.91;** N, **5.94.** Removal of acetonitrile followed by addition of THF allowed one to recover **14.**

Synthesis of Cationic Zirconaazaphosphirane 16.^{5b} (i) **From Zirconaazaphosphirane 3a.** An excess **of** NaBPh, **(682** mg, 2.00 mmol) was added to a solution of zirconaazaphosphirane **3a** (879 mg, 1.64 mmol) in 25 mL of acetonitrile at 0 °C. A light yellow color developed during the dissolution of NaBPh4. The mixture was allowed to react at room temperature. Volatiles were removed, and the yellow residue was extracted with **2 x 10** mL of dichloromethane, affording a yellow powder **16 (72%):** 31P ⁶**0.41** *(e,* **9** H, NSi(CH3)3), **0.66** *(8,* **18** H, N[Si(CH3),],), **2.09** (a, free CH₃CN; coordinated CH₃CN in CD_2Cl_2 solution, 1.60 (s, 3 NMR (CH₃CN) δ 29.1 (d, ¹J_{PH} = 377 Hz); ¹H NMR (CD₃CN), H)), **6.19** (d, J_{PH} = 2.6 Hz, 5 H, Cp), **6.30** (d, J_{PH} = 1.8 Hz, 5 H,

 Cp), 7.23 (m, 12 H, p, m $\text{C}_6\text{H}_5\text{)}_4\text{B}$), 7.29 (d, $^1J_{\text{PH}} = 377.0$ Hz, 1 H, PH), 7.59 (m, 8 H, o-H (C₆H₅)₄B); ¹³C NMR (CD₃CN) δ 3.5 and 4.7 (s, NSi(CH₃)₃), 110.7 and 111.6 (s, Cp); (C₆H₅)₄B at 123.0 (s), 126.9 (q, ${}^{1}J_{CB} = 2.7$ Hz), 137 (s), and 165.1 (q, $J_{BC} = 50.0$ Hz);
 IR (CH₂Cl₂) ν_{CN} 2302 and 2253 cm⁻¹ (free CH₃CN), 2281 (coordinated CH_3CN) cm⁻¹. Anal. Calcd for $C_{45}H_{61}BN_3PSi_3Zr$: C, **62.76;** H, **7.14;** N, **4.88.** Found: C, **62.64;** H, **7.10;** N, **4.76.**

(ii) From Cationic Zirconaazaphosphirane 15. The reaction was carried out **as** above with **2** mmol of NaBPh, **(682** mg) and **1.64** mmol of zirconaazaphosphirane **(1.04** mg).

Synthesis of Zirconaphosphirane 18. A stoichiometric amount of Cp,ZrHCl was added to a solution of **1** mmol of phosphaalkene **17 (277** mg) in **20** mL of THF at **-20 "C** with stirring for **15** min. The reaction started when the temperature reached ~ 0 °C as indicated by an orange coloration of the reaction mixture. The mixture was stirred for **30 min** at room temperature and stripped in vacuo, leaving an orange oil. **18 (78%)** was obtained as an air- and moisture-sensitive white powder after extraction with 2×15 mL of pentane followed by filtration: ^{31}P (8, **18 H, N**[Si(CH₃)₃]₂), 0.40 (s, 9 H, CSi(CH₃)₃), 5.74 (d, J_{PH} = NMR (C_6D_6) δ 42.60 (d, J_{PH} = 346 Hz); ¹H NMR (C_6D_6) δ 0.26 **1.8** Hz, **5** H, Cp), **5.81** (d, JpH = **2.4** Hz, **5** H, Cp), 5.88 (dd, 'JpH $= 343.0$ Hz, ${}^{3}J_{\text{HH}} = 15.0$ Hz, 1 H, PH), 7.34 (dd, ${}^{2}J_{\text{PH}} = 18.0$ Hz, ${}^{3}J_{\text{HH}} = 15.0 \text{ Hz}, 1 \text{ H}, \text{CH}; {}^{13}\text{C} \text{ NMR } (C_{6}D_{6}) \delta 4.2, 4.4, 4.7 \text{ (s)}$ Si(CH3)3), **108.4** *(8,* Cp), **110.4** *(8,* Cp); mass spectrum m/e **533.** Anal. Calcd for C₂₀H₃₉ClNPSi₃Zr: C, 44.86; H, 7.34; N, 2.62. Found C, **44.54;** H, **7.30;** N, **2.37.**

Synthesis of Diphosphene 20 and Diphosphirane 21. A stoichiometric amount of Cp₂ZrHCl (258 mg, 1 mmol) was added to a solution of phosphaalkene **19 (326** mg, **1** mmol) in **20** mL of THF at -80 °C. An orange color developed at -50 °C during the dissolution of Cp_2ZrHCl . The mixture was allowed to react at 0 "C for **30** min and at room temperature for **15** min. 31P NMR spectra clearly indicated the formation of 20 $(\delta(^{31}P) = 309.4$ ppm),22 **as** the major product of the reaction, and **21.**

Synthesis of Diphosphirane 21 from Diphosphirane 23. A stoichiometric amount of Bu₃SnH (60 mg) was added to a solution of diphosphirane 23 (85 mg, 0.2 mmol) in 10 mL of THF at **-10 "C.** The reaction mixture was warmed to room temperature. The color changed from orange to yellow. The mixture was stirred for 5 h at room temperature. At the end of the reaction, the solution was evaporated to dryness and diphosphirane **21** was purified by chromatography on Florisil with pentane as eluent (75%): ³¹P NMR (C_6D_6) δ -244.9 (dd, $^1J_{\text{PH}}$ = **9** H, CH(SiMe₃)₂), 0.28 (dd, $J_{PH} = 0.7$ and 0.6 Hz, 9 H, C(SiMe₃)₂), 0.37 (d, $^{4}J_{\text{PH}} = 1.95$ Hz, 9 H, $\overline{\text{CH}}(\text{SiMe}_3)_2$); ¹³C *NMR* (C₆D₆) δ 1.2, **1.6, 3.4, 3.5** $(Si(CH_3)_3)$ **, 7.7** $(d, {}^1J_{CH} = 84.6 \text{ Hz}, \text{CH})$ **, 22.5** $(d\tilde{d}, {}^1J_{CP})$ **149 Hz, 'J_{pp} = 161 Hz**), -134.4 (d, 'J_{pp} = 161 **Hz**); '**H** NMR (C₆D₆) δ 0.14 (d, ⁴J_{PH} = 2.6 **Hz**, 9 **H**, C(SiMe₃)₂), 0.23 (d, ³J_{PH} = 1.1 **Hz**, $= 72.0$ Hz, $^{1}J_{CP} = 79.0$ Hz, $CSi(CH_3)_3$.

Synthesis of Diaminophosphane 27. To a solution of chlorophosphine **24 (1.51** g, **4.1** mol) in *20* **mL** of THF was added with stirring 1 equiv of Cp₂ZrHCl. The brown solution was stirred overnight. After removal of the solvent, the product was extracted with pentane, affording an orange oil, 27 (80%): ³¹P NMR (C₆D₆) *Hz,* **9** H, Si(CH3),), **1.30** (s, **12** H, C-CHJ, **1.38** (s, **6** H, CHJ, **6.63** $(d, {}^{1}J_{PH} = 219.0$ Hz, PH); mass spectrum m/e 332. Anal. Calcd for C15H3,N2PSi2: C, **54.16;** H, **11.21;** N, **8.42.** Found: C, **54.50;** H, **11.16;** N, **8.69.** δ 44.4 (d, ¹J_{PH} = 219 Hz); ¹H NMR (C₆D₆) δ 0.33 (d, ⁴J_{PH} = 0.7

Synthesis of Diphosphirane Complex 28. A stoichiometric amount of Bu₃SnH (1.16 g, 4 mmol) was added to a solution of diphosphirane complex, **25,** in hexane at **-10** "C. The reaction mixture was warmed to room temperature and stirred for **2** h. Then the solution was controlled by ³¹P NMR. 28: ³¹P NMR = **239** Hz). (C_6D_6) δ -124.1 (d, ¹J_{PP} = 239 Hz), -92.3 (dd, ¹J_{PH} = 334 Hz, ¹J_{PP}

Synthesis of Secondary Phosphine Tungsten Complex 29. Cp,ZrHCl **(257** *mg,* **1** mmol), complex **26 (548** mg, **1** mmol), and THF were mixed at **-40** "C. The resulting brown solution was stirred from **-40** "C to room temperature for **2** h. The solvent then was removed in vacuo. Extraction with pentane $(2 \times 5 \text{ mL})$ afforded a waxlike brown substance, $29(80\%)$: ³¹P NMR (C_6D_6)

⁽²²⁾ Escudi6, J.; Couret, C.; Ranaivonjatovo, **H.;** Satg6, J. *J.* Chem. *SOC.* **1984,** *24,* **1621.**

 δ -116.5 (tdd, $^1J_{\text{PH}}$ = 333 Hz, $^2J_{\text{PH}}$ = 6 Hz, J_{PW} = 219 Hz); ¹H 7.0 Hz, 1 H, CH), 4.08 (dd, J_{PH} = 333.0 Hz, J_{HH} = 6.0 Hz, 2 H, NMR (C_6D_6) δ -0.08 and 0.28 (s, 18 H, Si $(CH_3)_3$), 1.1 (d, J_{HH} = H₂P). Anal. Calcd for C₁₂H₂₁O₅PSi₂W: C, 27.91; H, 4.10. Found: C, 27.72; H, 4.00.

Synthesis of Zirconadiazaphosphetidine 31. Cp₂ZrHCl(257) mg, 1 mmol) was added to a solution of 1 mmol of (bis(trimethylsilyl)amino)bi(**(trimethylsily1)imino)phosphorane** 30 (453 mg) in 15 **mL** of THF at -20 "C. The yellow solution was stirred at this temperature for 30 min. After extraction of the solvent, the yellow residue was washed with benzene. The complex then precipitated as a white powder (82%) : ³¹P NMR (C_6D_6) δ 2.8 (d, 0.43 and 0.61 (8, 9 H, N-Si(CH3)3), 6.31 *(8,* 5 H, Cp), 6.27 *(8,* 5 6.1 (d, ${}^{3}J_{\text{CP}} = 8.2 \text{ Hz}$, Si(CH₃)₃), 6.2 (d, ${}^{3}J_{\text{CP}} = 4.6 \text{ Hz}$, Si(CH₃)₃), 8.0 (d, ${}^{3}J_{CP} = 4.1$ Hz, Si(CH₃)₃), 114.3 (s, Cp), 116.3 (s, Cp); mass spectrum m/e 621. Anal. Calcd for $C_{22}H_{47}CIN_3PSi_4Zr$: C, 42.37; H, 7.60; N, 6.74. Found: C, 42.15; H, 7.25; N, 6.55. J_{PH} = 517 Hz); ¹H NMR (C₆D₆) δ 0.16 *(s, 18 H, N[Si*(CH₃)₃]₂), H, Cp), 7.54 (d, ¹J_{PH} = 517.0 Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ

Synthesis of **Zirconadiazaphosphetidine** Triflate 37. Me₃SiOSO₂CF₃ (222 mg, 1 mmol) was added dropwise with stirring to 31 (621 mg, 1 mmol) in 20 mL of CH_2Cl_2 at -20 °C. A clear yellow solution was formed within seconds. The reaction mixture was warmed to room temperature over 30 min. The solvent then was removed in vacuo to give a yellow light solid, 37 (75%): ³¹P (m, 36 H, Si(CH₃)₃), 6.56 (s, 5 H, Cp), 6.59 (s, 5 H, Cp), 7.42 (d, $^{1}J_{\text{PH}} = 538.0$ Hz, 1 H, PH); ¹³C NMR (C₆D₆) δ 3.9 (d, ³J_{CP} = 4.3 Hz, Si(CH₃)₃), 4.9 (s, Si(CH₃)₃), 115.3 (s, Cp), 116.8 (s, Cp), 120.0 $({\bf q}, {}^{1}J_{CF} = 320.0 \text{ Hz}, \text{ CF}_3{\rm SO}_3).$ Anal. Calcd for $C_{23}H_{47}F_3N_3O_3PSSi_4Zr$: C, 37.47; H, 6.43; N, 5.70. Found: C, 37.06; **NMR** (C_βD_β) δ -2.3 (d, ¹J_{PH} = 538 Hz); ¹H NMR (C_βD_β) δ 0.27-0.55

H, 6.34; N, 5.61; IR (KBr) 1322 (ν_{SO_3}) cm⁻¹.

Synthesis of Cationic Zirconadiazaphosphetidine Triflate 38. **Zirconadiazaphosphetidine** triflate 37 was dissolved in acetonitrile. 38: ³¹P NMR (CD₃CN) δ 1.6 (d, ¹J_{PH} = 536 Hz); IR (CD_3CN) 1279 $(\nu_{SO_3} \text{ ionic}) \text{ cm}^{-1}$.

Synthesis of Zirconadiazaphosphetidine 39. Cp₂ZrH₂ (1) mmol) was added at once to a solution of 1 mmol of (bis(trimethylsilyl)amino)bis(**(trimethylsily1)imino)phosphorane** (30) in 15 mL of toluene at -20 "C. The yellow solution was stirred for 30 min at this temperature. After extraction of the solvent, the yellow residue was washed with pentane. The complex 39 (80%) precipitated as a white powder: ³¹P NMR (C₆D₆) δ –2.9 (dd, ¹J_{PH} $(s, 36 \text{ H}, \text{Si}(\text{CH}_3)_{3}), 4.68 \text{ (d, }^{3} \text{J}_{\text{PH}} = 40.0 \text{ Hz}, 1 \text{ H}, \text{ZrH}), 7.31 \text{ (d, }^{3} \text{J}_{\text{PH}} = 40.0 \text{ Hz}, 1 \text{ H}, \text{ZrH}).$ ¹³C NMR (C₆D₆) δ 4.0–5.0 (m, Si(CH₃)₃), 104.3 (s, Cp), 105.6 (s, Cp). Anal. Calcd for C₂₂H₄₈N₃PSi₄Zr: C, 44.85; H, 8.21; N, 7.13. Found: C, 45.03; H, 7.97; N, 7.45. $= 509$ Hz, $^{2}J_{\text{PH}} = 40$ Hz); ¹H NMR (C₆D₆) δ 0.24, 0.30, 0.33, 0.40 *i*J_{pH} = 509.0 Hz, 1 H, PH), 5.74 *(8, 5 H, Cp); 5.82 <i>(8, 5 H, Cp);* 1³C NMR *(C₆D₆)* δ 4.0-5.0 *(m, Si(CH₃)₃), 104.3 <i>(s, Cp), 105.6 (s,*

Registry **No. 1,** 37342-97-5; 2a, 50732-21-3; 2b, 53787-01-2; 2c, 72821-01-3; 3a, 128337-85-9; 3b, 131104-31-9; 3c, 13869446-9; 3d, 138753-35-2; 6,63104-54-1; 7, 138694-47-0; **9a,** 131104-37-5; 9b, 13110433-1; **loa,** 6310456-3; lob, 13869444-7; lOc, 63104-57-4; 13,53973-90-3; 14,131104-34-2; 15,13110436-4; 16,131130-18-2; 17, 76173-65-4; 18, 128337-84-8; 19, 79454-85-6; 20,96043-64-0; 21,128429-18-5; 23,113389-13-2; 24,9050031-5; 25,113192-44-2; 26,138694-50-5; 27,13869445-8; 28,138694481; 29,13869449-2; 30,52111-28-1; 31,138694-51-6; 37,138694-52-7; 38,138694-54-9; 39A, 138694-56-1; 39B, 138694-55-0; Cp₂ZrH₂, 37342-98-6; Cp_2ZrMe_2 , 12636-72-5; Fe₂(CO)₉, 15321-51-4; Me₃SiOSO₂CF₃, 27607-77-8.

Silaheterocycles. 14.¹ Regiospecific Cycloaddition Reactions of Dichloroneopentylsilene with Cyclohexa-I ,3-diene. A Novel 7-Sila bicycle[4.2.OIoct-2-ene -+ **2-Sila bicycle[2.2.2loct-5-ene Rearrangement**

Norbert Auner, * **Claudia Seidenschwarz, and Norbert Sewald**

Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, *0-8046 Garchlng, Germany*

Received August 15, 199 1

In the presence of cyclohexa-1,3-diene (2), dichloroneopentylsilene **(l),** generated in situ from trichlorovinylsilane and t -BuLi, favors the regioselective formation of the anti/syn isomeric $[2+2]$ cycloadducts (3,74%) over the [4+2] addition, leading to the endo/exo isomer Diels-Alder compounds **4** (26%). On standing, the thermodynamically lees stable silacyclobutane derivatives 3 completely isomerize to give the [4+2] products within several weeks. Possible reaction pathways, including a zwitterionic intermediate A, are discussed. In contrast, the dimethyl- and diphenyl-substituted [2+2] adduds **(7,8),** available from 3 by substitution reactions, show different isomerization behavior. They cannot be transformed into the Diels-Alder compounds, but the **syn** [2+2] isomers slowly form the thermodynamically more stable anti derivatives at room temperature. On thermolysis they yield open-chain products by a retro ene reaction. The high synthetic potential of strongly eledrophilic 1 is demonstrated by the comparison of the cycloaddition behavior with diorgano-substituted neopentylsilenes $\rm R_2Si=CHCH_2Bu-t$: Reaction of Me₂Si==CHCH₂Bu-*t* with 2 favors the $[4+2]$ product formation, while $Ph_2Si=CHCH_2Bu-t$ yields the Diels-Alder adducts exclusively.

Introduction

Our investigations on the cycloaddition behavior of dichloroneopentylsilene, Cl,Si==CHCH,Bu-t **(l),** formed by treating vinyltrichlorosilane with t-BuLi in nonpolar solvents? revealed some surprising results, which have not been obtained in earlier work for diorgano-substituted
derivatives by the group of Jones.³ With cycloderivatives by the group of Jones. 3 pentadienes,⁴ aromatic dienes such as naphthalene⁵ and

⁽¹⁾ Part 13: Auner, N.; Penzenstadler, E. *2. Naturforsch.,* **in press. (2) Auner, N.** *Z. Anorg. A&. Chem.* **1988, 558, 55.**

⁽³⁾ Jones, P. R.; Lim, T. F. O.; Pierce, R. A. J. Am. Chem. Soc. 1980, 102, 4970. Jones, P. R.; Lim, T. F. O. Ibid. 1977, 99, 8447. See also: Auner, N., J. Organomet. Chem. 1987, 336, 83; Z. Anorg. Allg. Chem.
1988, 558, 87. References 22 and 16.
(4) Auner, N. J. Organomet. Chem. 1988, 353, 275.