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Transition-Metal-Substituted Diphosphenes. 29.' Cycloaddition
Reactions of the Diphosphenyl Complex (n°-C;Me;)(CO),Fe-P=P-Mes*
(Mes* = 2,4,6-tBu,C,H,) with Hexafluoroacetone. X-ray Structure
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Summary: The diphosphenyl complex (n°-Cs;Mes)-
(CO),Fe—P=P—Mes* (Mes® = 2,4,6-tBu,C¢H,) un-
dergoes a [3 + 2] dipolar cycloaddition with hexafluoro-
aoetone to give the metalla heterocycle (n°-C;MezXCO)-

e—P(=PMes YOC(CF )20(0) with a remarkably short
Fe—P bond (2.084 (4) i) and an exocyclic P=P bond.
When stored in solution at -40 °C, this complex partly
rearranges to the metalated 1-oxa-2,3-diphosphetane

[————————
(n3-CsMe;XCO),Fe—P—P(Mes *)OC(CF;),. The molecu-
lar structures of both isomers were elucidated by single-
crystal X-ray analyses.

Electron-releasing organometallic complex fragments as
substituents markedly enhance the nucleophilicity of a
diphosphene. In molecules such as (75-C;Me;)(CO)(L)-
M—P=P—R (M = Fe, L = CO, R = 2,4,6-tBuyC.H,-
(Mes*), 2,4,6'(CF3)305}12, 2,6'(CF3)203H3, C(SiMBg)s; M=
Ru,0s,L = CO,R = Mes*; M = Mn, Re, L= NO,R =
Mes*) the HOMO is mainly represented by the lone pair
at the metalated phosphorus atom. This is documented
by a number of reactions of (n°-C;Me;)(CO),Fe—P=P—
Mes* (1) with organic and organometallic electrophiles.
Compound 1 is converted into oxaphospholenes I by
treatment with acrolein, methacrolein, and methyl vinyl
ether.? Azodicarboxylates and azodiamides give rise to
the formation of oxadiazaphospholenes II,® whereas the
reaction of 1 with 1,2,4-triazoline-3,5-diones furnished the
first 1,2-diaza-3,4-diphosphetidines IIL.¢ [2 + 2] cyclo-
additions to 1,2-diphosphetanes IV are observed with fu-
marodinitrile, maleodinitrile dimethyl fumarate, dimethyl
maleate,” and maleimides.® In all these processes we
assume that the ring formation is initiated by the attack
of the lone pair of the metalated P atom at the LUMO of
the electrophile.

The step from electron-poor alkenes and azo compounds
to other electrophiles with heteroatomic double bonds is
obvious. Here we report on the chemical behavior of 1
toward anhydrous hexafluoroacetone, which is known to
undergo oxidative additions to trivalent phosphorus com-
pounds.” Low-coordinated phosphorus systems such as
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iminophosphanes are converted by hexafluoroacetone to
Ab-oxaphosphiranes V (for R = Me,Si)® or to A%-1-0xa-3-
aza-2-phosphetanes VI (for R = alkyl).? A different mode
of reaction, however, is encountered with 1 and the ketone.
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Condensing an excess of gaseous hexafluoroacetone into
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Figure 1. Molecular structure of 3.

Table I. Selected Bond Lengths (A) and Angles (deg) for 3

Fe-P(1) 2,084 (4) P(2)-C(16) 1.860 (13)
Fe-C(11) 1.795 (16) 0(1)-C(11) 1.128 (19)
Fe-C(13) 1.937 (14) 0(2)-C(12) 1.427 (15)
P(1)-P(2) 2.014 (5) 0(3)-C(13) 1.191 (16)
P(1)-0(2) 1.647 (9) C(12)-C(13)  1.640 (19)
Fe-P(1)-P(2) 1403 (2) P(1)-0(2)-C(12) 115.6 (7)
Fe-P(1)-0(2) 109.5 (3) 0(2)-C(12)-C(13) 111.8 (10)
P(2)-P(1)-0(2) 1099 (3) Fe-C(13)-C(12) 116.3 (9)
P(1)-P(2)-C(16) 99.0 (4)  P(1)-Fe—-C(13) 86.4 (4)

a pentane solution of 1 at —196 °C and warming to 20 °C
afforded the cycloadduct 3 as an orange crystalline solid.
No other product could be observed in the reaction mix-
ture by means of 3P NMR spectroscopy, and no inter-
mediate was detected during the course of the reaction.
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The structure of 3 was assigned on the basis of spectral
evidencel® and confirmed by the single-crystal X-ray dif-
fraction study.!! The 3P NMR spectrum exhibits two
doublets at § 483.49 and 180.68 with the large coupling

(10) 3: 'H NMR (100 MHz, C¢Dg) 5 1.33 (s, p-tBu), 1.49 [s, Cs(CHy)s],
1.65 (s, o-tBu), 1.68 (s, 0-tBu), 7.56 (m, m aryl H); °F{'H} NMR (84.2
MHz, n-C;H,,, CFC], standard) 4 -70.55 (q, *Jgr = 7.3 Hz, CF;), -71.35
(q, “Jrr = 7.3 Hz, CF;); *'P{H} NMR (40 MHz, n-C;H,,, 85% H,PO,
;’tabx}ldar;i) 5 483.49 (d, 'Jpp = 633 Hz, Fe-P), 180.68 (d, Jpp = 633 Hz,

-Mes*).

(11) Crystal data for complex 3: space group P2,/c,a = 21.809 (4) A,
b = 10.066 (2) A, ¢ = 16.250 (3) A, 8 = 95.87 (1)°, V = 3560 (2) A%, Z =
4, peated = 1.344 g em™3, Mo Ka (graphite monochromator, A = 0.71073
A), w-scan data collection at 183 K (3.0 < 26 < 50.0°), 6228 unique
reflections, 2383 unique observed reflections (F > 4.00(F)), Siemens P2,
four-circle diffractometer, structure solved by direct methods and re-
finement by full-matrix least squares, with use of the Siemens SHELTXL
PLUS software on a Micro VAXII computer. All non-hydrogen atoms were
refined anisotropically with 232 parameters (hydrogen atoms in calculated
positions riding on the corresponding C atoms), U(H) = 0.08 A2, R =
0./1AO§, R, = 0.072, w! = ¢*(F), and maximum rest electron density 0.88
e/A%
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Figure 2. Molecular structure of 4.

Table II. Selected Bond Lengths (A) and Angles (deg) for 4

Fe-P(1) 2.327 (4) P(1)-C(13)  1.927 (13)
Fe-C(11) 1.779 (15) P(2)-0(3) 1.722 (8)
Fe-C(12) 1.744 (15) 0(3)-C(13)  1.409 (13)
P(1)-P(2) 2.249 (5) 0(1)-C(11)  1.139 (18)
P(2)-C(16)  1.865 (11) 0(2)-C(12)  1.144 (18)
Fe-P(1)-P(2) 110.7 (2) 0(3)-P(2)-C(16)  96.6 (5)
Fe-P(1)-C(13) 118.5 (4) P(1)-Fe-C(11) 103.0 (4
P(1)-P(2)-C(16) 105.9 (4) P(1)-Fe-C(12) 92.0 (5)
P(1)-C(13)-0(3) 102.2 (8) C(11)-Fe-C(12) 90.4 (7)

P(2)-0(3)-C(13) 104.2 (7)

constant 'Jpp = 633 Hz, suggesting the presence of a P—P
double bond in 3. In the 9F NMR spectrum two quartets
at 6 =70.55 and -71.35 (*Jyr = 7.3 Hz) agree with two
magnetically nonequivalent CF; groups with no PF cou-
pling and infer the absence of any direct PC(CF}), linkage.
The appearance of two discrete singlets for the o-tert-butyl
substituents of the Mes* ring in the !H NMR spectrum
at 6 1.65 and 1.68 is due to the chiral Fe center in 3. The
IR spectrum (Nujol mull) displays only one intense band
at » = 1960 cm™ for the stretching mode of one terminal
CO ligand. The acylic carbonyl group gives rise to a band
at 1650 cm™ of medium intensity.

The most interesting feature of the molecular structure
of 3 (Figure 1 and Table I) is the geometry of the nearly
planar five-membered metalla heterocycle (mean deviation
from the plane 0.024 A). The Fe-P bond of 2.084 (4) A
is remarkably short and strongly suggests multiple-bond
contributions. Similarily short Fe-P bond distances were
reported for complexes 5 (2.117 (2) A)!2 and 6 (2.112 (1)
and 2.202 (1) A).3 In 1 the Fe~P contact was determined
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to be 2.260 (1) A.1* The exocyclic P-P bond length (2.014
(5) A) is comparable to the P-P bond in 1 (2.027 (3) A).
The bond length P(1)-0(2) (1.647 (9) A) is shorter than
the sum of the covalent single-bond radii for P (1.10 A)
and O (0.66 A).1> The atoms Fe, P(1), P(2), and O(2) are

(12) Weber, L.; Frebel, M.; Boese, R. New J. Chem. 1989, 13, 303.
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g)cated in the same plane (mean deviation from plane 0.023
).

Crystals of 3 were grown from pentane solutions at —40
°C in several experiments. In one sample after 4 weeks
of crystallization compound 3 decomposed to some extent.
The 3P NMR spectrum displayed a doublet at 6 194.68
(*Jpp = 94 Hz) and a doublet of quartets at 5 136.00 (1Jpp
= 94, 3Jpr = 26 Hz) in addition to the resonances of 3.
Both compounds were present in the ratio 3:4 = 3:1. The
PP coupling constant is consistent with a PP single bond,
whereas the size of the PF coupling suggests the presence
of a PC(CF;), group. Both complexes could not be sepa-
rated on a preparative scale.

A red crystal of 4 was picked out of the crop and sub-
mitted to an X-ray diffraction study (Figure 2 and Table
1I). The analysis shows the presence of an essentially
planar 1-oxa-2,3-diphosphetane (mean deviation from
plane 0.01 A) which is linked to the (»5-C;Me;)(CO),Fe
fragment via an Fe-P single bond (2.327 (4) A). Com-
pound 4 is obviously the result of a formal [2 + 2] cyclo-
addition between 1 and hexafluoroacetone. The P-P bond
of 2.249 (5) A reveals a bond order of unity. In the four-
membered ring the oxygen atom of the ketone is added
to the arylated P atom (P(2)-0(3) = 1.722 (8) A). In
keeping with this, the (CF;),C fragment in 4 is connected

(16) Crystal data for complex 4: space group C2/c, a = 46.97 (3) A,
b=9316 (5) A, c =16.611 (5) A, 8 = 101.52 (8)°, V="T121 (6) A%, Z =
8, Poaled ® 1.344 g cm™3, Mo Ka (graphite monochromator, A = 0.71073
A), w-scan data collection at 179 K (3.0 < 20 < 45.0°), 4661 unique
reflections, 2143 unique observed reflections (¥ > 4.0¢(F)), Siemens P2,
four-circle diffractometer, structure solved by direct methods and re-
finement by full-matrix least squares, with use of the Siemens SHELXTL
PLUS software on a Micro VAXII computer. All non-hydrogen atoms were
refined anisotropically with 254 parameters (hydrogen atoms in calculated
positions, riding on the corresponding C atoms), U(H) = 0.08 A%, R =
0.080, R,, = 0.058, w™ = ¢%(F), maximum rest electron density 0.50 e/A3.

to the metalated phosphorus via a long P-C single bond
(P(1)-C(13) = 1.927 (13) A), which is quite common for
diphosphetane derivatives.>¢

Due to the longer distance P(1)-P(2) the bond angles
at the phosphorus atoms are markedly more acute (C-
(13)-P(1)-P(2) = 72.3 (4)°, P(1)-P(2)-0(3) = 81.3 (3)°)
as compared to the angles at carbon and oxygen (102.2 (9)
and 104.2 (7)°, respectively). The E configuration of 1 has
been maintained throughout the cycloaddition.

At room temperature solutions of 3 and 4 in benzene
decompose within 1 week to give 1 and unidentified
species. We suggest that the formation of 8 and 4 is ini-
tiated by a [2 + 1] cycloaddition to the transient adduct
2. Subsequent scission of the P-C linkage in 2 and attack
of the carbanion at a positively polarized carbon atom of
a terminal carbonyl ligand affords metallaheterocycle 3
(path a), whereas P-O bond rupture in 2 and attack of the
oxygen at the arylated P atom yields 4. The dissociation
of 3 into 1 and free (CF3),CO and a subsequent [2 + 2]
cycloaddition to compound 4 cannot be excluded at the
moment. The nature of the transformation of 3 into 4 is
presently under investigation.
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Summary: Organodisilanes having a phenyt functionality
on the silicon atom smoothly react with 1,3-dienes at 130
°C to atford the corresponding 1,4-disllylation adducts in
high vields in the presence of platinum catalyst. Howev-
er, other substituents such as Me, n-Bu, t-Bu, CH,C¢Hs,
CH,CH=CH,, and CH==CH, on the silicon atom are to-
tally ineffective.

Activation of a silicon-silicon bond by a transition-metal
catalyst! and subsequent insertions of 1,3-dienes,? acety-
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lenes,? and olefins‘® into silicon-silicon linkages are of
current interest. 1,4-Disilylation of 1,3-dienes is especially
important, since it affords adducts® having two versatile
allylic silane® moieties. Transition-metal-catalyzed 1,4-
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241. (c) Watanabe, H.; Kobayahsi, M.; Higuchi, K.; Nagai, Y. J. Orga-
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