Stable Tertiary Phosphine Adducts of Alane

Frederick R. Bennett, Fiona M. Elms, Michael G. Gardiner, George A. Koutsantonis, Colin L. **Raston,' and Nicholas K. Roberts'**

Division of Science and Technology, Griffith University, Nathan, Brisbane, Queensland 4111, Australia

Received December 9, 199 1

Summary: **Treatment of LiAIH,/OEt, solutions with bulky trlalkylphosphine hydrochloride salts or phosphine and** then **ethereal HCI yiekis** thermally **stable phosphine-alane adducts, viz. [H₃AI-P(C₆H₁₁)₃] (10), (H₃AI)_n · (PPr¹₂CH₂)₂ (n** have been shown to be four-coordinate (10 and 13, AI-P = **2.467 (l), 2.460 (2) A) or polymeric (13) with trigonal-bipyramldal aluminum centers (P apical) with exceptionally long ALP bonds (2.732 A (mean)). Ab initio** calculations on the model species H_3 AI-PH₃ (Al-P = **2.605 A) give a stabilization energy of 13.2 kcal/mol** relative to AIH₃ and PH₃, and dimerization to dialane, H_2 Al(μ -H)₂AlH₂, and PH₃ is favored by 5.84 kcal/mol. $= 1$ **(11), 2 (12)), and** $[(H_3 Al)_2 \cdot [P(C_6 H_{11})_2 CH_2]_2]$ **(13), which**

Alane, AlH3, is a polymeric, nonvolatile solid, capable of forming adducts with a variety of Lewis bases. These include tertiary amines which yield stable, volatile compounds such **as** the 1:l and 2:l trimethylamine-alane adducts H₃Al-NMe₃ (1) and H₃Al-2NMe₃ (2).² These com-

pounds have applications in (i) hydroalumination of unsaturated substrates,³ (ii) formation of hydride derivatives of other metal complexes,4 including SiH4 from **SiF4,5** (iii) electroless plating of aluminum, 6 and (iv) conventional

-
- (4) Bulychev, B. M. *Polyhedron* 1990, 9, 387.
(5) Marlett, E. M. U.S. Patent No. 4,474,743, 1984.
(6) Schmidt, D. L.; Hellmann, R. U.S. Patent No. 3,462,288, 1969.
Daenen, T. E. G. U.K. Patent No. G. B. 2,021,646, 1979.

thermal and laser-induced chemical vapor deposition (CVD) technology.⁷⁻⁹ Overall, tertiary amine-alane Overall, tertiary amine-alane chemistry is well developed, with a diverse range of structural types having been established. Compound **1** is monomeric in the gas phase,¹⁰ whereas it is weakly associated in the solid state via unsymmetrical bridging hydrides,¹¹ as is $[{LH_2Al(\mu-H)}_2]$ (3a,b), but $H_3Al\cdot NBu^2$ ₃ (4) is monomeric in the solid state.¹² The polymeric fivecoordinate species 2^{13} and H_3 Al.(TMEDA) $(5, \text{TMEDA})$ N, N, N', N' -tetramethylethylenediamine)¹⁴ and ionic species for higher polydentate tertiary amines $[H_2Al(N,N,1)]$ N'' , N'' -pentamethyldiethylenetriamine)]⁺[AlH₄]⁻ (6) and trans-[H₂Al(N,N',N",N"'-tetramethylcyclam)]⁺[AlH₄]⁻ $(7)^{15}$ are also found.

Tertiary phosphine-alane adducts, however, have been poorly characterized and the few compounds studied readily decompose under mild conditions; e.g., H_3 Al.PE t_3 decomposes above -20 °C.¹⁶ Herein we report the synthesis of tertiary phosphine adducts of alane with remarkable stability. The first structure determinations of such derivatives shows that both four- and five-coordinate species are accessible. We also report the theoretical in-

- **(7)** Gladfelter, W. **L.;** Boyd, D. C.; Jensen, K. F. *Chem. Mater.* **1989, 1, 339** and references therein. Wee, A. T. S.; Murrell, A. J.; Singh, N. K.; OHare, D.; Ford, J. S. *J. Chem.* SOC., *Chem. Commun.* **1990, 11.**
- **(8)** Baum, T. H.; Larson, C. E.; Jackson, R. L. Appl. *Phys. Lett.* **1989,** *55,* **1264.**
- **(9)** Whaley, T. P.; Norman, V. U.S. Patent No. **3,206,326, 1965.** Carley, D. R.; Dunn, J. H. U.S. Patent No. **3,375,129, 1968.**
- **(10)** Almenningen, A.; Gundersen, G.; Haugen, T.; Haaland, A. Acta *Chem. Scand.* **1972,26, 3928.**
- **(11)** Atwood, J. L.; Bennett, F. B.; Elms, F. M.; Jones, C.; Raston, C. **L.;** Robinson, K. D. *J. Am. Chem.* SOC. **1991,113,8183.**
- **(12)** Lobkovskii, E. B.; Semenenko, K. N. *Zh. Strukt. Khim.* **1975,16, 150.**
- **(13)** Heitach, C. W.; Nordman, C. E.; Parry, P. W. *Znorg. Chem.* **1963, 2, 508.**
- **(14)** Palenick, **G.** Acta *Crystallogr.* **1964, 17, 1573.**
- **(15)** Atwood, J. **L.;** Jones, C.; Raston, C. L.; Robinson, K. D. *J. Chem.* SOC., *Chem. Commun.* **1991, 1697.**
- **(16)** Heitach, C. W. *Nature* **1962,195,995.** Finholt, A. E. C.; Helling, V.; Imhof, V.; Jacobsen, E. *Inorg.* **Chem. 1963,2, 504.**

⁽¹⁾ On leave from the Department of Inorganic Chemistry, University

of New South Wales, Kensington, NSW 2033, Australia.
(2) Wiberg, E.; Amberger, E. Hydrides of the Elements of Main Group
I-IV; Elsevier: Amsterdam, 1971. Wade, K.; Banister, A. J. The Chem-
Istry of Aluminum, Gallium, Indi

Oxiora, O.R., 1970.
18) Marlett, E. M.; Park, W. S. J. Org. Chem. 1990, 55, 2968 and
references therein. Cloke, F. G. N.; Dalby, C. I.; Henderson, M. J.;
Hitchcock, P. B.; Kennard, C. H. L.; Lamb, R. N.; Raston, C. L. J. C Soc., *Chem. Commun.* **1990, 1394.**

vestigation of the model species H_3 Al-PH₃, which is energetically less favored than dialane, $H_2Al(\mu-H)_2AlH_2$, and phosphine.

The new compounds feature bulky mono- or bidentate tertiary phosphines, $[H_3Al\text{-}P(C_6\ddot{H}_{11})_3]$ (10), $(H_3Al)_n$ ² $(PPrⁱ2CH₂)₂$ (n = 1 (11), 2 (12)) and $[(H₃Al)₂(P(C₆H₁₁)₂C-1]$ $H₂$ ₂] (13), the last two being alane-rich diphosphine species. Syntheses involved treating LiAlH, in diethyl ether with a phosphine hydrochloride **(10)** or treating $LiAlH₄/phosphine mixtures with an HCl/OEt₂ solution$ **(11-13)** (Scheme I).17 Attempts to prepare the **1:l** adduct of ${[P(C_6H_{11})_2CH_2]}_2$ with alane were unsuccessful, affording a mixture of phosphine and **13,** and less hindered phosphines such as $\text{PMe}_2(\text{CH}_2\text{Ph})$ yielded polymeric alane, as was found for arylphosphines, including the potentially bidentate ligand $(PPh_2CH_2)_2$. Similarly, treating compound **1** with phosphines with a view to inducing ligand displacement was mostly unsuccessful, although $(PMe₂CH₂)₂$ yields the novel addition compound ${Me_3N}\cdot{AlH_{3}}\cdot{PMe_2CH_{2}}\n_{2.1}^{18}$ In contrast, similar reactions involving gallane yield the displacement products, e.g. $(\mathrm{H_3Ga\cdot PMe_{2}CH_2})_{2}^{19,20}$ and $\mathrm{H_3Ga\cdot PCy_{3}}_{2}^{20}$ reflecting greater P-donor interaction toward gallium compared to that toward aluminum. The new compounds **10-13** have remarkable thermal **stability** relative to polymeric alane and phosphine (cf. H_3 Al[.]PEt₃, dec pt >-20 \textdegree C),¹⁶ presumably because of the steric hindrance in either the four- or

five-coordinate species blocking association via hydride bridges en route to $(AIH_3)_n$ (see the theroretical considerations below). Indeed, the decomposition pathway in the solid is formation of metal, hydrogen, and free ligand **(>163** "C, **10; >160** OC, **11; >150** "C, **12; >165** OC, **13),** with the decomposition temperatures comparable to those for the tertiary amine adducts of alane.^{$11,21$}

The structures of compounds **10, 11,** and **13** are shown in Figure **l.22323** Both **10** and **13** are monomeric with respectively, one molecule and half a molecule (the other half being generated by an inversion center) **as** the asymmetric unit. Here the metal atoms are four-coordinate with Al-P distances of **2.467 (1) A (10)** and **2.460(2)** *8,* **(13)** (cf. **2.53 (4) A** for the trimethylphosphine adduct of tri-Analogous distances in related gallane derivatives $H_3Ga \cdot P(C_6H_{11})_3^{20}$ and $(H_3Ga)_2$.
(PMe₂CH₂)₂¹⁹ are shorter at 2.460 (2) and 2.403 (1) Å, respectively, which is in accordance with weaker binding of phosphines with alane relative to that with gallane, noting **aluminum** and gallium have the same covalent radii. Compound **11** is polymeric with AlH, and the bridging diphosphine **as** the asymmetric unit. In this case the metal center is trigonal bipyramidal with the hydrides in the equatorial plane, 21 and the Al-P distances are exceptionally long **(2.755 (3)-2.708 (3) A),** ca. **0.5 A** longer than in bis- (tertiary amine) adducts of alane.2' This reflects very weak solvation of alane by P-donors and the tendency for unhindered phosphine adducts of alane to decompose to polymeric alane under mild conditions (see above). In contrast, gallane appears to give only four-coordinate species with phosphines. The metal-H distances in **10, 11,** and **13** are within the range established for a variety of amine derivatives of alane. 11,21

Ab initio molecular orbital calculations have been carried out on the model species H_3 Al.PH₃ and have been used to investigate the potential energy hypersurface of the dimer $[H_3A \cdot PH_3]_2$. All calculations were performed using the Gaussian **8825** suite of programs with the standard **6-31G*** split valence and double-{ plus polarization (DZP) basis sets. The effects of electron correlation were con-

⁽¹⁷⁾ Syntheses were **as** follows. Compound **10** Tricyclohexylphosphine **(0.56** g, **2.0** mmol) was treated with hydrochloric acid **(1.0** mL, **10** M) at ca. **20** "C for **10** min. The resulting clear solution was dried in vacuo, yielding a viscous oil which solidified as a white solid on the
addition of acetone (2 mL) followed by drying in vacuo at 60 °C for 1 h.
LiAlH4 (0.114 g, 3.0 mmol) was then added and the mixture cooled to –65 temperature, the mixture was stirred overnight and then filtered to re-move a white precipitate. Solvent was removed in vacuo and the residue recrystallized from OEt₂ (45 mL) at –26 *C*, affording colorless prisms:
yield 0.31 g, 50%; mp 161–163 °C dec; ¹H NMR (250 MHz, C_eD_e) ô 4.25
(br s, AlH), 1.80, 1.60, 1.35, 1.02 (3 H, 3 H, 2 H, 3 H, m, C_eH₁₁); (cf. **11.1** for free ligand); **IR** v(A-H) **1750** br cm-'. Compound **11: 0.5 mL** of **1,2-bis(diisopropylphosphino)ethane (0.47 g, 1.79** mmol) and ethereal hydrochloric acid **(2** mL, **0.864** M) were added, in succession, to a solution of LiAIH₄ (0.084 g, 2.2 mmol) in OEt₂ at 0 °C. The mixture was stirred for 2 h at 0 °C. After it was warmed to room temperature, the mixture for 2 h at 0 °C. After it was warmed to room temperature, the mixture
was filtered, to remove a white precipitate, and the filtrate was concen-
trated to yield colorless cubic crystals at -26 °C: yield 0.33 g, 64%; mp
46-**(121.47** MHz, C6D6) **6 9.7** (cf. **9.4** for free ligand); IR v(A1-H) **1777** cm-' **6 22.8** *(8,* CHJ, **19.2** (t, CH2, A-BJ~-p = **5.41** Hz), **18.3** (br, t, CH); 31P NMR br. Compound **12 0.37 mL** of **1,2-bis(diiiopropylphosphino)ethane (0.35** g, **1.18** mmol) and hydrochloric acid in OEt, **(3** mL, **0.91** M) were added, in succession, to a solution of $LiAlH₄$ (0.1 g , 2.48 mmol, 20% excess) in OEt₂ at 0 °C. After 2 h at room temperature the solvent was removed in vacuo, to give an oily solid which was extracted into OEt₂ and rein vacuo, to give an oily solid which was extracted into OEt₂ and re-
crystallized from hexane: yield 0.3 g, 79%; mp 83–85 °C; dec pt >150 °C;
¹H NMR (250 MHz, C_eD_e) δ 4.10 (br s, AlH), 1.89 (d, 4 H), 1.49 (m, Hz), 18.3 (br, CH), 17.6 (s, CH₃); ³¹P NMR (121.47 MHz, C_6D_6) δ 10.2 (cf. **9.4** for free ligand); IR v(A1-H) **1785** cm-' br. Compound **13:** Solid 1,2-bis(dicyclohexylphosphino)ethane (0.5 g, 1.18 mmol) and hydrochloric acid in OEt₂ (3 mL, 0.91 M) were added to a solution of LiAlH₄ (0.1 g, 2.48 mmol) in OEt₂ at 0 °C. After it was warmed to room temperature (2 h), the mixture was filtered and the filtrate concentrated to yield colorless needles: yield 0.47 g, 83%; dec pt >165 °C; ¹H NMR (250 MHz, C_eD₆) δ 4.77 (br s, AlH), 2.90 (s), 2.57 (m), 2.04 (m); ¹³C NMR (62. **6 1.8** (cf. **1.3** for free ligand); IR v(A1-H) **1757** cm-' br. Anal. Calcd for CXH5,AIP2: C, **64.73;** H, **11.2;** P, **12.86.** Found: C, **64.09;** H, **11.02;** P, **11.46.** Analyses for **10-12** were unreliable, typically a few percent low in carbon. (62.8 MHz, C₆D_e) δ 31.0 (d, CH, $^1J_{C-P} = 14.5$ Hz), 29.2 (s, CH₂), 27.2 (d, CH₂, ²J_{C-P} = 10.5 Hz), 26.0 (s, CH₂), ³¹P NMR (121.47 Hz, OEt₂) δ 8.30 **0.93** (m, 24 H); ¹³C NMR (62.8 MHz, C_6D_6) δ 22.2 (t, CH_2 , $^{A-B}J_{C-P} = 6.2$ C&) 6 **33.0** *(8,* CH,), **29.8** (t, CH, A-BJ~-p = **4.71** Hz), **28.9** *(8,* CH,), **27.2** (t, CH,, A-BJc_p = **5.45** Hz). **26.3** *(8,* CH2); 31P NMR **(121.47** MHz, COD,)

⁽¹⁸⁾ Jones, C.; Koutsantonis, G. A.; Raston, C. L. *J.* Chem. Soc., Chem. *Commun.,* submitted for publication. **(19)** OHare, D.; Foord, J. S.; Page, T. C. M.; Whitaker, T. J. J. Chem.

Soc., Chem. Commun. **1991, 1445.**

⁽²⁰⁾ Atwood, J. L.; Bennett, F. R.; Elms, F. M.; Jones, C.; Raston, C. L.; Robinson, K. D.; Young, D. J. *Inorg.* Chem., in press.

⁽²¹⁾ Atwood, J. L.; Bennett, F. R.; Jones, C.; Koutsantonis, G. A.; Raston, C. L.; Robinson, K. D. *J.* Chem. Soc., Chem. *Commun.,* in press. **(22)** Data for crystal structure determinations *(T* = **297** K; Enraf-Nonius CAD4 diffractometer, crystals mounted in capillaries, $\lambda = 0.71069$ **A)** are as follows. Compound **10** C18H&lP, M = **310.4,** triclinic, space group Pl, *a* = **8.026 (2) A,** *b* = **11.057 (2) A,** *c* = **11.544 (2) A,** a = **75.32** $(2)^\circ$, $\beta = 88.52$ $(2)^\circ$, $\gamma = 82.06$ $(2)^\circ$, $U = 981.4$ Å³, $F(000) = 344$, $Z = 2$, $D_c = 1.05$ g·cm⁻³, μ (Mo K α) = 1.80 cm⁻¹, specimen 0.30 × 0.30 × 0.45 mm, 3447 unique reflections, 2612 with $I > 2.5\sigma(I)$ group $P2_1/m$, $a = 7.969$ (7) Å, $b = 21.160$ (4) Å, $c = 11.626$ (10) Å, $\beta = 95.573$ (4)°, $U = 1951$ Å³, $F(000) = 712$, $Z = 4$, $D_c = 1.10$ g·cm⁻³, $\mu(\text{Mo})$ $K\alpha$ = 2.54 cm⁻¹, specimen 0.15 \times 0.25 \times 0.40 mm, 3432 unique reflections, 1468 with $I > 2.5\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 50^{\circ}$. Compound 13: $C_{26}H_{54}Al_2P_2$, $M = 482.60$, monoclinic, space group $P2_i/n$, $a = 7.068$ (1) Å, $b = 11.640$ (1) Å, $c = 18.681$ (4) Å, $\beta = 100.5$ (9)°, $U = 1510.9$ Å³, $F(000) = 532$, $Z = 2$, $D_c = 1.06$ g.cm⁻³, $\mu(Mo K\alpha) =$ with non-hydrogen atoms anisotropic. H atom details: located and refined in x , y , z , U_{iso} , 10; calculated, C–H, or located, Al–H, from difference maps and included as invariants, 11; located and refined in x , *z, U,,,* A1-H, or calculated and included as invariants, C-H, **13.** Unit weights were used, and the final residuals were $R = 0.034$, 0.042, and 0.042 for **10,** 11, and **13,** respectively.

⁽²³⁾ XTAL User's Manual-Version **3.0.** Hall, S. R., Stewart, J. M.., Eds.; Universities of Western Australia and Maryland, **1990.**

⁽²⁴⁾ Almenningen, A.; Fernholt, L.; Haaland, A.; Weidlein, J. J. Organomet. Chem. 1978, 145, 109.

(25) Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B.; Raghavachari, C. (25) Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B. Pittsburgh, PA.

Figure 1. Molecular projections of (a, top left) $[H_3AIP(C_6H_{11})_3]$ (10), (b, top right) $[(H_3A1)_2(PPr^i{}_2CH_2)_2]$ (11), and (c, bottom) $\rm [(H_3Al)_2$ ^{$\rm [P(C_6H_{11})_2CH_2]_2]$ (13), showing the labeling schemes. Thermal ellipsoids are drawn at the 20% probability level, and only} key hydrogens with arbitrary radii are shown for clarity. Selected bond distances (Å) and angles (deg) are as follows. Compound 10:
Al – P, 2.467 (1); Al–H1,2,3, 1.51 (2), 1.73 (2), 1.55 (4); P–C1,7,13, 1.840 (2), 1.850 (2 (1); Al-P-C1,7,13, 110.90 **(7),** 110.90 (8), 113.53 (8); Hl-Al-H2,3, 110 (l), 112 (1); H2-AlH3, 123 (1). Compound 11: All-P,2, 2.755 (3), 2.708 (3); Al1-H1a,b,c, 1.61, 1.57, 1.60; P1-C1,2,5, 1.841 (6), 1.851 (6), 1.864 (6); P2-C3,4,6, 1.852 (6), 1.847 (5),1.855 (6); P1- Al1-H1a,b,c, 92,88, 89; P2-All-Hla,b,c, 91, 87, 93; P1-All-P2, 175.03 (7); Hla-All-Hlb,c, 117, 114; Hlb-All-Hlc, 129; All-Pl-C1,2,5, 114.4 (2), 110.3 (2), 120.8 (2); All-P2-C3,4,6, 115.3 (2), 111.9 (2), 117.0 (2). Compound 13: A1-P, 2.406 (2); Al-H1,2,3, 1.56 (2), 1.55 (2), 1.55 108.8 (2), 114.6 (2), 115.1 (2). (2); P-C, 1.840 **(5),** 1.846 (4), 1.841 (4); P-Al-H1,2,3,98 (l), 107 (l), 102 (1); Hl-Al-H2,3, 122 (2), 117 (2); H2-Al- H3,108 (2), Al-P-C1,2,8,

sidered by the inclusion of fourth-order Møller-Plesset perturbation theory for DZP basis calculations. Calculated geometries for monomeric $H_3Al_2PH_3$ are Al-P = 2.605 Å, Al-P-H = 96.8° ; the Al-P distance is longer than that determined experimentally for **10** and **13** but is within 2 standard deviations of the Al-P distance in Me₃Al-PMe₃.²⁴ The stabilization energy of H_3 Al-PH₃ relative to AlH₃ and PH₃ is 13.2 kcal/mol, ignoring zero point energy corrections. No minimum was found to exist on the surface for the C_{2h} symmetry $(H_3H_3)_{2}$ dimer, unlike the case for the amine analogue." Instead convergence **was** on dialane, H_2 Al(μ -H)₂AlH₂, and two phosphines as the thermodynamically favorable system, 5.84 kcal/mol more stable than two isolated H_3 Al.PH₃ species. This is consistent with the above instability of phosphine adducts relative to polymeric alane. The geometry **of** the dialane was close to that calculated by Duke and Schaefer,²⁶ Al- \cdot -Al = 2.620 Å (cf. 2.616 **A** in the present study). Optimized geometries for $P-H = 1.424$ Å, Al-H = 1.600 Å, P-Al-H = 119.2°, and

the corresponding monomeric gallane and borane monophosphine adducts $\mathrm{H_3Ga\cdot PH_3^{20}}$ and $\mathrm{H_3B\cdot PH_3^{27}}$ have already been established.

Acknowledgment. We gratefully acknowledge support of this work from **an** Australian Research Council Grant and Postdoctoral Fellowship (G.A.K.) and we thank Colin Kennard and Karl Byriel for collecting the X-ray diffraction data.

H₃AlPH₃, 126425-81-8; PCy₃, 2622-14-2; 1,2-bis(diisopropylphosphino)ethane, 87532-69-2; **1,2-bis(dicyclohexylphosphino)** ethane, 23743-26-2. **€&?&try NO.** 10,139526-60-6; 11,139526-59-3; 13,139526-61-7;

Supplementary Material Available: Lists of **Uij** values, hydrogen atom parameters and bond distances and angles for compounds 10, 11, and 13 and a table of ab initio derived geometries (10 pages). Ordering information is given on any current masthead page.

⁽²⁷⁾ Bould, J.; Brint, P.; Fontaine, L. R.; Kennedy, J. D.; Thornton-Pett, M. *J.* Chem. **SOC.,** *Chem. Commun.* **1989, 1763 and** references therein.

⁽²⁶⁾ Duke, B. J.; Schaefer, H. F. *J.* Am. Chem. *SOC.* **1991,113,2884.**