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2.407 (28) A for Si-Si distances in a cyclotrisilane, Si3RB 
(where R = 2,6-dimeth~lphenyl).~ Using the values for 
Si3 and Ge3 clusters, Si and Ge Wuster covalent radii” of 
1.2035 and 1.2705 A may be calculated, leadin to a pre- 
dicted Si-Ge cluster bond distance of 2.474 1. On the 
assumption that the disorder is 3-fold and that the Ge-Ge 
distance (from 2) is 2.538 A, we can calculate a Si-Ge 
distance of 2.493 A from the expression 1/3[d(Ge-Ge) + 
2d(Si-Ge)] = 2.508 A. This value differs little from that 
predicted above of 2.474 A but is also much longer than 
the mean Si-Ge distances reported for Ph3Si-GeMe3 (2.394 
(1) A),11 Me3Si-GePh3 (2.384 (1) &,I2 and a germatrisila- 
cyclobutane (2.457 (7) &.lo It is interesting to note that 
the Ge-Ge distances observed in cyclotrigermanes (ref 22 
and thia work) are also longer than those found for linear 

(25) Maaamune, S.; Hanzawa, Y.; Murakami, S.; Bally, T.; Blount, M. 
F. J. Am. Chem. SOC. 1982,104, 1150. 

and less strained molecules. This elongation of bond 
lengths is probably to be expected for three-membered 
rings with bulky substituents, due to steric congestion.22s 
The M-C distances within compound 1 are 2.013, 2.010, 
and 2.011 A, mean 2.011 (2) A. Other distances and angles 
within both compounds are normal. 
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Summary: The anion obtained by metaiation of 1- 
phenyl-3,4dimethyiphosphoie sulfide reacts wlth chioro- 
diphenylphosphine to give the corresponding 2-(di- 
phenyiphosph1no)phosphole sulflde. A migration of sulfur 
slowly takes place between the two phosphorus atoms 
of this compound. The resulting tervalent phosphole re- 
acts wlth Ilthlum in THF to yield the 3,4dimethyl-2-(di- 
phenylphosph1no)phospholyl anion. This anion is con- 
verted Into the corresponding 2,2’-bis(diphenyl- 
phosph1no)-1, l’diphosphaferrocene by reaction with 
iron( I I) chloride. The difunctional diphosphaferrocene 
thus obtained gives a Mo(CO), chelate by reaction with 
molybdenum hexacarbonyl. 

Phosphino-substituted cyclopentadienyls (1) have re- 
cently found a widespread use in coordination chemistry.’ 
Their interest stems from the fact that they allow two 

(1) (a) Selectad references: Mathey, F.; Lampin, J. P. J. Organomet. 
Chem. 1977,128,297. Rudig, A. W.; Lichtenberg, D W.; Katcher, M. L.; 
Davieon, A. Inorg. Chem. 1978,17,2859. Caaey, C. P.; Bullock, R. M.; 
Fultz, W. C.; Rheingold, A. L. Organometallics 1982,1,1591. Casey, C. 
P.; Bullock, R. M.; Nief, F. J. Am. Chem. SOC. 1983,105, 7574. Casey, 
C. P.; Nief, F. Organometallics 1985,4,1218. Rauach, M. D.; Edwards, 
B. H.; Rogers, R. D.; Atwood, J. L. J. Am. Chem. SOC. 1983,105,3882. 
Moise, C.; Mnisonnat, A.; Poilblanc, R.; Charrier, C.; Mathey, F. J. Or- 
ganomet. Chem. 1984,231, C43. Tikkanen, W.; Fujita, Y.; Petersen, J. 
L. Organometallics 1986,5, 888. Du Bois, D. L.; Eigenbrot, C. W., Jr.; 
Miedaner, A.; Smart, J. C.; Haltiwanger, R. C. Organometallics 1986,5, 
1405. He, X. D.; Maisomat, A.; Dahan, F.; Poilblanc, R. Organometallics 
1987,6,678. Anderson, G. K.; Lin, M. Inorg. Chim. Acta 1988,142,7. 
He, X. D.; Maiaomat, A.; Dahan, F.; Poilblanc, R. Organometallics 1989, 
8,2618. Rauech, M. D.; Spink, W. C.; Atwood, J. L.; Baakar, A. J.; Bott, 
S. G. Organometallics 1989,8,2627. Deacon, G. B.; Dietrich, A.; Forsyth, 
C. M.; Schumann, H. Angew. Chem., Int. Ed. Engl. 1989,28,1370. He, 
X. D.; Maisonnat, A.; Dahan, F.; Poilblanc, R. J. Chem. SOC., Chem. 
Commun. 1990,670. Szymoniak, J.; Kubicki, M. M.; BeaanGon, J.; Moiae, 
C. Inorg. Chim. Acta 1991,180,153. Schenk, W. A.; Neuland-Labude, 
C. 2. Naturforsch 1991,46B, 573. Anderson, G .  K.; Lin, M.; Chiang, M. 
Y. Organometallics 1990,9,288. Anderson, G. K.; Lin, M.; Rath, N. P. 
Organometallics 1990, 9, 2880. Tikkanen, W.; Ziller, J. W. Organo- 
metallics 1991,10,2266. He, X. D.; Maisonnat, A.; Dahan, F.; Poilblanc, 
R. Organometallics 1991,10,2443. Wong, W.-K.; Chow, F. L.; Chen, H.; 
Wang, R.-J.; Mak, T. C. W. Polyhedron 1990,9, 2469. 
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types of transition metals to be held in close proximity in 

1 2 3 

I 
Ph 7 6 5 

order to study their cooperativity in various reactions. On 
the other hand, phospholyls (phosphacyclopentadienyls) 
(2) have been shown to be able to replace cyclopentadienyls 
in a variety of $-complexes2 (3) and to have the additional 
ability to coordinate a second metal via their phosphorus 
lone pair2 (4). The previously unknown phosphino-sub- 
stituted phospholyls (5) were thus a target of obvious in- 
terest for coordination chemists. We describe here the 
synthesis of the first such ligand, i.e. the 3,4-dimethyl-(2- 
dipheny1phosphino)phospholyl anion (6) and some of its 
transition-metal complexes. 

Results and Discussion 
The classical synthesis of phospholyl anions involves the 

cleavage of the exocyclic P-Ph bond of 1-phenylphospholes 

(2) Review: Mathey, F. New J.  Chem. 1987, 11, 585. Recent refer- 
ences: Nief, F.; Mathey, F.; Ricard, L.; Robert, F. Organometallics 1988, 
7,921. Nief, F.; Mathey, F. J. Chem. SOC., Chem. Commun. 1988, 770. 
Nief, F.; Ricard, L.; Mathey, F. Organometallics 1989,8,1473. Nief, F.; 
Mathey, F. J. Chem. SOC., Chem. Commun. 1989,800; Nief, F.; Mathey, 
F.; Ricard, L. J. Organomet. Chem. 1990,384, 271. Baudry, D.; Ephri- 
tikhine, M.; Nief, F.; Ricard, L.; Mathey, F. Angew Chem., Int. Ed. Engl. 
1990,29, 1485. Nief, F.; Mathey, F. Synlett 1991,745. Kershner, D. L.; 
Basolo, F. J.  Am. Chem. SOC. 1987,109,7396. Roberts, R. M. G.; Silver, 
J.; Wells, A. S. Inorg. Chim. Acta 1989, 155, 197. Roberts, R. M. G.; 
Silver, J.; Wells, A. S. Inorg. Chim. Acta 1989, 157, 45. Lemoine, P. J. 
Organomet. Chem. 1989,359, 61. Metternich, H. J.; Niecke, E. Angew. 
Chem., Int .  Ed. Engl. 1991,30,312. Chase, K. J.; Bryan, R. F.; Woode, 
M. K.; Grimes, R. N. Organometallics 1991, 10, 2631. 
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by alkali  metal^.^ The normal precursor of 6 is thus 
1-phenyl-3,4-dimethyl-2-(diphenylphosphino)phosphole 
(7). Previous attempts to prepare 7 from the appropriate 
phospholene rings have failed.4 We were thus led to a 
different approach relying on the metalation of 1- 
phenyl-3,4-dimethylphosphole sulfide A careful 
optimization of the metalation procedure was f i t  carried 
out. As a result, we selected lithium diisopropylamide 
(LDA) as the best metdating agent in lieu of the previously 
used tert-butyllithium. The functionalization was 
straightforward (eq 1). The resulting 2-(diphenyl- 

PhPCl 

THF,-78OC -78% 
- LDA cbr LI' - cbcH' S /  'Ph SHP\Ph 

Notes 

(phospholyl) +89 ppm, Gx(PPh2) -17 ppm, 2J(P-P) = 122 
Hz. The enormous increase of the 2J(P-P) coupling when 
going from 10 to 6 is probably indicative of the partial 
double-bond character of the phospholyl P-C bonds? An 
additional demonstration of the formation of 6 was pro- 
vided by ita reaction with FeC12 in the presence of AlC13p 
which gives the corresponding 1,l'-diphosphaferrocene 11 
(eq 2). The two isomeric diphosphaferrocenes 1 la and 1 lb 
were fuUy characterized by NMR and maas spectroscopies. 
They show a characteristic shift to high field of the 
phospholyl 31P re~onance'~ (CH2C12): 1 la 6(PPh2) -18.9 
ppm, G(cyc1ic P) -56.7 ppm, 2J(P-P) = 12.2 Hz; l lb  6- 
(PPhd -18.4 ppm, G(cyc1ic P) -63.7 ppm, 2J(P-P) - 0 Hz. 
In both isomers, the diphenylphosphino groups retain a 
high ability to coordinate additional transition metals. 
This was shown using the reaction with molybdenum 
carbonyl as a model (eqs 3 and 4). A preliminary X-ray 

Me Me 
W ctf ; Phz (l) 

CH3 
A, 25°C - 
> 4 8 h  T S  

(f PPh, 

S'\Ph Ph 
10 (Ca40%) 9 

phosphino)phosphole sulfide (9) was characterized by 31P 
NMR spectroscopy (CH2C1J: 6(pPhd -17 ppm, G(P(S)Ph) 
+53 ppm, V(P-P) ca. 0 Hz. Upon standing at room tem- 
perature, 9 slowly transforms into 10. This internal re- 
duction is not surprising since phosphole sulfides are 
known to be easily reduced by ordinary tertiary phos- 
phines! The 31P NMR data for 10 are strikingly different 
from those for 9: 6(P(S)Ph2) +30.5 ppm, W P h )  +12.5 
ppm, 2J(P-P) = 56 Hz. The drastic increase in the 2J(P-P) 
coupling constant when going from 9 to 10 probably results 
from the blocking of the PPh2 group in a different con- 
formation before and after sulfurization. 

The stable compound 10 proved to be a convenient 
precursor for the anion 6. Lithium wire (containing ca. 
1% sodium) in the presence of naphthalene in THF' is able 
both to reduce the P=S bond and to cleave the phosphole 
P-Ph bond (eq 2). The resulting phospholyl anion (6) is 

Me 

L &PPh2 Li' 

LI, naphthabne 
10 

THF, 25'C, l h  
6 

1 )  AICl,.0.25 eq,O°C c 
' G I F e q  + 

2) FeC1,,25°C, 0.5h 
pph, PPh, 

l l a  

(2) 
Ph,P & F e w  l l b  PPh, 

ratio l l d l l b  i 65/15, yield ( l la  + l l b )  40% 

characterized by 31P NMR spectroscopy: AX system GA- 

~~ 

(3) Braye, E. H.; Caplier, I.; Saussez, R. Tetrahedron 1971,27,5523. 
For a review on phospholes and phospholyl anions, see: Mathey, F. 
Chem. Reu. 1988,88,429. 

(4) Amin, M.; Holah, D. G.; Hughes, A. N.; Rukachaisirikul, T. J.  
Heterocycl. Chem. 1986,22, 513. 

(5) Mathey, F. Tetrahedron Lett. 1973,3255. Mathey, F. Tetrahedron 
1974,30, 3127; 1976,32, 2395. 

12a (85%) 

- l l b  P Fe 'Mo(C0). (4) 

Me 1 Me 1 tolwne,BO°C,l Smin 

1~ (55%) - 
crystal structure analysis of 12a8 showed that it contains 
a plane of symmetry, thus establishing the stereochemistry 
of l la  and llb. 

Experimental Section 
NMR spectra were recorded on a Bruker AC 200 SY spec- 

trometer operating at  200.13 MHz for 'H and 50.32 MHz for I3C 
and on a Bruker WP 80 SY spectrometer operating at 32.43 MHz 
for 31P. Chemical shifts are expressed in parts per million 
downfield from internal TMS ('H and 13C) and external 85% 
H3P04 (31P). Coupling constants are expressed in hertz. Mass 
spectra were obtained at 70 eV with a Shimadzu GC-MS QP loo0 
instrument by the direct-inlet method. Infrared spectra were 
recorded on a Perkin-Elmer Model 297 spectrometer. Elemental 
analyses were performed by the "Service d'analyse du CNRS", 
Gif-sur-Yvette, France. Silica gel (70-230 mesh) was used for 
chromatographic separations. All commercially available reagents 
were used as received from the suppliers. 

l-Phenyl-(2-diphenylthiophosphoryl)-3,4-dimethyl- 
phosphole (10). To a stirred solution of l-phenyl-3,4-di- 
methylphosphole sulfideg (2.2 g, 1 X mol) and N,N,Nf,Nf- 
tetramethylethylenediamine (2.25 mL, 1.5 X mol) in THF 
(30 mL) was added at -80 O C  1.2 X mol of lithium diiso- 
propylamide [prepared from diisopropylamine (1.7 mL, 1.2 X 
mol) and n-butyllithium (7.5 mL, 1.6 N) in THF (20 mL)]. The 
solution became red. After 10 min, chlorodiphenylphosphine (3.6 
mL, 2 X mol) was added to this solution, which became 
colorless. After a further 10 min, 20 mL of 3 N HC1 was added 

(6) Karsch, H. H.: Kohler, F. H.; Reisacher, H. U. Tetrahedron Lett. 
1984,25, 3687. 

(7) (a) AlCI, serves to destroy PhLi which is formed as a byproduct 
in the synthesis of the phospholyl anions and to catalyze the formation 
of the P-Fe bonds, see: Mathey, F.; de Lauzon, G. Organomet. Synth. 
1986,3,256. (b) de Lauzon, G.; Deschamps, B.; Fischer, J.; Mathey, F.; 
Mitschler, A. J.  Am. Chem. SOC. 1980,102, 994. 

(8) Ricard, L. Unpublished results. 
(9) BrBque, A,; Mathey, F.; Savignac, P. Synthesis 1981,983. 
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and the mixture was allowed to warm to room temperature. THF 
was evaporated, and the residue was extracted with CH2C12, 
washed with distilled water, and dried over MgSO& A filtration 
through silica gel was performed to eliminate heavy compounds; 
dichloromethane was evaporated, and the residue was allowed 
to stand under argon for at least 48 h. During this time, 9 was 
transformed into 10. The mixture was chromatographed with 
toluene. Yield of 10 1.6g (40%). 'H NMR (CDC13): 6 2.14 (8,  
3 H, Me), 2.27 (m, 3 H, Me), 6.6-7.8 (m, 16 H, Ph + HC-P). '% 
NMR (CDClJ: 6 17.69 (8, Me), 17.82 (8, Me), 149.97 (dd, 2J(C-P) 

5.5 Hz, C 1. Mass spectrum: mlz  404 (M+, 87%), 217 (Ph2PS, 
100%). kal. Calcd for CuHBP&3: C, 71.27; H, 5.48. Found 
C, 70.W; H, 5.20. 
3,3',4,4'-Tetramet hyl-2,2'-bis( dipheny1phosphino)- 1 ,l'-di- 

phosphaferracenes (lla and llb). To a stirred solution of 10 
(1 g, 2.5 X lW3 mol) in THF (20 d) were added lithium wire 
(0.05 g, 7.2 X lW3 mol) and naphthalene (0.5 g, 5 X mol) at  
room temperature. After 1 h, the mixture was cooled at 0 OC and 
aluminum chloride (0.08 g, 6 X lo-' mol) was added. After 30 
min, the mixture was allowed to warm to room temperature and 
iron(I1) chloride (0.16 g, 1.25 X mol) added. After an ad- 
ditional 30 min, the THF was evaporated and the residue chro- 
matographed with hexaneltoluene 50150 as the eluent. Two 
isomera 1 la and 11 b were obtained in an 851 15 ratio. Total yield 
(lla + llb): -0.3 g (40%). 
lla: 'H NMR (CDCl,) 6 2.00 (a, 6 H, Me), 2.13 (8,  6 H, Me), 

(d, 'J(C-P) = 15 Hz, Me), 16.31 (8, Me), 85.42 (d, IJ(C-P) = 63.2 

m/z 646 (M+, 100%), 461 (M+ - PPh2, 57%). Anal. Calcd for 
CMHMP4Fe: C, 66.89; H, 5.30. Found C, 66.22; H, 5.27. 

6.6 Hz, 'J(C-P) = 16.5 Hz, Cf), 161.31 (dd, 2J(C-P) = 12.6 and 

3.90 (d, 2J(H-P) 35.6 Hz, 2 H, CH-P); '3C NMR (CDClJ 6 14.50 

Hz, C,H), 93.85 (dd, 'J(C-P) = 80.6 and 15.8 Hz, CgP), 100.20 
(dd, 2J(C-P) = 20.8 and 5.6 Hz, CJ, 101.97 (8, CJ; m ~ ~ 8  spectrum 

llb: 'H NMR (CDC13) 6 1.95 (s, 6 H, Me), 2.21 (8,6 H, Me), 
3.74 (m, 2 H, CH-P); 13C NMR (CDC13) 6 12.65 (d, 'J(C-P) = 
15.5 Hz, Me), 14.28 (8, Me), 83.32 (m, C a ) ,  100.92 (m, CJ, 103.16 
(8, C4). The loss of symmetry in llb (va lla) explains the ap- 
pearance of higher-order patterns in the 'H and '3C spectra, thus 
confii ing the structural assignments made on the basis of the 
preliminary X-ray study of 12a. 

[ 3,3',4,4'-Tetramethy1-2,2'-bis(diphenylphosphino)-1,1'- 
diphosphaferrocene]tetracarbonylmolybdenum ( 12a and 
12b). Two different experiments were performed: (1) Diphos- 
phaferrocene lla (0.28 g, 0.43 X lo-' mol) was heated at  100 OC 
in 5 d of toluene with molybdenum hexacarbonyl(O.12 g, 0.46 
x mol) for 90 min. Toluene was removed, and the residue 
was chromatographed with hexaneltoluene 50150 as the eluent. 
Yield of 12a: 0.32 g (85%). (2) Diphosphaferrocene llb (0.11 
g, 0.17 X mol) was heated at  60 OC in 5 mL of toluene with 
norbornadiene-Mo(CO), (0.05 g, 0.17 X mol) for 15 min. 
Toluene was removed and the residue chromatographed as before. 
Yield of 12b 0.08 g (55%). 
12a: 31P NMR (CH&l2) 6(PPhJ +34.7, S(cyclic P) -54 (both 

resonances appear as complex multiplets); 'H NMR (CDCl') 6 
1.60 (a, 6 H, Me), 1.88 (s,6 H, Me), 3.70 (m, 2 H, CH-P); '9c NMR 
(CDCl,) 6 13.99 (8, Me), 14.66 (e, Me), 80.22 (m, CJ-I), 99.72 (m, 
CJ, 102.88 (m, C4). Anal. Calcd for C,J-IM04P4FeMo: C, 56.21; 
H, 3.98. Found C, 56.59; H, 3.93. 
12b 31P NMR (toluene) 6(PPhJ +35.6, S(cyclic P) -42.7 (both 

resonances appear as complex multiplets); 'H NMR (CDC13) 6 
2.25 (8, 6 H, Me), 2.31 (s,6 H, Me), 3.62 (m, 2 H, CH-P). 

Registry No. 6,138784-72-2; 9,138784-686; 10,138784-69-7; 
lla, 138874-90-5; 1 lb, 138784-70-0; 12a, 138875-98-6; 12b, 
138784-71-1; l-phenyl-3,4dimethylphosphole sulfide, 30540-37-5; 
chlorodiphenylphosphine, 1079-66-9. 
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Summary: Anions of the type [(C2BaH11)2M]- (M = Fe, 
Co, Ni) are suitable for use as "noncoordlnating" anions 
with [Cp$rMe]+ cations. Catalysts generated from 
C p W 2  and [ M M e f l I  [(C@aH1l)fll are active for the 
polymerlzatlon and copolymerization of ethylene and a- 
oleflns. Spectrogcopic examhtbn of the cobalt complex 
indicates that the anion is weakly coordinated to the metal 
at room temperature. At low temperatures, however, the 
aniline-coordinated adduct [ Cp,ZrMe(NMe,Ph)] - 
[(C2BgHll),M] is present. These catalysts are acthre in 
toluene or hexane for the polymerization of ethylene and 
the copolymerization of ethylene and 1-butene. 

Homogeneous Ziegler-Natta polymerization catalysts 
baaed on bis(cydopentadieny1)metal complexes of the type 
Cp'&X2, discovered in the early 19608,' have long been 
used as model systems for mechanistic studies. Whether 
the active catalytic species is cocatalyzed by trialkyl- 
aluminum reagenta or by methylaluminoxane,2 the nature 
of this species has for many years been the subject of 

(1) (a) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. 
Soc. 1967,79,2976. (b) Brealow, D. 5.; Newburg, N. R. J. Am. Chem. Soc. 
1957, 79, 5072. 

(2) Sinn, H.; Kamimky, W. Adu. Organomet. Chem. 1980, 18, 99. 

controversy. It is now generally established through many 
approaches, including electrochemical,3 theoretical,' trap- 
ping: XPS,G surface studies7 and research on neutral 
isoelectronic compounds: that the active complex is the 
formally three-coordinate cation [Cp',MR]+? A clear 
determination of the structures of these catalysta, however, 
has been precluded by the instability of the catalyst" or 
the indeterminate nature of methylaluminoxane. 

(3) (a) Zefiova, A. K.; Shilov, A. E. Dokl. Aknd. Nauk SSR 1961,136, 
599. (b) Dyachkovskii, F. S. Vysokolmol. Soedin. 1965, 7,114. (c) Dy- 
achkovskii, F. S.; Shilova, A. K.; Shilov, A. E. J. Polym. Sci., Part C 1967, 
16, 2333. 

(4) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976,98, 1729. 
(5) Eisch, J. J.; Piotromki, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, 

F. L. J. Am. Chem. SOC. 1985,107,7219. 
(6) Gaseman, P. G.; Callstrom, M. R. J.  Am. Chem. SOC. 1987, 109, 

7875. 
(7) Dahmen, K. H.; Hedden, D.; Burwell, R. L., Jr.; Marks, T. J. 

Langmoir 1988,4,1212. 
(8) (a) Ballard, D. G. H.; Courtie, A.; Holton, J.; McMeeking, J.; 

Pearce, R. J.  Chem. SOC., Chem. Commun. 1979,994. (b) Watson, P. L. 
J. Am. Chem. SOC. 1982,104,337. (c) Thompson, M. E.; Bercaw, J. E. 
Pure Appl. Chem. 1984,56,1. (d) Jake, G.; Lauke, H.; Mauer", H.; 
Swepston, P. N.; Schumann, H.; Marks, T. J. J.  Am. Chem. SOC. 1986, 
107,8091. (e) Den Ham, K. H.; Wielstra, Y.; Eshuie, J. J. W.; Teuben, 
J. H. J .  Organomet. Chem. 1987,323,181. 

(9) Gianetti, E.; Nicoletti, G. M.; M d ,  R. J. Polym. Sci., Polym. 
Chem. Ed. 1985, 23, 2117. 
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