

The retention of the [Ni(S,C)] core in the course of cleavage reactions according to *eq* **2** demonstrata the high stability of the Ni-C(carbene) bond. It *can* be attributed to several facts. The carbene C atom carries two N substituents, as in the case of "Wanzlick"¹⁰ and "Arduengo" carbenes¹¹ or in Lappert-type carbene complexes.¹² Furthermore, the carbene donor is part of a tridentate ligand, and the Ni center in the $[Ni(S_2C)]$ fragment is coordinated by two thiolate donors. These donors *can* act, via their lone pairs, as π -donors to the nickel center, increasing the electron density at the nickel and **as** a consequence thereof also the π -back-bonding from nickel to the carbene ligand. The π -donor bonds from thiolate donors to nickel and the resulting double-bond character of the Ni-S bonds are indicated by the Ni-S distances within the $[Ni(S_2C)]$ fragments, which are relatively short when compared with the Ni-S distances in the thiolate bridges.

Formation of $S \rightarrow Ni \pi$ -donor bonds is expected to reduce the Lewis basicity of the thiolate S atoms, and thie explains, at least partly, the complete inertness of **2** toward protonic acids. While metal thiolate complexes usually react with protonic acids to decoordinate the thiolate ligands,¹³ 2 is stable even toward concentrated H_2SO_4 , aqueous HCl, or solutions of gaseous HC1 in boiling THF.

The present work has shown that highly stable Ni(I1) carbene complexes can formed by reaction of C_1 sources, thiolate amine ligands, and Ni(1I) **salta.** The question **as** to whether analogous reactions occur in the course of $CO₂/CO$ conversion or $CH₄$ formation in CO dehydrogenases still remains open. Further investigations have shown that palladium and platinum form analogous complexes.

Acknowledgment. We gratefully acknowledge the support of this research by the Deutache Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Bundesministerium fur Forschung und Technologie.

Supplementary Material Available: **Tablea** of crystal **data** and details of the structure solution and refinement, positional and thermal parametera, and bond diatancea and **anglea (6 pages).** Ordering information is given on any current maathead page.

OM9201340

Synthesis, Structure, and Reactivlty of the First Dlazagermocines

Santiago García Granda.[§] and Pilar Pertierra[§] **José Barluenga, *·[†] Miguel Tomás,[†] Alfredo Ballesteros,[†] Jian-She Kong,[†]·[‡]**

Departamento de Qdmica Olganometilica and Departamento **de** *Qdmica Fha y Anakica, Facultad de Quimica, Universidad de Oviedo, 33071-Oviedo, Spain*

Received February 25, 1992

Summary: **New 1,3,2diazagermines 2, formed by reaction of 4-amino-l-azabutadienes 1 and diethyl- or diphenylgermanium dichloride, react with dimethyl acety**lenedicarboxylate to yield novel 1,5,2-diazagermocines 3 **in quantitative yield; the crystal structure of 3a has been determined. The behavior of 8 toward hydrolysis and heating is also reported.**

The chemistry of organosilicon compounds has been widely developed over the last few decades,¹ and the silicon amides in particular represent very useful species in organic synthesis.2 For instance, we have been able to

For isolated compounds 3a-d yields from **1 >95%** according to NMR spectra of the crude reaction mixtures. ^bRecrystallized from hexane-dichloromethane. ^{*c*} Not isolated (see text).

successfully exploit the reactivity of the nitrogen-silicon bond of 1,3,2-diazasilines toward esters of acetylenedi-

^{(10) (}a) Wanzlick, H.-W. Angew. Chem. 1962, 74, 129. (b) Cetinkaya, E.; Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Spyropoulos, K. J. Chem. Soc., Perkin Trans. 1 1992, 561.

(11) Arduengo, A. J.; Harlow, R. L.; Kline,

^{113, 361.}

^{(12) (}a) Lappert, M. F.; Dye, P. L. J. Chem. Soc., Dalton Trans. 1977,
2172. (b) Lappert, M. F. J. Organomet. Chem. 1975, 100, 139. (c)
Coleman, A. W.; Hitchcock, P. B.; Lappert, M. F.; Maskell, R. K.; Müller, J. C. J. Organomet. Chem. **1985,296,173.**

⁽¹³⁾ (a) **Sellmann,** D.; ReieSer, W. *2.* Natwforsch. **1984,39E, 1268.** (b) Sellmann, D.; Reiaeer, W. *J.* Organomet. **Chem. 1986,294,333.**

[†] Departamento de Quimica Organometálica.

^{*} Permanent address: Department of Chemistry, Nankai University, People's Republic of China.

t Departamento de Quimica Fiaica y Analhica.

^{(1) (}a) Colvin, E. W. Silicon in Organic Synthesis; Butterworths:
London, 1981. (b) Weber, W. P. Silicon Reagents for Organic Synthesis;
Springer: New York, 1983. (c) Colvin, E. W. In Silicon Reagents in Springer: New York, 1983. (c) Colvin, E. W. In Silicon Reagents in Organic Synthesis; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: London, **1988.**

⁽²⁾ For **instance,** *see:* (a) Corriu, R. J. P.; Morenu, J. J. E.; Pataud-Sat, M. J. Org. Chem. **1990,55,2878.** (b) Shanzer, **A.** Angew. *Chem.,* Int. Ed. Engl. **1980,19,327;** Angew. *Chem.* **1980, S2,325. (c)** Cninslli, **G.; Panunzio,** M. J. Am. *Chem.* SOC. **1988,110,6879.** (d) Colvin, **E. W.;** McGarry, D.; Nugent, M. J. Tetrahedron **1988,44,4157.** (e) Burnr, **5.** A.; Corriu, R. J. P.; Huynh, V.; Moreau, J. J. E. J. Orgonomet. *Chem.* **1987,333,281.** *(0* Corriu, R. J. P.; Moreau, J. J. E.; Vemhet, C. Tetrahedron Lett. **1987, 28,2963.**

Figure 1. PLUTO plot of the structure of 3a, showing the atomic numbering of the eight-membered ring.

carboxylic acid in the synthesis of silicon-substituted 1,5-diazocines and furo $[1,4-b]$ diazepines $(eq 1)^3$ In sharp

contrast to silicon, much less attention **has** been paid to the synthesis and reactivity of organogermanium compounds.^{4,5} Continuing our interest in the chemistry of metal amides, we describe herein the first synthesis of 1,5,2-diazagermocines 3 from diazagermines **2, as** well **as** their characterization and chemical reactivity.

First, 1,3,2-diazagermines **2,** a new type of germaniumcontaining heterocycle? were prepared from 4-amino-lazabutadienes **1** and diethyl- or diphenylgermanium dichloride in the presence of 1,8-diazabicyclo^{[5.4.0]undec-} 7-ene **(DBU);** although compounds **2** *can* be characterized by **NMR** spectroscopy, they were formed in situ and **al**lowed to react at 25 °C with dimethyl acetylenedicarboxylate (DMAD). Interestingly, insertion of the activated acetylene into the reactive germanium-nitrogen bond^{7,8} occurred and novel 1,5,2-diazagermocines 3a-d

(4) (a) RiviBre, P.; Riviare-Baudet, **M.;** Satg6, J. In *Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 2, p 399. (b) Satgé, J. <i>J. Organomet. Chem.* **1990**, 400, 121. *Chem. loss of organogermanium compounds, see:*
 CD. For the biological activity of organogermanium compounds, see:

(5) For the biological activity of organogermanium compounds, **see:** (a) Thayer, J. **5.** *Appl. Organomet. Chem.* **1987,1,227.** (b) Keppler, B. K. *New* J. *Chem.* **1990,14,389.**

(6) For the first diazagermoles reported, see: Bootz, K.; Neumann, W. P. *Tetrahedron Lett.* **1989,30, 6669.**

were produced **as** yellow solids in apparently quantitative yield and high purity **(>95%** according to **NMR;** Scheme I, Table **I)?** The structure of 3 was assigned on the basis of spectral evidence and confirmed by the single-crystal X-ray diffraction study of **3a** (Figure 1).l0

Because of the ease with which diazagermocines 3e,f (\mathbb{R}^2 = \mathbb{R}^3 = **H**) undergo further rearrangement even at room

(9) To a eolution of **1 (5** mmol) and DBU **(1.5 mL, 10** "01) **in** toluene **(40 mL)** was slowly added a eolution of substituted dichlorogermanium temperature. The hydrochloride salt formed was filtered off and the filtrate treated with dimethyl acetylenedicarboxylate (0.85 g, 6 mmol) at 25 °C for 24 h. The mixture was evaporated under reduced pressure to *furnieh* pure, **&sensitive** compounds **3a-d.** For **analytical** purpoees **3a-c** were *recryatallizd* from hexane-dichloromethane **(41** v/v). **Spectral data** for **3c: IR** (KBr) *v(C=O)* **1726** *cm-';* 'H *NMR* **(300** *MHz,* CDClA **d 1.1-1.9** (m, **20** H), **1.8 (a, 3** H), **2.2-2.4** (m, **1 H), 3.8 (8, 6 H), 6.6-6.7** (m, **2** H), **7.0-7.25 (m, 6 H), 7.35-7.45 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃)** δ **183.5 (e), 169.5 (e), 163.2 (e), 152.2 (a), 148.0 (a), 140.1 (a), 137.0 (a), 129.5** (d), **128.5** (d), **128.2 (e), 127.6** (d), **127.4** (d), **123.2 (e), 117.7** (d), **116.6** (d), **52.4** (q), **51.8** (q), **46.3** (d), **30.9** (t), **28.5 (t), 26.2 (t), 25.8** (t), **25.3** (t), **17.2** (q), **10.2** (t), **9.0 (q), 8.5** (q), **8.5** (t); EIMS *m/z* **(70** eV) **590** (M+). Anal. Cald C, **65.22;** H, **6.84; N, 4.75.** Found: C, **65.60;** H, **7.05;** N, **4.80.**

(10) Crystal data for compound Ba: *M,* = **597.25,** monoclinic, *P2,/c,* a = **14.613 (9) A,** *b* = **11.663 (3) A, c** = **18.760 (9) A,** *fl=* **98.06 (7)O,** *V* ⁼3165 (6) \mathbf{A}^3 , $Z = 4$, $D_{\text{expl}} = 1.25$ g/cm³, $\mu(\text{Mo Ka}) = 9.88 \text{ cm}^{-1}$, $T = 293$
K, yellow crystal, size 0.26 × 0.20 × 0.13 mm, Mo K α radiation ($\lambda = 0.71073$ Å), graphite monochromator. A total of 6012 reflect unique reflections $(R_{int} = 0.032$, averaging of some doubly measured reflections) and 1569 observed reflections $(I > 3\sigma(I))$. Semiempirical and empirical abaorption corrections were applied. The structure was solved by direct methods **(SHELXSS)** and anisotropically refined, except **C32 (see** supplementary material $R_w = 0.056$ (354 parameters, $R_w = 0.057$, $w = 1/(g^2(F_o) + 0.0009F_o^2)$. The maximum shift/error was 0.3, and the maximum residual electron density was 0.43 e/ \hat{A}^3 . Because of the disorder found,

^{(3) (}a) Barluenga, J.; Tomás, M.; Ballesteros, A.; Gotor, V.; Krüger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. 1986, 25, 181; Angew. Chem.
1986, 98, 190. (b) Barluenga, J.; Tomás, M.; Ballesteros, A.; Kong, J.-S.; Garc **1991**, 353. (c) Barluenga, J.; Tomās, M.; Ballesteros, A.; Kong, J.-S. *Synthesis* **1992**, 106.

⁽⁷⁾ For insertion of DMAD in germylamines, see: Rivière-Baudet, M.; Satgé, J. *J. Organomet. Chem.* **1973**, 56, 159.

(8) In contrast, insertion of DMAD into the nitrogen-germanium bond

of 4,5-unsubstituted 1,3-diazagermacyclopent-4-enes does not take place,
but rather a [2 + 2] cycloaddition (enamine-like reactivity) followed by electrocyclic ring opening leading to 1,3-diaza-2-germacyclohepta-4,6dienee *occurs?*

temperature **(see** below), they were not **isolated,** but their structure was supported by hydrolysis. **Thus,** evidence for the presence of **31** came from the fact that the dihydropyrimidine **4b** $(R^1 = Bu, R^2 = R^3 = H, R^4 = 4 \text{-MeC}_6H_4)$ was obtained (oil, 93% yield from 1) when the reaction of the corresponding diazagermine **2** with DMAD was conducted at -20 °C followed by addition of water;¹¹ in the same way, the isolated diazagermocine 3a furnished 4a (\mathbb{R}^1) $= 4-MeC_6H_4$, $R^2 = R^4 = Ph$, $R^3 = Me$; **oil**, 95% yield) on treatment at room temperature for 2 h with tetrahydrofuran-water (Scheme II).¹²

Finally, the behavior of 3 toward heating was tested.
First, diazagermocine 3c ($R^1 = R^2 = Ph$, $R^3 = Me$, $R^4 =$ c-C₆H₁₁) at 70 °C underwent nitrogen-germanium bond cleavage and rearrangement to yield, aftar acidic aqueous workup, the new germanium-substituted diazocine **6** (mp 150-162 "C) in *84%* yield13 along with an unidentified minor compound *(ca.* 10%). On the other hand, when the intermediatee *38,f* were formed at 25 "C, they rearranged under the reaction conditions to **afford** in high yield new germanium-substituted furo[1,Cbldiazepines **6a** (mp 151-153 **"C,** 93% yield) and **6b** (mp 65-67 **"C,** 88% yield), which were degermylated with trifluoroacetic acid to form the previously reported heterocycles^{3c} 7a (90% yield from

(12) The formation of heterocycles **4** doea not **take** place by reaction of **1** with DMAD; **see:** (a) Barluenga, J.; Fustero, S.; Gotor, V. *Synthesis* **1975,191.** (b) Barluenga, **J.; To-, M.;** Fustero, S.; **Gotor,** V. *Synthesis* **1979,346.**

(13) A solution of **3c (0.29** g, 0.6 "01) **in** toluene **(16 mL)** was heated at **70** OC for **24** h. **Then,** the mixture was poured **into** ice-cooled **1 M** H_2SO_4 (10 mL), extracted with ether $(2 \times 10 \text{ mL})$ washed with water, and dried over sodium sulfate. Removal of solvents followed by column chromatography furnished 5 (0.24 g, 84% yield). Further recrystallization chromatography furnished 5 (0.24 g, 84% yield). Further recrystallization
from hexane-ether (2:1 v/v) gave a pure analytical sample. Spectral data
c.s. F. The *see all also* and the second list and *see all also* and the s For S: IR (KBr) $p(\text{C}=0) = 1730, 1710 \text{ cm}^{-1}$; H NMR (300 MHz, CDCl₃)
6 0.7 (t, 3 H, J = 7.1 Hz), 1.0-1.2 (m, 7 H), 1.25-1.35 (m, 4 H), 1.6-1.9 (m, $(0.17 \text{ (t, 3 H, J = 7.1 Hz)}, 1.0-1.2 \text{ (m, 7 H)}, 1.25-1.36 \text{ (m, 4 H)}, 1.6-1.9 \text{ (m, 1 H)}, 2.1 \text{ (s, 3 H)}, 3.2 \text{ (s, 3 H)}, 3.6 \text{ (s, 3 H)}, 6.9-7.4 \text{ (m, 10 H)}, 3.7 \text{ (m, 11 H)}, 3.8 \text{ (s, 3 H)}, 3.9 \text{ (s, 147.9 (s), 143.2 (s), 137.1 (s), 136.3 (s), 131.$ C, **64.73;** H, **6.66; N, 4.87.** Found C, *64.86;* H, **6.75;** N, **4.70.**

1) and $7b$ $(82\%$ yield from 1), respectively.¹⁴ From a synthetic point of view, the preparation of seven-membered heterocycles **7** from azadienes 1 is best accomplished in terms of yield and reaction conditions by using germanium derivatives instead of the silicon analogues (e.g., for compound **7a** 25 "C, **90%** yield vs **60** "C, 72% yield).

In summary, we have developed a simple and quantitative entry to 1,5,2-diazagermocines **3,** a new class of germanium-containing heterocycles, based on the reactivity of the nitrogen-germanium bond toward dimethyl acetylenedicarboxylate. On the other hand, the thermal behavior of **3** enabled us **to** cleanly obtain important medium-ring heterocycles with a germanium appendage.¹⁵ Finally, we have found that the reactivity of the nitrogen-germanium **bond** toward insertion **into** activated triple bonds, e.g. DMAD, is higher than that of the nitrogensilicon bond.

Acknowledgment. This work was supported **ip** part by the Dirección General de Investigación Científica y Técnica (DGICYT, PB88-0500). J.-S.K. thanks the Ministerio de Educacidn y Ciencia for a fellowship.

Supplementary Material Available: Cryetal structure data for **3a, including** tablea of poeitional and thermal parameters, bond lengths and angles, least-squares planes, and torsion angles, an additional view of the structure of **3a,** text giving details of the **syntheaea** of **2-7,** and tables of spectral and analytical data for 3-6 (16 pages). Ordering information is given on any current masthead page.

OM9201021

(16) Heterocyclic compounds **containing** trialkylgermanium subetitu**enta** have **been** reported to show antitumor activity.&

 (11) A solution of 2 (1 mmol), prepared as above⁹ from 1 ($R^1 = Bu$, $R^2 = R^3 = H$, $R^4 = 4 \text{MeC}_6 H_5$) and Ph₂GeCl₂, was treated with DMAD at **-20** OC for **18** h. **Then,** cold water **(10 mL)** was added; the mixture was extracted with ether **(2 X 10 mL)** and dried over **sodium** sulfate. **The** eolventa were evaporated at reduced pressure, and the residue was chromatographed **(silica** gel, hemu-ther **1:l** v v) **to** give **4b as** a yellow cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.95 (t, 3 H, $J = 7.1$ Hz), 1.25–1.4 (m, 2 H), 1.55–1.7 (m, 2 H), 2.35 (s, 3 H), 3.1–3.3 (m, 4 H), 3.7 (s, 3 H), 3.8 (s, 3 H), 5.5 (d, 1 H, $J = 7.6$ Hz), 6.7 (d, 1 H, $J = 7.6$ Hz), **oil (0.33 g, 93%** yield). **Spectral** data for **4b** *Ici* (neat) *v(C-0)* = **1735** *^J*= **8.2** *Hz).* **7.7** (d. **2** H. J **8.2** *Hz): 'gC* **NMR (76** *MHZ.* CDC13 **6 171.0 (e), 170.4** *(E),* **162.2 (a), 144.1** (d), **139.7 (a), 136.0 (e), 128.7** (d), **k.8** (d), **91.7** (d), 80.0 **(a), 52.6 (q), 61.7 (q), 60.3** (t), **40.8** (t), **32.3** (t), **21.2 (q), 19.8** *v* = 8.2 Hz), i . *i* (a, 2 H, $J = 8.2$ Hz); ²°C NMR (76 MHz, CDCl₃) *δ* 171.0
(s), 170.4 (s), 162.2 (s), 144.1 (d), 139.7 (s), 135.0 (s), 128.7 (d), 128.8 (d), 17.
(d), 80.0 (s), 52.6 (q), 51.7 (q), 50.3 (t), 40.8 (

 (14) To a solution of 2 $(R^2 = R^3 = H)$ (1 mmol) in toluene (20 mL) , prepared as described above,⁹ was added DMAD (0.16 g, 1.1 mmol), and the **mixture** was stirred at room temperature for *24* h. **The resulting** mixture was poured into ice-cooled 1 M H_2SO_4 (15 mL), extracted with ether **(3 X 15** mL), washed with water, and dried over sodium sulfate. The solvents were evaporated at reduced pressure, and the crude mixture was chromatographed (silica gel; hexane-ether $2:1 \text{ v/v}$) to give $6a,b$ (88-93% yield). Compounds 6 (0.5 mmol) were then treated with trifluoroacetic acid (0.38 mL, 5 mmol) in dichloromethane at room tem-
perature for 12 h. The resulting mixture was diluted with water (15 mL), **extracted with dichloromethane** $(2 \times 15 \text{ mL})$ **, and dried** (Na_2SO_4) **. The** organic layer was evaporated under reduced preesure and the residue subjected to chromatography on silica gel (hexane-ether 3:1 v/v) to yield
compounds $7.^\circ$. Spectral data for $6a$: IR (neat) ν (C-0) = 1730 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.1–1.9 (m, 10 H), 3.2 (s, 3 H), 3.8 (s, 3 H), 4.1–4.2 (m, 1 H), 5.8 (d, 1 H, $J = 9.7$ Hz), 6.85 (d, 2 H, $J = 8.9$ Hz), 6.9 (d, 1 H, $J = 9.7$ Hz), 7.3–7.5 (m, 6 H), 7.7–7.85 (m, 6 H); ¹³C NMR *MHz,* CDCld **d 171.6 (a), 167.2 (a), 166.6 (e), 162.1 (a), 141.2** (d), **136.2 (a), 136.1** (d), **133.7** (d), **133.6** (d), **131.4 (a), 130.0** (d), **129.8** (d), **128.2** (d), **127.2** (d), **113.7** (d), **108.3 (a), 103.9 (a), 96.6** (d), **60.6** (d), **66.3 (q), 49.7 (q), 34.1** (d), 33.3 (t), 25.6 (t), 25.5 (t), 25.1 (t); EIMS m/z (70 eV) 612 (M⁺). Anal.
Calcd: C, 64.85; H, 5.61; N, 4.58. Found: C, 64.69; H, 5.90; N, 4.50.