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Transition-MetaCSubstituted Diphosphenes. 29.' Cycloaddition 
Reactions of the Diphosphenyi Complex ( q6-C5Me,) (CO),Fe-P= P-Mes' 
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Summary: The diphosphenyl complex (q5-C,Me5)- 
(CO),Fe-P==P-Mes+ (Mes' = 2,4,BtBu3CBH,) un- 
dergoes a [3 + 21 dipolar cycloaddition with hexafiuoro- 
acetone to give the metalla heterocycle (q5C5Me5)(C0)- 

Fe-P(=PMes+)OC(CF )&(O) with a remarkably short 
Fe-P bond (2.084 (4) 1) and an exocyclic P=P bond. 
when stwed In solution at -40 O C ,  this complex partly 
rearranges to the metalated loxa-2,3-diphosphetane 

(q5C,Me5)(C0)6e-P-P(Mes+)OC(CF,),. The molecu- 
lar structures of both Isomers were elucklated by single- 
crystal X-ray analyses. 

Electron-releasing Organometallic complex fragments as 
substituents markedly enhance the nucleophilicity of a 
diphoephene. In molecules such as (v6-C6Med (CO)(L)- 
M-P==P-R (M = Fe, L = CO, R = 2,4,6-tBu3C6H2- 
(Mes*), 2,4,6-(CFS),C&, 2,6-(CFS),Ca3, C(SiMe&; M = 
Ru, Os, L = CO, R = Mes*; M = Mn, Re, L = NO, R = 
Mess) the HOMO is mainly represented by the lone pair 
at the metalated phosphorus atom. This is documented 
by a number of reactions of (~6-C6Me6)(CO)zFe-P=P- 
Mes* (1) with organic and organometallic electrophiles. 
Compound 1 is converted into oxaphospholenes I by 
treatment with acrolein, methacrolein, and methyl vinyl 
ether.2 Azodicarboxylates and d i a m i d e s  give rise to 
the formation of oxadiazaphospholenes II,9 whereas the 
reaction of 1 with 1,2,4triezoline-3,5diones furnished the 
fmt 1,2-diaza-3,4-diphosphetidines III.4 [2 + 21 cyclo- 
additions to 1,2-diphoephetanes IV are observed with fu- 
marodinitrile, maleodinitrile dimethyl fumarate, dimethyl 
maleate! and maleimides.6 In all these processes we 
assume that the ring formation is initiated by the attack 
of the lone pair of the metalated P atom at the LUMO of 
the electrophile. 

The step from electron-poor alkenes and am compounds 
to other electrophiles with heteroatomic double bonds is 
obvious. Here we report on the chemical behavior of 1 
toward anhydrous hexafluoroacetone, which is known to 
undergo oxidative additions to trivalent phosphorus com- 
p o u n d ~ . ~  Low-coordinated phosphorus systems such as 
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,Mea* [Fa1 

P-P ,,\P,P )-A, I \ 'Mea* 
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N 
Aryl 

m 
R ' ,  R 2  = H, Me; R3 

II: 

OEt, OtBu, OCHzPh, NC5H10; E = CN. C02Me 

Aryi = Ph. C E t O C 6 H 4 ;  [Fa] - (q5-C5Meg)(C0)2Fe 

iminophosphanes are converted by hexafluoroacetone to 
As-oxaphosphiranes V (for R = Me3SV or to X3-1-oxa-3- 
aza-2-phoephetanes VI (for R = alkyl)? A different mode 
of reaction, however, is encountered with 1 and the ketone. 

/R1 

R' 
@N\ / 

R1 = M e j S i  or tBu 

R2 = Me3Si 

~1 = mu, ~ 2  - iPr 

Condensing an excm of gaseous hexafluomcetone into 
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Figure 1. Molecular structure of 3. 

Table I. Selected Bond Lensthe (A) and Angles (ded for 3 
~~~ ~~~ 

F e P ( 1 )  2.084 (4) P (2 )4 (16)  1.860 (13) 
Fe-C(l1) 1.795 (16) O(l)-C(l l )  1.128 (19) 
Fe-C(l3) 1.937 (14) 0 ( 2 ) 4 ( 1 2 )  1.427 (15) 
P(l)-P(2) 2.014 (5) 0 ( 3 ) 4 ( 1 3 )  1.191 (16) 
P(1)-0(2) 1.647 (9) C(12)-C(13) 1.640 (19) 

FeP(l)-P(%) 140.3 (2) P(1)-0(2)4(12) 115.6 (7) 
Fe-P(1)-0(2) 109.5 (3) 0 ( 2 ) 4 ( 1 2 ) 4 ( 1 3 )  111.8 (10) 
P(2)-P(1)-0(2) 109.9 (3) Fe-C(13)4(12) 116.3 (9) 
P(l)-P(2)4(16) 99.0 (4) P(l)-Fe-C(13) 86.4 (4) 

a pentane solution of 1 at -196 "C and warming to 20 "C 
afforded the cycloadduct 3 aa an orange crystalline solid. 
No other product could be observed in the reaction mix- 
ture by means of 31P NMR spectroscopy, and no inter- 
mediate was detected during the course of the reaction. 

I CF3 I 

[Fa] = ($-CgMeg)(CO)Fe 

L 2  J 

3 
The structure of 3 was assigned on the basis of spectral 

evidencelo and confirmed by the single-crystal X-ray dif- 
fraction study." The 31P NMR spectrum exhibits two 
doublets at b 483.49 and 180.68 with the large coupling 

(10) 3 'H N M R  (100 MHz, C&) 6 1.33 (8, p-tBu), 1.49 [e, C6(CH&l, 

MHz, n-Ca12, CFCl3 atand-d) 6 -70.55 (4, 'Jpp = 7.3 Hz, CF3), -71.35 
1.65 (e, o-tBu), 1.68 (a, o-tBu), 7.56 (m, m aryl H); '@F('H) NMR (84.2 

(q, 'JgP = 7.3 Hz, CF,); 31P(1HJ NMR (40 MHz, n-C H , 85% H3P04 

(11) Cryatal data for complex 3 space group P21/c, a = 21.809 (4) A, 
b = 10.066 (2) A, c = 16.250 (3) A, @ = 95.87 V = 3560 (2) As, Z = 
4, puled = 1.344 g cm-,, Mo Ka (graphite monochromator, h = 0.71073 
A), w-scan data collection at 183 K (3.0 S 28 S 50.0°), 6228 unique 
reflectiona, 2383 unique observed reflections (F > 4.Ou(F)), Siemens P21 
four-circle diffractometer, structure solved by direct methods and re- 
finement by full-matrix 1-t equares, with use of the Siemens SHELTXL 
PLUS software on a Micro VAXII computer. All non-hydrogen atom were 
refmed anisotropicnlly with 232 parmeters (hydrogen atom in calculated 
poaitiona riding on the corresponding C atome), U(H) = 0.08 A2, R = 
0.106, R, 0.072, w-l = $(F), and maximum rest electron deneity 0.88 
e/Aa. 

etandard) 6 483.49 (d, 'Jpp = 633 Hz, F-P), 180.68 (d, * 12 Jpp = 633 Hz, 
P-Mes*). 

d IJ a71 c1231 
C181 

c1241 

Figure 2. Molecular structure of 4. 

Table 11. Selected Bond Lengths (A) and Angler (deg) for 4 
F e P ( 1 )  2.327 (4) P(l)-C(13) 1.927 (13) 
F d ( 1 1 )  1:779 (15) P(2)-0(3) 1.722 (8) 
F d ( 1 2 )  1.744 (15) 0 ( 3 ) 4 ( 1 3 )  1.409 (13) 
P(l)-P(2) 2.249 (5) O ( l ) C ( l l )  1.139 (18) 
P(2)-C(16) 1.865 (11) 0 ( 2 ) 4 ( 1 2 )  1.144 (18) 

Fe-P(1)-P(2) 110.7 (2) 0(3)-P(2)4(16) 96.6 (5) 
F e P ( 1 ) 4 ( 1 3 )  118.5 (4) P(l)-Fe-C(ll) 103.0 (4) 
P(l)-P(2)4(16) 105.9 (4) P(l)-Fe-C(12) 92.0 (5) 
P(1)4(13)-0(3) 102.2 (8) C(ll)-Fe-C(12) 90.4 (7) 
P(2)-0(3)4(13) 104.2 (7) 

constant lJPp = 633 Hz, suggesting the presence of a P=P 
double bond in 3. In the ? F  NMR spectrum two quartets 
at 6 -70.55 and -71.35 = 7.3 Hz) agree with two 
magnetically nonequivalent CF3 groups with no PF cou- 
pling and infer the absence of any direct PC(CFJ2 linkage. 
The appearance of two discrete singlets for the o-tert-butyl 
substituents of the Mea* ring in the 'H NMR spectrum 
at b 1.65 and 1.68 is due to the chiral Fe center in 3. The 
IR spectrum (Nujol mull) displays only one intense band 
at Y = 1960 cm-' for the stretching mode of one terminal 
CO ligand. The acylic carbonyl group gives rise to a band 
at 1650 cm-l of medium intensity. 

The most interesting feature of the molecular structure 
of 3 (Figure 1 and Table I) is the geometry of the nearly 
planar fivemembered metalla heterocycle (mean deviation 
from the plane 0.024 A). The Fe-P bond of 2.084 (4) A 
is remarkably short and strongly suggests multiple-bond 
contributions. Similarily short F e P  bond distances were 
reported for complexes 5 (2.117 (2) All2 and 6 (2.112 (1) 
and 2.202 (1) A).13 In 1 the Fe-P contact was determined 

/ Aryl 
0 
1 

~ 1 - 1 3 0 2 6  
5 

0 
Aryl/ 

6 

(Aryl = 2,6-tBu2-4-MeCgH2) 

to be 2.260 (1) k14 The exocyclic P-P bond length (2.014 
(5) A) is comparable to the P-P bond in 1 (2.027 (3) A). 
The bond length P(1)-0(2) (1.647 (9) A) is shorter than 
the sum of the covalent single-bond radii for P (1.10 A) 
and 0 (0.66 A).15 The atoms Fe, P(1), P(2), and O(2) are 

(12) Weber, L.; Frebel, M.; Boese, R. New J. Chem. 1989, 13, 303. 
(13) Bartlett, R. A.; Diaa, H. V. R.; Flynn, K. M.; Olmetead, M. M.; 

(14) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R. Organometallics 

(15) Pauling, L. The Nature of the Chemical Bond, Comell University 

Power, P. P. J .  Am. Chem. SOC. 1987,109,5699. 

1987,6, 110. 

Preee; Ithaca, NY, 1960; p 224. 
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located in the same plane (mean deviation from plane 0.023 

Crystals of 3 were grown from pentane solutions at -40 
"C in several experiments. In one sample after 4 weeks 
of crystallization compound 3 decomposed to some extent. 
The 31P NMR spectrum displayed a doublet at 6 194.68 
(VPp = 94 Hz) and a doublet of quartets at 6 136.00 ('JPp 
= 94, 3JpF = 26 Hz) in addition to the resonances of 3. 
Both compounds were present in the ratio 34 = 31. The 
PP coupling constant is consistent with a PP single bond, 
whereas the size of the PF coupling suggests the presence 
of a PC(CFJ2 group. Both complexes could not be sepa- 
rated on a preparative scale. 

A red crystal of 4 was picked out of the crop and sub- 
mitted to an X-ray diffraction study (Figure 2 and Table 
11). The analysis shows the presence of an essentially 
planar l-oxa-2,3-diphosphetane (mean deviation from 
plane 0.01 A) which is linked to the (qS-CsMe )(C0)2Fe 
fragment via an Fe-P single bond (2.327 (4) 1). Com- 
pound 4 is obviously the result of a formal [2 + 21 cyclo- 
addition between 1 and hexafluoroacetone. The P-P bond 
of 2.249 (5) A reveals a bond order of unity. In the four- 
membered ring the oxygen atom of the ketone is added 
to the arylated P atom (P(2)-0(3) = 1.722 (8) A). In 
keeping with this, the (CF3I2C fragment in 4 is connected 

A) * 

(16) Crystal data for complex 4 space group C2 c, a = 46.97 (3) A, 
b = 9.316 (5) A, c = 16.611 (5)  A, 6 = 101.52 (3)O, J= 7121 (6) As, 2 = 
8, p d  = 1.344 g ~ m - ~ ,  Mo Ka (graphite monochromator, X = 0.71073 
A), o-acari data collection a t  179 K (3.0 S 28 S 45.0°), 4661 unique 
reflections, 2143 unique observed reflections (F > 4.0a(F)), Siemens P21 
four-circle diffractometer, structure solved by direct methods and re- 
finement by full-matrix least sguares, with use of the Siemens SHELXTL 
PLUS software on a Micro VAXII computer. AU non-hydrogen atom were 
refined anieotropicaUy with 254 parametera (hydrogen atoms in calculated 
positions, riding on the corresponding C atoms), U(H) = 0.08 A2, R = 
0,080, R, = 0.068, w-I=  $(F), maximum rest electron density 0.50 e/A3. 

to the metalated phosphorus via a long P-C single bond 
(P(l)-C(13) = 1.927 (13) A), which is quite common for 
diphoephetane derivatives.s*6 

Due to the longer distance P(l)-P(2) the bond angles 
at the phosphorus atoms are markedly more acute (C- 

as compared to the angles at carbon and oxygen (102.2 (9) 
and 104.2 (7)O, respectively). The E configuration of 1 has 
been maintained throughout the cycloaddition. 

At room temperature solutions of 3 and 4 in benzene 
decompose within 1 week to give 1 and unidentified 
species. We suggest that the formation of 3 and 4 is ini- 
tiated by a [2 + 11 cycloaddition to the transient adduct 
2. Subsequent scission of the P-C linkage in 2 and attack 
of the carbanion at a positively polarized carbon atom of 
a terminal carbonyl ligand affords metallaheterocycle 3 
(path a), whereas P-0 bond rupture in 2 and attack of the 
oxygen at the arylated P atom yields 4. The dissociation 
of 3 into 1 and free (CFJ2CO and a subsequent [2 + 21 
cycloaddition to compound 4 cannot be excluded at the 
moment. The nature of the transformation of 3 into 4 is 
presently under investigation. 
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(13)-P(l)-P(2) = 72.3 (4)O, P(l)-P(2)-0(3) 81.3 (3)') 

Plat inum-Com plex-Cat al y zed 1,4- Dlsli y lat ion of 1,3-Dienes Using 
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Organodisilanes: Remarkable Effect of a Phenyl Functionallty on a 

Summary: Organodisilanes having a phenyl functionality 
on the silicon atom smoothly react with 1,Mlenes at 130 
OC to afford the corresponding 1 ,edisilylation adducts in 
high yields in the presence of platinum catalyst. Howev- 
er, other substituents such as Me, n-Bu, t-Bu, CH2CgH5, 
CH2CH=CH2, and CI-FCH, on the silicon atom are to- 
tally ineffective. 

Activation of a silicon-silicon bond by a transition-metal 
catalyst' and subsequent insertions of 1,3-diene~,~ acety- 

(1) (a) Yamamoto, K.; Hayashi, A.; Suzuki, S.; Tsuji, J. Organo- 
metallics 1987,6,974. (b) Rich, J. D. Organometallics 1989,8, 2609. (c) 
Rich, J. D. J.  Am. Chem. SOC. 1989,111,5886. (d) Ito, Y.; Matauura, T.; 
Murakami, M. J. Am. Chem. SOC. 1988,110,3692. (e) Kraft, T. E.; Rich, 
J. D.; McDermott, P. J. J. Org. Chem. 1990,55, 5430. 

(2) (a) Tamao, K.; Okazaki, S.; Kumada, M. J. Organomet. Chem. 
1978,146,87. (b) Mataumoto, H.; Shono, K.; Wada, A.; Mataubara, I;; 
Watanabe, H.; Nagai, Y. J. Organomet. Chem. 1980,199,185. (c) Oki- 
noshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. SOC. 1972,94, 
9263. (d) Carlson, C. W.; West, R. organometallics 1983,2, 1801. (e) 
Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. Chem. Lett. 1975, 887. (0 
Sakurai, H.; Eriyama, Y.; Kamiyama, Y.; Nakadaira, Y. J. Organomet. 
Chem. 1984,264, 229. 
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le ne^,^ and ~ l e f i n s ~ * ? ~  into silicon-silicon linkages are of 
current interest. 1,4Disilylation of 1,3-dienes is especially 
important, since it affords adductss having two versatile 
allylic silane6 moieties. Transition-metal-catalyzed 1,4- 

(3) (a) Ito, Y.; Suginome, M.; Murakami, M. J. Org. Chem. 1991,66, 
1948. (b) Yamashita, H.; Catellani, M.; Tanaka, M. Chem. Lett. 1991, 
241. (c) Watanabe, H.; Kobayahsi, M.; Higuchi, K.; Nagai, Y. J. Orga- 
nomet. Chem. 1980,186,61. (d) Mataumoto, H.; Mataubara, I.; Kato, T.; 
Shono, K.; Watanabe, H.; Nagai, Y. J.  Organomet. Chem. 1980,199,43. 
(e) Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organomet. 
Chem. 1981,216,149. (0 Tamao, K.; Hayashi, T.; Kumada, M. J. Or- 
ganomet. Chem. 1976,114, C19. (g) Sakurai, H.; Kamiyama, Y.; Naka- 
daira Y. J. Am. Chem. Soc. 1975,97, 931. 

(4) (a) Murakami, M.; Anderson, P. G.; Suginome, M.; Ito, Y. J. Am. 
Chem. SOC. 1991,I13,3987. (b) Hayashi, T.; Kobayashi, T.; Kawamoto, 
A. M.; Yamashita, H.; Tanaka, M. Organometallics 1990, 9, 280. (c) 
Hayashi, T.; Kawamoto, A. M.; Kobayaahi, T.; Tnnakn, M. J. Chem. Soc., 
Chem. Commun. 1990,663. 

(6) (a) Hiyama, T.; Obayashi, M.; Mori, I.; N o d i ,  H. J. Org. Chem. 
1983,48,912. (b) Richter, W. J.; Neugebauer, B. Synthesis 1985,1059. 
(c) Dunogues, J.; Arreguy, B.; Biran, C.; C a b ,  R.; Pisciotti, F. J. Orga- 
nomet. Chem. 1973,63, 119. 

(6) (a) Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic 
Silicon Compounds; Patai, S. ,  Rappoport, Z., Eds.; Wiley: Chicheater, 
U.K., 1989; Part 2, Chapter 14, pp 893-963. (b) Colvin, E. W. Silicon 
Reagents in Organic Synthesis; Academic: London, 1988, pp 25-37. 
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