consistent with the voltammetric results, which are indicative of a fairly rapid isomerization process concurrent with reduction; spectroelectrochemical studies indicate that this does not involve chloride loss, since chloride loss is seen to be a relatively slow process which wouldn't be observed on the voltammetric time scale.

Acknowledgment. ESR analysis software was furnished by the Illinois ESR Research Center, NIH Division of Research Resources Grant No. RR01811. This work was supported by NSF (CHE-9012739 to J.W.B.) and the donors of the Petroleum Research Fund, administered by the American Chemical Society (to M.R.M.B. and A.E.B.). We thank Professors Al Fry and David Westmoreland (Wesleyan University) for helpful discussions and Mr. Tom Jenks (Midac Corp.) for technical assistance.

OM910727J

Synthesis, Characterization, and Reactivity of Triphenylsilyl, Triphenylgermyl, and Triphenylstannyl Derivatives of Zirconium and Hafnium

Hee-Gweon Woo, William P. Freeman, and T. Don Tilley*

Chemistry Department, 0506, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0506

Received November 8, 1991

The crystalline lithium silyl compound $(THF)_3$ LiSiPh₃ (1) was isolated from the reaction of Ph₃SiSiPh₃ with lithium in tetrahydrofuran. This compound and tetrahydrofuran solutions of $LiEPh_3$ (E = Ge, Sn) were used to prepare the complexes $CpCp^*Zr(EPh_3)Cl$ (2, E = Si; 3, E = Ge), $CpCp^*Hf(EPh_3)Cl$ (5, E = Si; 6, E = Ge; 7, E = Sn), $Cp^*_2Zr(EPh_3)Cl$ (8, E = Si; 9, E = Ge; 10, E = Sn), and $Cp^*_2Hf(SiPh_3)Cl$ (11). This method did not provide the zirconium stannyl complex $CpCp^*Zr(SnPh_3)Cl$ (4) but instead gave the phenyl derivative CpCp+Zr(Ph)Cl via phenyl transfer. Compound 4 may be obtained via reactions of HSnPh₃ with 2, 3, or CpCp*Zr[Si(SiMe₃)₃]Cl. Reactions of 8 and 11 with MeMgBr gave $Cp*_2M(SiPh_3)Me$ (12, M = Zr; 13, M = Hf). Hydrogenolysis of 2, 5, 8, and 11 provides routes to the corresponding hydrides CpCp*MHCl or Cp*_2MHCl. Likewise, the reactions of 12 and 13 with hydrogen give Cp*_2ZrH₂ and Cp*₂Hf(H)Me, respectively. The germyl and stannyl complexes were found to be significantly less reactive toward hydrogen. Reactions of 2-11 with $PhSiH_3$ gave σ -bond metathesis products in some cases and no reaction in other cases, such that the observed reactivity trends are CpCp*M > Cp*₂M; Zr > Hf; M-Si > M-Ge > M-Sn. Carbonylation of 8 resulted in formation of Cp*₂Zr(η^2 -COSiPh₃)Cl (14), which reacts with HCl to give the thermally stable formylsilane Ph_3SiCHO (15) and with 2,6-Me₂C₆H₃NC to afford the ketenimine $Cp_{2}T[OC(SiPh_{3})(CN-2,6-Me_{2}C_{6}H_{3})]Cl (16)$. The silvl complexes 5, 8, and 11 react with 2,6-Me₂C₆H₃NC to give η^2 -iminosilaacyl insertion products, as does the germyl 3. However, no reaction is observed between 2,6-Me₂C₆H₃NC and stannyl complexes 7 or 10. These investigations establish the reactivity trends M-SiPh₃ > M-GePh₃ > M-SnPh₃ for σ -bond metathesis processes with hydrogen and phenylsilane and for insertion reactions with carbon monoxide and 2,6-Me₂C₆H₃NC. It is suggested that, for these analogues d^0 metal silyl, germyl, and stannyl complexes, the energetics of the reactions are influenced primarily by the new E-element bond strengths of the products rather than by the d^0 M–E bond strengths of the starting materials.

Introduction

Investigations of d⁰ metal silyl complexes have revealed a number of interesting reactivity patterns that were unprecedented in transition-metal silicon chemistry.¹ This rich reaction chemistry, which involves migratory insertions of unsaturated substrates into metal-silicon bonds² and σ -bond metathesis processes which can result in new metal-mediated polymerizations,³ may be attributed to relatively low d⁰ M–Si bond dissociation energies. In light of this, it seemed that analogous d⁰ germyl and stannyl complexes, which might possess even weaker M-Ge and M-Sn bonds, would be worth investigating. In addition, comparisons of physical and chemical properties for analogous series of silyl, germyl, and stannyl complexes may be of use in developing a better understanding of bonding interactions in these systems.

Here we report results concerning the synthesis, characterization, and reactivity of analogous -SiPh₃, -GePh₃, and -SnPh₃ complexes of zirconium and hafnium. These

^{(1) (}a) Tilley, T. D. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 24, p 1415 and references therein. (b) Tilley, T. D. In The Silicon-Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New York, Chapter 10, p 309. (2) (a) Campion, B. K.; Heyn, R. H., Tilley, T. D. Inorg. Chem. 1990, 29, 4355. (b) Woo, H.-G.; Tilley, T. D. J. Organomet. Chem. 1990, 393, C6. (c) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112, 2011. (d) Arnold, J.; Engeler, M. P.; Elsner, F. H.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 324. (e) Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 324. (f) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. J. Am. Chem. Soc. 1989, 111, 149. (g) Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Organochem. Chem. 1988, 358, 169. (h) Arnold, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 3318. (i) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 2049 and references in the above. Am. Chem. Soc. 1987, 109, 2049 and references in the above.

^{(3) (}a) Tilley, T. D. Comments Inorg. Chem. 1990, 10, 37. (b) Harrod, J. F.; Mu, Y.; Samuel, E. Polyhedron 1991, 11, 1239. (c) Corey, J. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press, Inc.: Greenwich, CT, 1991; Vol. 1, p 327. (d) Laine, R. M. In Aspects of Homogeneous Catalysis; Ugo, R., Ed.; Kluwer Academic Publishers: Arctardam, 1000, p 37 Amsterdam, 1990; p 37.

initial investigations establish reactivity trends for compounds containing bonds between group 4 and group 14 elements. The related complexes $Cp_2M(EPh_3)Cl$ (M = Zr, Hf; E = Si, Ge, Sn), synthesized nearly two decades ago by Lappert and Kingston,⁴ were described as "difficult to purify" due to their instability in solution at room temperature. Furthermore, their low solubilities in organic solvents precluded thorough reactivity studies. The metallocene derivatives reported here contain at least one pentamethylcyclopentadienyl (Cp*) group, which results in hydrocarbon-soluble derivatives that are amenable to study.

Results and Discussion

Isolation of (THF), LiSiPh. Solutions of (triphenylsilyl)lithium have previously been obtained by the reaction of Ph₃SiSiPh₃^{5a} or ClSiPh₃^{5b} with lithium in tetrahydrofuran. Although these solutions are fairly stable over extended periods of time at room temperature, a sluggish decomposition to unidentified products has been noted.^{5a} We have isolated crystalline (THF)₃LiSiPh₃ (1) in 82% yield (eq 1), which is stable for months at room

$$Ph_{3}SiSiPh_{3} + 2Li \xrightarrow{THF} 2(THF)_{3}LiSiPh_{3} \qquad (1)$$

temperature under an inert atmosphere. A stoichiometry of (THF)_{2.6}LiSiPh₃ was observed after 12 h under vacuum at room temperature (by ¹H NMR spectroscopy). Compound 1 is reasonably soluble in benzene and diethyl ether but decomposes in these solvents over extended periods of time.

Zirconocene and Hafnocene Complexes with -SiPh₃, -GePh₃, and -SnPh₃ Ligands. Complexes 2, 3, and 5-11 were prepared by reaction of the metallocene dichlorides with LiEPh₃ in 60-78% isolated yields (eqs 2 and 3). The silvl complexes 2, 5, 8, and 11 were syn-

$$CpCp*M \underbrace{CI}_{CI} + LiEPh_3 \underbrace{THF}_{-LiCI} CpCp*M \underbrace{EPh_3}_{CI} (2)$$

$$Cp *_{2}M \begin{pmatrix} CI \\ CI \end{pmatrix} + LiEPh_{3} \xrightarrow{THF} Cp *_{2}M \begin{pmatrix} EPh_{3} \\ CI \end{pmatrix}$$
(3)

thesized using 1 as the silyl anion reagent. Preparations of the remaining germyl and stannyl complexes employed LiEPh₃ reagents that were generated in tetrahydrofuran via reaction of lithium and ClEPh₃. This procedure failed to give CpCp*Zr(SnPh₃)Cl (4); however, this compound is cleanly produced by the σ -bond metathesis reactions of HSnPh₃ with 2, 3, or CpCp*Zr[Si(SiMe₃)₃]Cl (see Experimnetal Section). In contrast to the reactions in eq 2, the reaction of CpCp*ZrCl₂ with LiSnPh₃ in tetrahydrofuran proceeds via phenyl-group transfer to afford only CpCp*Zr(Ph)Cl, isolated as a pale yellow solid from pentane. This phenyl derivative was prepared independently from CpCp*ZrCl₂ and PhMgCl. Once isolated, the stannyl derivative 4 is stable at room temperature, but it decomposes thermally (slowly over days at 80 °C) or photolytically in benzene- d_6 solution to a number of products, including CpCp*Zr(Ph)Cl (ca. 30%).

The above zirconium and hafnium silyl complexes are orange and yellow, respectively, and are soluble in pentane, benzene, and diethyl ether. They are reasonably stable at room temperature under an inert atmosphere but decompose slowly in solution with elimination of HEPh₃. Decompositions in solution are accelerated by ambient room light. Trends in stabilities toward photochemical decomposition are observed to be $CpCp*M(EPh_{0})Cl >$ $Cp*_{2}M(EPh_{3})Cl$, Hf > Zr, and Sn > Ge > Si.

Steric crowding in the bis(pentamethylcyclopentadienyl) complexes is evidenced by broadening of the phenyl proton resonances in the ¹H NMR spectra. At room temperature, all of the phenyl proton resonances for 8 are broad, whereas only the phenyl ortho proton resonances for 9 are broad, and all the phenyl proton resonances for 10 are sharp and well-resolved. For comparison, the corresponding resonances in the $CpCp*M(EPh_3)Cl$ (M = Zr, Hf) series of compounds are sharp under comparable conditions. Variable-temperature ¹H NMR spectra (toluene- d_8) for 8 reveal that decoalesence of the ortho protons occurs at -50 °C ($\Delta G^* = 10.1 \oplus 0.2$ kcal mol⁻¹), and at -80 °C two broad resonances are observed for these protons at δ 7.83 and 8.59. This dynamic behavior may be attributed to restricted rotation about E-C bonds and is consistent with expected steric demands of the EPh_3 groups (SiPh₃ > $GePh_3 > SnPh_3$).

Reaction of MeMgBr with the silvl complexes 8 and 11 in diethyl ether produces light orange $Cp*_2Zr(SiPh_3)Me$ (12) and light yellow $Cp_{2}Hf(SiPh_{3})Me$ (13), respectively. These alkyl silyl complexes are somewhat thermally unstable and thus cannot be stored for long periods at room temperature without contamination by the HSiPh₃ decomposition product. However, freshly prepared samples of $\geq 99\%$ purity can be isolated (see Experimental Section).

Reactions with Hydrogen. Hydrogenolysis of d⁰ M-Si bonds is rapid compared to the corresponding reactions of d⁰ M-C bonds.^{2e,i} For example, whereas Cp₂ZrMe₂ reacts slowly with 1 atm of H_2 over days,⁶ $Cp_2Zr(SiMe_3)Cl$ and $Cp_2Zr[Si(SiMe_3)_3]SiMe_3$ react within a few minutes under comparable conditions.²ⁱ Thus, hydrogenolyses of d⁰ transition-metal silvl derivatives provide convenient routes to the corresponding hydrides. The silyl complexes 2, 5, 8, and 11 react with hydrogen (100 psi) in benzene to afford the hydride species CpCp*MHCl or Cp*2MHCl (M = Zr, Hf) in 46-77% isolated yields (eqs 4 and 5). The

$$CpCp * M \underbrace{ \overset{SiPh_3}{\overbrace{c_1}} \xrightarrow{H_2} CpCp * M \underbrace{ \overset{H}{\underset{c_1}} + HSiPh_3}_{(4)}$$
(4)

$$Cp*_2M$$
 $\xrightarrow{SiPh_3}$
 $\xrightarrow{H_2}$
 $Cp*_2M$
 \xrightarrow{H}
 $+$ HSiPh_3 (5)

hydrides CpCp*MHCl (M = Zr, Hf) have also been prepared by hydrogenolysis of $CpCp*M[Si(SiMe_3)_3]Cl$ (M = Zr, Hf).⁷ Previous routes to Cp*₂ZrHCl are based on the redistribution of $Cp_2^2TH_2$ and $Cp_2^2TCl_2^{8a}$ and on the hydrogenolysis of $Cp_2^2T(CH_2^{tBu})Cl.^{8b}$ The hydride Cp*2HfHCl was obtained previously by reaction of Cp*2HfH2 with CH3Cl.8c A preparative-scale reaction of Cp*₂Zr(SiPh₃)Me with hydrogen (100 psi) cleanly gave the

⁽⁴⁾ Kingston, B. M.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1972, 69.

^{(5) (}a) Gilman, H.; Lichtenwalter, G. D. J. Am. Chem. Soc. 1958, 80, 608. (b) Sommer, L. H.; Rosborough, K. T. J. Am. Chem. Soc. 1969, 91, 7067.

⁽⁶⁾ Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041.
(7) Woo, H.-G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem. Soc., in press.
(8) (a) McAlister, D. R.; Bercaw, J. E. Unpublished results. Quoted in: Threlkel, R. S.; Bercaw, J. E. J. Am. Chem. Soc. 1981, 103, 2650. (b) Wochner, F.; Brintzinger, H. H. J. Organomet. Chem. 1986, 309, 65. (c) Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. J. E. Charannet and the second J. E. Organometallics 1985, 4, 97.

hydride Cp*₂ZrH₂, which was first prepared by addition of H_2 to $(Cp*_2ZrN_2)_2N_2$.^{9a} The less labile Cp*₂Hf-(SiPh₂)Me reacts with hydrogen to give the hydrido methyl complex Cp*₂Hf(Me)H, which was previously prepared from Cp*2HfH2 and MeLi.9b

Observed reaction times (to complete reaction, as judged by ¹H NMR spectroscopy) show that the hydrogenolysis rates decrease in the order CpCp*Zr[Si(SiMe₃)₃]Cl (5 min) > CpCp*Hf[Si(SiMe₃)₃]Cl (10 min) > Cp*₂Zr(SiPh₃)Me $(20 \text{ min}) > Cp*_2Zr(SiPh_3)Cl (30 \text{ min}) \approx Cp*_2Hf(SiPh_3)Me$ $(30 \text{ min}) > Cp*_2Hf(SiPh_3)Cl (2 h) \approx CpCp*Zr(SiPh_3)Cl$ $(2 h) > CpCp*Hf(SiPh_3)Cl (4 h)$. Therefore reactivity trends for d⁰ zirconium and hafnium silyl complexes toward hydrogen may be expressed as the following: $Cp*_2M(SiR_3)Cl > CpCp*M(SiR_3)Cl; M-Si(SiMe_3)_3 >$ $M-SiPh_3$; $M(SiR_3)Me > M(SiR_3)Cl$. Lower hydrogenolysis rates for zirconocene alkyl halide derivatives, as compared to those for zirconocene dialkyl derivatives, have been noted previously by Schwartz and co-workers.^{10a} These hydrogenolysis reactions presumably proceed through concerted four-center transition states, as has been proposed previously for hydrogenolysis of d⁰ M-C bonds.¹⁰

The germyl derivatives 3 and 9 also undergo hydrogenolysis reactions but more sluggishly than their triphenylsilyl analogues. Compound 3 reacts under H_2 (100 psi) over 8 h to give a 65% conversion to CpCp*ZrHCl and HGePh₃. After 5 h under hydrogen (100 psi), 9 gave a 70% conversion to Cp*₂ZrHCl, HGePh₃, and metal-containing decomposition products. Hydrogenolysis of Cp*2Zr-(SnPh₃)Cl (10) under the same conditions led to a 31% conversion to HSnPh₃ and metal-containing decomposition products, but resonances corresponding to Cp*2ZrHCl were not observed. The latter conversion therefore appears to be due simply to decomposition of 10, and we conclude that no hydrogenolysis occurred. Similarly, complex 7 underwent 67% conversion to HSnPh₃ and decomposition products after 10 h under hydrogen (100 psi). The hydride CpCp*HfHCl was not observed as a product. Thus, the trends in hydrogenolysis rates are $M-Si > M-Ge \gg M-Sn$, and Zr > Hf.

Reactions with Silanes and Stannanes. We have previously shown that CpCp*Hf[Si(SiMe₃)₃]Cl reacts with 1 equiv of PhSiH₃ under illumination by fluorescent room lighting to give quantitative conversion to the σ -bond metathesis products $CpCp*Hf(SiH_2Ph)Cl$ and $HSi-(SiMe_3)_3$.¹¹ This reaction also proceeds in the dark but is much slower (reaction time 2 days versus 1 h). Reactions of CpCp*Hf(SiPh₃)Cl (5) and CpCp*Hf(GePh₃)Cl (6) with 1 equiv of $PhSiH_3$ over 5.5 h in benzene- d_6 solution under ambient fluorescent room lighting afford the σ -bond metathesis products CpCp*Hf(SiH₂Ph)Cl (80% conversion for 5 and 30% conversion for 6, as judged by ¹H NMR), and HSiPh₃ or HGePh₃, respectively. In contrast, no reaction was observed between CpCp*Hf(SnPh₃)Cl (7) and 1 equiv of PhSiH₃ over 1 day.

The reaction of Cp*₂Hf(SiPh₃)Cl (11) with 1 equiv of PhSiH₃ under ambient laboratory conditions consumes only 10% of the hafnium starting material after 5.5 h (in benzene- d_6) and takes 2 days to go to completion. After 2 days, the reaction mixture contained quantitative amounts of Cp*2HfHCl and HSiPh3, some unreacted

PhSiH₃, and silane dehydrocoupling products (by ¹H NMR spectroscopy; eq 6). Although the dehydrocoupling re-

$$Cp*_{2}Hi \underbrace{SiPh_{3}}_{CI} + PhSiH_{3} \xrightarrow{benzene \cdot d_{6}}_{-H_{2}} Cp*_{2}Hi \underbrace{H}_{CI} + Ph_{3}SiH + 0.13PhSiH_{3} + 0.12PhH_{2}Si-SiH_{2}Ph + 0.19PhH_{2}Si-SiHPh-SiH_{2}Ph + 0.01PhH_{2}Si-(SiHPh)_{2}-SiH_{2}Ph (6)$$

actions probably proceed via the intermediate Cp*₂Hf-(SiH₂Ph)Cl, no resonances that could be assigned to this species were observed during the reaction. We suspect that this is because Cp*₂Hf(SiH₂Ph)Cl forms slowly relative to reactions with hydrosilanes that deplete it in the reaction mixture. Consistent with this is the fact that phenylsilane is not completely consumed in the reaction. To test for the possible involvement of migrations to the Cp* ring of 11 in its reaction with PhSiH₃,¹² we monitored the reaction of 11 with PhSiD₃ by ¹H and ²H NMR spectroscopy. No deuterium incorporation into the Cp* methyl groups was observed, which is consistent with mechanisms involving 4-center transition states.¹¹ The faster reaction of Cp*₂Zr(SiPh₃)Cl with phenylsilane gave results analogous to those in eq 6.

As noted above, σ -bond metathesis reactions of the silvis 2 and CpCp*Zr[Si(SiMe₃)₃]Cl, or of the germyl 3, with Ph₃SnH give the stannyl complex CpCp*Zr(SnPh₃)Cl (4). Also, the hafnium silyl CpCp*Hf[Si(SiMe₃)₃]Cl reacts cleanly with $HSnPh_3$ to give 7.

In summary, the following reactivity trends for σ -bond metathesis reactions of d^0 M-E bonds with E-H σ -bonds have been observed: $CpCp*M > Cp*_2M$; Zr > Hf; M-Si > M-Ge > M-Sn (toward PhSiH₃); Sn-H > Si-H. It is of interest to note that the reactivity trend of CpCp*M > $Cp_{2}^{*}M$ for the reactions with PhSiH₃ is opposite to that found for reactions with hydrogen. For example, 11 is more reactive than 5 toward hydrogen but less reactive than 5 toward PhSiH₃. This suggests that the M-E bonds in $Cp*_2M(EPh_3)Cl$ complexes are inherently weaker (and more reactive toward σ -bond metathesis) but protected to a greater degree by steric hindrance.

Reactions with Carbon Monoxide. We have previously observed CO-insertion reactions for a number of d⁰ M-Si bonds.^{2c,e,f,g,i} A solution of CpCp*Zr(SiPh₃)Cl (2) in benzene reacted with CO (100 psi) over 16 h, but a pure compound could not be isolated. No reactions of CO (100 psi) with CpCp*Zr(GePh₃)Cl (3), Cp*₂Zr(GePh₃)Cl (9), or $Cp*_{2}Zr(SnPh_{3})Cl$ (10) were observed after 1 day. Thus, Zr-Si bonds appear to be much more reactive toward CO than comparable Zr-Ge or Zr-Sn bonds.

Orange benzene solutions of 8 react under a pressure of carbon monoxide (100 psi) over 15 h to give the isolable, dark purple silaacyl complex $Cp*_2Zr(\eta^2-COSiPh_3)Cl$ (14), which is soluble in most hydrocarbons and indefinitely stable under an inert atmosphere (eq 7). Spectroscopic

$$Cp^{*}_{2}Zr \xrightarrow{SiPh_{3}}_{Cl} \xrightarrow{CO}_{Cp^{*}_{2}Zr} \xrightarrow{C}_{Cl}^{SiPh_{3}} (7)$$

data are clearly consistent with the presence of an η^2 -CO-SiPh₃ ligand. The carbonyl stretching frequency for this compound (1470 cm⁻¹), like that for $Cp_2Zr(\eta^2-COSiMe_3)Cl$ (1489 cm⁻¹),²ⁱ is considerably lower than the ν (CO) stretching frequencies found in analogous zirconium acyls

^{(9) (}a) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716. (b) Moore, E. J. Ph.D. Thesis,
 California Institute of Technology, 1984.
 (10) (a) Gell, K. I.; Posin, B.; Schwartz, J.; Williams, G. M. J. Am.
 Chem. Soc. 1982, 104, 1846. (b) Lin, Z.; Marks, T. J. J. Am. Chem. Soc.

^{1987, 109, 7979.}

 ^{(11) (}a) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757.
 (b) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 8043.

⁽¹²⁾ McAlister, D. R.; Erwin, D. K.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 5966.

(1500-1550 cm⁻¹).¹³ The chemical shift for the carbonyl carbon in 14 (δ 403.8) is slightly higher than that for $Cp_2Zr(\eta^2-COSiMe_3)Cl$ (δ 391.6 ppm), and the ²⁹Si NMR spectrum of 14 (benzene- d_6) contains a singlet at δ -25.82. On the basis of the data presently available, we cannot distinguish between structures exhibiting lateral and central positioning of the silaacyl oxygen atom in the coordination sphere of 14.2e

Since previous studies of η^2 -silaacyl complexes have revealed unusual reactivity trends, we briefly examined the reaction chemistry of 14. Its chemical behavior appears to be quite comparable to that observed for other η^2 -silaacyl complexes of zirconocene derivatives. Addition of anhydrous HCl gas (1 equiv) to a benzene- d_6 matrix (-196 °C) containing 14, followed by warming to room temperature, produced the formylsilane Ph₃SiCHO (15, eq 8).

$$Cp*_{2}Zr \xrightarrow{C} O \xrightarrow{HCI} Cp*_{2}ZrCI_{2} + Ph_{3}SiCHO (8)$$
14
15

The ¹H NMR spectrum revealed that conversion to $Cp*_2ZrCl_2$ and 15 had occurred. The chemical shift for the aldehydic proton of 15 (δ 12.15) is comparable to that observed for $(Me_3Si)_3SiCHO$ (δ 12.36),¹⁴ which was obtained by an analogous reaction. The formylsilane Ph₃SiCHO is distinctly more stable than (Me₃Si)₃SiCHO, since no decomposition was observed upon heating the compound to 100 °C for 4 h.

Compound 14 also reacts with the isocyanide 2,6- $Me_2C_6H_3NC$, to afford the orange ketenimine complex 16 (eq 9). Crystalline 16 is indefinitely stable under an inert

atmosphere. Assignment of the structure of 16 is based on comparisons with spectral data for the known ketenimine Cp₂Zr[OC(SiMe₃)(CN-2,6-Me₂C₆H₃)]Cl, formed analogously from the silaacyl $Cp_2Zr(\eta^2-COSiMe_3)Cl$ and 2,6-Me₂C₆H₃NC.²ⁱ The Cp* ligands of 16 are equivalent in the ¹H NMR spectrum down to -80 °C. The ¹³C NMR spectrum of 16 contains resonances due to C_{α} and C_{β} $(C_{\beta} = C_{\alpha} = N)$ at δ 199.3 and 100.4, respectively, which are similar to analogous resonances for Cp₂Zr[OC(SiMe₃)- $(CN-2,6-Me_2C_6H_3)$]Cl (δ 202.3 and 109.9). Also in accord with the assigned ketenimine structure, the infrared spectrum of 16 contains a ν (CCN) absorption at 1945 cm⁻¹ $(cf. 1977 cm^{-1} for Cp_2 Zr[OC(SiMe_3)(CN-2,6-Me_2C_6H_3)]Cl$ and 2000 cm⁻¹ for $Cp*_2Th[OC(CH_2CMe_3)(CN-2,6-$ Me₂C₆H₃)]Cl¹⁵). The ²⁹Si NMR spectrum of 16 (benzene- d_6) contains a singlet at δ -68.28.

Reactions with 2,6-Me₂C₆H₃NC. We have previously shown that d⁰ Zr-Si and Hf-Si bonds in a variety of compounds readily insert the isocyanide $2.6 - Me_2C_6H_3NC$ to

give stable η^2 -iminosilaacyl complexes.^{2cg,i} This reactivity is also observed for the triphenylsilyl derivatives described above. The complex CpCp*Hf[η^2 -C(N-2,6-Me₂C₆H₃)-SiPh₃]Cl (17), prepared via addition of $2,6-Me_2C_6H_3NC$ to 5, was isolated and completely characterized. In addition, the complexes $Cp_2M[\eta^2-C(N-2,6-Me_2C_6H_3) SiPh_3$]Cl (18, M = Zr; 19, M = Hf) were observed to form in solution (by NMR spectroscopy).

Insertion of 2,6-Me₂C₆H₃NC into the M-Ge bond of 3 also occurs readily to give the η^2 -iminogermaacyl 20 (eq 10). The yellow, crystalline complex 20 has spectroscopic

characteristics that resemble those for related species such as $Cp_2Zr[\eta^2-C(N-2,6-Me_2C_6H_3)SiMe_3]Cl^{2i}$ and $Cp_3U[\eta^2-C-(N-2,6-Me_2C_6H_3)GePh_3]$.¹⁶ The stannyl derivatives are much less reactive toward 2,6-Me₂C₆H₃NC. For example, $CpCp*Hf(SnPh_3)Cl$ (7) and $Cp*_2Zr(SnPh_3)Cl$ (10) do not react with the isocyanide over 1 day (by ¹H NMR spectroscopy).

Addition of 1 equiv of anhydrous HCl to a benzene- d_6 matrix (-196 °C) of 20, followed by warming to room temperature, resulted in the clean formation of $CpCp*ZrCl_2$ and a compound that we identify as the formimidoylgermane $Ph_3GeCH=N(2,6-Me_2C_6H_3)$ (21). The ¹H NMR chemical shift for the formimidoyl proton (δ 8.76) is comparable to the analogous shift observed for $Me_3SiCH=N(c-C_6H_{11})$ (δ 8.33).¹⁷ Upon heating of this solution of 21 to 100 °C for 8 h, no decomposition was observed.

Reactions with HCl. In their early work with group 4 metal silyl derivatives, Kingston and Lappert demonstrated that cleavage of the M-Si bond in Cp₂Zr(SiPh₃)Cl by HCl gave Cp_2ZrCl_2 and the silane HSiPh₃ and that Cp₂Hf(SiPh₃)Cl reacted with HBr to give Cp₂Hf(Cl)Br and HSiPh₃.⁴ Likewise, 8 reacts cleanly with anhydrous HCl (2 equiv, ≤ 30 min) in benzene- d_6 to afford Cp*₂ZrCl₂ and HSiPh₃. The corresponding reaction of 9 gave Cp_2ZrCl_2 and HGePh₃ within 1 h. In contrast, the reaction of 1 equiv of 10 with HCl slowly produced Cp_2ZrCl_2 , but $HSnPh_3$ was not observed as a product. The significant quantity of benzene that is produced by this reaction is apparently due to cleavage of Sn-C(Ph) bonds. Note that treatment of Cp₂Nb(CO)SnPh₃ in tetrahydrofuran with ethereal HCl resulted in cleavage of the Sn-Ph bonds to produce Cp₂Nb(CO)SnCl₃.¹⁸

Other Attempted Reactions. The complexes $CpCp*Zr(EPh_3)Cl$ (2, E = Si; 3, E = Ge) and $Cp*_2Zr$ - $(EPh_3)Cl$ (8, E = Si; 9, E = Ge; 10, E = Sn) are unreactive toward acetylene (excess, benzene- d_6 , 1 day), ethylene (100 psi, benzene, 1 day), phenylacetylene (1 equiv, benzene- d_6 , 1 day), carbon disulfide (excess, benzene- d_6 , 1 day), and phenyl isocyanate (1 equiv, benzene- d_6 , 1 day). Comments on Reactivity Trends for d⁰ M-E (E =

Si, Ge, Sn) Bonds. The above investigations demonstrate a reactivity trend, $M-SiPh_3 > M-GePh_3 \gg M-SnPh_3$, for σ -bond metathesis processes with hydrogen and phenyl-

^{(13) (}a) Marsella, J. A.; Huffman, J. C.; Caulton, K. G.; Longato, B.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 6360. (b) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans. 1977, 1946. (c) Jeffrey, J.; Lappert, M. F.; Luong-Thi, N. T.; Webb, M.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1981, 1593. (d) Bertelo, C.
 A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 228.
 (14) Elsner, F. H.; Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1988, 110, 313.

⁽¹⁵⁾ Moloy, K. G.; Fagan, P. J.; Manriquez, J. M.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 56.

⁽¹⁶⁾ Porchia, M.; Ossola, F.; Rossetto, G.; Zanella, P.; Brianese, N. J. Chem. Soc., Chem. Commun. 1987, 550.

⁽¹⁷⁾ Saegusa, T.; Ito, Y.; Kobayashi, S.; Hirota, K. J. Am. Chem. Soc.

⁽¹⁷⁾ Sacgusa, I., 10, 1., Robayashi, S., Hilota, R. S. And Chem. Soc.
1967, 89, 2240.
(18) Skripkin, Y. V.; Volkov, O. G.; Pasynskii, A. A.; Antsyshkina, A. S.; Dikareva, L. M.; Ostrikova, V. N.; Porai-Koshits, M. A.; Davydova, S. L.; Sakharov, S. G. J. Organomet. Chem. 1984, 263, 345.

silane and for insertion reactions with carbon monoxide and $2,6-Me_2C_6H_3NC$. Considering only the influence of ground-state energies for the starting materials, this may seem surprising since established trends in bond energies for group 14 compounds suggest that M-E bond energies should decrease as the atomic number of the group 14 element increases (M-Si > M-Ge > M-Sn). For comparison, estimated Me₃E-H bond energies (in kcal mol⁻¹) decrease in the order Me_3Si-H (90) > Me_3Ge-H (82) > Me₃Sn-H (74).¹⁹

Thermochemical data for series of transition-metal silyl, germyl, and stannyl complexes are quite limited. On the basis of appearance potential measurements for Cp- $(CO)_2FeEMe_3$ (E = Si, Sn),²⁰ Cp(CO)₃MEMe₃ (M = Cr, Mo, W; E = Ge, Sn),²¹ and $(CO)_5 ReEMe_3$ (E = Si, Ge, Sn),²² bond strengths appear to follow the order M-Sn >M-Ge > M-Si. For these low-valent carbonyl derivatives, bond dissociation energies may be significantly influenced by π -interactions between the transition metal and the group 14 atom. However, in d⁰ metal silyl, germyl, and stannyl derivatives, such π -bonding cannot exist.

It appears that steric interactions can greatly influence d⁰ M-Si distances. Evidence for this is seen, for example, by comparing the Hf-Si distances in CpCp*Hf[Si- $(SiMe_3)_3$]Cl (2.884 (4) Å) and CpCp*Hf(SiH₂Ph)Cl (2.729 (3) Å).⁷ The influence of ligand-ligand repulsions (stretching or weakening of the M-EPh₃ bonds) should be greater for the -SiPh₃ ligand, which is bulkier due to the shorter bond distances involving silicon. The result is that the least sterically demanding stannyl group should encounter less steric hindrance in its approach to the metal center, resulting in a stronger M-E interaction. This effect is observed by comparing Cp*Cl₂HfSi(SiMe₃)₃, which has a Hf-Si distance of 2.748 (4) Å, and Cp*Cl₂HfGe(SiMe₃)₃, with a Hf-Ge distance of 2.740 (1) Å. The surprising similarity in these bond lengths has been attributed to steric interactions between the Cp* ligand and SiMe₃ groups of the $E(SiMe_3)_3$ ligand, which are most severe for E = Si and operate to elongate the Hf-Si bond more.²³ Steric interactions in the CpCp*M(EPh₃)Cl and Cp*₂M-(EPh₃)Cl series of compounds should be even more severe, and some degree of crowding is clearly evident from the restricted rotations observed for the Cp*₂Zr(EPh₃)Cl complexes.

It is difficult to predict the relative ordering of bond strengths for silvl, germyl, and stannyl complexes of d^0 metals. However, it seems quite possible that changes in d^0 M–E bond strengths as E varies periodically from Si to Sn do not parallel the corresponding changes observed for E-H or E-C bond strengths. Support for this comes from recent thermochemical measurements by Marks et al. on Cp_3U-EPh_3 , which show that Cp_3U-EPh_3 bond strengths decrease only slightly along the series E = Si > $Ge > Sn.^{24}$ We suggest that the reactivity patterns observed for complexes 2-11 can be rationalized in terms of differences in product stabilities. The energy required to break the M-Si bonds is supplied by formation of relatively strong Si-H or Si-C bonds, but this is true to a lesser degree for the germyl complexes. For the stannyl complexes, breaking a M-Sn bond is not compensated for by

formation of the relatively weak Sn-H or Sn-C bonds that would form.

Experimental Section

All manipulations were performed under an atmosphere of nitrogen or argon using Schlenk techniques and/or a Vacuum Atmospheres glovebox. Dry, oxygen-free solvents were employed throughout. Glassware was flame-dried or oven-dried before use. Elemental analyses were performed by Mikroanalytisches Labor Pascher or Schwarzkopf microanalytical laboratories. Infrared spectra were recorded on a Perkin-Elmer 1330 infrared spectrometer. NMR spectra were obtained with a GE QE-300 instrument at 300 MHz (1H), 75.5 MHz (13C), 59.6 MHz (29Si), and 46.1 MHz (²H). The NMR spectra were recorded at 22 °C, unless stated otherwise. An INEPT sequence was employed to enhance signals in the ²⁹Si spectra.²⁵ The compounds CpCp*ZrCl₂,²⁶ CpCp*HfCl₂,²⁷ Cp*₂ZrCl₂,²⁸ Cp*₂HfCl₂,^{8c} LiGePh₃,²⁹ LiSnPh₃,³⁰ and (THF)₃LiSi(SiMe₃)₃³¹ were prepared by literature methods. Reactions involving elevated pressures of CO or H₂ were conducted in a thick-walled glass pressure bottle, connected via an O-ring seal to a pressure release valve, a pressure gauge, and metal valves used to admit gases and reaction solutions.

(THF)₃LiSiPh₃ (1). A 500-mL round-bottom flask was charged with hexaphenyldisilane (5.00 g, 9.64 mmol), lithium wire (0.54 g, 77 mmol; cut into ca. 5-mm pieces), and tetrahydrofuran (100 mL) under an argon atmosphere. The mixture was allowed to stir at room temperature for 24 h and was then filtered. The solution was concentrated to 20 mL, pentane (8 mL) was added to the solution, and the solution was cooled to $-40\ ^{\circ}\mathrm{C}$ to give colorless to vellow crystals (mp 100-102 °C) in 82% yield (7.62 g). Although this compound gave C and H analyses that were variable and somewhat low, spectroscopic data show that it is pure and correctly formulated. The compound can be exhaustively dried to a stoichiometry of (THF)_{2.6}LiSiPh₃ after 12 h of pumping at room temperature. Anal. Calcd for C₃₀H₃₉LiO₃Si: C, 74.7; H, 8.14. Found: C, 71.7; H, 7.72. IR (Nujol, CsI, cm⁻¹): 3040 m, 1573 w, 1420 m, 1291 w, 1250 w, 1177 w, 1108 w, 1080 m, 1043 s, 910 m sh, 890 m, 734 s, 700 s, 675 w, 515 w, 480 w, 460 w, 405 w, 345 m. ¹H NMR (benzene- d_6): δ 1.19 (br, 12 H, THF), 3.35 (br, 12 H, THF), 7.06 (t, J = 7.2 Hz, 3 H, p-H, C₆H₅), 7.20 (t, J 7.2 Hz, 6 H, m-H, C_6H_5), 7.75 (d, J = 7.2 Hz, 6 H, o-H, C_6H_5). $^{13}\text{C}{}^{11}\text{H}$ NMR (benzene-d₆): δ 25.38, 68.43 (THF), 124.86, 127.07, 136.88, 155.32 (C₆H₈). ^{29}Si NMR (benzene-d₆): δ -46.83.

CpCp*Zr(SiPh₃)Cl (2). A solution of CpCp*ZrCl₂ (0.50 g, 1.38 mmol) and 1 (0.67 g, 1.39 mmol) in tetrahydrofuran (20 mL) was stirred at ambient temperature. After 5 h the solvent was removed by vacuum transfer. The red-brown residue was extracted with pentane (50 mL) and filtered. The solution was concentrated to 15 mL and cooled to -10 °C, resulting in precipitation of an orange solid that was isolated by filtration and dried in vacuo to yield 0.485 g (60%) of 2 (mp 168-170 °C). Anal. Calcd for C₃₃H₃₅ClSiZr: C, 67.6; H, 6.02. Found: C, 67.5; H, 6.02. IR (Nujol, CsI, cm⁻¹): 3040 m, 1581 w, 1426 s, 1305 w, 1260 w, 1188 w, 1155 w, 1110 m, 1090 m, 1065 w sh, 1015 m, 1000 w, 944 m, 810 s, 732 m, 700 s, 500 s, 483 m, 443 w, 400 w, 358 m, 340 w sh. ¹H NMR (benzene- d_6): δ 1.67 (s, 15 H, C₅Me₅), 5.76 (s, 5 H, C₅H₅), 7.20 (m, 9 H, m,p-H, C₆H₅), 7.78 (d, J = 6.6 Hz, 6 H, o-H, C₆H₆). ¹³C[¹H] NMR (benzene- d_6): δ 11.84 (C_5Me_5), 112.82 (\tilde{C}_5H_5), 121.29 (C_5Me_5), 126.64, 127.28, 136.79, 143.36 (C_6H_5). ²⁹Si NMR (C_5Me_5) , 126.64, 127.28, 136.79, 143.36 (C_6H_5) . (benzene- d_6): δ 42.42.

CpCp*Zr(GePh₃)Cl (3). A solution of LiGePh₃ (from ClGePh₃, 0.492 g, 1.45 mmol, and lithium, 0.040 g, 5.76 mmol) in tetrahydrofuran (25 mL) was slowly added to a stirred sus-

⁽¹⁹⁾ Jackson, R. A. J. Organomet. Chem. 1979, 166, 17.

⁽²⁰⁾ Spalding, T. R. J. Organomet. Chem. 1978, 149, 371.

 ⁽²¹⁾ Cardin, D. J.; Keppie, S. A.; Lappert, M. F.; Litzow, M. R.;
 Spalding, T. R. J. Chem. Soc. A 1971, 2262. (22) Burnham, R. A.; Stobart, S. R. J. Chem. Soc., Dalton Trans. 1977,

¹⁴⁸⁹

⁽²³⁾ Arnold, J.; Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Inorg. Chem. 1988, 27, 3510.

⁽²⁴⁾ Nolan, S. P.; Porchia, M.; Marks, T. J. Organometallics 1991, 10, 1450

⁽²⁵⁾ Blinka, T. A.; Helmer, B. J.; West, R. Adv. Organomet. Chem. 1984, 23, 193.

⁽²⁶⁾ Wolczanski, P. T.; Bercaw, J. E. Organometallics 1982, 1, 793. (27) Rogers, R. D.; Benning, M. M.; Kurihara, L. K.; Moriarty, K. J.; Rausch, M. D. J. Organomet. Chem. 1985, 293, 51.

⁽²⁸⁾ Manriquez, J. M.; McAlister, D. R.; Rosenberg, E.; Shiller, A. M.; Williamson, K. L.; Chan, S. I.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 3078

⁽²⁹⁾ Tamborski, C.; Ford, F. E.; Lehn, W. L.; Moore, G. J.; Soloski, E. J. J. Org. Chem. 1962, 27, 619.
(30) Tamborski, C.; Ford, F. E.; Soloski, E. J. J. Org. Chem. 1963, 28,

¹⁸¹

⁽³¹⁾ Gutekunst, G.; Brook, A. G. J. Organomet. Chem. 1982, 225, 1.

pension of CpCp*ZrCl₂ (0.50 g, 1.38 mmol) in tetrahydrofuran (5 mL). After 5 h the solvent was removed in vacuo. The redbrown residue was extracted with pentane (50 mL), and the resulting pentane solution was concentrated to 15 mL and cooled to -10 °C, resulting in precipitation of an orange solid that was isolated by filtration and dried in vacuo to yield 0.556 g (64%) of 3 (mp 198-200 °C). Anal. Calcd for $C_{33}H_{35}ClGeZr$: C, 62.8; H. 5.59. Found: C, 61.5; H, 5.88. IR (Nujol, CsI, cm⁻¹): 3040 m, 1565 w, 1425 m, 1258 w, 1152 w, 1070 m, 1020 m, 998 w, 815 s, 730 m, 700 s, 660 w sh, 470 m, 365 w. ¹H NMR (benzene-d₆): δ 1.68 (s, 15 H, C₅Me₅), 5.80 (s, 5 H, C₅H₅), 7.18 (t, J = 7.2 Hz, 6 H, o-H, $C_{6}H_{5}$). ¹³Cl¹H] NMR (benzene-d₆): δ 12.69 (C₅Me₅), 113.80 (C₅H₅), 122.63 (C₅Me₅), 127.25, 128.00, 136.90, 148.63 (C₆H₅).

Reaction of CpCp*ZrCl₂ with LiSnPh₃. A solution of LiSnPh₃ (from ClSnPh₃, 0.559 g, 1.45 mmol, and lithium, 0.040 g, 5.76 mmol) in tetrahydrofuran (25 mL) was slowly added to a stirred suspension of CpCp*ZrCl₂ (0.50 g, 1.38 mmol) in tetrahydrofuran (5 mL). After 12 h the solvent was removed in vacuo. Extraction with pentane and cooling to -35 °C provided pale orange, crystalline CpCp*Zr(Ph)Cl in 80% yield. This light-sensitive complex was independently prepared by the reaction of CpCp*ZrCl₂ with PhMgCl in tetrahydrofuran. ¹H NMR (benzene-d₆): $\delta 1.62$ (s, 15 H, C₅Me₅), 5.86 (s, 5 H, C₅H₅), 7.07 (t, J = 7 Hz, 1 H, p-H, C₆H₅). ¹³C¹H} NMR (benzene-d₆): $\delta 12.09$ (C₅Me₅), 114.39 (C₅H₅), 121.96 (C₅Me₅), 125.09, 127.30, 137.49, 190.32 (C₆H₅).

CpCp*Zr(SnPh₃)Cl (4). The reaction of 2 (0.020 g, 0.034 mmol; over 13 h in benzene- d_6) or 3 (0.021 g, 0.033 mmol; over 18 h in benzene- d_6) with HSnPh₃ (21 mg, 0.06 mmol) gave 4, along with minor impurities.

CpCp*Zr[Si(SiMe₃)₃]Cl (1.0 g, 1.7 mmol), HSnPh₃ (0.84 g, 3.5 mmol), and toluene (20 mL) were stirred for 12 h. Volatiles were removed by vacuum transfer, and the resulting oily orange residue was washed with pentane (4 × 50 mL) and extracted into diethyl ether (2 × 100 mL). Concentration and cooling of the combined extracts gave thermochroic crystals of 4 (yellow at -40 °C; orange at room temperature) in 60% yield (mp 170–172 °C). Anal. Calcd for C₃₃H₃₅ClSnZr: C, 58.5; H. 5.22. Found: C, 58.5; H, 5.02. IR (Nujol, CsI, cm⁻¹): 3040 w, 1575 w, 1425 m, 1300 w, 1255 w, 1065 m, 1020 m, 990 w, 810 s, 720 s, 700 s, 500 m, 480 m sh, 370 m, 340 w. ¹H NMR (benzene-d₆): δ 1.71 (s, 15 H, C₅Me₅), 5.87 (s, 5 H, C₅H₅), 7.20 (t, 3 H, J = 7.2 Hz, p-H, C₆H₅), 7.30 (t, 6 H, J = 7.2 Hz, m-H, C₆H₅), 7.88 (d, 6 H, J = 7.2 Hz, p-H, C₆H₅), 127.23, 128.67, 138.22, 150.37 (C₆H₅).

CpCp*Zr(Ph)Cl. To CpCp*ZrCl₂ (0.752 g, 2.07 mmol) in tetrahydrofuran (20 mL) was added a tetrahydrofuran solution of PhMgCl (1.04 mL, 2.08 mmol) dropwise over 5 min. The solution was stirred for 12 h, the volatiles were removed by vacuum transfer, and the resulting yellow residue was extracted into pentane (4 × 50 mL). Concentration of this solution to ca. 100 mL and cooling to -10 °C afforded the compound as yellow crystals (mp 170-172 °C) in 54% yield (0.450 g). The yield was not optimized. Anal. Calcd for C₂₁H₂₅ClZr: C, 62.4; H, 6.24. Found: C, 60.7; H, 5.77. IR (Nujol, CsI, cm⁻¹): 3040 w, 1580 w, 1410 w, 1050 m, 1020 m, 1010 m, 990 w, 820 m sh, 810 s, 720 s, 700 s, 450 m, 400 w, 360 m, 330 m, 290 m. ¹H NMR (benzene-d₆): δ 1.62 (s, 15 H, C₅Me₅), 5.86 (s, 5 H, C₅H₅), 7.06 (m, 1 H, p-H, Ce₆H₅), 7.18 (m, 2 H, m-H, Ce₆H₅), 7.29 (br m, 2 H, o-H, Ce₆H₅). ¹³C[¹H] NMR (benzene-d₆): δ 12.09 (C₅Me₅), 114.39 (C₅H₆), 121.96 (C₅Me₅), 125.09, 127.30, 137.49, 190.32 (C₆H₅).

CpCp*Hf(SiPh₃)Cl (5). A solution of CpCp*HfCl₂ (0.50 g, 1.11 mmol) and 1 (0.555 g, 1.15 mmol) in tetrahydrofuran (20 mL) was stirred at ambient temperature. After 10 h the solvent was removed by vacuum transfer. The yellow-brown residue was extracted with pentane (50 mL). The resulting pentane solution was concentrated to 15 mL and cooled to -10 °C, resulting in precipitation of a yellow solid that was isolated by filtration and dried in vacuo to yield 0.523 g (70%) of 5 (mp 203-205 °C). Anal. Calcd for C₃₃H₃₅ClSiHf: C, 58.8; H, 5.24. Found: C, 59.0; H, 5.51. IR (Nujol, CsI, cm⁻¹): 3040 m, 1580 w, 1425 s, 1305 w, 1260 w, 1200 w, 1185 w, 1090 m, 1065 w sh, 1023 m, 670 w, 503 s, 485 m, 445

m, 400 w, 334 w sh, 312 m. ¹H NMR (benzene- d_6): δ 1.73 (s, 15 H, C₅Me₅), 5.71 (s, 5 H, C₅H₅), 7.17 (t, J = 7.2 Hz, 3 H, p-H, C₆H₅), 7.78 (t, J = 7.2 Hz, 6 H, m-H, C₆H₅), 7.79 (d, 6 H, J = 7.2 Hz, o-H, C₆H₅). ¹³C[¹H] NMR (benzene- d_6): δ 12.51 (C₅Me₅), 112.62 (C₅H₅), 120.60 (C₅Me₅), 127.47, 127.60, 137.83, 145.51 (C₆H₅). ²⁹Si NMR (benzene- d_6): δ 39.96.

CpCp*Hf(GePh₃)Cl (6). A solution of LiGePh₃ (from ClGePh₃, 0.390 g, 1.15 mmol, and lithium, 0.032 g, 4.60 mmol) in tetrahydrofuran (25 mL) was slowly added to a stirred suspension of CpCp*HfCl₂ (0.50 g, 1.11 mmol) in tetrahydrofuran (5 mL). After 5 h the solvent was removed in vacuo. The dark yellow residue was extracted with pentane (50 mL). The resulting pentane solution was concentrated to 15 mL and cooled to -10 °C, resulting in precipitation of a yellow solid that was isolated by filtration and dried in vacuo to yield 0.544 g (68%) of 6 (mp 202-204 °C). Anal. Calcd for C₃₃H₃₅ClGeHf: C, 55.2; H, 4.91. Found: C, 55.6; H, 5.61. IR (Nujol, CsI, cm⁻¹): 3040 m, 1564 w, 1423 m, 1300 w, 1258 w, 1153 w, 1071 m, 1020 m, 998 w, 816 s, 729 m, 700 s, 660 w sh, 471 m, 365 w. ¹H NMR (benzene- d_6): δ 1.76 (s, 15 H, C_5Me_5), 5.74 (s, 5 H, C_5H_5), 7.17 (t, J = 7.2 Hz, 3 H, p-H, C_6H_5), 7.27 (t, J = 7.2 Hz, 6 H, m-H, C_6H_5), 7.78 (d, J = 7.2 Hz, 6 H, o-H, C₆H₅). ¹³C{¹H} NMR (benzene- d_6): δ 12.57 (C_5Me_5) , 112.76 (C_5H_5) , 121.05 (C_5Me_5) , 127.26, 128.00, 137.09, 149.87 (C₆H₅).

CpCp*Hf(SnPh₃)Cl (7). A solution of LiSnPh₃ (from ClSnPh₃, 0.443 g, 1.15 mmol, and lithium, 0.032 g, 4.60 mmol) in tetrahydrofuran (25 mL) was slowly added to a stirred suspension of CpCp*HfCl₂ (0.50 g, 1.11 mmol) in tetrahydrofuran (5 mL). After 5 h the solvent was removed in vacuo. The dark yellow residue was extracted with pentane (50 mL). The resulting pentane solution was concentrated to 15 mL and cooled to -10 °C, resulting in precipitation of a yellow solid that was isolated by filtration and dried in vacuo to yield 0.594 g (70%) of 7 (mp 166-169 °C). Anal. Calcd for C₃₃H₃₅ClSnHf: C, 51.9; H, 4.62. Found: C, 53.3; H, 4.73. IR (Nujol, CsI, cm⁻¹): 3040 m, 1570 w, 1425 s, 1300 w, 1255 w, 1185 w, 1155 w, 1065 m, 1020 m, 995 m, 822 s, 728 s, 700 s, 646 w, 454 m, 430 m, 340 w, 310 w. ¹H NMR (benzene- d_6): δ 1.79 (s, 15 H, C₅Me₅), 5.81 (s, 5 H, C₅H₅), 7.19 $(t, J = 7.2 Hz, 3 H, p-H, C_6H_5), 7.30 (t, J = 7.2 Hz, 6 H, m-H,$ C_6H_5), 7.88 (d, J = 7.2 Hz, 6 H, o-H, C_6H_5). ¹³C{¹H} NMR (benzene-d₆): δ 12.74 C₅Me₅), 111.71 (C₅H₅), 120.70 (C₅Me₅), 127.38, 128.47, 138.32, 151.61 (C₆H₅). Compound 7 is also formed by reaction of CpCp*Hf[Si(SiMe₃)₃]Cl (0.02 g, 0.03 mmol) with HSnPh₃ (0.01 g, 0.03 mmol) (benzene-d₆, 3 h).

Cp*₂Zr(SiPh₃)Cl (8). A solution of Cp*₂ZrCl₂ (0.50 g, 1.16 mmol) and 1 (0.56 g, 1.16 mmol) in tetrahydrofuran (20 mL) was stirred at ambient temperature. After 5 h the solvent was removed by vacuum transfer. The red-brown residue was extracted with pentane (50 mL), and the pentane solution was concentrated to 15 mL and cooled (-10 °C) to give orange crystals (mp 177-179 °C, dec) in 71% yield (0.54 g). Anal. Calcd for C₃₈H₄₅ClSiZr: C, 69.5; H, 6.91. Found: C, 69.2; H, 6.98. IR (Nujol, CsI, cm⁻¹): 3057 m, 3025 m, 1580 w, 1425 s, 1303 w, 1255 w, 1190 w, 1110 w sh, 1090 m, 1065 w sh, 1025 m, 1000 w, 950 w, 803 w, 742 m sh, 735 m, 322 m. ¹H NMR (benzene-d₆): δ 1.71 (s, 30 H, C₅Me₅), 7.21 (br, 9 H, m,p-H, C₆H₆), 8.06 (br, 6 H, o-H, C₆H₆). ¹³C[¹H] NMR (benzene-d₆): δ 12.77 (C₅Me₅), 123.09 (C₅Me₅), 127.00, 137.38, 140.66, 146.96 (br, C₆H₅). ²⁹Si NMR (benzene-d₆): δ 47.34.

Cp*₂Zr(GePh₃)Cl (9). A solution of LiGePh₃ (from ClGePh₃, 0.414 g, 1.22 mmol, and lithium, 0.034 g, 4.88 mmol) in tetrahydrofuran (25 mL) was slowly added to a stirred suspension of Cp*₂ZrCl₂ (0.50 g, 1.16 mmol) in tetrahydrofuran (5 mL), and after 5 h the solvent was removed by vacuum transfer. Extraction of the orange residue with pentane (50 mL), followed by concentration of the pentane to 15 mL and cooling (-10 °C) gave orange crystals (mp 199-201 °C) in 64% yield (0.517 g). Anal. Calcd for C₃₈H₄₅ClGeZr: C, 65.1; H, 6.47. Found: C, 65.2; H, 6.56. IR (Nujol, CsI, cm⁻¹): 3055 m, 3030 m, 1575 w, 1480 m, 1425 s, 1300 w, 1258 w, 1090 w, 1070 w, 1015 w sh, 1020 m, 994 w, 880 w, 730 s, 706 s, 696 s, 475 m, 352 w, 324 w, 305 w, 275 w. ¹H NMR (benzene-d₆): δ 1.73 (s, 30 H, C₅Me₅), 7.26 (m, 9 H, m,p-H, C₆H₅), 7.88 (br, 6 H, o-H, C₆H₅). ¹³Cl¹H} NMR (benzene-d₆): δ 12.65 (C₅Me₅), 123.50 (C₅Me₅), 127.47, 128.70, 135.95, 137.05 (br) (C₆H₅).

Cp*,2r(SnPh₃)Cl (10). The method for 9 was employed, using LiSnPh₃ (from ClSnPh₃, 0.470 g, 1.22 mmol, and lithium, 0.034 g, 4.9 mmol) and Cp*₂ZrCl₂ (0.50 g, 1.16 mmol). Crystallization from toluene/pentane (15 mL, 1/9 by volume) at -10 °C gave orange crystals (mp 218-224 °C dec) in 68% yield (0.59 g). The crystals were contaminated with small amounts of a material giving rise to ¹H NMR resonances in the aromatic region (δ 7.16, m, 0.93 H, 7.66, m, 0.93 H). Anal. Calcd for C₃₈H₄₅ClSnZr: C, 61.1; H, 6.07. Found: C, 58.6; H, 5.73. IR (Nujol, CsI, cm⁻¹): 3050 m, 3030 m, 1569 m, 1422 s, 1295 w, 1259 w, 1185 w, 1150 w, 1063 m, 1017 m, 995 m, 803 w, 730 s, 700 s, 685 w sh, 675 w, 645 w, 548 w, 458 m, 395 w, 360 w, 325 w. ¹H NMR (benzene-d₆): δ 1.79 (s, 30 H, C₅Me₅), 7.18 (t, J = 7.2 Hz, 3 H, p-H, C₆H₅). ⁷³Cl¹H} NMR (benzene-d₆): δ 12.76 (C₅Me₅), 122.98 (C₅Me₅), 127.00, 129.14, 138.92, 152.78 (C₆H₅).

Cp⁺₂Hf(SiPh₃)Cl (11). The method used for 8 was employed, with 10 h of stirring. Yellow crystals (mp 214-216 °C dec) of 11 were obtained in 78% yield (0.56 g). Anal. Calcd for C₃₈H₄₅ClSiHf: C, 61.4; H, 6.10. Found: C, 61.7; H, 6.20. IR (Nujol, CsI, cm⁻¹): 3060 m, 1580 w, 1427 s, 1305 w, 1260 w, 1090 m, 1025 w, 800 w, 745 w sh, 735 m, 710 s, 700 s, 676 w, 502 s, 482 w, 440 w, 395 w, 325 w, 304 w. ¹H NMR (benzene-d₆): δ 1.77 (s, 30 H, C₅Me₅), 7.22 (m, 9 H, m, p-H, C₆H₅), 8.06 (d, J = 6.9 Hz, 6 H, o-H, C₆H₅). ¹³Cl¹H] NMR (benzene-d₆): δ 12.68 (C₅Me₅), 126.88 (C₅Me₅), 126.98, 137.56, 140.83, 148.00 (br, C₆H₅). ²⁹Si NMR (benzene-d₆): δ 42.86.

Cp*₂Zr(SiPh₃)Me (12). Compound 8 (0.61 g, 0.93 mmol) was dissolved in diethyl ether (30 mL) and cooled to -78 °C. To this stirred solution was added 0.31 mL of MeMgBr (0.93 mmol; 3.0 M in diethyl ether). The reaction mixture was allowed to slowly warm to room temperature over 1.5 h with stirring. The solution was evaporated to dryness, and the product was extracted with pentane (3 × 20 mL). The combined extracts were concentrated to ca. 30 mL and cooled to -35 °C, resulting in precipitation of light orange 12 in 62% yield (0.37 g). ¹H NMR (benzene-d₆): δ 0.00 (s, 3 H, ZrMe), 1.68 (s, 30 H, C₅Me₅), 7.21 (m, 9 H, m,p-H, C₆H₆), 7.60 (br, 6 H, o-H, C₆H₅). The compound decomposes slowly at room temperature, much faster in solution than in the solid state. When the reaction mixture was stirred for 6 h, a mixture of Cp*₂Zr(SiPh₃)Me and HSiPh₃ (2:1 ratio, as judged by ¹H NMR) was obtained.

Cp*₂Hf(SiPh₃)Me (13). Compound 11 (1.00 g, 1.34 mmol) was dissolved in diethyl ether (30 mL), and the solution was cooled to -78 °C. To this solution was added 1.35 mmol of MeMgBr (0.45 mL of a 3.0 M diethyl ether solution). The reaction mixture was allowed to slowly warm to room temperature over 2.5 h with stirring. The solution was evaporated to dryness, and the product was extracted into pentane (3 × 20 mL). The combined extracts were concentrated to ca. 30 mL and cooled to -35 °C, resulting in precipitation of a light yellow solid in ca. 76% (0.738 g) yield, which was slightly contaminated with HSiPh₃. ¹H NMR (benzene-d₆): δ -0.22 (s, 3 H, HfMe), 1.73 (s, 30 H, C₅Me₅), 7.22 (m, 9 H, m,p-H, C₆H₅), 7.65 (br, 6 H, o-H, C₆H₅). When the reaction mixture was stirred for 6 h, a mixture of Cp*₂Hf(SiPh₃)Me and HSiPh₃ (7:3 ratio, as judged by ¹H NMR) was obtained. Like 12, this compound decomposes slowly at room temperature.

CpCp*ZrHCl via Reaction of 2 with H₂. A solution of 2 (0.500 g, 0.853 mmol) in benzene (25 mL) was pressurized with H₂ (100 psi), resulting in a gradual color change from orange to pale yellow. After 2 h, the H₂ pressure was released, and the solution was filtered. Volatiles were removed in vacuo, and the residue was dissolved in pentane (5 mL) and cooled (-10 °C) to give CpCp*ZrHCl⁷ in 46% yield (0.13 g). ¹H NMR (benzene-d₆): δ 1.84 (s, 15 H, C₅Me₅), 5.85 (s, 5 H, C₅H₅), 6.59 (s, 1 H, ZrH).

CpCp*HfHCl via Reaction of 5 with H₂. A solution of 5 (0.500 g, 0.742 mmol) in benzene (25 mL) was pressurized with H₂ (100 psi), resulting in the gradual development of a colorless solution. After 4 h, the pressure was released, and the solution was filtered. Volatiles were removed in vacuo, the residue was dissolved in pentane (5 mL), and the solution was cooled (-10 °C) to give CpCp*HfHCl⁷ in 56% yield (0.17 g). ¹H NMR (benzene- $d_{\rm g}$): δ 1.89 (s, 15 H, C₅Me₅), 5.81 (s, 5 H, C₅H₆), 12.29 (s, 1 H, HfH).

 Cp^*_2ZrHCl via Reaction of 8 with H_2 . A solution of 8 (0.50 g, 0.76 mmol) in benzene (25 mL) was pressurized with H_2 (100 psi), resulting in a gradual color change from orange to colorless. After 30 min, the pressure was released, and the solution was

filtered. Volatiles were removed by vacuum distillation, the residue was dissolved in pentane (5 mL), and the resulting solution was cooled to -10 °C to afford Cp*₂ZrHCl^{8e,b} in 63% yield (0.19 g). Anal. Calcd for C₂₀H₃₁ClZr: C, 60.3; H, 7.85. Found: C, 59.7; H, 7.15. IR (Nujol, CsI, cm⁻¹): 1585 (ZrH). ¹H NMR (benzene-d₆): δ 1.92 (s, 30 H, C₅Me₅), 6.90 (s, 1 H, ZrH).

Cp*₂HfHCl via Reaction of 11 with H₂. Hydrogenolysis of 11 for 2 h, according to the procedure for Cp*₂ZrHCl above, gave Cp*₂HfHCl^{8c} in 77% yield (0.25 g). Anal. Calcd for C₂₀H₃₁ClHf: C, 49.5; H, 6.44. Found: C, 49.4; H, 6.45. IR (Nujol, CsI, cm⁻¹): 1630 (HfH). ¹H NMR (benzene- d_6): δ 1.97 (s, 30 H, C₅Me₅), 12.67 (s, 1 H, HfH).

Reaction of 12 with H₂. A solution of 12 (0.367 g) in benzene (20 mL) was pressurized with H₂ (100 psi), resulting in a gradual color change from light yellow to colorless. After 20 min, the H₂ pressure was released, and the solution was filtered. Volatiles were removed by vacuum transfer. The ¹H NMR spectrum contained resonances assigned to HSiPh₃ (δ 5.69, s, 1 H, SiH, 7.13, m, 9 H, m,p-H, C₆H₅, 7.57, d, J = 7.5 Hz, 6 H, o-H, C₆H₅) and Cp*₂ZrH₂^{9a} (δ 2.02, s, 30 H, C₆Me₅, 7.46, s, 2 H, ZrH). **Reaction of 13 with H₂**. The method above was used to show

Reaction of 13 with H₂. The method above was used to show that the reaction proceeds cleanly to $HSiPh_3$ and $Cp*_2Hf(H)Me.^{9b}$ ¹H NMR (benzene- d_6): δ -0.62 (s, 3 H, HfMe), 1.92 (s, 30 H, C_5Me_5), 13.00 (s, 1 H, HfH).

Reactions of 3 and 9 with H₂. Reaction of 3 with H₂ (100 psi) over 8 h resulted in a 65% conversion to HGePh₃ (¹H NMR (benzene- d_6): δ 5.85, s, 1 H, GeH, 7.14, m, 9 H, m,p-H, C₆H₅, 7.51, m, 6 H, o-H, C₆H₅), CpCp*ZrHCl, and minor amounts of decomposition products. Similarly, reaction of 9 with H₂ (100 psi) over 5 h gave Cp*₂ZrHCl, HGePh₃, and decomposition products in 69% covnersion (as judged by ¹H NMR spectroscopy, on the basis of the disappearance of starting material).

Reactions of 7 and 10 with H₂. Reaction of CpCp*Hf-(SnPh₃)Cl with H₂ (100 psi) over 10 h gave HSnPh₃ (¹H NMR (benzene- d_6): δ 6.91, s, 1 H, SnH, 7.14, m, 9 H, m,p-H, C₆H₅, 7.51, m, 6 H, o-H, C₆H₅) and unidentified hafnium-containing products after 67% conversion of 7. The hydride CpCp*HfHCl was not observed. Similarly, reaction of Cp*₂Zr(SnPh₃)Cl with H₂ (100 psi) over 5 h gave HSnPh₃ and metal-containing decomposition products in 31% conversion. Cp*₂ZrHCl was not observed as a product.

Reactions of 5-7 with PhSiH₃. A 5-mm NMR tube was charged with 5 (20 mg, 0.03 mmol), PhSiH₃ (3 mg, 0.03 mmol), and benzene- d_6 (0.4 mL). Two samples were prepared similarly with 6 and 7. After 5.5 h under the same ambient fluorescent room lighting conditions, the ¹H NMR spectra showed resonances assignable to CpCp*Hf(SiH₂Ph)Cl (80% for 5 and 30% for 6), and HSiPh₃ or HGePh₃, respectively. No reaction of 7 with PhSiH₃ was observed over the course of 1 day.

Reactions of 8-11 with PhSiH₃. A 5-mm NMR tube was charged with 8 (20 mg, 0.03 mmol), PhSiH₃ (3 mg, 0.03 mmol), and benzene- d_6 (0.4 mL). Samples were prepared similarly using 9 and 10. The samples were exposed to the same ambient room lighting conditions. After 3 h, 8 had undergone a 91% conversion to a mixture of Cp*₂ZrHCl, HSiPh₃, PhH₂SiSiH₂Ph, PhH₂SiSiHPhSiH₂Ph, and PhH₂Si(SiHPh)₂SiH₂Ph (as judged by ¹H NMR spectroscopy). After 3 h, 9 had undergone a 41% conversion to a mixture of Cp*₂ZrHCl, HGePh₃, PhH₂SiSiH₂Ph, PhH₂SiSiHPhSiH₂Ph, and PhH₂Si(SiHPh)₂SiH₂Ph. No reaction was observed between 10 and PhSiH₃ over 2 days.

An NMR tube containing 11 (20 mg, 0.03 mmol), PhSiH₃ (3 mg, 0.03 mmol), and benzene- d_6 (0.4 mL) was prepared. After 2 days complete disappearance of 11 had occurred, as judged by ¹H NMR spectroscopy. The ¹H NMR spectrum contained resonances assigned to PhSiH₃, PhH₂SiSiH₂Ph, PhH₂SiSiHPhSiH₂Ph, PhH₂Si(SiHPh)₂SiH₂Ph, and Cp*₂HfHCl, in the proportions given in eq 6.

 $Cp^*_2Zr(\eta^2-COSiPh_3)Cl$ (14). A pressure bottle containing 8 (0.40 g, 0.61 mmol) in benzene (15 mL) was pressurized with CO (100 psi), resulting in a slow color change from orange to dark purple. After 15 h, the CO pressure was released, and the solution was filtered. Volatiles were removed in vacuo, the residue was dissolved in pentane, and the solution was cooled (-35 °C) to give dark purple crystals (mp 172-174 °C dec) in 76% yield (0.32 g). Anal. Calcd for $C_{39}H_{45}ClOSiZr$: C, 68.4; H, 6.63. Found: C, 68.3; H, 6.78. IR (Nujol, CsI, cm⁻¹): 3042 m, 1588 w, 1470 m (ν_{CO})

assigned in a Fluorolube mull spectrum), 1427 s, 1305 w, 1260 w, 1090 m, 1025 w, 800 w, 745 w sh, 735 m, 710 s, 700 s, 676 w, 502 s, 482 w, 440 w, 395 w, 325 w, 304 w. ¹H NMR (benzene- d_6): δ 1.61 (s, 30 H, C₅Me₅), 7.25 (m, 9 H, m,p-H, C₆H₅), 8.26 (d, J =7.2 Hz, 6 H, o-H, C₆H₅). ¹³C[¹H] NMR (benzene- d_6): δ 11.32 (C₅Me₅), 118.29 (C₅Me₅), 128.55, 130.52, 131.69, 137.55 (br, C₆H₅), 403.78 (ZrCOSi). ²⁹Si NMR (benzene- d_6): δ -25.82.

Reaction of 13 with HCl. An NMR tube containing 14 (20 mg, 0.03 mmol) and benzene- d_6 (0.4 mL) was connected to a vacuum line and cooled to -196 °C. Anhydrous HCl gas (1 equiv) was condensed into the tube, and the tube was sealed with a torch. The tube was warmed to 25 °C, resulting in a rapid color change from dark purple to pale yellow. After 10 min, the ¹H NMR spectrum contained resonances assigned to Cp*₂ZrCl₂ and Ph₃SiCHO (15). ¹H NMR (benzene- d_6) for 15: δ 7.12 (m, 9 H, m,p-H, C₆H₅), 7.52 (d, J = 7.5 Hz, 6 H, o-H, C₆H₅), 12.15 (s, 1 H, CHO).

Cp*2Zr[OC(SiPh3)(CN-2,6-Me2C6H3)]Cl (16). Benzene (20 mL) was added to a flask containing 14 (0.40 g, 0.58 mmol) and 2,6-Me₂C₆H₃NC (0.08 g, 0.58 mmol). The mixture was stirred for 22 h, resulting in a slow color change from dark purple to orange. Removal of volatiles resulted in a residue which was washed with cold pentane (0 °C, 2×5 mL) and then dissolved in 30 mL of pentane. Filtration, concentration, and cooling (-35 °C) of the solution gave orange crystals (mp 172-174 °C dec) in 64% yield (0.30 g). Anal. Calcd for C48H54CINOSiZr: C, 70.7; H, 6.67. Found: C, 70.5; H, 6.71. IR (Nujol, CsI, cm⁻¹): 3060 m, 3040 m, 1945 s (v_{CCN}), 1584 w, 1480 m, 1423 s, 1308 m, 1285 w sh, 1255 w, 1246 w, 1185 w, 1146 s, 1105 s, 1065 m, 1025 m, 994 w, 915 w, 810 m, 770 m, 755 m, 730 s, 697 s, 675 w, 645 w, 616 w, 560 m, 536 m, 500 s, 472 w, 443 w, 421 w, 400 w, 345 m. ¹H NMR (benzene-d₆): δ 1.84 (s, 30 H, C₅Me₅), 2.37 (s, 6 H, Me₂C₆H₃), 6.83 (m, 3 H, $Me_2C_6H_3$), 7.19 (m, 9 H, *m*,*p*-H, C_6H_5), 7.88 (d, J = 6.9Hz, 6 H, o-H, C₆H₅). ¹³C^{[1}H] NMR (benzene-d₆): δ 11.70 (C₅Me₅), 19.85 (Me2C6H3), 100.41 (CCN), 121.84 (C5Me5), 126.13, 128.00, 128.76, 129.87, 132.81, 134.22, 137.30 (Me₂C₆H₃, C₆H₅), 199.31 (CCN). ²⁹Si NMR (benzene- d_6): δ -68.28.

 $CpCp*Hf[\eta^2-C(N-2,6-Me_2C_6H_3)SiPh_3]Cl (17).$ A benzene (30) mL) solution containing 5 (0.50 g, 0.74 mmol) and 2,6-Me₂C₆H₃NC (0.10 g, 0.74 mmol) was stirred at room temperature for 5 h. Volatiles were removed by vacuum transfer, and the vellow residue was washed with cold pentane (0 °C, 2×10 mL) and then extracted into pentane. Cooling to -35 °C gave yellow crystals (mp 208-210 °C dec) in 68% yield (0.40 g). Anal. Calcd for $C_{42}H_{44}ClNSiHf$: C, 62.7; H, 5.51. Found: C, 62.4; H, 5.63. IR (Nujol, CsI, cm⁻¹): 3040 w, 1585 w, 1525 w (ν_{CN}), 1428 m, 1260 w, 1188 w, 1150 w, 1110 m, 1100 m, 1030 w, 1015 m, 995 w, 805 s, 795 m, 770 w, 740 m, 720 m, 700 s, 675 w, 645 w, 605 w, 500 m, 420 w, 320 w. ¹H NMR (benzene-d₆): δ 1.94 (s, 15 H, C₅Me₅), 1.49, 2.04 (s, 6 H, $C_6H_3Me_2$), 5.72 (s, 5 H, C_5H_5), 6.68, 6.81 (dd, J = 7.2 Hz, 2 H, m-H, $C_6H_3Me_2$), 6.93 (t, J = 7.2 Hz, 1 H, p-H, $C_{e}H_{3}Me_{2}$, 7.13 (m, 9 H, m, p-H, $C_{6}H_{5}$), 7.70 (d, J = 6.9 Hz, 6 H, o-H, C₆H₅). ¹³C{¹H} NMR (benzene-d₆): δ 12.89 (C₅Me₅), 19.78, 20.79 ($C_6H_3Me_2$), 110.61 (C_5H_5), 117.59 (C_5Me_5), 126.16, 128.00, 129.12, 129.30, 129.92, 130.21, 132.41, 134.12, 137.26, 147.64 $(C_6H_3Me_2 \text{ and } C_6H_5)$, 278.61 (HfCNSi). ²⁹Si NMR (benzene- d_6): $\delta - 30.17$

Reaction of 8 with 2,6-Me₂C₆H₃NC. Compound 8 (20 mg, 0.03 mmol), 2,6-Me₂C₆H₃NC (4 mg, 0.03 mmol), and benzene- d_6 (0.4 mL) were combined in an NMR tube. After 4 h, the ¹H NMR spectrum consisted of resonances assigned to the new product

Cp*₂Zr[η^2 -C(N-2,6-Me₂C₆H₃)SiPh₃]Cl (18). ¹H NMR (benzene-d₆): δ 1.71 (s, 6 H, Me_2 C₆H₃), 1.81 (s, 30 H, C₅Me₅), 6.82 (d, J = 7.5 Hz, 2 H, m-H, Me₂C₆H₃), 7.02 (t, J = 7.5 Hz, 1 H, p-H, Me₂C₆H₃), 7.12 (m, 9 H, m,p-H, C₆H₅), 7.68 (d, J = 7.5 Hz, 6 H, o-H, C₆H₅).

Reaction of 11 with 2,6-Me₂C₆H₃NC. Via the above method, Cp*₂Hf[η^2 -C(N-2,6-Me₂C₆H₃)SiPh₃]Cl (19) was observed. ¹H NMR (benzene-d₆): δ 1.72 (s, 6 H, Me₂C₆H₃), 1.86 (s, 30 H, C₆Me₆), 6.81 (d, J = 7.5 Hz, 2 H, m-H, Me₂C₆H₃), 7.01 (t, J = 7.5 Hz, 1 H, p-H, Me₂C₆H₃), 7.12 (m, 9 H, m,p-H, C₆H₅), 7.68 (d, J = 7.5 Hz, 6 H, o-H, C₆H₅).

CpCp*Zr[η^2 -C(N-2,6-Me₂C₆H₃)**GePh₃**]Cl (20). A mixture of 3 (0.40 g, 0.64 mmol), 2,6-Me₂C₆H₃NC (0.084 g, 0.64 mmol), and benzene (30 mL) was stirred for 5 h. Removal of volatiles by vacuum transfer left a residue which was washed with cold pentane (0 °C, 2 × 10 mL) and then extracted into pentane. Cooling (-35 °C) gave yellow crystals (mp 188–190 °C dec) in 76% yield (0.37 g). Anal. Calcd for C₄₂H₄₄ClNGeZr: C, 66.2; H, 5.82. Found: C, 66.3; H, 5.91. IR (Nujol, CsI, cm⁻¹): 3040 m, 1558 w (ν_{CN}), 1430 m, 1260 w, 1185 w, 1155 w, 1693 m, 1084 m, 1027 w, 1015 w, 995 w, 803 s, 793 s, 772 w, 745 m, 735 s, 700 s, 670 w, 462 m, 355 w, 327 w. ¹H NMR (benzene-d₆): δ 1.88 (s, 15 H, C₅Me₅), 1.62, 1.99 (s, 6 H, C₆H₃Me₂), 5.79 (s, 5 H, C₅H₅), 6.73, 6.76 (dd, J = 7.5 Hz, 2 H, m-H, C₆H₃Me₂), 6.93 (t, J = 7.5 Hz, 1 H, p-H, C₆H₃Me₂), 7.12 (m, 9 H, m,p-H, C₆H₅), 7.62 (d, J = 7.2 Hz, 6 H, o-H, C₆H₃Me₂), 7.12 (m, 9 H, m,p-H, C₆H₅), 118.93 (C₅Me₅), 126.14, 128.44, 129.19, 129.38, 129.61, 129.80, 132.29, 136.11, 136.98, 147.23 (C₆H₃Me₂ and C₆H₅), 265.81 (ZrCNGe).

Reaction of 20 with HCl. An NMR tube containing **20** (20 mg, 0.026 mmol) and benzene- d_6 (0.4 mL) was connected to a vacuum line and cooled to -196 °C. Anhydrous HCl gas (1 equiv) was condensed into the tube, and the tube was sealed with a torch. Warming to 25 °C resulted in a pale yellow solution. After 30 min, the ¹H NMR spectrum contained resonances for CpCp*ZrCl₂ and Ph₃GeC(N-2,6-Me₂C₆H₃)H (**21**). ¹H NMR (benzene- d_6) for **21**: δ 2.04 (s, 6 H, $Me_2C_6H_3$), 6.93 (m, 3 H, $Me_2C_6H_3$), 7.14 (m, 9 H, m,p-H, C_6H_5), 7.52 (m, 6 H, o-H, C_6H_5), 8.76 (s, 1 H, C(N-2,6-Me₂C₆H₃)H).

Acknowledgment for financial support is made to the National Science Foundation. T.D.T. thanks the Alfred P. Sloan Foundation for a research fellowship (1988–92) and Union Carbide for an Innovation Recognition Award (1991–2).

Registry No. 1, 141272-70-0; 2, 141272-71-1; 3, 141272-72-2; 4, 141272-73-3; 5, 141272-74-4; 6, 141272-75-5; 7, 141272-76-6; 8, 141272-77-7; 9, 141272-78-8; 10, 141272-79-9; 11, 141272-80-2; 12, 141272-81-3; 13, 141272-82-4; 14, 141292-00-4; 15, 141272-80-2; 12, 141272-83-5; 17, 141272-82-4; 14, 141292-00-4; 15, 141272-67-5; 16, 141272-83-5; 17, 141272-84-6; 18, 141272-85-7; 19, 141292-01-5; 20, 141272-86-8; 21, 141272-68-6; CpCp*HfCl₂, 87050-25-7; CpCp*HfMCl, 120578-39-4; CpCp*ZrCl₂, 81476-73-5; CpCp*ZrHCl, 120578-36-1; CpCp*Zr(Ph)Cl, 141272-87-9; CpCp*ZrHCl, 120578-36-1; CpCp*Zr(Ph)Cl, 141272-87-9; CpCp*ZrICl₂, 54039-38-2; Cp*₂ZrHCl, 77299-72-0; Ph₃SiSiPh₃, 1450-23-3; PhH₂SiSiH₂Ph, 27484-20-4; PhH₂SiSiHPhSiH₂Ph, 50518-29-1; PhH₂Si(SiHPh)₂SiH₂Ph, 141272-69-7; LiGePh₃, 3839-32-5; LiSnPh₃, 4167-90-2; HSiPh₃, 789-25-3; HGePh₃, 2816-43-5; HSnPh₃, 892-20-6; PhSiH₃, 694-53-1.

OM9106950