Addition of Disodium Chalcogenides to 1 ,fi-Bis(trimethylsily1)penta- 1,4-diyn-3-one. Syntheses, Structure, and Reactivity of the Parent A-4H-Chalcogenapyran-4-ones

Michael R. Detty' and Henry R. Luss

Copy Rduucts Research and Technical Dewbpmnt, Eastmen Kodek Company, Rochester, New Yo& 1465&2106

Recehred November 18, 1991

The addition of sodium hydrosulfide hydrate or disodium chalcogenides to 1,5-bis(trimethylsilyl)-1,4pentadiyn-kne **(4)** gives A-4H-thiapyran-4-one (1)) A-4H-selenapyran-4-one (21, and A-QH-teIlurapyran-4-one (3) in 72, **35,** and 38% isolated yields, respectively. The addition of sodium hydrosulfide hydrate to **l-(trimethylsilyl)-5phenyl-l,4-pentadiyn-3-one** (16) giva **l-phenyl-4H-thiapyran4one** (17) in **44% isolated** yield, while the addition of disodium telluride to 16 gives **l-phenyl-4H-tellurapyran4one** (18) in 32% **isolated** yield. The structures of 1–3 were determined unambiguously by single-crystal X-ray crystallographic analysis. *All* three molecules were planer although both **2** and 3 have distorted hexagonal rings. The addition of **[p-(Nfl-dimethylamino)phenyl]magnesium** bromide to **2** or **3** gives 1,2-addition exclusively, leading to selenapyrylium and tellurapyrylium dyes 19 and 20, respectively.

The **A-4H-chalcogenapyran-4-ones** are useful building blocks for the construction of chalcogenapyrans, chalcogenapyrylium salts, and chalcogenapyranyl compounds. $^{1-3}$ Typically, the 4-position of the chalcogenapyranones are susceptible to nucleophilic attack at carbon or to electrophilic attack at the carbonyl oxygen (Scheme I).

While the thiapyranones have been prepared via a number of synthetic routes,¹ routes to selenapyranones and tellurapyranones have been more limited. Selenapyranones have been prepared by additions of either hydrogen selenide^{4a} or disodium selenide^{4a} to symmetrical 1,4-pentadiyn-3-ones. Tellurapyranones have been prepared by the addition of disodium telluride to symmetrical^{4b} or unsymmetrical⁵ 1,4-pentadiyn-3-ones.

The parent \triangle -4H-chalcogenapyran-4-ones 1-3 have not been prepared by the routes described above. These molecules are of interest **as** precursors to the rodlike,

2,3,5,6-unsubstituted chalcogenapyrylium dyes and

(1) Mayer, R.; Broy, W.; Zahradnii, R. *Adv. Heterocycl. Chem.* **1967, 8,219-276. Tolmachev, A I.; Kudinwa, M. A** *Khim. Geterotsikl. Soedin.* **1974,49-52 and references therein. Detty, M. R.; Murray, B. J.; Seidler, M. D.** *J. Org. Chem.* **1982,47,196&1969.**

(2) Reynolds, G. A.; Van Allan, J. A. U.S. Patent 3417083, 1972.
Williams, J. L. R.; Reynolds, G. A. *J. Appl. Phys.* 1**96**8, 39, 5327–5332.
Wizinger, R.; Angliker, H. J. *Helv. Chim. Acta* 1966, *49*, 2046–2052.

Tolmachev, A. I.; Kudinova, M. A. *Khim. Geterotsikl. Soedin.* 1974, 49.
Detty, M. R.; Murray, B. J. *J. Org. Chem.* 1982, 47, 5235–5239. Detty, M. R.; McKelvey, J. M.; Luss, H. R. *Organometallics* 1988, 7, 1131–1143.
(3) Ruider, G.; Schenk, W. Justus Liebigs Ann. Chem. 1973, 1036–1042.
Detty, M. R.; Murray, B. J. J. Org. Chem. 1982, 47, 1146–1148.
(4) (a) Es-Seddiki, S.; Le Coustumer, G.; Mollier, Y. Tetrahedron Lett.

1981, 2771–2772. (b) Detty, M. R.; Hassett, J. W.; Murray, B. J.; Reynolds, G. A. *Tetrahedron* 1985, 45, 4853–4859.
(5) Detty, M. R.; Geer, S. M.; Wadsworth, D. H. *J. Org. Chem.* 1987,

52, **3662.**

Y = **S, Se, Te**

2,3,5,6-unsubstituted **(chalcogenapyrany1)chalcogena**pyrans. Furthermore, the parent chalcogenapyranonea **1-3** are the simplest structures for comparing theory and experiment in this class of molecules.

We report a facile synthesis of the parent chalcogenapyranones **1-3** from the pentadiynone **4** and the corresponding dieodium chalcogenide. The method **also** works with unsymmetrical diynones with one terminal trimethylsilyl group. X-ray diffraction studies of **1-3** show the molecules to be nearly planar in the solid state.

Results and Discussion

Synthesis of the Parent Chalcogenapyranones. Attempts to prepare the parent chalcogenapyranones **1-3** via the addition of the chalcogenide anions to 1,4-pentadiyn-3-one **(5)** were unsuccessful. Only trace **amounts** of

$$
^{(H-C\equiv C)_{2}CO}_{2}
$$

the pyranonea **(<5%)** were detected with higher molecular weight oligomeric products predominating. The chalcogenide **anions** were prepared by either sodium borohydride or lithium triethyl borohydride reduction of the elemental chalcogens. Reaction solventa that were utilized in at-

0276-733319212311-2157\$03.00/0 @ 1992 American Chemical Society

tempta to optimize this reaction included tetrahydrofuran (THF) (with either **4** equiv of ethanol or tert-butyl alcohol **as** a proton source), ethanol, or **0.1** M sodium ethoxide in ethanol.

(Trimethylsily1)acetylenes have been employed as masked terminal acetylenes in chalcogenide-addition reactions? The diynone **4** was prepared in hope that the trimethylsilyl groups would shield the terminal acetylene carbons from rapid nucleophilic attack from the chalcogenide anions and that stepwise desilylation of **4** with a chalcogenide anion would lead to the chalcogenapyranones **1-3** via intramolecular Michael addition rather than to oligomeric products via intermolecular Michael addition.

The synthesis of 1,5-bis(trimethylsilyl)-1,4-pentadiyn-3-one $(4)^7$ was achieved in two steps as shown in Scheme II. The addition of *n*-butyllithium to (trimethylsily) The addition of n -butyllithium to (trimethylsilyl)acetylene at 0 **"C** in THF generated the (trimethylsily1) acetylide. The addition of methyl formate to this mixture gave the diynol6 in **95%** isolated yield. The oxidation of the diynol6 with a **10%** chromic acid solution in acetone at 0 **OC** gave diynone **4** in **87%** isolated yield **as** a lowmelting, crystalline solid.

Addition of chalcogenide anions to **4** gave the chalcogenapyranones in much better yield. The thiapyranone **1** was prepared in **72%** isolated yield by the addition of a solution of **2.0** equiv of sodium hydrosulfide hydrate $(Aldrich)^8$ and excess sodium bicarbonate to a solution of **4** in ethanol. When **1.0** equiv of sodium hydrosulfide hydrate was used, thiapyranone **1** was isolated in **40%** yield and unreacted **4** was recovered in 30% yield.

Alternatively, the reduction of elemental sulfur with sodium borohydride in 0.1 M sodium ethoxide in ethanol^{4b} gave a solution of disodium sulfide. The addition of dipone **4** to this solution gave thiapyranone **1** in **44%** isolated yield.

Selenapyranone **2** was prepared in 35% isolated yield via the addition of **2.0** equiv of disodium selenide in **0.1** M sodium ethoxide in ethanol to diynone **4.** The **disodium** selenide was generated via the sodium borohydride reduction of selenium metal in **0.1** M sodium ethoxide in ethanol.^{4b} When 1.0 equiv of disodium selenide was used, selenapyranone **2** was isolated in **15%** yield and diynone **4** was recovered in **20%** yield.

Tellurapyranone **3** was isolated in 38% yield via the addition of **2.0** equiv of disodium telluride in **0.1** M **sodium** ethoxide in ethanol to diynone **4.** The disodium telluride was prepared by the sodium borohydride reduction of tellurium powder in 0.1 M sodium ethoxide in ethanol.^{4b} When 1.0 equiv of disodium telluride was used, tellura-

Table I. Proton and Carbon Chemical Shifts in Chalcogenapyranones 1-3"

		δ , ppm					
compd		${\bf H}_{{\bf A}}$	H_B	C_1, C_5	C_2, C_4	\mathbf{C}_3	
	s	7.47	7.02	137.7	131.7	179.6	
2	Se	8.205	7.17	138.8	132.6	181.0	
3	Тe	8.71	7.31	136.8	129.3	184.7	

pyranone **3** was isolated in **21%** yield and diynone **4** was recovered in **20%** yield.

The recovery of unreacted **4** from the reaction mixtures with the chalcogenide anion **as** limiting reagent suggests that initial desilylation of **4,** perhaps to unsymmetrical diynone **7,** is the rate-limiting step in these reactions.

Silylated pyranones **8** and **9** were not detected in the product mixtures from the reactions with either chalcogenide anion or diynone **4 as** limiting reagent. This suggests that desilylation occurs prior to ring formation.

In a species such **as 7,** nucleophilic attack would be expected to be more rapid at the terminal acetylenic carbon than at the **trimethylsilyl-substituted** carbon for steric reasons. The addition of a chalcogenide anion to **7** would lead to enyne **10** or a related structure (perhaps a silylated chalcogen atom). Desilylation and cyclization of **10** could proceed via several routes to give chalcogenapyranones **1-3.** The cyclization of enynes similar in structure to **10** to chalcogenapyranones has been de scribed.⁹

Spectroscopic **Properties.** Compounds **1-3 all** display **AA'BB'** patterns in 'H *NMR* spectra and three-line spectra in the proton-decoupled **13C** NMR spectra. The assignment of chemical shifts for the protons and carbons in these molecules is given in Table I. The assignment of chemical shifts to H_A and H_B was made possible by the observation of ⁷⁷Se satellite coupling $(J_{\text{Se-H}} = 51 \text{ Hz})$ in the 'H NMR spectrum of **2** and 126Te satefiite coupling $(J_{Te-H_A} = 107 \text{ Hz})$ in the ¹H NMR spectrum of **3.**

The carbon chemical shifts are similar in **all** three compounds, although proton chemical shifts are sensitive to the heteroatom. The chemical shift of H_A is found at significantly lower field **as** the size of the chalcogen atom increases. Interestingly, while the chemical shift of H_A increases by **1.24** ppm from sulfur to tellurium, the chemical shift of H_B changes relatively little from sulfur to t ellurium $(\Delta \delta = 0.29$ ppm).

The carbonyl stretching frequencies in the infrared spectra of **1-3** are quite low. For thiapyranone **1,** the carbonyl stretching frequency is found at **1610** cm-'. In selenapyranone **2,** the carbonyl stretching frequency is at **1585** cm-', while in tellurapyranone **3** the carbonyl stretching frequency is lower still **(1560** cm-I).

The UV absorption maximum of compounds **1-3** is found at longer wavelengths **as** the size of the chalcogen atom increases. Thus, λ_{max} increases from 297 nm (ϵ **11OOO)** for **1 to 310nm (a 165OO)** for **2 to** 344nm **(a20000)** for 3 in dichloromethane.

⁽⁶⁾ De Jong, R. L. P.; Brandama, L. J. *Chem. SOC., Chem. Commun.* **1983,1056-1057. Brand", L.; Verkruijaee, H. D.** *Sun. Commun.* **1990, 20, 2275-2277.**

⁽⁷⁾ Hauptmann, H. *Tetrahedron* **1976,32, 1293.**

 (8) We have found that the hydrate typically analyzes as a dihydrate. All manipulations and reactions of this reagent assume the following empirical structure: NaHS-2H₂O.

empirical structure: NaHS.2H20. (9) Detty, M. R.; McGarry, L. W. J. *Org. Chem.* **1988,53,1203-1207.**

Figure 1. Plot of **1** with thermal ellipsoids at the *50%* probability level.

The spectroscopic trends observed for **1-3** are similar to those observed for the chalcogenachromones $11-13^{10}$ and **14.11** The changes **observed** in chemical **shifts** for **HA** and **HB in** the **'H** *NMR* spectra of **11-13** are smaller than **those**

Figure 2. Plot of **2** with thermal ellipsoids at the *50%* probability level.

Figure 3. Plot of 3 with thermal ellipsoids at the *50%* probability level.

observed for 1-3. The benzo-fused ring perhaps attenuates the chalcogen atom effect.

X-ray Crystal Structures of 1-3. The structures of **1-3** were determined unambiguously by X-ray crystallographic analyses. Figure 1 **shows** an **ORTEP** plot of thiapyranone **1** with atomic labeling; Figure **2** selenapyranone **2;** and Figure 3, telIurapyranone **3.** The thermal ellipsoids

⁽¹⁰⁾ Dereu, N.; Renson, M. J. Organomet. Chem. 1981, 208, 11-17.
(11) Detty, M. R.; Murray, B. J. J. Am. Chem. Soc. 1983, 105, 883-890.

were plotted at the 50% probability level, excluding hydrogens. **Crystal data** for **1-3** are included in Tables II-IV, respectively, and positional and thermal parameters for **1-3** are included in Tables **V-VII,** respectively. Tables of bond distances and angles and least-squares planes are given in the supplementary material. The selenium and tellurium atoms occupy crystallographic 2-fold axes, and selenapyranone **2** and tellurapyranone **3** are iaoetructural.

AU three molecules **are** planar with the largest deviation from a least-squares plane occurring in the sulfur analogue **1** (0.014 **A).** This is somewhat surprising in the sense that the Te-C bonds (2.05 **A)** are much longer than the **S-C** bonds (1.70 **A),** resulting in a greatly distorted hexagonal structure for 3 relative to **1. A** boat conformation in 3 would permit the angles about the sp²-hybridized carbons to be closer to 120° .

The intermolecular contacts between *Se-se* (3.94 A) and Te-Te (4.11 **A)** are about the sum of van der **Waals** radii $(3.80 \text{ and } 4.12 \text{ Å},$ respectively).¹² However, there is a short intermolecular Te-0 contact (3.22 **A)** which is less than the sum of van der Waals radii (3.58 A). The corresponding *Se.-O* distance is 3.25 **A,** which is closer to the sum of van der Waals radii (3.42 A).

Preparation of 2-Substituted Chalcogenapyranones. The addition of chalcogenide anions to unsymmetrical 1-(trimethylsilyl)-1,4-pentadiyn-3-ones should be a general procedure for the preparation of 2-substituted chalcogenapyranones. The addition of lithium (trimethylsily1)acetylide to phenylpropargyl aldehyde gave diynol **15 as** a yellow oil in 98% isolated yield. oxidation

with chromic acid gave diynone **16** in 98% isolated yield. The addition of sodium hydrosulfide hydrate to **16** gave **2-phenyl-4H-thiapyran-4-one (17)** in **44%** isolated yield, and the addition of disodium telluride to **16** gave 2 **phenyl-4H-tellurapyran-4-one (18)** in 32% isolated yield.

The tellurapyranone **18** has **also** been prepared by the addition of disodium telluride to 1-phenyl-1,4-pentadiyn-3-one.⁵ The yield of 18 was only 12% in this reaction.

Reactions of the Chalcogenapyranones. The addition of organometallic reagenta to the parent chalcogenapyranones could proceed via either $1,2$ - or $1,4$ -addition. The decreased steric inhibition to 1,4addition in **1-3 was** of concern for subsequent reactions.

The addition of $[p-(N,N{\text{-dim}}\text{ethylamino})$ phenyl]magnesium bromide to **2** and **3** gave dyes **19** and **20** in **68** and 71 *W* isolated yields, respectively, following recrystallization. Producta of 1,4-addition were not detected in the crude crystalline materials. The dyes had absorption

Table V. Positional Parameters and Their Estimated Standard Deviations for 1"

atom	x	у	z	$B, \overline{A^2}$	
s	0.3523(1)	0.1473(1)	0.01021(8)	5.20(2)	
Ο	0.4249(3)	0.0542(3)	$-0.3623(2)$	5.73(7)	
C1	0.4651(4)	0.2237(4)	$-0.0853(4)$	4.77 (9)	
C ₂	0.4811(4)	0.1890(4)	$-0.1976(3)$	4.59(9)	
C3	0.4042(4)	0.0810(4)	$-0.2572(4)$	3.92(7)	
C4	0.3014(4)	0.0070(4)	$-0.1908(4)$	4.53(9)	
C5	0.2729(4)	0.0280(4)	$-0.0783(4)$	4.89(9)	
H1	0.515(4)	0.291(4)	$-0.055(3)$	$6.0(9)*$	
H ₂	0.541(3)	0.232(4)	$-0.240(4)$	$6.3(9)*$	
Η4	0.255(4)	$-0.062(4)$	$-0.229(3)$	$6.3(9)$ *	
H5	0.204(3)	$-0.018(4)$	$-0.038(3)$	$6(1)*$	

Atoms with **an** asterisk were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)(a^2B(1,1) + b^2B(2,2) +$ $c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)].$

Table VI. Positional Parameters and Their Estimated Standard Deviations for 2^a

atom	x	ν	z	B, A ²	
Se	0.000	0.04403(6)	0.250	4.20(1)	
0	0.000	0.4204(4)	0.250	4.6(1)	
C1	0.2118(8)	0.1453(4)	0.1611(6)	3.43(9)	
C2	0.1889(8)	0.2562(4)	0.1697(7)	3.28(9)	
C3	0.000	0.3171(6)	0.250	3.2(1)	
H1	0.34(1)	0.107(4)	0.118(7)	$6(1)$ *	
H2	0.30(1)	0.301(4)	0.125(7)	$6(1)*$	

a Atoms with **an** asterisk were refined isotropically. Anieotropi**cally** refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)(a^2B(1,1) + b^2B(2,2) + b^2B(2,3))$ $c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)$.

Table VII. Positional Parameters and Their Estimated Standard Deviations for 3"

atom	x	ν	2	$B, \overline{A^2}$	
Te	0.000	0.0416(1)	0.250	4.29(2)	
0	0.000	0.421(1)	0.250	5.0(3)	
Сı	0.221(2)	0.157(1)	0.156(1)	3.5(3)	
C ₂	0.190(2)	0.262(1)	0.169(2)	3.5(3)	
C ₃	0.000	0.319(1)	0.250	3.5(3)	
H1	0.357	0.133	0.098	$4.5*$	
H2	0.307	0.306	0.118	$4.5*$	

Hydrogens with **an** asterisk were allowed to ride on the parent carbons. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)[a^2B(1,1) +$ $b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \beta)B(1,3)$ α) $B(2,3)$].

maxima at 591 nm for **19 (c** 89000) and at 628 nm for **20** (680000) in dichloromethane.

Summary and Conclusions

We have described a simple preparation of both the parent chalcogenapyranonea and 2-substituted derivativea via the desilylation of silylated 1,4-diyn-3-ones with chalcogenide anions. This procedure gives much better yields than the direct addition of chalcogenide anions to 1,4-diyn-3-ones bearing one or two terminal acetylenes.

⁽¹²⁾ Bondi, **A.** J. Phys. *Chem.* **1964,68,441.**

Addition *of* Disodium Chalcogenides

X-ray crystallographic analyses of the chalcogenapyranones **1-3** show the molecules to be nearly planar. Derivatives of these compounds, such **as** the chalcogenapyrylium dyes **19** and **20,** should be rodlike in shape and **show allow** closer intermolecular approach than the 2,6-substituted analogues. The properties of molecules derived from the chalcogenapyranones **1-3** are under investigation.

Experimental Section

Melting points were determined on a Thomas-Hoover melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a General Electric **QE-300** spectrophotometer. W-visible **spectra** were recorded on a Perkin-Elmer Lambda **9** spectrophotometer. Infrared spectra were recorded on a Beckman **IR 4250** instrument. Mass spectra were recorded on a Du Pont **21-491** instrument equipped for field desorption. Microanalywa were performed on a Perkin-Elmer **240** C, H, and N analyzer. Tetrahydrofuran (THF) was purchased from Aldrich **as** anhydrous and was handled via syringe techniques. Butyllithium, (trimethylsilyl)acetylene, phenylacetylene, and sodium hydrosulfide hydrate were used **as** received from Aldrich.

Preparation of **1,5-Bis(trimethylsilyl)-l,4-pentadiyn-3-ol** (6). (TrimethyKiy1)acetylene **(29.4** g, **0.300** mol) was dissolved in **100 mL** of anhydrous THF under argon and was cooled to 0 OC. n-Butyllithium **(100 mL of** a **2.5 M** solution in hemes, **0.25** mol) was added dropwise via a pressure-equalizing addition funnel. The resulting solution was stirred 1 h at 0 °C. Methyl formate **(9.0** g, **0.15** mol) in **20 mL** of anhydrous THF was added dropwise. The resulting mixture was stirred an additional hour at 0 °C. The reaction mixture was poured into 500 mL of **10%** ammonium chloride solution. The products were extracted with ether **(3 X 250 mL).** The combined ether extracts were washed with brine, dried over sodium sulfate, and concentrated in vacuo. The residue **was** purified via chromatography on **300** g of **silica** gel eluted with ether to give **26.5** g **(95%)** of the diynol **as** a pale yellow oil that was used without further purification. ¹H NMR (CDCl₃) δ 5.075 (bra, **1** H), **3.65** (br **s, 1** H), **0.16** (8, **18** H); IR (film, NaCl) **3350, 2945,2886,2163,1403,1244,1050,1020,915,830,753,693,642** cm⁻¹; **EIMS**, m/z 223 (M - H), 207 (M - OH), 97 (Me₃SiC₂), 73 $(M_{e_3}Si)$.

Chromic Acid Oxidation of 6. Preparation of 1,5-Bis-**(trimethylsilyl)-l,4-pentadi~3-one** (4). A **10%** chromic acid solution was prepared by the addition of sodium dichromate nonahydrate **(20.0** g, **0.0670** mol) to a stirred slurry of **30** g of sulfuric acid and **220** g of ice. The resulting solution was stirred **1** h at ambient temperature. The diynol6 **(26.5** g, **0.118** mol) was dissolved in 200 mL of acetone and was cooled to 0 °C. The chromic acid solution was added dropwise with stirring. After addition was complete, the reaction mixture was stirred **2** h at ambient temperature. The reaction mixture was poured into **500** mL of water. The products were extracted with ether (3×200) **mL).** The combined ether extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was recrystallized from hexanes to give **23.0** g **(87%)** of 4 **as** a white crystalline solid, mp **48.5-51** OC: 'H NMR (CDC13) **S 0.27 (s,18** H); XR (KBr) **2960, 2155, 1622,1251, 1160,840,760,727** cm-'; FDMS, m/z 207 (M - CH₃), 222 (M, C₁₁H₁₈OSi₂). Anal. Calcd for C11H180Si2: C, **59.40;** H, **8.10.** Found: C, **59.70;** H, **7.81.**

Preparation of Δ **-4H-Thiapyran-4-one (1). Diynone 4 (2.22)** g, 10.0 mmol) was dissolved in 25 mL of ethanol. To this solution was added a solution of sodium hydrosulfide hydrate **(1.84** g, **20.0** mmol) in **25** mL of saturated sodium bicarbonate and **25** mL of water. The resulting solution turned a deep yellow-orange in color. The reaction mixture was stirred **1** h at ambient temperature and was then diluted with **50** mL of water. The products were extracted with didoromethane **(3 x** *50* **mL).** The combined organic extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was recrystallized from toluene to give **0.808 g** (72%) of 1 as a pale yellow solid, mp 108-110 °C (lit.¹³) mp 110.0-110.2 °C): IR (KBr) 3050, 1610, 1580, 1516, 1390, 1163, **1125, 845, 710 cm⁻¹; EIMS,** m/z 112 (C₅H₄OS); UV λ_{max} (CH₂Cl₂) **297** (ah, **e 11000), 289 (e 16000), 282** nm (sh, **e 15000).**

Preparation of A-4H-Selenapyran-4-one **(2).** Sodium borohydride $(0.52 \text{ g}, 15 \text{ mmol})$ was added to a slurry of selenium shot **(0.79** g, **10** mmol) in **10** mL of **0.25** M sodium ethoxide in ethanol. The resulting mixture was heated at reflux for approximately 1.5 h (until the selenium shot was consumed and the initial purple color faded). The diynone 4 (1.11 g, 5.0 mmol) was dissolved in **10** mL of ethanol. **This** solution was then added to the disodium selenide. The resulting mixture was stirred **1** h at ambient temperature and was then diluted with **100 mL** of water. The products were extracted with dichloromethane **(3 X** *50* **mL).** The combined extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was recrystallized from toluene to give **0.279** g **(35%)** of selenapyranone **2 as** a yellow, crystalline solid, mp **114.0-115.5** *OC:* **IR** (KBr) **3045,1585,1548,** 1373, 1158, 846, 616 cm⁻¹; **FDMS**, m/z 160 $(C_5H_4O^{77}Se)$; UV λ_{max} (CH2Cl,) **310** (sh, **e 16500), 302 (e 17000), 275** nm (ah, **e 3500).** Anal. Calcd for CsH40Se: C, **37.76;** H, **2.54.** Found: C, **37.69;** H, **2.58.**

Preparation of Δ -4H-Tellurapyran-4-one (3). Sodium borohydride **(0.285** g, **7.5** "01) was added to a **slurry** of tellurium powder **(0.76** g, **6.0** "01) in **10** mL of **0.25** M sodium ethoxide in ethanol. The resulting mixture was heated at reflux for approximately **1.5** h (until the tellurium powder was consumed and the **initial** purple color faded). The diynone 4 **(1.11** g, **5.0** mol) was diseolved in **10 mL** of ethanol. This solution was then added to the disodium telluride. The resulting mixture was stirred **1** h at ambient temperature and was then diluted with **100 mL** of water. The producta were extracted with dichloromethane **(3 x** *50* **mL).** The combined extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was purified via chromatography on silica gel eluted with **25%** ethyl acetate in dichloromethane. The product fractions were recrystallized from toluene to give **0.196** g **(38%)** of tellurapyranone 3 **as** a **tan,** crystalline solid, mp 114.0-115 °C: IR (KBr) 3025, 1560, 1516, 1360, 1321, 1154, 860, 843 cm⁻¹; FDMS, m/z 210 (C₆H₄O¹³⁰Te);
UV λ_{max} (CH₂Cl₂) 344 (ϵ 20000), 275 nm (sh, ϵ 3400). Anal. Calcd for CsH,OTe: C, **28.92;** H, **1.94.** Found: C, **28.91;** H, **1.92.**

Preparation of **l-(Trimethylsilyl)-S-phenyl-1,4-penta**diyn-3-ol (15). (Trimethylsilyl)acetylene (3.9 g, 40 mmol) in 20 **mL** of anhydrous THF was added dropwise to a **1.6** M in hexanes solution of *n*-butyllithium $(20 \text{ mL}, 32 \text{ mmol})$ cooled to 0°C under an argon atmosphere. The resulting solution was stirred **0.5** h at 0 °C. Phenylpropargyl aldehyde (3.30 g, 25.4 mmol) in 20 mL of THF was added dropwise at $0 °C$. The resulting solution was stirred **3** h at ambient temperature and was then diluted with **125 mL** of **5%** HCl. The products were extracted with ether **(3 X** 60 **mL).** The combined ether extracts were washed with brine, dried over sodium sulfate, and concentrated to give **5.65** g **(98%)** of the diynol 15 as a yellow oil which was used without further purification: 'H NMR (CDC13) **6 7.46** (m, **2** H), **7.33** (m, **3** H), **5.35 (e, 1** H), **2.61** (br *8,* **1** H), **0.21 (s,9** HI; IR (film, NaCl) **3300** (br), **2955,2228,2170,1488,1247,1030,909,830,753,687** cm-'.

Preparation **of L-(Trimethylsilyl)-S-phenyl-1,4-penta**diyn-3-0110 (16). Diynol **15 (5.60** g, **0.0246** mol) in **50** mL of acetone was cooled to 0 °C. To this solution was added 40 mL (0.34 mol) of a **10%** chromic acid solution. The resulting **mixture** was stirred 1 h at 0 °C and was then poured into 150 mL of water. The products were extracted with ether **(3 X 100** mL). The combined ether extracts were washed witb brine, dried over **so**dium sulfate, and concentrated. The residue was purified via chromatography on **silica** gel eluted with ether to give **5.45** g (98%) of diynone 16 **as a** yellow oil: 'H **NMR** (CDC13) **S 7.63** (d, **2** H, *^J*= **7.3** Hz), **7.49** (t, **1** H, J ⁼**7.2** Hz), **7.40** (t, **2** H, *J* = **7.5** Hz), **0.29 (s,9** H); IR (film, NaC1) **2945,2190,2130,1615,1482,1436, 1271, 1245, 1120, 870, 739 cm⁻¹; FDMS,** m/z **226 (C₁₄H₁₄OSi).** Anal. Calcd for C₁₄H₁₄OSi: C, 74.29; H, 6.23. Found: C, 74.28; H, **6.13.**

Preparation of 2-Phenyl-4H-thiapyran-4-one (17). Diynone 16 **(4.52** g, **0.0200** mol) was dissolved in **75** mL of 2-propanol. Sodium hydrosulfide hydrate **(3.68 g, 0.0400** mol) was dissolved in **50 mL** of saturated sodium bicarbonate solution and **25** mL of water. The aqueous solution was added to the 2-propanol solution, and the resulting mixture was stirred for **3** h at ambient temperature. The reaction mixture **was** poured into **300** mL of water. The products were extracted with dichloromethane **(3 X**

⁽¹³⁾ Rolla, M.; Sanesi, M.; Traverse, **G.** *Ann. Chim. (Rome)* **1962.42, 673-680.**

150 mL). The combined organic extracts were washed with brine **(2 x 100** mL), dried over magnesium sulfate, and concentrated. The residue was purified via chromatography on **silica** gel **(20%** ethyl acetate in dichloromethane) to give **1.64** g **(44%)** of the thiapyranone 17, mp 90-92.5 °C (lit.⁵ mp 92-92.5 °C): ¹H NMR (CDC13) **6 7.80** (d, **1** H, *J* = **10.3** Hz), **7.58** (m, **2** H), **7.51** (m, **3** H), **7.22** (d, **1** H, *J* = **1.3** Hz), **7.07** (d **X** d, **1** H, J ⁼**1.3, 10.3** Hz); IR (KBr) **1608 (e), 1160,880,796,751,728,690** *cm-';* FDMS, *m/z* 188 $(C_{11}H_8OS)$.

Preparation of **2-Phenyl-4H-tellurapyran-4-one (18).** Sodium borohydride **(0.285** g, **7.5** mmol) was added to a slurry of tellurium powder **(0.76** g, **6.0** "01) in **10 mL** of **0.25** M **sodium** ethoxide in ethanol. The resulting mixture was heated at reflux for approximately **1.5** h (until the tellurium powder was consumed and the initial purple color faded). The diynone **4 (0.68** g, **3.0** mmol) was dissolved in 10 mL of ethanol. This solution was then added to the disodium telluride. The resulting **mixture** was stirred **1** h at ambient temperature and was then diluted with **100** mL of water. The products were extracted with dichloromethane **(3 x 50 mL).** The combined extracts were washed with brine, dried over sodium sulfate, and concentrated. The residue was purified via chromatography on silica gel eluted with **25%** ethyl acetate in dichloromethane. The product fractions were recrystallized from toluene to give **0.273** g **(32%)** of tellurapyranone **18 as** a **tan,** crystalline solid, mp **121.5-123** "C (lit? mp **121.5-123** "C): 'H NMR (CDC13) **6 8.70** (d, **1** H, J ⁼**11.4** Hz), **7.45** (br *8,* **5** HI, **7.35** $(d \times d, 1 \text{ H}, J = 1.0, 11.4 \text{ Hz})$, 7.27 $(d, 1 \text{ H}, J = 1.0 \text{ Hz})$; IR (KBr) 3050, 1560, 1530, 1480, 1440 cm^{-1} ; **FDMS**, m/z 286 $(C_{11}H_8O^{130}Te)$.

Preparation of $4-(p-(N,N\text{-Dimethylamino})$ **phenyl) sele**napyrylium Hexafluorophosphate **(19).** A mixture of *p*bromo-N_JV-dimethylaniline (1.20 g, 6.00 mmol) and magnesium turnings **(0.144** g, **6.0** mg-atom) in **10 mL** of anhydrous THF was heated at reflux for **1.5** h under argon. The reaction mixture was cooled to ambient temperature, and selenapyranone **2 (0.477** g, 3.00 mmol) in 5 mL of anhydrous THF was added dropwise via syringe. The reaction mixture was heated at reflux for **1** h and was then poured into 50 mL of cold, 10% HPF₆. The purple solid was collected by filtration, washed with water **(4 X 10 mL)** and ether **(4 X 10 mL),** and dried. The solid was recrystallized from acetonitrile and an equal volume of ether to give 0.83 g **(68%)** of **19 as** a purple-black solid, mp **205.5-208** "C (dec): 'H NMR **8.07** (AA'BB', **2** H), **6.94** (AA'BB', **2** H), **3.24** *(8,* **6** H); UV **X,** (CH_2Cl_2) 591 nm (ϵ 89 000). Anal. Calcd for $C_{13}H_{14}NSe\text{-PF}_6$: \overline{C} , **38.25;** H, **3.46;** N, **3.43.** Found: C, **38.47;** H, **3.48;** N, **3.60.** (CD_2Cl_2) δ 9.48 (d, 2 H, $J = 10.6$ Hz), 8.61 (d, 2 H, $J = 10.6$ Hz),

Preparation of $4-(p-(N,N\text{-Dimethylamino})\text{phenyl})$ tellurapyrylium Hexafluorophosphate **(20).** A mixture of *p*bromo-NJV-dimethylaniline **(0.60** g, **3.0** mmol) and magneisum turnings **(0.12** g, **5.0** mg-atom) in **10** mL of anhydrous THF was heated at reflux for **1.5** h under argon. The reaction mixture was cooled to ambient temperature, and tellurapyranone 3 **(0.312** g, 1.50 mmol) in 5 mL of anhydrous THF was added dropwise via syringe. The reaction mixture was heated at reflux for **1** h and was then **poured** into *50* **mL** of cold, **10% mF6.** The purple solid was collected by filtration, washed with water **(4 X 10** mL) and ether **(4 X 10 mL),** and dried. The solid was recrystallized from acetonitrile and an equal volume of ether to give **0.486** g **(71%)** of 20 as a purple-black solid, mp 220-221 °C (dec): ¹H NMR (CD_2Cl_2) δ 10.60 (d, 2 H, $J = 11.6$ Hz), 8.80 (d, 2 H, $J = 11.6$ Hz),

8.08 (AA'BB', **2** H), **6.93** (AA'BB', **2** H), **3.24 (e, 6 H); UV A-** (CH_2Cl_2) 628 nm (ϵ 80000). Anal. Calcd for $C_{13}H_{14}NTe\text{-PF}_6$: **34.18;** H, **3.09;** N, **3.07.** Found C, **34.64,** H, **3.22;** N, **3.17.**

Crystal Data Collection. *All* data were collected on an **En**raf-Noniua **CAD4** diffractometer." Crystals of thiapyranone **1** and selenapyranone **2** were mounted in *glase* **capillaries** to prevent sublimation. Unit cell parameters obtained by least-squares refinement of the setting angles for **25** computer-centered reflections are given in Tables 11-IV along with other pertinent information.

Each reflection was scanned from $2\theta(\text{Mo K}\alpha_1) - \Delta^{\circ}$ to $2\theta(\text{Mo K}\alpha_2)$ K_{α_2} + Δ° , where $\Delta = 0.75, 0.90,$ and 0.85 for 1, 2, and 3, respectively. The scan width was extended **25%** at each end to measure background intensities. *As* a check on experimental stability, the intensities of three reflections were remeasured every hour. No significant change in these intensities waa noted.

The net intensities were calculated according to $I = ASK(C - RB)$, and the standard deviations were $\sigma^2(I) = (ASK)^2(C + 2RB)$ and $\sigma(F_o) = [I + \sigma(I)/Lp]^{1/2} - F_o$, where *A* is the attenuator factor, S is the scale, C is the total integrated peak count, $(Lp)^{-1}$ is the Lorentz polarization correction, and $F_o = (I/Lp)^{1/2}$ is the observed structure factor. Empirical absorption corrections were applied to the data for 2 and 3 using the program DIFABS.¹⁵

Structure Solution **and** Refinement. The structures were solved by direct methods using MULTAN 81.16 Refinement was by the full-matrix least-squares method. Hydrogen atoms were included in the refinement but, for the tellurium analogue 3, were only allowed to ride on the parent carbon atoms. The function minimized was $\sum w(|F_o| - K|F_o|)^2$, where $w^{-1} = \sigma^2(F_o) + (0.02F_o)^2$ + *q,* where *q* = **0.1, 0.5,** and **0.7** for **1, 2,** and 3, respectively. Scattering factors and anomalous dispersion corrections were from ref 17. The agreement indices are $R = \sum ||F_o| - K|F_c||/\sum |F_o|$ and $R_{\rm w} = (\sum (|F_{\rm o}| - K|F_{\rm c}|)^2 / (\sum w F_{\rm o}^2)^{1/2}.$

In the final stages, anisotropic thermal parameters were applied and refinement converged to give $R = 0.038$, $R_w = 0.043$, and $K = 0.5642$ (7) for 1; $R = 0.033$, $R_w = 0.039$, and $K = 1.070$ (2) for **2;** and $R = 0.048$, $R_w = 0.054$, and $K = 0.4187$ (6) for **3.** The final difference electron density maps contained residual electron densities between **-0.18** and **+0.19** e/A3 for **1, -0.58** and **+0.41** $e/A³$ for 2, and -0.84 and $+1.18 e/A³$ for 3. For 3, the largest positive **peak is** at a center of symmetry between two tellurium atoms, and the next four positive peaks are found near tellurium.

Supplementary Material Available: Tables of bond distances, bond angles, refined temperature factors, and least-squares planes, for C₆H₄OTe, C₅H₄OSe, and C₅H₄OS (6 pages). Ordering information is given on any current masthead page.

OM910712L

⁽¹⁴⁾ Programs used in this study were from: MolEN, An Interactive *Structure Solution Procedure;* **Enref-Nonius: Delft, The Netherlands,**

^{1990.&}lt;br>(15) Walker, N.; Stuart, D. *Acta Crystallogr*. 1**983**, *A39*, 159.
(16) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.;
Declerq, J. P.; Woolfson, M. M. *MULTAN80, A system of Computer* Programs for the Automatic Solution of Crystal Structures from X-ray
Diffraction Data; University of York: York, England, 1980.
(17) International Tables for X-ray Crystallography; Kynoch Press:
Birmingham, 1974; Vol. IV,