
ORGANOMETALLICS 
Volume 1 1 ,  Number 4 ,  April 1992 

Communications 

0 Copyright 7992 

American Chemical Society 

Novel Dlamagnetlc and Paramagnetic Iron( I I), Iron( I 1  I), and Iron( IV)  
Classical and Nonclassical Hydrides. X-ray Crystal Structure of 

[Fe(C,Me,) (dppe)DIPFl? 
Paul HamonIt Loic Toupet,t Jean-Ren6 Hamon, * s t  and Claude Lapinte*st 

Laboratoire de Chlmie des complexes de Mtaw de Transition et SynMse Organique, URA CNRS 4 15, 
and Laboratolre de Chlmie Crlstalline, URA CNRS 804, Universft6 de Rennes I, 35042 Rennes, France 

Received January 9, 1992 

Summry: The synthesis, characterization, and X-ray 
crystal structure determination of the unprecedented 17- 
electron radical cation iron( I I I) hydride [ Fe(Cp')(dppe)- 
HIPF,, (2) is reported. The related protonation of the 
parent iron( I I )  hydride Fe(Cp* Xdppe)H, including both the 
synthesis and characterization of the first half-sandwich 
iron dihydrogen complex, [ Fe(Cp XdppeXq2-H2)] BF,, and 
the first organoiron(1V) dihydride, [Fe(Cp*XdppeXH),]- 
[BF,], are presented. 

Transition-metal hydride complexes constitute an im- 
portant class of compounds because of their involvement 
in catalytic and stoichiometric processes.' Although they 
have been the subject of intensive investigation, the 
chemistry of electron-deficient, 17-electron metal hydrides 
resulting from the oxidation of the corresponding 18- 
electron neutral species remains a relatively unknown area. 
Most of the radical cations previously studied were short 
lived, their major mode of decomposition being depro- 
tonation.2 We wish to report (1) the synthesis, charac- 
terization, X-ray crystal structure determination, and 
unusual reactivity of the first 17-electron radical cation iron 
hydride, [Fe(Cp*)(dppe)H]PF6 (2, dppe = 1,2-bis(di- 
phenylphosphino)ethane, Cp* = v-C5Me5) and (2) the re- 
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lated protonation of the parent iron(I1) hydride Fe- 
(Cp*)(dppe)H (l), including both the synthesis and the 
characterization of the nonclassical [Fe(Cp*)(dppe)(v2- 
H2)]BF4 (5) and the classical [Fe(C~*)(dppe)(H)~lBF~ (6) 
(Scheme I). 

When the neutral iron hydride Fe(Cp*)(dppe)H (1) is 
treated with 1 equiv of ferrocenium hexafluorophosphate 
salt in CH2C12 at -80 O C ,  the solution turns red in 1 h and 
themovel iron hydride radical cation [Fe(Cp*)(dppe)H]PF, 
(2) is isolated in quantitative yield after its precipitation 
and washing with pentane. The thermally stable complex 
2& is paramagnetic (peff = 2.40 pB),4 and its IR spectrum 
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tions (2.213 (3) and 2.200 (3) A) are rather contracted 
compared to those observed in the isostructural iron(II1) 
alkyl complex [Fe(Cp*)(dppe)CH20CH31PF6.' 

It is commonly believed that metals in the third and 
second transition series form bonds to hydrogen stronger 
than those in the first row. Calorimetrich and chemical 
reactivity'*P8 data support this view. Surprisingly, 2 is 
stable for several hours in CH2C12 or THF and does not 
react with 1 under these conditions, indicating that 
spontaneous proton transfer is not a kinetically favored 
process. The proton abstraction from 2 cannot be achieved 
in CH2C12 with PPh3, PMe2Ph, or even Et3N. However, 
2 reacts with PMe3, affording [Fe(Cp*)(dppe)(PMe3)]PF6 
(3).3b We assume that the 17-electron radical resulting 
from the deprotonation of 2 reacts immediately with 
CH2C12 to give the kr10wn~~~J~ chloro complex 4 (eq 1). The 
subsequent displacement of the chloride anion by PMe3 
occurs quickly in the presence of hexafluorophosphate ion 
(eq 2). 

[Fe(Cp*)(dppe)(H)1PF6 + PMe3 - CH2Cl2 

2 
Fe(Cp*)(dppe)(Cl) (1) 

4 

Fe(Cp*)(dppe)(Cl) + PMe3 - 
4 

[Fe(Cp*)(dppe)(PMe3)1PF, (2) 
3 

The literature provides examples showing that neutral 
hydrides react as bases with their 17-electron cationic 
analogues. The absence of reactivity between 1 and 2 
contrasts strongly with well-established knowledge.2 We 
therefore examined separately the protonation of 1. Ad- 
dition of 1 equiv of HBF4.Et20 to a solution of 1 in Et20  
a t  -80 "C gave the first piano-stool dihydrogen complex 
of iron, [Fe(Cp*)(dppe)(s2-H2)]BF4 (51," isolated as lemon 
yellow microcrystals in 95% yield (Scheme 1).l1 The 'H 
NMR spectrum (300 MHz) of 5 in the hydride region 
consists of a broad peak at  6 -12.39 (CH2C12, -80 "C) with 
a minimum Tl value of 7 ms a t  223 K. 1-d is protonated 
to 5-d, which exhibits a resolvable hydrogen-deuterium 
coupling constant ( J H D  = 27 Hz). Crystals of 5 can be 
stored conveniently a t  -50 "C, but when they are warmed 
to room temperature, they convert to the Fe(IV) dihydride 
[Fe(Cp*)(dppe)(H),]BF, (6).3d When a solution of 5 in 
CD2C12 is warmed from -80 to 20 "C, 'H NMR spectros- 
copy reveals the gradual, complete, and irreversible gen- 
eration of complex 6. The latter constitutes the first or- 
ganoiron(1V) dihydride to be is01ated.l~ I t  displays a 
characteristic sharp triplet (6 -7.89, 2JpH = 68 Hz) in the 
'H NMR spectrum with a Tl value of 175 ms at  223 K. 
Consistent with a trans geometry, the 31P(1H) NMR 

Figure 1. ORTEP representation for 2 with the PFs anion, solvent 
molecule, and hydrogen atoms of the Cp* and phenyl rings re- 
moved for clarity. Selected bond lengths (A) and bond angles 
(deg): Fe-D, 1.55 (8); Fe-P(l), 2.213 (3); Fe-P(2), 2.200 (3); 
P(l)-Fe-P(2), 88.5 (1); P(1)-Fe-D, 77 (5); P(2)-Fe-D, 69 (4). 

indicates the presence of a terminal hydride ligand (vFeH 
= 1869 cm-'). Dark red crystals were grown by slow dif- 
fusion of pentane into a CH2C12 solution of the isotopomer 
2-4 and a single-crystal X-ray structure was determined 
(Figure l).5 The C5 ring of the Cp* group is planar, and 
the deuterium atom, the iron nucleus, .and the Cp* centroid 
are located in a plane that is nearly normal a t  the C5 ring. 
The Fe-D bond length (1.55 (8) A) is much larger than the 
Fe-H distance in the diamagnetic iron(I1) hydride [Fe- 
(s2-H2)(H)(dppe)]BPh4 (1.30 (3) A).6 The Fe-P separa- 

(3) (a) [Fe(Cp*)(dppe)H]PF6 (2). A solution of 1 (0.590 g, 1 "01) in 
CHzClz (10 mL) was treated with [FeCpz]PF6 (0.30 g, 0.9 mmol) for 3 h 
at -60 "C. Pentane was added (20 mL) to precipitate 2, yield 0.75 g (85%) 
of dark red microcrystals. Anal. Calcd for C38HGeF6P2: C, 58.79; H, 

cm-'. Mossbauer (4.2 K): IS = 0.260 mm s-' (vs Fe), QS = 0.840 mm s-l. 
ESR (4.2 K): g = 2.0441,2.3460. (b) [Fe(Cp*)(dppe)(PMe3)]PF6 (3). A 
solution of 2 (0.550 g, 0.75 mmo!) in CHzClz (10 mL) was treated with 
PMe, (ca. 0.5 mL, 5 mmol) for 24 h at  20 "C. Diethyl ether (20 mL) was 
added to precipitate 3 as an orange solid, yield 0.470 g (77%). Anal. 
Calcd for C3a+%F&',: C, 57.79; H, 5.97; P, 15.29. Found C, 57.39; H, 

(d, PMe3, 'JPH = 8 Hz, 9 H). 31P NMR (20 "C, CD3COCD3): 6 4.3 (t, 
PMe3, VPp = 42 Hz), 88.8 (d, dppe, VPp = 42 Hz). (c) [Fe(Cp*)- 
(dppe)(q2-H2)]BF, (6). A solution of 1 (0.59 g, 1 mmol) in diethyl ether 
was treated with HBF4.0Eh (187 pL, 1.5 mmol) for 3 h at  -50 "C. A 
yellow powder of 6 precipitated. The solid was filtered off, washed with 
diethyl ether (3 X 10 mL), dried at  -50 "C, and stored at -50 "C; yield 
0.61 g (90%). Mossbauer (4.2 K): IS = 0.317 mm s-l (vs Fe), QS = 1.748 
mm s-l. 'H NMR (-30 "C, CDzClz): 6 1.45 (s, Cp*, 15 H), -12.39 (b, w l / z  
= 50 Hz, 2 H). TI (300 MHz) values for the high-field signal: 193 K, 10 
ms; 203 K, 8 ms; 213 K, 7 ms; 223 K, 7 ms; 233 K, 7 ms; 243 K, 9 ms; 253 
K, 9 ms. (d) [Fe(Cp*)(dppe)(H),]BF, (6). A solid sample of 6 was kept 
at 20 "C for 48 h. The sample turned orange and 6 was recovered as a 
pure compound. Anal. Calcd for C38H,1BFeF4PG C, 63.75; H, 6.09; P, 
9.13. Found C, 63.39; H, 5.85; P, 9.22. Mossbauer (4.2 K): IS = 0.125 
mm s-l (vs Fe), QS = 1.516 mm s-l. 'H NMR (20 "C, CDzClz): 6 1.44 (8 ,  

= 68 Hz, dppe). 
(4) Roger, C.; Hamon, P.; Toupet, L.; Rabal, H.; Saillard, J.-Y.; Ha- 

mon, J.-R.; Lapinte, c. Organometallics 1991, 10, 1045. 
(5) A prismatic dark red block (0.20 X 0.15 X 0.15) of 2-dCHzClz was 

used for data collection. Crystal data: monoclinic, space group E 1 / n ,  
Q = 10.425 (3) A, b = 22.189 (7) A, c = 17.043 A, fi  = 104.52 (4)", V = 3876 
(1) A3, M = 819.3, Z = 4, pule = 1.43 g cm", MMo Ka) = 0.71069 A, g 
= 7.5 cm-!, F(O00) = 1688, T = 293 K. Intensity data were collected using 
an Enraf-Nonius CAD4 diffractometer. A total of 9316 reflections were 
measured to 28, = 50"; 6517 reflections were unique, of which 2516 with 
I = 3dTl were used in all calculations. The structure was solved by 
Patterson and conventional Fourier methods. All non-hydrogen atoms 
(except solvent) were refmed fmt with isotropic and then with anisotropic 
thermal parameters. The hydrogen bonded to the metal was treated as 
a normal isotropic atom and refined with free positional and fmed the& 
parameters. Final R = 0.073 and R ,  = 0.072. 

(6) (a) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. J.  Am. 
Chem. SOC. 1986, 107,5581. (b) Ricci, J. S.; Koetzle, T. F.; Bautista, M. 
T.; Hofstede, T. M.; Morris, R. H.; Sawyer, J. J. Am. Chem. SOC. 1989, 
111, 8823. 

5.48; P, 12.63. Found C, 58.56; H, 5.31; P, 12.70. IR (Nujol): YF-H 1860 

5.85; P, 16.08. H NMR (20 OC, CD3COCDJ: 6 1.48 (9, Cp*, 15 H), 0.82 

Cp*, 15 H), -7.84 (t, 'JPH = 68 Hz, 2 H). 3p NMR (CDzClZ) 91.5 (t, 'JPH 

(7) Roger, C.; Toupet, L.; Lapinte, C. J. Chem. SOC., Chem. Commun. 
1988, 713. 

(8) (a) Martin, B. D.; Warner, K. E.; Norton, J. R. J. Am. Chem. SOC. 
1987,109,3945. (b) Edidin, R. T.; Norton, J. R. J. Am. Chem. SOC. 1986, 
108, 948. 

(9) (a) Lehmkuhl, H.; Mehler, G. Chem. Ber. 1985, 118, 2407. (b) 
Lehmkuhl, H.; Mehler, G.; Benn, R.; Rufinska, A,; Schroth, G.; Kriiger, 
C.; Raabe, E. Chem. Ber. 1987,120, 2002. 

(10) Roger, C.; Lapinte, C. J.  Chem. Soc., Chem. Commun. 1989,1598. 
(11) For reviews on dihydrogen complexes see: (a) Kubas, G. J. Acc. 

Chem. Res. 1988,21, 120. (b) Crabtree, R. H. Adu. Organomet. Chem. 
1988,243, 295. (c) Crabtree, R. H. Acc. Chem. Res. 1990,23, 95. 

(12) In the C5H5 series the bimetallic compound [(CSH5)Fe- 
(dpp1?))2N~](PF~)~ is known, but the mononuclear dinitrcgen complex has 
never been observed (a) Sellmann, D.; Kleineachmidt, E. Angew. Chem. 
1988,28, 295. (b) Sellmann, D.; Kleinschmidt, E. J. Organomet. Chem. 
1977,140, 211. 

(13) Paciello, R. A.; Manriquez, J. M.; Bercaw, J. E. Organometallics 
1990, 9, 260. 
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spectrum shows a singlet at 6 91.5, while the corresponding 
undecoupled spectrum shows a triplet with JPH = 68 Hz. 
It is noteworthy that complexes 5 and 6 have been ob- 
tained in a spectroscopically pure form as established by 
Mossbauer spectrometry in the solid state and by NMR 
spectroscopy in solution. These results constitute direct 
evidence that the protonation of an M-H bond to give an 
t2-H2 complex is faster than the protonation of the same 
complex at  the metal, as previously predicted.', 
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Summary: The remarkably stable paramagnetic Rh( I I )  
complex [Rh(q3-TMPP),] [BF,] , (TMPP = tris(2,4,6-tri- 
methoxypheny1)phosphine) reacts with 2 equiv of rert- 
butyl isocyanide to yield the air-stable mononuclear Rh(1 I )  
complex [Rh(q3-TMPP),(CNBu3,] [BF,] ,. A single-crystal 
X-ray diffraction study reveals that the cation adopts a 
distorted-square-planar geometry in which the phosphine 
liinds are trans rather than cis as in the parent complex. 
The paramagnetism of this unusual four-coordinate Rh(I1) 
metallo radical was probed by a variety of spectroscopic 
and magnetic techniques. 

The highly basic ethepphosphine ligand TMPP (TMPP 
= tris(2,4,6-trimethoxyphenyl)phosphine) forms unusual 
substitution products with a variety of transition-metal 
complexes, including those containing carbonyl, carbox- 
ylate, and acetonitrile ligands.' Of particular interest is 
the remarkable complex [ R ~ ( T ~ - T M P P ) ~ ]  [BF,], (11, which 
represents the fmt mononuclear Rh(I1) complex to be fully 
characterized by X-ray diffraction, magnetic susceptibility, 
and spectroscopic techniques.2 Most of the documented 
research involving mononuclear rhodium complexes has 
focused on the +1 and +3 oxidation states, due, in large 
part, to their demonstrated involvement in homogeneous 
catalytic proce~ses.~ Only a limited number of reports 
have addressed the coordination chemistry of paramag- 

Camille and Henry Dreyfus Teacher-Scholar, 1991-1995. 
(1) (a) Dunbar, K. R.; Haefner, S. C.; Bunynski, D. J. Organometallics 

1990,9,1347. (b) Chen, S. J.; Dunbar, K. R. Inorg. Chem. 1990,29,588. 
(c) Chen, S. J.; Dunbar, K. R. Inorg. Chem. 1991,30, 2018. 

(2) Dunbar, K. R.; Haefner, S. C.; Pence, L. E. J. Am. Chem. SOC. 1989, 
111, 5504. 

(3) (a) Hughes, R. P. In Comprehensive Organometallic Chemistry; 
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 
1982; Vol. 5, p 228. (b) Homogenous Catalysis with Metal Phosphine 
Complexes; Pignolet, L. H., Ed.; Plenum: New York, 1983. (c) Parshall, 
G. W. Homogenolls Catalyssis; Wiley-Interscience: New York, 1980; p 89. 
(d) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles 
and Applications of Organotransition Metal Chemistry; University 
Science Books: Mill Valley, CA, 1987; p 523. 
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netic Rh(II),4 and even fewer have focused on mononuclear 
organometallic complexes of Rh(II).5 The unusual sta- 
bility of 1 has presented us with a rare opportunity to 
investigate these elusive classes of compounds.6 In light 
of the recent reports by Wayland and co-workers of carbon 
monoxide and methane activation by Rh(I1) metallo rad- 
icals,' this is a particularly attractive area of research. We 
recently demonstrated that [ R ~ ( T ~ - T M P P ) ~ ]  [BF,], reacts 
reversibly with CO through a pathway that involves the 
formation of Rh(1) carbonyl and Rh(II1) intermediates.* 
Intrigued by this unusual chemistry, we set out to explore 

(4) (a) Felthouse, T. R. h o g .  Irwrg. Chem. 1982,29,73 and references 
therein. (b) Rawle, S. C.; Yagbasan, R.; Prout, K.; Cooper, S. R. J. Am. 
Chem. SOC. 1987,109,6181. (c) Blake, A. J.; Gould, R. D.; Holder, A. J.; 
Hyde, T. I.; Schrder,  M. J. Chem. SOC., Dalton Trans. 1988,1861. (d) 
Cooper, S. R.; Rawle, S. C.; Yagbasan, R.; Watkin, D. J. J. Am. Chem. 
SOC. 1991,113,1600. (e) Pneumatikakis, G.; Psaroulis, P. Inorg. Chim. 
Acta 1980, 46, 97. ( f )  Pandey, K. K.; Nehete, D. T.; Sharma, R. B. 
Polyhedron 1990,9,2013. (9) Ogle, C. A.; Masterman, T. C.; Hubbard, 
J. L. J. Chem. SOC., Chem. Commun. 1990, 1733. (h) Anderson, J. E.; 
Gregor, T. P. Inorg. Chem. 1989, 28, 3905. (i) Bianchini, C.; Meli, A.; 
Laschi, F.; Vizza, F.; Zanello, P. Inorg. Chem. 1989,28, 227. 

(5) (a) Fischer, E. 0.; Lindner, H. H. J. Organomet. Chem. 1964,1, 
307. (b) Fischer, E. 0.; Wawersik, H. J. Organomet. Chem. 1966,5,559. 
(c) Keller, H. J.; Wawersik, H. J. Organomet. Chem. 1967,8, 185. (d) 
Dessy, R. E.; King, R. B.; Waldrop, M. J. Am. Chem. SOC. 1966,88,5112. 
(e) Dessy, R. E.; Kornmann, R.; Smith, C.; Hayter, R. J. Am. Chem. SOC. 
1968,90,2001. ( f )  Bianchini, C.; Laschi, F.; Ottaviani, F.; Peruzzini, M.; 
Zanello, P. Organometallics 1988,7,1660. (9) Bianchini, C.; Laschi, F.; 
Meli, A,; Peruzzini, M.; Zanello, P.; Frediani, P. organometallics 1988, 
7,2575. (h) Bianchini, C.; Laschi, F.; Ottaviani, F.; Peruzzini, M.; Zanello, 
P.; Zanobini, F. Organometallics 1989,8,893. (i) Pilloni, G.; Schiavon, 
G.; Zotti, L.; Zeechin, S. J. Organomet. Chem. 1977, 134, 305. 

(6) (a) Vleck, A. Inorg. Chim. Acta 1980, 43, 35. (b) Holah, D. G.; 
Hughes, A. N.; Hui, B. C. Can. J. Chem. 1975,53, 3669. (c) Valentini, 
G.; Braca, G.; Sbrana, G.; Colligiani, A. Inorg. Chim. Acta 1983,69,215. 
(d) Valentini, G.; Braca, G.; Sbrana, G.; Colligiani, A. Inorg. Chim. Acta 
1983, 69, 221. 

(7) (a) Wayland, B. B.; Sherry, A. E.; Coffin, V. L. J. Chem. SOC., 
Chem. Commun. 1989, 662. (b) Wayland, B. B.; Sherry, A. E. J. Am. 
Chem. SOC. 1989, 111, 5010. (c) Sherry, A. E.; Wayland, B. B. J. Am. 
Chem. SOC. 1990,112,1259. fd) Wayland, B. B.; Ba, S.; Sherry, A. E. J. 
Am. Chem. SOC. 1991, 113, 5305. 

(8) (a) Dunbar, K. R.; Haefner, S. C.; Swepston, P. N. J. Chem. SOC., 
Chem. Commun. 1991.460. (b) Haefner, S. C.: Dunbar, K. R.; Bender, 
C .  J .  Am. Chem. SOC. 1991, 113,9540. 

0 1992 American Chemical Societv 

D
ow

nl
oa

de
d 

by
 N

A
T

 L
IB

 U
K

R
A

IN
E

 o
n 

Se
pt

em
be

r 
3,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 A
pr

il 
1,

 1
99

2 
| d

oi
: 1

0.
10

21
/o

m
00

04
0a

00
1


