Thermal and Photochemical Properties of [(1-Heptamethyltrisilyl)methyl]iron and [(2-Heptamethyltrisilyl)methyl]iron Complexes $(\eta^{5}-L)Fe(CO)_{2}CH_{2}SI_{3}Me_{7} (L = C_{5}H_{5}, C_{5}Me_{5}, C_{9}H_{7})^{1}$

Keith H. Pannell,* Toshiaki Kobayashi, and Ramesh N. Kapoor

Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968-0513

Received December 11, 1991

[(1-Heptamethyltrisilyl)methyl]iron and [(2-heptamethyltrisilyl)methyl]iron complexes (η^5 -L)Fe- $(CO)_2CH_2Si_3Me_7$ have been synthesized from 1-(chloromethyl)-1,1,2,2,3,3,3-heptamethyltrisilane and 2-(chloromethyl)-1,1,1,2,3,3,3-heptamethyltrisilane and the iron carbonylate complexes $[(\eta^5-L)Fe(CO)_2]^-Na^+$ (L = cyclopentadienyl (Cp), pentamethylcyclopentadienyl (Cp*), indenyl (Ind)). Photochemical treatment of the (1-heptamethyltrisilyl)methyl complexes yielded chain-rearranged products $(\eta^5-L)Fe(CO)_2$ -SiMe₂CH₂SiMe₂SiMe₃. Photochemical treatment of the isomeric [(2-heptamethyltrisilyl)methyl]iron complexes results in different chemistry due to the initial formation of a complex containing the grouping Fe–Si–Si. Such complexes undergo Si–Si bond cleavage and elimination of an SiR₂ fragment; thus the complexes isolated from photolysis of $(\eta^5$ -L)Fe(CO)₂CH₂SiMe(SiMe₃)₂ are a mixture of $(\eta^5$ -L)Fe(CO)₂SiMe₃ and $(\eta^5$ -L)Fe(CO)₂SiMe₃, resulting from the elimination of MeSiCH₂SiMe₃ and SiMe₂, respectively. The thermal stability in refluxing hexane of the (1-heptamethyltrisilyl)methyl complexes varied depending on the η^{5} -L ligand, with the stability being Cp \gg Cp* \gg Ind: Cp, no reaction; Cp*, formation of $[(\eta^{5}-$ Cp)*Fe(CO)₂]₂; Ind, chain rearrangement. The photochemical reaction of $(\eta^{5}-$ Cp)Fe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃ in the presence of PPh₃ resulted in the initial formation of an unstable phosphine-substituted intermediate CpFe(CO)(PPh₃)CH₂SiMe₂SiMe₂SiMe₃, which rearranged photochemically and/or thermally to CpFe(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃. The thermal reaction of $(\eta^{5}-L)Fe(CO)_{2}CH_{2}SiMe_{2}SiMe_{2}SiMe_{3}$ (L = Cp, Ind) in the presence of PPh₃ gave LFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃, which photochemically or thermally decarbonylated to give LFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃.

Introduction

A large number of (trimethylsilyl)methyl and bis(trimethylsilyl)methyl transition-metal complexes are known, due primarily to their stability imposed by lack of suitable low-energy decomposition pathways.^{2,3} This feature may be partially attributed to the absence of β -hydrogen elimination since the silylmethyl groups have no labile hydrogen atoms. On the other hand, (dimethylsilyl)methyl complexes, LMCH₂SiMe₂H, have been shown to rearrange rapidly via silene metal hydrides to form trimethylsilylmetal complexes.^{4,5}

Despite the many monosilylmethyl-metal complexes, only a handful of higher homologs are reported which contain Si-Si bonds.⁶ Thus, (pentamethyldisilyl)methyl complexes, $LM-CH_2SiMe_2SiMe_3$, are known where LM = $(\eta^{5}-L)Fe(CO)_{2} (L = C_{5}H_{5} (Fp), C_{5}Me_{5}, C_{9}H_{7}), (\eta^{5}-C_{5}H_{5})W_{7}$ $(CO)_3$, and $(\eta^5-C_5H_5)_2MCl$ (M = Ti, Zr, Hf). Such complexes have the potentially labile Me₃Si group in the β position with respect to the metal center, and the cyclopentadienyl metal carbonyl complexes exhibit a facile rearrangement to LM-SiMe₂CH₂SiMe₃ complexes (eq 1). A

$$\mathbf{FpCH}_{2}\mathbf{SiMe}_{2}\mathbf{SiMe}_{3} \xrightarrow{\mu\nu} \mathbf{FpSiMe}_{2}\mathbf{CH}_{2}\mathbf{SiMe}_{3} \quad (1)$$

similar skeletal rearrangement occurs when these same complexes are treated with a base, and the disilylmethyl group migrates, with rearrangement, to the cyclo-

(4) Pannell, K. H. J. Organomet. Chem. 1970, 21, 17.
(5) (a) Randolf, C. L.; Wrighton, M. S. Organometallics 1987, 6, 365.
(b) Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 7768.
(6) (a) Pannell, K. H.; Rice, J. R. J. Organomet. Chem. 1974, 78, C35.
(b) Sharma, S.; Kapoor, R. N.; Cervantes-Lee, F.; Pannell, K. H. Polyhedron 1991, 10, 1127. hedron 1991, 10, 1177.

pentadienyl ring (eq 2).⁷ $FpCH_{2}SiMe_{2}SiMe_{3} \xrightarrow{(1) LDA (2) MeI} Me_{3}SiCH_{2}SiMe_{2}-Fe(CO)_{2}CH_{3} (2)$

Recently, we developed a new general synthetic route for the formation of (chloromethyl)oligosilanes, and have initiated an investigation into the chemistry of such systems, including their transition-metal derivatives.⁸ We now wish to report the syntheses and chemical transformations of [(1-heptamethyltrisilyl)methyl]iron and [(2heptamethyltrisilyl)methyl]iron complexes using the reaction between 1- and 2-ClCH₂Si₃Me₇ and $[(\eta^5-L)Fe$ - $(CO)_2]^-Na^+$ (L = C₅H₅, C₅Me₅, C₉H₇ (indenyl)).

Results and Discussion

The reactions between 1- and 2-(chloromethyl)heptamethyltrisilanes and the various $[(\eta^5-L)Fe(CO)_2]$ -Na⁺ salts $(L = C_5H_5, C_5Me_5, C_9H_7)$ yielded moderate to good yields of the corresponding (trisilylmethyl)iron complexes (eq 3). An exception was our inability to synthesize $(\eta^5 - C_9 H_7)$ - $Fe(CO)_2CH_2SiMe(SiMe_3)_2$.

$$[(\eta^{5}-L)Fe(CO)_{2}]^{-}Na^{+} \xrightarrow{ClCH_{2}(SiMe_{2})_{2}SiMe_{3}}{(\eta^{5}-L)Fe(CO)_{2}CH_{2}(SiMe_{2})_{2}SiMe_{3}} (3a)$$

$$[(\eta^{5}-L)Fe(CO)_{2}]^{-}Na^{+} \xrightarrow{CICH_{2}SiMe(SiMe_{3})_{2}} (\eta^{5}-L)Fe(CO)_{2}CH_{2}SiMe(SiMe_{3})_{2} (3b)$$

 $L = C_5 H_5$ (Cp), $C_5 Me_5$ (Cp*), $C_9 H_7$ (Ind, 3a only)

The spectroscopic data for the new complexes are recorded in Table I and are in accord with the proposed structures. The ²⁹Si NMR data show the expected chem-

⁽¹⁾ Organometalloidal Derivatives of the Transition Metals. 31. For H.; Pannell, K. H. J. Organomet. Chem., in press.

⁽²⁾ Cundy, C. S.; Kingston, B. M.; Lappert, M. F. Adv. Organomet. Chem. 1973, 11, 253.

⁽³⁾ Davidson, P. J.; Lappert, M. F.; Pearce, R. Chem. Rev. 1976, 76, 219.

⁽⁷⁾ Pannell, K. H.; Vincenti, S. P.; Scott, R. C., III Organometallics 1987, 6, 1593.

^{(8) (}a) Kobayashi, T.; Pannell, K. H. Organometallics 1990, 9, 2201. (b) Kobayashi, T.; Pannell, K. H. Organometallics 1991, 10, 1960.

ical shifts previously observed for oligosilyl metal derivatives,⁹ with significant low-field shifts compared to the totally permethylated oligosilanes for the Si atom β with respect to the Fe atom, but little or no shifts for the Si atoms in γ - and δ -positions.

Thermal and Photochemical Stability. The thermal stability of the [(1-heptamethyltrisilyl)methyl]iron complexes was examined under reflux conditions in hexane. The reactivity varied depending upon the η^5 -ligand, as noted in eqs 4-6.

$$CpFe(CO)_{2}CH_{2}SiMe_{2}SiMe_{2}SiMe_{3} \rightarrow \text{no reaction}$$
(4)
$$Cp*Fe(CO)_{2}CH_{2}SiMe_{2}SiMe_{3} \rightarrow [Cp*Fe(CO)_{2}]_{2}$$
(5)

$$IndFe(CO)_{2}CH_{2}SiMe_{2}SiMe_{2}SiMe_{3} \rightarrow IndFe(CO)_{2}SiMe_{2}CH_{2}SiMe_{2}SiMe_{3}$$
(6)

This pattern is similar to the behavior of the related disilylmethyl complexes LMCH₂SiMe₂SiMe₃,^{6b} with facile rearrangement of the indenyl complex, stability of the cyclopentadienyl complex, and cleavage of the Fe–C bond for the bulky pentamethylcyclopentadienyl complex. The skeletal rearrangement observed for the indenyl complex (eq 6) was effected in high yield for all the (1-heptamethyltrisilyl)methyl complexes via photochemical irradiation in hydrocarbon solvents (eq 7).

$$(\eta^{5}-L)Fe(CO)_{2}CH_{2}SiMe_{2}SiMe_{2}SiMe_{3} \xrightarrow{n\nu} (\eta^{5}-L)Fe(CO)_{2}SiMe_{2}CH_{2}SiMe_{2}SiMe_{3} (7)$$
$$L = C_{5}H_{5}, C_{5}Me_{5}, C_{9}H_{7}$$

The thermal/photochemical rearrangement is analogous to those reported for the LMCH₂SiMe₂SiMe₃ complexes noted in the Introduction and may be assumed to proceed via a similar mechanism. The suggested mechanism is related to that determined for the transformation of (dimethylsilyl)methyl complexes to trimethylsilyl complexes [eq 8 (R = H)].^{4,5}

The driving force of this reaction is scission of the weak Si—Si or Si—H bond coupled to the stability of the silene intermediate. Recently, related silene complexes of the transition metals have been isolated and completely characterized, including single-crystal X-ray analysis, by both the Berry and Tilley groups.^{11,12} A report by Thompson and Young on the thermal rearrangement of [bis(trimethylsilyl)methyl]platinum complexes also proposed intermediacy of η^2 -silene complexes formed by a β -elimination process (eq 9).¹³ The facile rotation of

$$(\mathbf{R}_{3}\mathbf{P})_{2}\mathbf{Pt}(\mathbf{CH}_{2}\mathbf{SiMe}_{3})_{2} \xrightarrow{\Delta_{1}-\mathbf{PR}_{3}} \\ (\mathbf{R}_{3}\mathbf{P})\mathbf{Pt}(\mathbf{Me})(\mathbf{CH}_{2}\mathbf{SiMe}_{3})(\mathbf{CH}_{2}=\mathbf{SiMe}_{2}) \xrightarrow{\mathbf{R}_{3}\mathbf{P}} \\ (\mathbf{R}_{3}\mathbf{P})_{2}\mathbf{Pt}(\mathbf{Me})(\mathbf{CH}_{2}\mathbf{SiMe}_{2}\mathbf{CH}_{2}\mathbf{SiMe}_{3}) (9)$$

alkenemetal complexes about the metal-alkene bond is well established in a variety of systems.¹⁴ Examples include the closely related (η^5 -C₅H₅)Fe(CO)(CH₂=CH₂)SnR₃ complexes (R = Ph, Me) and a series of cationic [Fp-(CR₂=CR₂)]⁺ complexes. The barriers to such rotations are in the 8–14 kcal/mol range.¹⁵

A second more complex process was also considered and indeed has merit, as pointed out by a referee. Such a scheme involves α -silyl migration followed by a 1,3-Si shift and final migration of a silylalkyl group back to silicon (eq 10).

A positive aspect of this mechanism is that all species are well established and 1,3-silyl and 1,3-alkyl shifts in the oligosilyl Fp systems are now well accepted. However, a drawback is the fact that, as noted in the Fp-oligosilane chemistry for $Fp(SiMe_2)_nMe$ (n = 2, 3), we might reasonably expect loss of the Me₂Si group in intermediate B leading to FpCH₂SiMe₂SiMe₃ and thus eventually FpSiMe₂CH₂SiMe₃. No such complex was observed during the course of the reaction to the extent of <1%. Similarly, one might also expect loss of methylene to yield Fp-(SiMe₂)₃Me with further degradation to FpSiMe₃ via $FpSiMe_2SiMe_3$ and $FpSiMe(SiMe_3)_2$ and methyl migration from Si to the carbene in intermediate A to yield ethyl groups. No complexes derived from such chemistry were observed during the course of the reactions studied. On the basis of all the evidence we have obtained thus far in our continuing studies on these and related systems, coupled with application of Occam's Razor, we presently favor the mechanism outlined in eq 8.

Prolonged photolysis of CpFe(CO)₂CH₂SiMe₂SiMe₂-SiMe₃ in the presence of PPh₃ yielded CpFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃ in high yield. However, close monitoring of this reaction by infrared spectroscopy revealed that the initial photoproduct was CpFe(CO)- $(PPh_3)CH_2SiMe_2SiMe_2SiMe_3$. This complex could be isolated in approximately 80% purity, mixed with CpFe-(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃; however, thermal or photochemical treatment of this mixture led to the formation of the rearranged phosphine substitution product. The rearrangement also occurred slowly at room temperature. It has been shown that photochemical substitution of carbon monoxide in FpCH₂SiMe₃ by PPh₃ produced CpFe(CO)(PPh₃)CH₂SiMe₃; thus these new results suggest that after primary photodissociation of the CO ligand, subsequent coordination of PPh₃ to the vacant site is a very

^{(9) (}a) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. P. Organometallics 1986, 5, 1056. (b) Pannell, K. H.; Rozell, J. M.; Hernandez, C. J. Am. Chem. Soc. 1989, 111, 4482. (c) Pannell, K. H.; Wang, L.-J.; Rozell, J. M. Organometallics 1989, 8, 550. (d) Tobita, H.; Ueno, K.; Ogino, H. Chem. Lett. 1986, 1777. (e) Ueno, K.; Tobita, H.; Simoi, M.; Ogino, H. J. Am. Chem. Soc. 1988, 110, 4092. (f) Pannell, K. H.; Rozell, J. M.; Vincenti, S. P. In Silicon-Based Polymer Science: A Comprehensive Resource; Zeigler, J. M., Fearon, G. W., Eds.; Advances in Chemistry Series No. 224; American Chemical Society, Washington, DC, 1990.

^{(10) (}a) White, C.; Mawby, R. J. Inorg. Chim. Acta 1970, 4, 261. (b) Forschner, T. C.; Cutler, A. R. Organometallics 1987, 6, 889. (c) Ibid. 1985, 4, 1247.

^{(11) (}a) Berry, D. H.; Procopio, L. J. J. Am. Chem. Soc. 1989, 111, 4099.
(b) Koloski, T. S.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1990, 112, 6405.

 ^{(12) (}a) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc.
 1990, 112, 4079. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1988, 110, 7558.

⁽¹³⁾ Thompson, S. K.; Young, G. B. Organometallics 1989, 8, 2068.
(14) (a) Mingos, D. M. P. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 3, Chapter 19. (b) Mann, E. W. Ibid., Vol. 3, Chapter 20.

 ^{(15) (}a) Faller, J. W.; Johnson, B. V.; Schaeffer, C. D. J. Am. Chem.
 Soc. 1976, 98, 1395. (b) Faller, J. W.; Johnson, B. V. J. Organomet. Chem.
 1975, 88, 101. (c) Celebuski, J.; Munro, G.; Rosenblum, M. Organometallics 1986, 5, 256.

Table I. Spectroscopic and Analytical Data for New Complexes^a

Mixture of IndFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃^b and IndFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃

²⁹Si 50.4, (-4.2), (-16.1), -18.1, -19.4, (-48.44)

ν(CO) (2006.1), 1993.3, (1953.7), 1941.7

^aNMR spectra (δ , ppm) recorded in C₆D₆ unless noted by an asterisk which refers to spectra recorded in CDCl₃; IR (cm⁻¹) spectra recorded in hexane. ^bData in parentheses.

Scheme I. Photochemical Rearrangement of LFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃

rapid process compared to the formation of silene intermediates required for the rearrangement process.

$$\begin{array}{c|c} \mathsf{FpCH}_2\mathsf{SiMe}_2\mathsf{SiR}_3 & \xrightarrow{h_{2}} & (\eta^{5}\mathsf{-}\mathsf{C}_5\mathsf{H}_5)\mathsf{Fe}(\mathsf{CO})\mathsf{CH}_2\mathsf{SiMe}_2\mathsf{SiR}_3 \\ & & & \mathsf{Siow} \\ & & & \mathsf{PPh}_3, \ \mathsf{fast} \\ & & \mathsf{CH}_2 \\ & & & \mathsf{SiR}_3 \end{array} & (\eta^{5}\mathsf{-}\mathsf{C}_5\mathsf{H}_5)\mathsf{Fe}(\mathsf{CO})(\mathsf{PPh}_3)\mathsf{CH}_2\mathsf{SiMe}_2\mathsf{SiR}_3 \end{array}$$

The fact that thermal treatment of $CpFe(CO)(PPh_3)-CH_2SiMe_2SiMe_2SiMe_3$ produces a skeletal rearrangement to $CpFe(CO)(PPh_3)SiMe_2CH_2SiMe_2SiMe_3$, whereas $FpCH_2SiMe_2SiMe_2SiMe_3$ does not, further illustrates the need for initial ligand expulsion to form a 16e⁻ intermediate prior to silyl migration to form the silene intermediate. Thermal elimination of PPh₃ from such systems is well established whereas only photochemical elimination of CO has been previously observed. The overall process is illustrated in Scheme I.

Photochemical treatment of the (2-heptamethyl-trisilyl)methyl complexes, $(\eta^5\text{-L})\text{Fe}(\text{CO})_2\text{CH}_2\text{SiMe}(\text{SiMe}_3)_2$ (L = C₅H₅, C₅Me₅) resulted in markedly different chemistry (eq 11).

$$\begin{array}{c} Fp-CH_2SiMe(SiMe_3)_2 \xrightarrow{h\nu} \\ FpSiMe_3 + FpSiMe_2CH_2SiMe_3 \ (11) \end{array}$$

This difference in chemistry is in accord with our studies on the photochemical properties of oligosilanes directly bonded to the Fp system via a Fe–Si bond, Scheme II.⁹

The key step in distinguishing the two types of chemistry exhibited by the $Fp-CH_2$ -trisilanes is the initial formation of the FpSiMe(SiMe₃)CH₂SiMe₃ complex from FpCH₂SiMe(SiMe₃)₂ via the silylmethyl rearrangement. This product contains the Fe-Si-Si grouping which, as previously noted, photoeliminates the elements of a silylene fragment.⁹ In the present case this results in either elimination of SiMe₂ to form FpSiMe₂CH₂SiMe₃ or elimination of MeSiCH₂SiMe₃ to form FpSiMe₃. As noted from the results, both processes occur; however, we cannot observe any selectivity between elimination of SiMe₂ or MeSiCH₂SiMe₃ since the ratio for the two group losses are 40:60 and 60:40 for the Fp and Fp* complexes, respectively.

Overall the photochemistry of the two trisilanes is an interesting example of the potential of the Fp type of

Scheme II. Photochemistry of LFe(CO)₂CH₂SiMe(SiMe₃)₂

Scheme III. Decarbonylation of Acyl Complexes LFe(CO)(PPh₃)COCH₂SiMe₂SiMe₂SiMe₃

 $\mathsf{LFe}(\mathsf{CO})(\mathsf{PPh}_3)\mathsf{CH}_2\mathsf{SiMe}_2\mathsf{SiMe}_2\mathsf{SiMe}_3 \longrightarrow \mathsf{LFe}(\mathsf{CO})(\mathsf{PPh}_3)\mathsf{SiMe}_2\mathsf{CH}_2\mathsf{SiMe}_2\mathsf{SiMe}_3$

substituent to discriminate between two isomeric positions in an oligosilane. This aspect will be the subject of future studies.

Thermal Reaction of $(\eta^5-L)Fe(CO)_2CH_2SiMe_2-SiMe_2SiMe_3$ with PPh₃. A CO insertion reaction occurred when $(\eta^5-C_5H_5)Fe(CO)_2CH_2SiMe_2SiMe_2SiMe_3$ was treated with PPh₃ in refluxing THF (eq 12a). Since we

$$FpCH_{2}SiMe_{2}SiMe_{2}SiMe_{3} \xrightarrow{\text{PPh}_{3}} \\ (\eta^{5}-C_{5}H_{5})Fe(CO)(PPh_{3})COCH_{2}SiMe_{2}SiMe_{2}SiMe_{3} \\ (12a)$$

were unable to obtain the indenyl complex $(\eta^5 - C_9 H_7)$ Fe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃ in a pure form, due to the facile transformation into $(\eta^5 - C_9 H_7)$ Fe-(CO)₂SiMe₂CH₂SiMe₂SiMe₃, and since it is thermally unstable with respect to rearrangement, we obtained the CO insertion product, albeit in low yield, by performing the initial reaction between the carbonylate salt and (chloromethyl)trisilane in the presence of PPh₃ (eq 12b).

$$[(\eta^{5}-C_{9}H_{7})Fe(CO)_{2}]^{-}Na^{+} + ClCH_{2}SiMe_{2}SiMe_{2}SiMe_{3} + PPh_{3} \rightarrow (\eta^{5}-C_{9}H_{7})Fe(CO)(PPh_{3})COCH_{2}SiMe_{2}SiMe_{2}SiMe_{3} (12b)$$

Prior to isomerization to IndFe-(CO)₂SiMe₂CH₂SiMe₂SiMe₃, the intermediate IndFe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃ is clearly trapped by PPh₃, forming IndFe(CO)(PPh₃)COCH₂SiMe₂SiMe₂SiMe₃. It is well established that η^5 -indenyl complexes of the type (η^5 -C₉H₇)Fe(CO)₂R undergo CO insertion reactions much

more rapidly than their cyclopentadienyl analogs due to the ability of the indenyl ligand to exhibit $\eta^5 - \eta^3$ ring slippage during associative reactions with incoming ligands.¹⁰ If a similar associative process is occurring in the present case, it becomes apparent that intermolecular association between a phosphine ligand and the indenyl complex is more favored than an intramolecular silyl migration to form the transient silene complex. If the reactions observed here and are more dissociative, i.e. $\eta^5 - \eta^3$ slippage occurs prior to silyl migration or phosphine coordination, a similar conclusion is reached: the intermediate is more prone to phosphine substitution than silyl migration and silene formation. This situation parallels the initial formation of $(\eta^5 - C_5 H_5) Fe(CO)(PPh_3)$ -CH₂SiMe₂SiMe₂SiMe₃ upon photochemical treatment of $(\eta^5-C_5H_5)Fe(CO)_2CH_2SiMe_2SiMe_2SiMe_3$ with PPh₃ reported above which are presumably dissociative. Similarly, the facile thermal rearrangement of IndFe- $(CO)_2CH_2SiMe_2SiMe_2SiMe_3$ leaves open to question the associative vs dissociative aspects of these migration rearrangement processes; however, in general the migration of the silyl group to iron in a coordinatively unsaturated intermediate is clearly slow compared to ligand substitution.

Thermal decarbonylation of the new acyl complexes was observed to proceed slowly in refluxing hexane to yield $(\eta^5-L)Fe(CO)(PPh_3)SiMe_2CH_2SiMe_2SiMe_3$. The rates of this transformation were dependent upon the nature of L, with the indenyl complex transforming over a period of 5 days, while for the Fp complex only trace amounts of the final product were observed after 75 h. During these reactions we observed the formation of $(\eta^5-L)Fe(CO)_2CH_2SiMe_2SiMe_3$ as intermediates. Photochemical treatment of the two acyl complexes produced $(\eta^5-L)Fe(CO)(PPh_3)SiMe_2CH_2SiMe_2SiMe_3$ efficiently. In the case of L = Cp we could observe the intermediacy of both $(\eta^5-C_5H_5)Fe(CO)(PPh_3)CH_2SiMe_2SiMe_3$

Experimental Section

General Information. NMR spectra were recorded on a Bruker 200-MHz spectrometer in C_6D_6 solutions, unless otherwise noted. IR spectra were recorded on a Perkin-Elmer 580B spectrophotometer, in hexane. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. All reactions were performed in a dry N₂ or argon atmosphere with dry, oxygen-free solvents. Photolyses were performed using a 450-W Hanovia 679A medium-pressure mercury lamp.

Materials. $[CpFe(CO)_2]_2$ and $[Cp*Fe(CO)_2]_2$ were purchased from Strem Chemicals, Newburyport, MA, $[IndFe(CO)_2]_2$ was prepared by the literature procedures,¹⁶ and $ClCH_2SiMe_2SiMe_2SiMe_3$ and $ClCH_2SiMe(SiMe_3)_2$ were synthesized as reported previously.⁸ Solvents were dried by the conventional methods and distilled under dry nitrogen. Purifications via column chromatography used silica gel that was either Merck, grade 60 (230–240 mesh) or Mallinkrodt grade 60 (mesh 60–240). Analytical and spectral properties for all new complexes are recorded in Table I.

Syntheses of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃. To an ice-cooled solution of $[CpFe(CO)_2]$ -Na⁺ prepared from Hg (2 mL), Na (270 mg, 11.7 mmol), and $[CpFe(CO)_2]_2$ (2.0 g, 5.6 mmol) in THF (20 mL) was added ClCH₂SiMe₂SiMe₂SiMe₃ (2.7 g, 11.3 mmol). The reaction mixture was stirred at room temperature for 1 h, and after the solvent was removed in vacuo, the residue was extracted into 50 mL of hexane. This solution was concentrated and then placed on a 2.5-cm × 20-cm silica gel column. Elution with hexane developed an orange band which was collected to produce 3.9 g (10.2 mmol, 91%) of CpFe-

(CO)₂CH₂SiMe₂SiMe₂SiMe₃ as an orange oil.

Thermal Reaction of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃. A 10-mL hexane solution of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 102 mg (0.213 mmol), was refluxed for 14 h and monitored by infrared spectroscopy. No change was observed.

Photolysis of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃. A solution of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 130 mg (0.342 mmol), in hexane (20 mL) was photolyzed in a 200-mL Pyrex flask and monitored by IR spectroscopy. After 1 h the IR spectrum showed 100% removal of the starting material. The solvent was evaporated in vacuo, and the residue was purified by silica gel column chromatography, 1 cm \times 8 cm, using hexane as eluent to give CpFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃ as an orange oil, 98 mg (0.258 mmol, 75%).

Prolonged Photolysis of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃ in the Presence of PPh₃. A solution of CpFe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 0.570 g (1.50 mmol), and PPh₃, (0.393 g, 1.50 mmol), in hexane (30 mL) was photolyzed in a 250-mL Pyrex flask and monitored by IR spectroscopy. This indicated the formation of a new band at 1912.9 cm⁻¹ (1 h, 60% conversion), which shifted to 1911.1 (2 h, 95% conversion), 1910.2 (4 h, 100% conversion), and 1910.3 cm⁻¹ (5 h). After evaporation of the solvent, the residue was chromatographed on a silica gel column using hexane as eluent to give CpFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃, 0.85 g (1.38 mmol, 92%), as an orange oil.

Brief Photolysis of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃ in the Presence of PPh₃: Detection of CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₂SiMe₃. A solution of CpFe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 550 mg (1.45 mmol), and PPh₃, 379 mg (1.45 mmol), in hexane (50 mL) was photolyzed in a 100-mL Pyrex flask and monitored by IR spectroscopy. The resulting spectra exhibited a new CO stretching frequency as noted: 1913.7 (40 min, 30% conversion), 1913.3 (1 h 10 min, 50% conversion), and 1912.8 cm⁻¹ (1 h 40 min, 70% conversion). The solvent was removed in vacuo, and the residue was chromatographed on a silica gel column using hexane as eluent to give starting material, 130 mg (0.34 mmol), and a waxy solid, 560 mg (0.91 mmol, 62.8%), which exhibited a ν (CO) at 1913.6 cm⁻¹. ²⁹Si NMR analysis showed that this material was a mixture of CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₂SiMe₃ and $CpFe(CO)(PPh_3)$ -SiMe₂CH₂SiMe₂SiMe₃ (about 80:20 ratio). This mixture slowly converted to rearranged product CpFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃, even in the semisolid state. The spectral properties are recorded in Table I.

Photolytic Rearrangement of CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₂SiMe₃. CpFe(CO)(PPh₃)CH₂SiMe₂SiMe₂SiMe₃, 100 mg (0.163 mmol), was dissolved in hexane (26 mL) and divided into two Pyrex test tubes, 2.5 cm × 20 cm. The sample had already somewhat rearranged even during dark, cold storage. The IR spectrum exhibited ν (CO) at 1912.6 cm⁻¹. One tube was photo-lyzed in an ice bath, and the other was kept in the dark at the same temperature. After 30 min the photolyzed sample exhibited a ν (CO) band at 1910.3 cm⁻¹, which showed that the conversion to CpFe(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃ was essentially complete. Another 30-min photolysis gave only little change, ν (CO) 1910.2 cm⁻¹. On the other hand, the IR spectrum of the other sample tube kept in the dark in an ice bath exhibited a band at ν (CO) 1912.5 cm⁻¹ after 1 h, showing that the photolysis significantly accelerated the rearrangement.

Thermal Rearrangement of CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₂SiMe₃. A solution of CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₂SiMe₃, 100 mg (0.163 mmol), in hexane (20 mL) was refluxed in the dark. The reaction was monitored by IR spectroscopy, and the CO stretching frequency changed as follows; 1912.7 (start), 1910.4 (10 min), 1910.2 (20 min), and 1910.2 cm⁻¹ (50 min). This result showed thermal rearrangement was also possible to give the rearranged product CpFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃.

Thermal Reaction of CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃ in the Presence of PPh₃: Formation of CpFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃. A 30-mL THF solution of CpFe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 1.60 g (4.2 mmol), and PPh₃, 1.32 g (5.0 mmol), was refluxed, and the reaction was monitored by IR spectroscopy. After 22.5 h, all the starting material had disappeared and the solvent was evaporated, and the residue was chromatographed on a silica gel column. Elution by hexane/ $\rm CH_2Cl_2~(3:1)~gave~CpFe(CO)(PPh_3)COCH_2SiMe_2SiMe_2SiMe_3 as an orange solid, 1.2 g (1.87 mmol, 44.5%). An analytical sample was obtained by recrystallization from a <math display="inline">\rm CH_2Cl_2/hexane$ solvent system.

Thermal Decarbonylation of CpFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃. A solution of CpFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃, 50 mg (0.078 mmol), in 10 mL of hexane was refluxed, and the progress of the reaction was monitored by IR spectroscopy. Initially, a pair of small ν (CO) bands appeared at 2010.6 and 1959.6 cm⁻¹, which could be assigned to CpFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃. The reaction was very slow, and after refluxing for 40 h, the solvent was changed to cyclohexane to achieve a faster reaction rate. After an additional 35 h of refluxing in cyclohexane, in addition to the bands assignable to CpFe(CO)(PPh₃)COCH₂SiMe₂SiMe₂SiMe₃ and CpFe-(CO)₂CH₂SiMe₂SiMe₃SiMe₃ (nearly equal peak size) a small band appeared at 1910.3 cm⁻¹, assignable to CpFe(CO)(PPh₃)-SiMe₂CH₂SiMe₂SiMe₃. We made no attempt to separate the mixture.

Photochemical Decarbonylation of CpFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃. CpFe(CO)(PPh₃)-COCH₂SiMe₂SiMe₂SiMe₃ (100 mg, 0.156 mmol) in 0.3 mL of C₆D₆ was photolyzed in a sealed Pyrex NMR tube. The progress of the reaction was monitored by ²⁹Si NMR spectroscopy. After 1 h of irradiation, the NMR spectrum showed the presence of starting material (about 50% conversion), CpFe(CO)(PPh₃)-CH₂SiMe₂SiMe₃, CpFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃, and CpFe(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃. After an additional 4 h of irradiation, only CpFe(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃SiMe₃ was observed by ²⁹Si NMR spectroscopy. IR spectroscopy of this solution showed CpFe(CO)(PPh₃)SiMe₂CH₂SiMe₂SiMe₃SiMe₃ was the main product, along with trace amounts of [CpFe(CO)₂]₂.

Synthesis of $Cp^*Fe(CO)_2CH_2SiMe_2SiMe_3SiMe_3$. To an ice-cooled solution of $Cp^*Fe(CO)_2$ -Na⁺ prepared from Hg (3 mL), Na (0.38 g, 17 mmol), and $[Cp^*Fe(CO)_2]_2$ (1.2 g, 24 mmol) in THF (60 mL) was added $ClCH_2SiMe_2SiMe_2SiMe_3$ (1.2 g, 50 mmol). After the mixture was stirred at room temperature overnight, THF was evaporated in vacuo and the residue was extracted with hexane (50 mL). Evaporation of the hexane gave a yellow oil, 0.8 g (18 mmol, 37.5%). An analytical sample was purified by silica gel column chromatography, eluting with hexane.

Thermal Reaction of Cp*Fe(CO)₂CH₂SiMe₂SiMe₂SiMe₃. A hexane solution of Cp*Fe(CO)₂CH₂SiMe₂SiMe₂SiMe₃ was refluxed and monitored by IR spectroscopy. The IR spectrum changed gradually to that of $[Cp*Fe(CO)_2]_2$, and after 50 h the conversion was complete. No other $\nu(CO)$ bands were observed during this process.

Photolytic Isomerization of Cp*Fe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃. A solution of Cp*Fe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃, 0.4 g (0.89 mmol), in 0.5 mL of C₆D₆ was photolyzed in a sealed Pyrex NMR tube. The progress of the reaction was checked by NMR spectroscopy at 1 h. No starting material was observed, and ¹H, ¹³C, and ²⁹Si NMR signals assignable to a single product, Cp*Fe(CO)₂SiMe₂CH₂SiMe₂SiMe₃, were observed. The product was purified by silica gel column chromatography. Elution of the yellow band with hexane gave a yellow oil, 0.35 g (0.78 mmol, 87.5%), which solidified in the refrigerator.

Attempted Synthesis of IndFe(CO)₂CH₂SiMe₂SiMe₂SiMe₃: In Situ Conversion to IndFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃. To an ice-cooled solution of [IndFe(CO)]⁻Na⁺ prepared from Hg (4 mL), Na (0.4 g, 17 mmol), and [IndFe(CO)₂]₂ (2.0 g, 44 mmol) in 60 mL of THF was added ClCH₂SiMe₂SiMe₂SiMe₃ (1.9 g, 80 mmol). The reaction mixture was stirred overnight, and after removal of the solvent in vacuo, the residue was extracted with hexane (70 mL). Removal of hexane in vacuo yielded a brown liquid whose infrared spectrum exhibited two sets of two $\nu(CO)$ signals (2006.1 and 1953.7 cm⁻¹; 1993.3 and 1941.7 cm⁻¹) and whose ²⁹Si NMR spectrum exhibited two sets of three signals (δ -48.44, -16.14 and -4.17; $\delta -19.44$, -18.11 and 50.35). These spectral data indicated two main products, assignable to IndFe- $(CO)_2CH_2SiMe_2SiMe_2SiMe_3$ and IndFe $(CO)_2SiMe_2CH_2SiMe_3$ 2SiMe₃, respectively. The ratio varied from 40:60 to 10:90 depending on the minor change of the reaction conditions since the rearrangement process is quite facile. After passing through a silica gel column, 2.5 cm \times 20 cm and eluting with hexane, a

mixture of the two compounds was obtained, 1.2 g (28 mmol, 35%).

The mixture of the two compounds (ratio 40:60), 0.8 g (1.9 mmol), was dissolved in 50 mL of hexane, and the solution was heated to reflux. The reaction was monitored by IR spectroscopy, and after 2 h only the rearranged product was observed. After passing through a silica gel column, 2.5 cm \times 12 cm, the product IndFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃, 0.5 g (1.2 mmol, 63%), was isolated.

In a separate experiment, the crude mixture, 0.5 g, was dissolved in 25 mL of hexane and the solution was irradiated in a Pyrex tube, 1 cm × 15 cm, for 1 h. NMR and IR analysis showed complete transformation to IndFe(CO)₂SiMe₂CH₂SiMe₂SiMe₃. In Situ Reaction of $[(\eta^5-Ind)Fe(CO)_2]^Na^+$, ClCH₂SiMe₂SiMe₂SiMe₃, and PPh₃. To $[(\eta^5-Ind)Fe(CO)_2]^Na^+$ prepared from Hg (4 mL), Na (0.3 g, 0.013 mol), and $[(\eta^5-Ind)-Fe(CO)_2]_2$ (2 g, 4.4 mmol) in THF (60 mL) was added PPh₃ (2.1 g, 8.0 mmol). After 1 h of stirring, the solution was cooled in an ice bath and ClCH₂SiMe₂SiMe₂SiMe₃SiMe₃ (2.0 g, 8.4 mmol) was added. After an additional 4 h of stirring, THF was removed in vacuo, the residue was dissolved in dichloromethane, and the product was purified by silica gel column chromatography. Elution with

CH₂SiMe₂SiMe₂SiMe₃ 1.4 g (0.0020 mol, 23.8%). Thermal Decarbonylation of IndFe(CO)(PPh₃)-CO-CH₂SiMe₂SiMe₂SiMe₃. A 10-mL hexane solution of (η^{5} -Ind)-Fe(CO)(PPh₃)-CO-CH₂SiMe₂SiMe₂SiMe₃ (0.05 g, 0.072 mmol) was refluxed and monitored by IR spectroscopy. After 5 days, the starting material had almost disappeared. A new infrared band at 1910.4 cm⁻¹ was observed, assignable to IndFe(CO)-(PPh₃)SiMe₂CH₂SiMe₂SiMe₃. The product was purified by silica gel column chromatography, 0.03 g (0.045 mmol, 62.5%). During the reaction, infrared monitoring showed the presence of a pair of weak ν (CO) bands assignable to IndFe-(CO)₂CH₂SiMe₂SiMe₂SiMe₃. No other bands were observed.

 $CH_2Cl_2/Hexane$ (1:1) gave $(\eta^5-Ind)Fe(CO)(PPh_3)-CO-$

Photochemical Decarbonylation of $IndFe(CO)(PPh_3)-CO-CH_2SiMe_2SiMe_2SiMe_3$. A solution of $(\eta^5-Ind)Fe(CO)-(PPh_3)-CO-CH_2SiMe_2SiMe_2SiMe_3 (0.05 g, 0.072 mmol) dissolved in C₆D₆ (4 mL) was irradiated in a sealed NMR tube. The reaction was monitored by ²⁹Si NMR spectroscopy. After 1.5 h of irradiation ²⁹Si NMR spectroscopy showed no starting material remained. The product was purified by silica gel column chromatography; elution with CH₂Cl₂/Hexane (1:1) gave IndFe-(CO)(PPh_3)SiMe₂CH₂SiMe₂SiMe₃, the same product as thermal decarbonylation.$

Synthesis of $CpFe(CO)_2CH_2SiMe(SiMe_3)_2$. To an ice-cooled solution of $[CpFe(CO)_2]^-Na^+$ prepared from Hg (2 mL), Na (300 mg, 13 mmol), and $[CpFe(CO)_2]_2$ (2.0 g, 6.6 mmol) in THF (20 mL) was added $ClCH_2SiMe(SiMe_3)_2$ (2.27 g, 0.0095 mol). The reaction mixture was stirred at room temperature for 30 min, and the solvent was removed in vacuo. The orange-red residue was purified by silica gel column chromatography; eluting with hexane gave $CpFe(CO)_2CH_2SiMe(SiMe_3)_2$, 2.6 g (6.8 mmol, 72.0%), as an orange oil.

Photolysis of CpFe(CO)₂CH₂SiMe(SiMe₃)₂ in Hexane. A solution of CpFe(CO)₂CH₂SiMe(SiMe₃)₂, 301 mg (0.792 mmol), in hexane (30 mL) was photolyzed in a 2.0-cm × 30-cm Pyrex tube. The reaction was monitored by IR spectroscopy, and after 20 min of irradiation, conversion was 100%, and the new ν (CO) bands were 1997.7 and 1944.4 cm⁻¹, assignable to the presence of a complex containing an Fe–Si bond, CpFe(CO)₂–SiR₃. An additional 10 min of irradiation (total 30 min) did not change the IR spectrum. After removal of the solvent in vacuo and passing through a silica gel column, ¹H and ²⁹Si NMR spectra showed the products were CpFe(CO)₂SiMe₃ and CpFe(CO)₂SiMe₂CH₂SiMe₃ (about 60:40 ratio).⁷

Photolysis of CpFe(CO)₂CH₂SiMe(SiMe₃)₂, Monitored by NMR Spectroscopy. A solution of CpFe(CO)₂CH₂SiMe(SiMe₃)₂, 104 mg (0.27 mmol), in C₆D₆ (0.3 mL) in a 5-mm Pyrex NMR tube was photolyzed, and the reaction was monitored by ²⁹Si NMR spectroscopy. After 5 min of irradiation, only the photoproducts CpFe(CO)₂SiMe₃ and CpFe(CO)₂SiMe₂CH₂SiMe₃ were observed besides starting material. No peaks assignable to postulated intermediate CpFe(CO)₂-SiMe(SiMe₃)CH₂-SiMe₃ were observed, although small unknown resonances appeared and disappeared. We have been unable to identify the source of these resonances. Synthesis of Cp*Fe(CO)₂CH₂SiMe(SiMe₃)₂. To an icecooled solution of $[Cp*Fe(CO)_2]$ -Na⁺ prepared from Hg (4 mL), Na (0.3 g, 13 mmol), and $[Cp*Fe(CO)_2]_2$ (1.5 g, 3.0 mmol) in THF (50 mL) was added ClCH₂SiMe(SiMe₃)₂ (1.35 g, 5.7 mmol). The reaction mixture was stirred at room temperature overnight. THF was removed in vacuo, and subsequent to extraction into 50 mL of hexane, the residue was purified by silica gel column chromatography. Elution with hexane gave pure Cp*Fe-(CO)₂CH₂SiMe(SiMe₃)₂ (30%) as a yellow orange oil.

Photolysis of Cp*Fe(CO)₂CH₂SiMe(SiMe₃)₂. A solution of Cp*Fe(CO)₂CH₂SiMe(SiMe₃)₂ in C₆D₆ in a NMR tube was photolyzed, and the reaction was monitored by ²⁹Si NMR spectroscopy. After 1 h of irradiation, ²⁹Si NMR spectroscopy showed a complex mixture, composed of starting material Cp*Fe(CO)₂CH₂SiMe(SiMe₃)₂ (δ -33.65, -16.72), final products Cp*Fe(CO)₂SiMe₃ (δ 40.13) and Cp*Fe(CO)₂SiMe₂CH₂SiMe₃ (δ

0.37, 42.0),^{6b} and reactive intermediates and/or unstable byproducts with resonances at δ -13.17 (or -11.30), 1.50 (or 0.52), and 14.95 that were tentatively assignable to intermediate Cp*Fe-(CO)₂SiMe(SiMe₃)CH₂SiMe₃, which could be degraded to each of the two final products. After 8.5 h of irradiation only the two final products were found besides broad signals at $\delta \simeq$ -16, and $\simeq 0$ assignable to polymeric materials.

Acknowledgment. Support of this research by the Robert A. Welch Foundation, Houston, TX, and by DOD Grant DN-009, Defense Logistics Agency, Directorate of Stockpile Management, administered by the University of Texas at El Paso, Institute of Manufacturing and Materials Management, is gratefully acknowledged.

OM9107606

Phosphinomethyl Complexes of Niobocene

David R. Tueting, Marilyn M. Olmstead, and Nell E. Schore*

Department of Chemistry, University of California - Davis, Davis, California 95616

Received November 29, 1991

Reaction of LiCH₂P(C₆H₅)₂ with Cp₂NbCl₂ gives paramagnetic Cp₂Nb[CH₂P(C₆H₅)₂]₂ (1); Cp₂Nb-(Cl)CH₂P(C₆H₆)₂]₂ (4) is observed only as an unstable intermediate. Oxidation of 1 by AgBF₄ gives Cp₂Nb[CH₂P(C₆H₄)₂]₂+BF₄⁻ (6); reduction by Na/C₁₀H₈ gives Na⁺[Cp₂Nb[CH₂P(C₆H₄)₂]₂]⁻ (5), both isolable in analytically pure form as stable, diamagnetic solids. The anion of the latter crystallizes as its Na(18-crown-6)(THF)₂+ salt in the monoclinic space group C2/c with cell parameters a = 27.088 (15) Å, b = 9.560 (5) Å, c = 25.903 (14), $\beta = 126.19$ (3)°, and Z = 4. The structure was refined to R = 0.044 and $R_w = 0.046$ using 3493 uniquely observed reflections. Reaction of 1 with (C₇H₈)Mo(CO)₄ gives Cp₂Nb[μ -CH₂P-(C₆H₅)₂]₂Mo(CO)₄ (7), which crystallizes in the monoclinic space group P2₁/n with cell parameters a = 13.401 (5) Å, b = 17.188 (5) Å, c = 19.768 (6), $\beta = 99.25$ (3)°, and Z = 4. The structure was refined to R = 0.081 and $R_w = 0.085$ using 1851 uniquely observed reflections. Both 5⁻ and 7 possess pseudotetrahedral Nb atoms, the latter octahedral Mo. Both Nb and Na in 5 lie on crystallographic 2-fold axes; no interaction between Nb and P is evident. The C-Nb-C angles to the phosphinomethyl groups are found to be 74.2 (2)° in 5⁻ (d² Nb), ca. 80-85° in 1 (d¹ Nb, estimated from ESR data), and 90.4° in 7 (d¹ Nb).

Introduction

The phosphinomethyl ligand, R_2PCH -, has proved to be a source of interesting and, in several cases, quite unusual chemistry, especially upon attachment to early transition metals. We and others have explored both mono- and dinuclear complexes of this ligand with group 4 metals,¹⁻³ as well as with metals in groups 8–10.⁴ We anticipated that attachment of R_2PCH_2 - to a group 5 metal such as niobium might lead in several directions

(3) Karsch, H. H.; Müller, G.; Krüger, C. J. Organomet. Chem. 1984, 273, 195. Engelhardt, L. M.; Jacobsen, B. E.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commum. 1984, 220.

Z75, 195. Engeinardt, L. M.; Jacobsen, B. E.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commum. 1984, 220.
(4) Bresciani, N.; Calligaris, M.; Delise, P.; Nardin, G.; Randaccio, L. J. Am. Chem. Soc. 1974, 96, 5642. Rathke, J. W.; Muetterties, E. L. J. Am. Chem. Soc. 1975, 97, 3272. Karsch, H. H.; Klein, H. F.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1975, 14, 637. Lindner, E.; Neese, P.; Hiller, W.; Fawzi, R. Organometallics 1986, 5, 2030. See also: Karsch, H. H.; Zellner, K.; Mikulcik, P.; Lachmann, J.; Müller, G. Organometallics 1990, 9, 190.

unavailable to the group 4 analogues due in part to the availability of three rather than two readily accessible oxidation states. We herein describe the preparation and properties of the first such systems, phosphinomethyl derivatives of niobocene, including the structural characterization of a cyclic niobium-containing heterobimetallic lacking a metal-metal bond.

Results and Discussion

Phosphinomethyl Nb(IV) Derivatives. Addition of 2 equiv of either LiCH₂P(C₆H₄)₂ or its TMEDA complex to Cp₂NbCl₂ (Cp = η^{5} -C₅H₅) at 20 °C leads to ca. 65% isolated yields of analytically pure Cp₂Nb[CH₂P(C₆H₅)₂]₂ (1) as a thermally stable but air-sensitive tan solid (eq 1).

Spectroscopic characterization is limited to ESR analysis at ambient temperature: the paramagnetic Nb(IV) center gives rise to a 10-line pattern (93 Nb, $I = ^{9}/_{2}$, 100%) centered about g = 1.99 with $a(^{93}$ Nb) = 90.0 G. In toluene, further (poorly resolved) splitting is observed for the four equivalent methylene hydrogens with $a(^{1}$ H) ≈ 7 G. These values compare well with other dialkylniobocenes, e.g. for Cp₂Nb(CH₃)₂, g = 1.998, $a(^{93}$ Nb) = 88.8 G, and $a(^{1}$ H) =

0276-7333/92/2311-2235\$03.00/0 © 1992 American Chemical Society

^{(1) (}a) Schore, N. E.; Hope, H. J. Am. Chem. Soc. 1980, 102, 4251. (b) Schore, N. E.; Young, S. J.; Olmstead, M. M.; Hofmann, P. Organometallics 1983, 2, 1769. (c) Young, S. J.; Hope, H.; Schore, N. E. Organometallics 1984, 3, 1585. (d) Young, S. J.; Olmstead, M. M.; Knudsen, M. J.; Schore, N. E. Organometallics 1984, 4, 1432. (2) Schore, N. E. Pardrianalimenana G. Theres A. Kalab. D. Charle

⁽²⁾ Senocq, F.; Randrianalimanana, C.; Thorez, A.; Kalck, P.; Choukroun, R.; Gervais, D. J. Chem. Soc., Chem. Commum. 1984, 1376. Etienne, M.; Choukroun, R.; Basso-Bert, M.; Dahan, F.; Gervais, D. Nouv. J. Chem. 1984, 8, 531. Senocq, R.; Basso-Bert, M.; Choukroun, R.; Gervais, D. J. Organomet. Chem. 1985, 297, 155. Choukroun, R.; Gervais, D.; Jaud, J.; Kalck, P.; Senocq, F. Organometallics 1986, 5, 67. Choukroun, R.; Iraqi, A.; Gervais, D.; Daran, J.-C.; Jeannin, Y. Organometallics 1987, 6, 1197. Choukroun, R.; Dahan, F.; Gervais, D.; Rifai, C. Organometallics 1990, 9, 1982.