Acknowledgment. We thank Mr. Akira Mizuno and Mr. Yoshihisa Toda at the Materials Science & Analysis Laboratories, Mitsui Petrochemical Industry, Ltd., for ³¹P NMR measurements. We also thank TOSOH AKZO Corp. for a kind gift of alkylaluminums. This work was supported by Grants-in-Aid for Scientific Research (No. 02640479) and for Priority Area of Organic Unusual Valency (No. 03233222) from the Ministry of Education, Science and Culture of Japan.

Registry No. 1, 14221-01-3; 2, 33309-88-5; 3, 82916-00-5; 4, 75172-21-3; 5, 60885-30-5; 6, 70316-76-6; 7, 63455-39-0; 8,

138695-22-4; 9, 138695-23-5; 10, 138695-24-6; 11, 138695-25-7; PhC(O)P(O)(OEt)₂, 3277-27-8; tolC(O)P(O)(OEt)₂, 2942-54-3; $\begin{array}{l} MeC_{6}H_{4}\text{-}p\text{-}C(O)P(O)(OEt)_{2}, \ 16703\text{-}95\text{-}0; \ ClC_{6}H_{4}\text{-}p\text{-}C(O)P(O)\text{-}\\ (OEt)_{2}, \ 10570\text{-}46\text{-}4; \ PhC(O)P(O)(OMe)_{2}, \ 18106\text{-}71\text{-}3; \ MeC(O)P\text{-}\\ \end{array}$ (O)(OEt)₂, 919-19-7; MeC(O)P(O)(OMe)₂, 17674-28-1; EtC(O)P-(O)(OEt)₂, 1523-68-8; EtC(O)P(O)(OMe)₂, 51463-65-1; PhP-(O)(OEt)₂, 1754-49-0; tolP(O)(OEt)₂, 1754-46-7; MeOC₆H₄-p-P- $(O)(OEt)_{2}^{2}$, 3762-33-2; $ClC_{6}H_{4}$ -*p*-P $(O)(OEt)_{2}$, 2373-43-5; PhP- $(O)(OMe)_{2}$, 2240-41-7; MeP $(O)(OEt)_{2}$, 683-08-9; MeP $(O)(OMe)_{2}$, 756-79-6; EtP(O)(OEt)₂, 78-38-6; EtP(O)(OMe)₂, 6163-75-3; tolC(O)P(O)(OMe)₂, 33493-30-0; tolP(O)(OMe)₂, 6840-25-1; trans-PdEt₂(PMe₃)₂, 124717-55-1.

Notes

Double Insertion of Methylene into Nickel-Phosphorus Bonds: Synthesis and Structure of [NI(CH₂PPh₂CH₂PPh₂)₂][Br]₂

Jin Kang Gong

Department of Chemistry, Southeast Missouri State University, Cape Girardeau, Missouri 63701

Thomas B. Peters, Phillip E. Fanwick,[†] and Clifford P. Kubiak^{*,‡} Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 Received August 21, 1991

Summary: The new nickel phosphorus ylide complex, [NI(CH₂PPh₂CH₂PPh₂)₂][Br]₂ (1) has been prepared by the reaction of NI(COD)2, dppm (bis(diphenylphosphino)methane), and CH2Br2. The complex crystallizes from DMSO as 1.2DSMO: triclinic space group P1, a = 9.972(2) Å, b = 12.061 (2) Å, c = 12.675 (2) Å, $\alpha = 114.19$ (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³ (Z = 1). Complex 1 can be reversibly deprotonated by 2 equiv of NaNH₂ to afford Ni(CH₂PPh₂CHPPh₂)₂ (2) and reprotonated by HBr.

Nickel complexes with chelating phosphorus ylide ligands are of considerable interest as catalysts for olefin homologation and polymerization.¹ A nickel ylide complex reported by Keim and co-workers² is a highly active catalyst for the Shell higher olefins process (SHOP).³ A variety of different synthetic routes to modified chelating phosphorus ylide nickel catalysts have been described.⁴⁻⁸ We now report a remarkably straightforward preparation nickel ylide complex [Niof а new $(CH_2PPh_2CH_2PPh_2)_2$ [Br]₂ (1). Complex 1 can be reversibly deprotonated to afford the neutral product Ni- $(CH_2PPh_2CHPPh_2)_2$ (2), which was prepared earlier via

[†]Address correspondence pertaining to crystallographic studies to this author.

[‡]Research fellow of the Alfred P. Sloan Foundation, 1987-1991. (1) Quirk, R. P.; Hoff, R. E.; Klingensmith, G. B.; Tait, P. J.; Goodall, B. L. Transition Metal Catalyzed Polymerization; Cambridge University

B. L. Transition Institut Catalyzes 1 or mercention, Cambridge Cartesing Press: Cambridge, U.K., 1989; p 472.
(2) Keim, W.; Kowaldt, F. M.; Goddard, R.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1978, 17, 466.
(3) Lutz, E. F. J. Chem. Educ. 1986, 63, 202.
(4) Schmidbaur, H.; Deschler, U.; Milewski-Mahrla, B. Angew. Chem., Int. Eduction 1997, 100 (2019)

Int. Ed. Engl. 1981, 20, 586. (5) Keim, W.; Behr, A.; Gruber, B.; Hoffman, B.; Kowaldt, F. H.; Kurschner, U.; Limbacker, B.; Sistig, F. P. Organometallics 1986, 5, 2356.

(6) Alexander, K.; Ostoja-Starzewski, K. A.; Witte, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 63.

- (7) Klabunde, U.; Ittel, S. D. J. Mol. Catal. 1987, 41, 123
- (8) Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 907.

a different procedure by Schmidbaur.⁴ Results of an X-ray crystallographic study of 1 provide the opportunity to compare the characteristics of (methylenediphenylphosphino)(diphenylphosphino)methane (A) and its deprotonated ylide anion (B) as chelating ligands to the same metal.

$$\begin{array}{c} CH_2 - P_B Ph_2 \\ Ph_2 P_A \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ Ph_2 P_A \\ CH_2 \\ Ph_2 \\$$

The complex $[Ni(CH_2PPh_2CH_2PPh_2)_2][Br]_2$ (1) was prepared by addition of 2 equiv of dppm (bis(diphenylphosphino)methane) to 1 equiv $Ni(COD)_2^{9,10}$ (COD = 1,5-cyclooctadiene) at -20 °C in toluene, followed by addition of 2 equiv of CH_2Br_2 . The yellow solid was filtered out, washed with diethyl ether, and dried under vacuum to obtain 1 in yields approaching the theoretical limit of 50% based on Ni(COD)₂ (1 equivalent of Ni(COD)₂ is oxidized by CH_2Br_2) (eq 1). The ³¹P{¹H} NMR spectrum

$$2 \operatorname{Ni}(\operatorname{COD})_2 + 2 \operatorname{dppm} + 2 \operatorname{CH}_2 X_2$$

of 1 in DMSO- d_6 consists of two approximate triplets centered at 47.87 and 32.31 ppm with $J(AB) \approx J(AB') =$

(9) Schunn, R. A. Inorg. Synth. 1975, 15, 5.
 (10) Franco, G.; Giuseppe, S. J. Organomet. Chem. 1976, 114, 339.

Figure 1. ORTEP drawing of [Ni(CH₂PPh₂CH₂PPh₂)₂]²⁺, the molecular ion of 1, with selected bond distances and angles.

56.5 Hz. The ¹H NMR spectrum reveals both types of methylenes. The ylide protons are observed at δ 1.38 (m, 4 H), and the normal methylene protons appear as a pseudotriplet at δ 4.40 (4 H). Coordinated phosphorus ylides normally display methylene proton chemical shifts ranging from 8.25 to 1.2 ppm.^{4,11,12} The ylide carbons of 1 are apparently introduced by insertion of methylene into the nickel-phosphorus bonds of coordinated dppm. Insertion of methylene into metal-phosphorus bonds to form metal ylide complexes was first reported in 1979.¹³ Zerovalent $Pt(PR_3)_4$ complexes undergo oxidative addition of dihalomethanes which lead via haloalkylmetal intermediates to ylide complexes.^{14,15} Methylene may also be inserted into M-P and M-S bonds by reactions with diazomethane.^{11,16} Complex 1 is the first example of multiple methylene insertion between nickel and diphosphine ligands to form a metallocyclic phosphorus ylide complex.

Single crystals of 1 were obtained by slow diffusion of diethyl ether into a DMSO solution of 1. An ORTEP drawing of the molecular dication of 1 with bond distances and angles is presented in Figure 1. The nickel atom lies on a center of symmetry and has approximate squareplanar geometry, chelated by two CH₂PPh₂CH₂PPh₂ phosphine ylides.

One methylene proton of each chelating ylide ligand of 1 can be reversibly deprotonated. Treatment of 1 with 2 equiv of NaNH₂ affords the neutral complex Ni- $(CH_2PPh_2CHPPh_2)_2$ (2) in 85% yield. Complex 2 was first reported by Schmidbaur and co-workers by the addition of two equiv of Na[CH₂PPh₂CHPPh₂] to NiCl₂(PMe₃)₂.⁴ The ³¹P{¹H} NMR spectrum of 2 in $CD_2Cl_2-d_2$ recorded at 80.96 MHz consists of an AA'BB' system centered at δ 41.19, Figure 2. Our ³¹P{¹H} spectrum appears different from that reported by Schmidbaur due to the different fields (80.96 vs 36.43 MHz) employed to record the second-order spectrum. The ${}^{31}P{}^{1}H$ NMR spectra of 2, reported by us and by Schmidbauer,⁴ are both described by the coupling constants: ${}^{2}J(P_{A}P_{A'}) = 271.7 \text{ Hz}, {}^{2}J(P_{A}P_{B'}) = {}^{2}J(P_{A'}P_{B'}) = 155.9 \text{ Hz}, {}^{3}J(P_{A}P_{B'}) = {}^{3}J(P_{A'}P_{B}) = 34.7 \text{ Hz},$

Figure 2. ³¹P{¹H} NMR spectra of Ni(CH₂PPh₂CHPPh₂)₂ (2) at 81 MHz: (a) observed spectrum; (b) simulated spectrum described by ${}^{2}J(P_{A}P_{A'}) = 271.7$ Hz, ${}^{2}J(P_{A}P_{B}) = {}^{2}J(P_{A'}P_{B'}) = 155.9$ Hz, ${}^{3}J(P_{A'}P_{B'}) = {}^{3}J(P_{A'}P_{B}) = 34.7$ Hz, and ${}^{4}J(P_{B}P_{B'}) = 0.2$ Hz.

 ${}^{4}J(P_{B}P_{B'}) = 0.2$ Hz. Complex 2 is readily reprotonated by 2 equiv of HBr to return 1 quantitatively (eq 2).

The structure of 1^{17} together with the structural data for 2, reported earlier by Schmidbaur,⁴ provides the interesting opportunity to compare the ylide (A) and ylide anion (B) as ligands. A summary comparison of the important metrical parameters for the chelate rings of the two structures is as follows:

⁽¹⁷⁾ X-ray-quality crystals of 1 were obtained by slow diffusion of ether into DMSO solution. The complex crystallized as 1-2DMSO in the triclinic space group PI, with a = 9.972 (2) Å, b = 12.061 (2) Å, c = 12.675 (2) Å, $\alpha = 114.19$ (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 114.19 (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 114.19 (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 114.19 (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 114.19 (1)°, $\beta = 100.71$ (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 100.71 (1)°, $\gamma = 91.45$ (1)°, V = 1357.6 Å³, Z = 100.71 (1)°, $\gamma = 91.45$ (1)°, V = 100.71 (1)°, V = 10= 1, and d_{calcd} = 1.43 g/cm³ for the formula C₅₆H₂₀Br₂NiO₂Pr₂S₂. Crystal dimensions were 0.17 × 0.17 × 0.11 mm. A total of 3531 unique data were collected over the h,k,l limits -10 to +10, -12 to +11, and $\overline{0}$ to 13. The structure was solved by MULTAN-least squares-Fourier methods and was refined to R and $R_{\rm w}$ values of 0.058 and 0.063 for 289 variables with I > 3.0 $\sigma(I)$. All programs were from the Enraf-Nonius SDP package. All calculations were performed on a micro-VAX computer.

 ⁽¹¹⁾ Wang, S.; Fackler, J. P. Organometallics 1989, 8, 1578.
 (12) Schmidbaur, H.; Deschler, U. Chem. Ber. 1983, 116, 1386.

⁽¹³⁾ Moss, J. R.; Spiers J. Organomet. Chem. 1979, 182, C2O.
(14) Kermode, N. J.; Lappert, M. F.; Skelton, B. W.; White, A. H.;
Holton, J. J. Chem. Soc., Chem. Commun. 1981, 698.
(15) Kermode, N. J.; Lappert, M. F.; Skelton, B. W.; White, A. H.;
Holton, J. J. Organomet. Chem. 1982, 228, C71.

⁽¹⁶⁾ Puddephatt, R. J. Chem. Soc., Chem. Commun. 1982, 614.

A significant shortening of both methine carbon-phosphorus bond distances for 2 compared to the methylenephosphorus bonds of 1 are consistent with the delocalized partial multiple P-C bond character expected upon deprotonation of 1. The ylide carbon-phorphorus bond distance of 1, d(P4-C5) = 1.73 (1) Å, indicates significant double-bond character.⁴ The corresponding carbonphosphorus bond distance of 2 is slightly longer, 1.772 (7) Å, again consistent with delocalized vs localized carbonphosphorus ylide double bonds in 2 vs 1, respectively. This delocalization has no apparent effect on the ylide carbon-nickel bond distance of 2 compared to 1.

A survey of the chemistry of 1 with CO, CO_2 , and ethylene indicates no significant reactivity at 1 atm. Our ongoing efforts are based on employing the new phosphorus ylide, (methylenediphenylphosphino)(diphenylphosphino)methane (A), as a ligand in monochelate complexes related to existing nickel olefin homologation and polymerization catalysts. $^{1-7}$

Acknowledgment is made to the National Science Foundation (Grants CHE-8707963 and CHE-9016513) for support of this work.

Registry No. 1·2DMSO, 138783-56-9; **2**, 133009-19-5; Ni(C-OD)₂, 1295-35-8.

Supplementary Material Available: Textual presentation of experimental procedures, tables of experimental details and results, torsional angles, positional and isotropic thermal parameters, general temperature factor expressions, and bond distances and angles, and a figure showing observed and calculated ³¹P{¹H} NMR spectra at 81 MHz for 1 (18 pages); a listing of observed and calculated structure factors for 1 (12 pages). Ordering information is given on any current masthead page.

Synthesis, Reactivity, and Molecular Structure of [(phenylsilatrane)Mn(CO)₂P(OMe)₃]ClO₄

Ae-Soon Oh, ^{1a} Young Keun Chung, *, ^{1a} and Sangsoo Kim^{1b,c}

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea, and R & D Center, Biotech., Lucky Ltd., Science Town, Dae Jeon 305-343, Korea

Received August 27, 1991

Summary: [(phenylsilatrane)Mn(CO)₂P(OMe)₃]ClO₄ (2) has been prepared by reaction of [(phenylsilatrane)Mn-(CO)₃]ClO₄ (1) with P(OMe)₃. Compound 2 undergoes regloselective reactions with MeLi, PhLi, and PhMgBr in CH₂Cl₂. However, 2 does not react regloselectively with carbanions in THF. Complex 2 crystallizes in the monoclinic space group $P2_1/n$ with a = 16.354 (4) Å, b =6.585 (1) Å, c = 22.165 (5) Å, $\beta = 97.52$ (1)°, V =2366.7 Å³, and Z = 4. The structure was refined to R= 0.051 and $R_w = 0.051$ for all 4741 reflections.

In recent studies we and others have established the utility of $(arene)Mn(CO)_3^+$ cations in difunctionalizing cyclohexadienes by nucleophilic addition to coordinated arenes.² The factors influencing the observed regiochemistry of nucleophilic attack are very important and need clarification. The regioselectivity for the addition of nucleophiles to $(C_6H_5X)Cr(CO)_3$ can generally be controlled not only by the substituent on the arene but also by the conformation.³ With alkyl substituents, while the expected meta attack predominates for small X (Me and Et), reaction at the para position increases with increasing steric bulk of X until it becomes the only site of attack for $X = CH^{t}Bu_{2}$.⁴ This unusual observation has been rationalized in terms of the conformational preferences of the $Cr(CO)_3$ group.³ We expect that the regiochemistry of (arene)Mn(CO)₃⁺ would be very similar to that of (arene)Cr(CO)₃.⁵

Recently we reported the use of phenylsilatrane as a π -coordinating ligand for transition metals.⁶ The chemistry of the Cr(CO)₃ and Mn(CO)₃⁺ derivatives of phenylsilatrane has been studied.^{6a,b} The Mn(CO)₃⁺ derivative 1 undergoes regioselective reaction with RMgBr (R = Ph, Et, Et) in CH₂Cl₂ to give [η^5 -1-(N(CH₂CH₂O)₃Si)-6-(R)-C₆H₅]Mn(CO)₃ and RMgBr (R = Ph, Me, Et) and LiR (R = CH₂CO₂CMe₃, CH₂CN, CHC(CH₂)₃S) in THF to yield [η^5 -3-(N(CH₂CH₂O)₃Si)-6-(R)-C₆H₅]Mn(CO)₃. The selectivity of the nucleophile addition to 1 is strongly dependent on the nucleophile and reaction medium. This special regioselectivity of compound 1 would partially come from the staggered conformation of metal carbonyls.⁶c

To elucidate the possible effects of various factors that may influence the regioselectivity of the carbanion addition, we have prepared $[(N(CH_2CH_2O)_3SiC_6H_6)Mn-(CO)_2P(OMe)_3]ClO_4$ (2) from 1 and studied the reactivity of compound 2. In this note we report the synthesis of

^{(1) (}a) Seoul National University. (b) Lucky Ltd. (c) Correspondence concerning the X-ray structure should be addressed to this author.

⁽²⁾ Lamanna, W.; Brockhart, M. J. Am. Chem. Soc. 1981, 103, 989.
Brockhart, M.; Lamanna, W.; Humphrey, M. B. J. Am. Chem. Soc. 1982, 104, 2117.
Brockhart, M.; Lamanna, W.; Pinhas, A. R. Organometallics
1983, 2, 649.
Brockhart, M.; Lukas, A. J. Am. Chem. Soc. 1984, 106, 4161.
Chung, Y. K.; Choi, H. S.; Sweigart, D. A.; Connelly, N. G. J. Am. Chem. Soc.
1982, 104, 4245.
Chung, Y. K.; Chonelly, N. G.; Ittel, S. D. Organometallics 1983, 2, 1479.
Chung, Y. K.; Sweigart, D. A.; Connelly, N. G.; Isberidan, J. B. J. Am. Chem. Soc. 1985, 107, 2388.
Chung, Y. K.; Sweigart, D. A.; Connelly, N. G.; Sheridan, J. B. J. Am. Chem. Soc. 1985, 307, 2388.
Chung, Y. K.; Sweigart, D. A.; Connelly, N. G.; Sheridan, J. B. J. Am. Chem. Soc. 1985, 107, 2388.
Chung, Y. K.; Williard, P. G.; Sweigart, D. A. Organometallics 1988, 7, 1323.
Hyeon, T.-H.; Chung, Y. K. J. Organomet. Chem. 1989, 372, C12.
Pike, R. D.; Ryan, W. J.; Lennhoff, N. S.; Van Epp, J.; Sweigart, D. A. J. Am. Chem. Soc. 1989, 111, 8535.
Pike, R. D.; Ryan, W. J.; Lennhoff, N. S.; Van Epp, J.; Sweigart, D. A. J. Am. Chem. Soc. 1989, 112, 4798.

⁽³⁾ Solladie-Cavallo, A. Polyhedron 1985, 4, 901. Albright, T. A.;
Carpenter, B. K. Inorg. Chem. 1980, 19, 3092.
(4) Semmelhack, M. F.; Clark, G.; Farina, R.; Saeman, M. J. Am.

⁽⁴⁾ Semmelhack, M. F.; Clark, G.; Farina, R.; Saeman, M. J. Am. Chem. Soc. 1979, 101, 217.

⁽⁵⁾ Kane-Maguire, L. A. P.; Honig, E. D.; Sweigart, D. A. Chem. Rev. 1984, 84, 525.

^{(6) (}a) Chung, T.-M.; Lee, Y.-A.; Chung, Y. K.; Jung, I. N. Organometallics 1990, 9, 1976. (b) Lee, Y.-A.; Chung, Y. K.; Kim, Y.; Jeong, J. H. Organometallics 1990, 9, 2851. (c) Lee, Y.-A.; Chung, Y. K.; Kim, Y.; Jeong, J. H.; Chung, G.; Lee, D. Organometallics 1991, 10, 3707.