Articles

To Fuse or Not To Fuse? Reactions of $[HM_4(CO)_{12}BH]^-$ (M = Fe, Ru) with (Phosphine)gold(I) Chlorides. Molecular Structures of $HFe_4(CO)_{12}BHAuP(2-Me-C_6H_4)_3$, $[Au(PMePh_2)_2][{HFe_4(CO)_{12}BH_2Au]}, and$ [PPN][{HRu₄(CO)₁₂BH}₂Au]

Sylvia M. Draper, Catherine E. Housecroft,* Jacqueline E. Rees, and Musa S. Shongwe

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

Brian S. Haggerty and Arnold L. Rheingold*

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received December 16, 1991

The reaction of $[HFe_4(CO)_{12}BH][PPN]$ (PPN = bis(triphenylphosphine)nitrogen(1+)) with 1 equiv of LAuCl (L = P(2-Me-C₆H₄)₃, P(c-C₆H₁₁)₃) yields HFe₄(CO)₁₂BHAuL, but of these two products only HFe₄(CO)₁₂BHAuP(2-Me-C₆H₄)₃ (1) is stable in solution. Attempts to prepare other monogold derivatives with L = PMe₃, PEt₃, PMe₂Ph, PMePh₂ led instead to the ionic product [AuL₂][[HFe₄(CO)₁₂BH]₂Au] $([AuL_2][4])$, which possesses the same stoichiometry as the target molecule HFe₄(CO)₁₂BHAuL but is produced as a result of Au-P bond cleavage and a ligand redistribution reaction. The ruthenium cluster $HRu_4(CO)_{12}BHAuP(2-Me-C_6H_4)_3$ (2) may be prepared by a corresponding route to that used for 1, but unlike 1, formation of 2 competes not only with formation of $[AuL_2][{HRu_4(CO)_{12}BH}_2Au]$ ($[AuL_2][5]$) but also with that of the digold derivative $Ru_4(CO)_{12}BHAu_2[P(2-Me-C_6H_4)_3]_2$ (3). Both 1 and 2 are readily deprotonated by NEt₃ with loss of Fe-H-Fe or Ru-H-B protons, respectively. Treatment of $[HFe_4(C-O)_{12}BH][PPN]$ with ClAu(dppm)AuCl (dppm = bis(diphenylphosphino)methane) leads to a mixture of the borido cluster $HFe_4(CO)_{12}Au_2(dppm)B$ (6; 40%) and the salt [PPN][{ $HFe_4(CO)_{12}BH$ }₂Au] ([PPN][4]; 30%), while in the analogous reaction of [$HRu_4(CO)_{12}BH$][PPN] with ClAu(dppm)AuCl, the predominant cluster product is [PPN][5]. The observed results are discussed in terms of (i) the differing sizes of the Fe_4 and Ru_4 butterfly frameworks and (ii) the steric constraints of the phosphine ligands. The molecular Fe₄ and Ru₄ butterily frameworks and (ii) the steric constraints of the phosphine ligands. The molecular structures of 1, [Au(PMePh₂)₂][4], and [PPN][5] are presented. 1: triclinic, $P\bar{1}$; a = 10.023 (2) Å, b = 12.814 (3) Å, c = 15.231 (4) Å; $\alpha = 104.02$ (2), $^{\circ}\beta = 90.47$ (2) $^{\circ}, \gamma = 90.13$ (2) $^{\circ}$; V = 1897.8 (9) Å³; Z = 2; R(F) = 4.41%. [Au(PMePh₂)₂][4]: monoclinic, C2/c; a = 21.704 (3) Å, b = 9.542 (2) Å, c = 29.717 (6) Å; $\beta = 97.50$ (1) $^{\circ}$; V = 6102.0 (19) Å³; Z = 4; R(F) = 4.59%. [PPN][5]: triclinic, $P\bar{1}$; a = 9.759 (4) Å, b = 13.898 (5) Å, c = 26.964 (17) Å; $\alpha = 96.68$ (4) $^{\circ}, \beta = 97.31$ (4) $^{\circ}, \gamma = 91.78$ (4) $^{\circ}$; V = 3599 (3) Å³; Z = 2; R(F) = 7.65%. The structure of each of the anions [4]⁻ and [5]⁻ exhibits two cluster subunits fused together in a "face-to-face" orientation via a single gold atom. In [4]⁻ the subunits are mutually cis and there is a spice twist of 30.9 (5)^o at the gold atom. a spiro twist of 30.9 (5)° at the gold atom. However, in [5], the cluster subunits are arranged in a trans configuration, as would be expected on the basis of steric arguments.

Recently, we have reported¹⁻⁹ some reactions of (phosphine)gold(I) chlorides, LAuCl, with the metallaborane clusters $[HM_4(CO)_{12}BH]^-$ (M = Fe, Ru). The (phosphine)gold(I) products so far reported by us fall into three structural categories: I (monogold derivative, HM_4 -(CO)₁₂BHAuL, M = Fe, Ru),^{3,8} II (digold derivative, $HM_4(CO)_{12}BAu_2L_2$, M = Fe, Ru, for which the two isomers

(1) Housecroft, C. E.; Rheingold, A. L. J. Am. Chem. Soc. 1986, 108, 6420.

metallics 1990, 9, 681. (9) Housecroft, C. E.; Shongwe, M. S.; Rheingold, A. L.; Zanello, P. J. Organomet. Chem. 1991, 408, 7.

IIa and IIb are observed),^{1-3,5,7-9} and III (trigold derivative, $Fe_4(CO)_{12}BAu_3L_3$.⁴ The replacement of a cluster-bound

hydrogen atom by a gold(I) phosphine fragment is a common phenomenon in cluster chemistry, and there are many examples in which more than one hydrogen atom has been replaced.¹⁰ In most instances, monogold derivatives ap-

Housecroft, C. E.; Rheingold, A. L. Organometallics 1987, 6, 1332.
 Harpp, K. S.; Housecroft, C. E. J. Organomet. Chem. 1988, 340, 389

⁽⁴⁾ Harpp, K. S.; Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. J. Chem. Soc., Chem. Commun. 1988, 965.
(5) Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. Organometallics 1988, 7, 1885.
(6) Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. J. Chem. Soc., Chem. Commun. 1988, 16620.

Chem. Commun. 1988, 1630. (7) Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. Organo-

metallics 1989, 8, 2651. (8) Chipperfield, A. K.; Housecroft, C. E.; Rheingold, A. L. Organo-

⁽¹⁰⁾ Salter, I. M. Adv. Organomet. Chem. 1989, 29, 249.

pear to form easily and are stable products. However, in a preliminary communication we reported that the reaction of LAuCl with $[HFe_4(CO)_{12}BH][PPN]$, in the presence of $TlPF_6$ for L = PMe₃, PEt₃, PMe₂Ph, PMePh₂, leads to Au-P bond cleavage and gives the ionic product [Au- $L_2][{HFe_4(CO)_{12}BH}_2Au]$ instead of the stoichiometrically equivalent compound $HFe_4(CO)_{12}BHAuL.^6$ The fusion of two cluster fragments about a gold(I) atom is still an infrequent observation, as is fusion about Ag(I) or Cu(I)centers.¹⁰ We now report in full an investigation of the stoichiometrically controlled reactions of [HFe₄(CO)₁₂B-H][PPN] with LAuCl (L = P(2-Me-C_6H_4)_3, P(c-C_6H_{11})_3), PMe₃, PEt₃, PMe₂Ph, PMePh₂) and include a comparison of the reactions of $[HFe_4(CO)_{12}BH][PPN]$ and $[HRu_4(C-$ O)₁₂BH][PPN] with (2-Me-C₆H₄)₃PAuCl and ClAu-(dppm)AuCl.

Experimental Section

General Data. FT-NMR spectra were recorded on a Bruker WM 250 or AM 400 spectrometer. ¹H NMR shifts are reported with respect to δ 0 for Me₄Si, ¹¹B NMR shifts with respect to δ 0 for F₃B-OEt₂, and ³¹P NMR shifts with respect to δ 0 for H₃PO₄. All downfield chemical shifts are positive. Infrared spectra were recorded on a Perkin-Elmer FT 1710 spectrophotometer. FAB mass spectra were recorded on a Kratos MS 50TC, MS 902, or MS 890 instrument.

All reactions were carried out under argon by using standard Schlenk techniques. Solvents were dried over suitable reagents and freshly distilled under N₂ before use. Separations were carried out either by centrifugal chromatography (iron clusters) with Kieselgel 60-PF-254 mesh (Merck) or by thin-layer plate chromatography (ruthenium clusters) with Kieselgel 60-PF-254 (Merck). (Phosphine)gold(I) chlorides were prepared from HAuCl₄·3H₂O (Aldrich) and PMe₂Ph, PEt₃, and dppm (bis(diphenylphosphino)methane Aldrich) and P(2-Me-C₆H₄)₃, P(c-C₆H₁₁)₃), PMe₃, and PMePh₂ (Strem) by methods based on those reported in the literature.^{11,12} [PPN][HFe₄(CO)₁₂BH]¹³ and [PPN][HRu₄(CO)₁₂BH]⁸ were prepared as previously reported.

Preparation of HFe₄(CO)₁₂BHAu[P(2-Me-C₆H₄)₃] (1). CH₂Cl₂ (20 mL) was added to a mixture of solid [PPN][HFe₄-(CO)₁₂BH] (0.15 g, 0.14 mmol), {(2-Me-C₆H₄)₃]PAuCl (0.07 g, 0.13 mmol), and TlPF₆ (0.05 g, 0.28 mmol). When the mixture was stirred, the color changed immediately from red-brown to dark green. After 45 min, Et₂O (10 mL) was added to precipitate [PPN][PF₆] and TlCl. The mixture was filtered, the filtrate collected, and the solvent removed. Products were separated chromatographically by eluting with CH₂Cl₂-hexane (1:1), and 1 was collected as the first (light green) fraction in ~80% yield (0.12 g, 0.11 mmol): 250-MHz ¹H NMR (CD₂Cl₂) δ 7.6-6.9 (m, *Ph*), 2.65 (s, Me), -7.7 (br, Fe-H-B), -24.9 (s, Fe-H-Fe); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +136.0; 162-MHz ³¹P NMR (CD₂Cl₂) δ +45; IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2076 w, 2031 vs, 2028 vs, 2009 m, 1990 m; FAB-MS in 3-NBA matrix m/z 1074 (P⁺), isotopic pattern is consistent with that simulated.

Deprotonation of 1. Neat Et₃N (0.30 mL) was added to 1 (0.08 g, 0.07 mmol) which was previously dissolved in CH₂Cl₂ (5 mL). The solution was placed in an ultrasonic bath for 10 min, during which time the color changed from light green to green-brown. Solvent was removed, and the product was washed with hexane (4 × 10 mL). The solid product (approximately quantitative yield) was dried under reduced pressure. [Et₃NH][Fe₄(CO)₁₂BHAuP-{(2-Me-C₆H₄)₃]]: 250-MHz ¹H NMR (CD₂Cl₂) δ 7.6–6.9 (m, *Ph*), 3.44 (q, J_{HH} = 7 Hz, CH₂(Et)), 2.67 (s, Me), 1.16 (t, J_{HH} = 7 Hz, CH₃(Et)), -9.4 (br, Fe-H-B); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +137.0; 162-MHz ³¹P NMR (CD₂Cl₂) δ +45; IR (CH₂Cl₃, cm⁻¹) ν_{CO} 2026 m, 2024 sh, 1992 s, 1989 sh, 1962 m; FAB-MS in 3-NBA matrix *m/z* 1073 (P⁻) with 12 CO loss observed, isotopic pattern is consistent with that simulated.

Preparation of HFe₄(CO)₁₂BHAu{P(c-C_6H_{11})₈}. The methods of synthesis and separation were the same as for 1 but with [PPN][HFe₄(CO)₁₂BH] (0.25 g, 0.23 mmol), {($c-C_6H_{11}$)₈]PAuCl (0.10 g, 0.23 mmol), and TlPF₆ (0.16 g, 0.46 mmol). HFe₄-(CO)₁₂BHAu{P($c-C_6H_{11}$)₃] was isolated as a light green solid in ~90% yield (0.22 g, 0.21 mmol): 250-MHz ¹H NMR (CD₂Cl₂) δ 1.4-2.2 (m, CH₂), -7.3 (br, Fe-H-B), -24.9 (s, Fe-H-Fe); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +139.0; 162-MHz ³¹P NMR (CD₂Cl₂) δ +70; IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2076 w, 2030 vs, 2028 vs, 2007 m, 1990 m; FAB-MS in 3-NBA matrix m/z 1050 (P⁺) isotopic pattern is consistent with that simulated.

Preparation of [Au{P(2-Me-C₆H₄)₃]₂][{HFe₄(CO)₁₂BH}₂Au] $([Au{P(2-Me-C_{6}H_{4})_{3}_{2}][4])$. CH₂Cl₂ (15 mL) was added to solid [PPN][HFe₄(CO)₁₂BH] (0.23 g, 0.21 mmol), excess {(2-Me- $C_{6}H_{4}_{3}$ PAuCl (0.33 g, 0.62 mmol), and TlPF₆ (0.22 g, 0.63 mmol). When the mixture was stirred, the color changed immediately from red-brown to dark green-brown. After 45 min, Et₂O (10 mL) was added. The mixture was filtered, the filtrate collected, and the solvent removed. Products were separated chromatographically by eluting with CH_2Cl_2 -hexane (1:1), and [Au]P(2-Me- $C_6H_4)_{3}_2][4]$ was collected as the second (dark green) fraction in \sim 50% yield (0.11 g, 0.05 mmol). The first fraction (30% yield) was 1. [4]-: 250-MHz ¹H NMR (CD₂Cl₂) δ -6.4 (br, Fe-H-B), -24.9 (s, Fe–H–Fe); 128-MHz ¹¹B NMR (CD_2Cl_2) δ +134.0; IR (CH_2Cl_2 , cm⁻¹) ν_{CO} 2065 w, 2033 vs, 2002 m, 1980 m; FAB-MS in 3-NBÅ matrix m/z 1343 (P⁻), isotopic pattern is consistent with that simulated. The $[Au\{P2-Me-C_6H_4\}_2]^+$ cation was characterized by 162-MHz ³¹P NMR (CD₂Cl₂): δ +15.

Preparation of [AuL₂][4], L = PMe₃, PEt₃, PMe₂Ph, PMePh₂. These compounds were obtained in yields of 5–15% as byproducts in the previously described preparations of the digold derivatives $HFe_4(CO)_{12}BAu_2L_2$.⁷ The latter remained the predominant products even when the ratio of [HFe₄(CO)₁₂B-H][PPN] to LAuCl was 1:1. Spectroscopic characteristics of the anion [{HFe₄(CO)₁₂BH₂Au]⁻ were as given for [4]⁻ in [Au{P(2-Me-C₆H₄)₃]₂][4] and were independent of the cation. ³¹P NMR resonances for the [AuL₂]⁺ cations were in agreement with literature values.¹⁴

Reaction of [HFe₄(CO)₁₂BH][PPN] with ClAu(dppm)-AuCl. CH_2Cl_2 (10 mL) was added to [PPN][HFe₄(CO)₁₂BH] (0.41) g, 0.37 mmol), ClAu(dppm)AuCl (0.31 g, 0.37 mmol), and TlPF₆ (0.02 g, 0.06 mmol). After the mixture was stirred, a color change from red-brown to yellow-brown was observed. After 45 min the solvent was removed in vacuo. The products were extracted with Et_2O (4 × 10 mL) and then separated chromatographically by eluting with hexane followed by CH_2Cl_2 . The first (dark green) band to be eluted was identified from its IR spectrum as $Fe_3(CO)_{12}$. The second (brown) band was $HFe_4(CO)_{12}Au_2(dppm)B$ (6; ~40%, 0.20 g, 0.15 mmol), and the third (lime green) fraction was characterized as [PPN][4] (~30%, 0.11 g, 0.06 mmol). A fourth product, which was red-brown and contained boron, was not fully characterized. 6: 250-MHz ¹H NMR (CD₂Cl₂, 298 K) δ 7.6-7.3 (m, Ph), 3.4 (t, $J_{PH} = 7$ Hz, CH_2), -23.9 (s, Fe-H-Fe); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +184.5; 162-MHz ³¹P NMR (CD₂Cl₂) δ +43.8; IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2058 m, 2030 sh, 2017 vs, 2008 s, 1978 m, 1930 w; FAB-MS in 3-NBA matrix m/z 1350 (P⁺), isotopic pattern is consistent with that simulated.

Preparation of HRu₄(CO)₁₂BHAu{P(2-Me-C₆H₄)₃] (2) and Ru₄(CO)₁₂BHAu₂[P(2-Me-C₆H₄)₃]₂ (3). CH₂Cl₂ (10 mL) was added to solid [PPN][HRu₄(CO)₁₂BH] (0.26 g, 0.20 mmol), (2-Me-C₆H₄)₃PAuCl (0.08 g, 0.15 mmol), and TIPF₆ (0.02 g, 0.06 mmol), and the resulting solution was stirred for 15 min. A color change from orange to dark brown was observed. The products were separated by TLC and were eluted with CH₂Cl₂-hexane (1:1). The first (yellow) band to be eluted was H₄Ru₄(CO)₁₂. The second (yellow) band was [Au{P(2-Me-C₆H₄)₃]₂][5] (yield ~5%; see below). The two major products were HRu₄(CO)₁₂BHAu{P(2-Me-C₆H₄)₃] (2) and Ru₄(CO)₁₂BHAu₂[P(2-Me-C₆H₄)₃]₂ (3) and were separated as the third (dark orange, yield ~15%, 0.04 g, 0.03 mmol) and fourth (bright orange, yield ~30%, 0.11 g, 0.06 mmol) bands, respectively. 2: 250-MHz ¹H NMR (CD₂Cl₂, 298 K) δ 7.6-7.2 (m, Ph), 2.7 (s, Me), -4.7 (br, Ru-H-B), -20.8 (s, Ru-H-Ru); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +132.1; 162-MHz ³¹P NMR

 ⁽¹¹⁾ Mann, F. G.; Wells, A. F.; Purdie, D. J. Chem. Soc. 1937, 1823.
 (12) Williamson, D. R.; Baird, M. C. J. Inorg. Nucl. Chem. 1972, 34, 3393.

⁽¹³⁾ Housecroft, C. E.; Buhl, M. L.; Long, G. J.; Fehlner, T. P. J. Am. Chem. Soc. 1987, 109, 3323.

⁽¹⁴⁾ Parish, R. V.; Parry, O.; McAuliffe, C. A. J. Chem. Soc., Dalton Trans. 1981, 2098 and references therein.

Table I.	Crystal Data	for Compounds	1. [Au(PMePh.).][4]	and [PPN][5]
----------	---------------------	---------------	---------------------	--------------

······································	1	[Au(PMePh ₂) ₂][4]	[PPN][5]
	(a) Crystal Pa	rameters	
formula	C ₃₃ H ₂₃ AuBFe ₄ O ₁₂ P	C ₅₀ H ₃₀ Au ₂ B ₂ Fe ₈ O ₂₄ P ₂	$C_{40}H_{34}AuB_2NO_{24}P_2Ru_8$
fw	1073.68	1939.05	2242.02
cryst syst	triclinic	monoclinic	triclinic
space group	$P\bar{1}$	C2/c	PĪ
a, A	10.023 (2)	21.704 (3)	9.759 (4)
b, Å	12.814 (3)	9.542 (2)	13.898 (5)
c, A	15.231 (4)	29.717 (6)	26.964 (17)
α , deg	104.02 (2)		96.68 (4)
β , deg	90.47 (2)	97.50 (1)	97.31 (4)
γ , deg	90.13 (2)		91.78 (3)
V, Å ³	1897.8 (9)	6102.0 (19)	3599 (3)
Z	2	4	2
cryst dimens, mm	$0.22 \times 0.27 \times 0.32$	$0.20 \times 0.20 \times 0.40$	$0.18 \times 0.32 \times 0.40$
cryst color	dark brown	dark orange	light brown
$D(calc), g cm^{-3}$	1.879	2.111	2.069
μ (Mo K α), cm ⁻¹	54.37	69.7	29.5
temp, K	293	293	293
$T(\max)/T(\min)$	1.72	1.63	2.20
	(b) Data Co	llection	
diffractometer		Nicolet R3M	
monochromator		graphite	
radiation]	Mo K α ($\lambda = 0.71073$ Å)	
2θ scan range, deg	4-50	4-48	4-45
data collected	$\pm h, \pm k, \pm l$	$\pm h,k,l$	$\pm h, \pm k, +l$
no. of rfins collected	6948	5220	9587
no. of indpt rflns	6520	4785	9354
no. of indpt obs rflns, $F_0 \ge 4\sigma(F_0)$	5155	3050	6954
std rfins		3 stds/197 rflns	
var in stds, %	~2	~5	~5
	(c) Refine	ment	
R(F), %	4.41	4.59	7.65
$R(\mathbf{w}F), \%$	4.72	6.22	7.70
$\Delta/\sigma(\max)$	0.22	0.13	0.08
$\Delta(\rho)$, e Å ⁻³	1.29	1.02	4.07
N_{o}/N_{v}	10.99	8.65	10.97
GOF	1.341	1.032	1.644

 $(CD_2Cl_2) \delta$ +57.4; IR $(CH_2Cl_2, cm^{-1}) \nu_{CO}$ 2089 m, 2064 m sh, 2051 vs, 2034 s, 2012 m, 2000 w, 1983 m, 1969 w, 1959 w; FAB-MS in 3-NBA matrix m/z 1248 (P⁺) isotopic pattern is consistent with that simulated. 3: 250-MHz ¹H NMR (CD_2Cl_2 , 298 K) δ 7.7-7.1 (m, Ph), 2.7 (s, Me), -4.7 (br, Ru-H-B); 128-MHz ¹¹B NMR (CD_2Cl_2) δ +132.2; 162-MHz ³¹P NMR (CD_2Cl_2) δ +63.8, +37.3 (see text); IR (CH_2Cl_2 , cm⁻¹) ν_{CO} 2068 w, 2039 vs, 2019 s, 1998 m, 1985 m, 1961 w; FAB-MS in 3-NBA matrix m/z 1754 (P⁺), isotopic pattern is consistent with that simulated.

Deprotonation of 2. Neat Et₃N (0.15 mL) was added to 2 (0.03 g, 0.02 mmol) which was previously dissolved in CH₂Cl₂ (0.7 mL). The solution changed from red-orange to dark brown. Solvent was removed and the product washed with hexane (5 × 5 mL). [Et₃NH][HRu₄(CO)₁₂BAuP{(2-Me-C₆H₄)₃]]: 250-MHz ¹H NMR (CD₂Cl₂) δ 7.6–7.1 (m, Ph), 3.42 (q, J_{HH} = 7 Hz, CH₂(Et)), 2.68 (s, Me), 1.45 (t, J_{HH} = 7 Hz, CH₃(Et)), -20.9 (s, Ru-H-Ru); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +171.4; 162-MHz ³¹P NMR (CD₂Cl₂) δ +57.5; IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2086 w, 2050 s, 2040 m sh, 2018 s, 1999 s; FAB-MS in 3-NBA matrix m/z 1252 (P⁻) with 5 CO loss observed, isotopic pattern is consistent with that simulated.

Preparation of [PPN][{HRu₄(CO)₁₂BH}₂Au] ([PPN][5]). The anion [5]⁻ may be prepared as its [PPN]⁺ salt via the reaction of [PPN][HRu₄(CO)₁₂BH] with ClAu(dppm)AuCl.¹⁵ CH₂Cl₂ (10 mL) was added to [PPN][HRu₄(CO)₁₂BH] (0.13 g, 0.10 mmol), ClAu(dppm)AuCl (0.09 g, 0.10 mmol), and TlPF₆ (0.02 g, 0.06 mmol). The solution was stirred for 45 min, during which time the color changed from yellow-orange to dark brown. After extraction with Et₂O, the products were separated chromatographically by eluting with CH₂Cl₂-hexane (1:1). [PPN][5] was collected as the fourth (bright yellow) fraction (~40%, 0.04 g, 0.02 mmol) and was the only major product. Several other minor products were not collected. [5]⁻: 250-MHz ¹H NMR (CD₂Cl₂) δ -4.1 (br, Ru-H-B), -20.9 (s, Ru-H-Ru); 128-MHz ¹¹B NMR (CD₂Cl₂) δ +133.9; IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2077 s, 2050 vs, 2024 w, 1992 m; FAB-MS in 3-NBA matrix m/z 1706 (P⁻), isotopic pattern is consistent with that simulated. The [PPN]⁺ cation was characterized: 162-MHz ³¹P NMR (CD₂Cl₂) δ +21.1; 250-MHz ¹H NMR (CD₂Cl₂) δ 7.6-7.3 (m).

Crystal Structure Determinations. General Data. Suitable crystals of 1 and [PPN][5] were grown from CH_2Cl_2 solutions layered with hexane. X-ray-quality crystals of [Au-[PMePh₂]₂][4] were obtained by using a fortuitous mix of PMePh, and PMe₂Ph (\sim 2:1) and were grown from a CH₂Cl₂ solution layered with hexane. All specimens were mounted on glass fibers and were initially characterized photographically. Crystals of 1 and [PPN][5] revealed only triclinic symmetry, and [Au-{PMePh₂}₂][4] showed monoclinic symmetry. In all cases the centrosymmetric alternative space group was perferred on the basis of the chemically reasonable results of refinement. All of the structures were corrected for absorption by empirical procedures. They were all solved by auto-interpreted Patterson maps. In the structures of [Au{PMePh₂]₂][4] and [PPN][5], the phenyl rings were rigidly constrained. For [PPN][5], the asymmetric unit consists of the halves of the anion and a whole PPN counterion. The Au atom in [Au{PMePh₂}₂][4] was disordered over two chemically equivalent sites, labeled Au(1) at 80.2 (1)% occupancy and Au(3) at 19.8 (1)%. These atoms are on the crystallographic 2-fold axis.

All non-hydrogen atoms were refined with anisotropic thermal parameters, and the hydrogen atoms were idealized except for those bonded to B, Fe, or Ru atoms, which were ignored. All computations and sources of scattering factors used the various components of the SHELXTL (version 5.1) software written by G. Sheldrick for the Nicolet (Siemens) Corp., Madison, WI. Atomic coordinates for 1, $[Au[PMePh_{2}h_{2}][4]$, and [PPN][5] are listed in Tables II, V, and VII, respectively.

⁽¹⁵⁾ The anion [5]⁻ has also been obtained as a byproduct in the reaction of $[HRu_4(CO)_{12}BH]^-$ with ClAu(L-L)AuCl in which L-L = various bidentate phosphine ligands. Draper, S. M. Ph.D. Thesis, University of Cambridge, 1991.

Results and Discussion

Formation of Monogold Derivatives HM_4 -(CO)₁₂BHAuL (M = Fe, L = P(c-C_6H_{11})_3, P(2-Me-C_6H_4)_3; M = Ru, L = P(2-Me-C_6H_4)_3). In an earlier paper,⁷ we described the syntheses of and structural variations exhibited by digold clusters of type $HFe_4(CO)_{12}B$ - Au_2L_2 (structure IIa or IIb) in which L is a monodentate phosphine ligand with a Tolman cone angle $(\theta)^{16,17}$ in the range 118° $\leq \theta \leq 170^{\circ}$. This corresponds to phosphine ligands ranging in size from PMe₃ to $P(c-C_6H_{11})_3$. We also stated⁷ that attempts to make a related compound for L = $P(2-Me-C_6H_4)_3$ (θ = 194°) had failed. The reaction of $[HFe_4(CO)_{12}BH]^-$ with (2-Me-

 C_6H_4)₃PAuCl proceeds by the simple addition of one gold(I) phosphine fragment to the cluster to generate $HFe_4(CO)_{12}BHAuP(2-Me-C_6H_4)_3$ (1). Interestingly, 1 is the only stable monogold derivative of the tetrairon butterfly cluster that we have been able to isolate,¹⁸ and we attribute this particular stability to the steric requirements of the tris(o-tolyl)phosphine ligand. In general the digold derivative II is preferred over a type I product.⁷ This phenomenon is observed even with the relatively bulky tris(cyclohexyl)phosphine ligand ($\theta = 170^{\circ}$). The reaction of equimolar quantities of $[HFe_4(CO)_{12}BH]^-$ with (c- C_6H_{11})₃PAuCl gives HFe₄(CO)₁₂BHAuP(c-C₆H₁₁)₃ in ~ 90% yield, but when a dichloromethane solution of this cluster is left to stand, slow conversion to Fe_4 - $(CO)_{12}BHAu_{2}\{P(c-C_{6}H_{11})_{3}\}_{2}$ occurs, with almost complete conversion being observed within 5-7 days. Attempts to crystallize HFe₄(CO)₁₂BHAuP(c-C₆H₁₁)₃ from CH₂Cl₂hexane mixtures resulted in the formation of crystals of $Fe_4(CO)_{12}BHAu_2[P(c-C_6H_{11})_3]_2$. In the presence of methanol, the monogold \rightarrow digold conversion occurred more rapidly. The size of the phosphine ligand is clearly the critical factor; for example, methanol-dichloromethanehexane solutions of $HFe_4(CO)_{12}BHAuPPh_3^3$ left to stand yielded crystals of $Fe_4(CO)_{12}BAu_3(PPh_3)_3$ (structure III).⁴ Crystallographic data are available for a range of Fe₄Bbased gold(I) phosphine derivatives, and the parameters illustrate that the butterfly framework resists geometrical change when cluster-bound hydrogen atoms are replaced by the much larger gold(I) phosphine electrophiles.¹⁹ From the present study, it is concluded that the steric requirements of two AuP(2-Me-C₆H₄)₃ groups ($\theta_{\text{phosphine}} =$ 194°) plus one hydrogen atom are greater than the demands of three AuPPh₃ fragments ($\theta_{\text{phosphine}} = 145^{\circ}$). In addition, we note that the $\{Fe_4(CO)_{12}B\}$ cluster framework is too small to accommodate more than one AuP(2-Me- C_6H_4)₃ fragment.

The transition from HFe₄(CO)₁₂BH₂ to HRu₄(CO)₁₂BH₂ is accompanied by a significant increase in the size the M₄B framework. This manifests itself in a change of structure for the derivatives HM₄(CO)₁₂BAu₂[PPh₃]₂ in going from M = Fe to $M = Ru^{1,2,8}$ Since we had found compound 1 (cluster type I) to be stable with respect to conversion to higher nuclearity derivatives of types II and III, it was of interest to examine whether the corresponding auraruthenaborane would also be stable or whether the larger tetrametal framework would permit the formation of clusters of type II or even III.

The reaction of $[HRu_4(CO)_{12}BH]^-$ with (2-Me- C_6H_4)₃PAuCl in the presence of TIPF₆ leads to three

(18) We would expect other derivatives of type $HFe_4(CO)_{12}BHAuL$ to be stable if the Tolman cone angle of L is $\geq 194^\circ$: for example, (2,4,6-Me₃C₆H₂)₃P, in which $\theta = 212^\circ$.¹⁷ (19) Housecroft, C. E. Adv. Organomet. Chem. 1991, 33, 1.

isolable boron-containing products, identified as HRu₄- $(CO)_{12}BHAuP(2-Me-C_6H_4)_3$ (2; ~15% yield), HRu₄- $(CO)_{12}BAu_2[P(2-Me-C_6H_4)_3]_2$ (3; ~30% yield), and [PP-N][$[HRu_4(CO)_{12}BH]_2Au$] ([PPN][5]; ~5% yield). A fourth product was observed in the crude mixture, but it could not be isolated. This is proposed to be Ru₄(CO)₁₂BAu₃- $\{P(2-Me-C_6H_4)_3\}_3$; the ¹¹B NMR spectrum has a signal at δ +172, and in the ¹H NMR spectrum there are no highfield signals additional to those assigned to compounds 2, 3. and [5]⁻.

The spectroscopic characteristics of 2 allow us to formulate a structure analogous to that of 1. Compound 2 exhibits two high-field proton resonances at δ -4.7 and -20.8, which are assigned to Ru-H-B and Ru-H-Ru bridging hydrogen atoms, respectively. The ¹¹B NMR resonance for 2 at δ +132.1 is close to that (δ +137.2) previously reported for HRu₄(CO)₁₂BHAuPPh₃.⁸ As anticipated, the tetraruthenium butterfly skeleton is sufficiently large to accommodate two AuP(2-Me-C₆H₄)₃ groups and the formation of 3 competes significantly with that of 2.

Compound 3 exhibits an ¹¹B NMR signal at δ +132.2. and in the ¹H NMR spectrum at 298 K, a single broad resonance at δ -4.7 is observed. At 190 K, this resonance sharpens due to thermal decoupling of the ¹¹B-¹H spins but the shift is essentially unaltered (δ -4.6). These data are not consistent with a structure of type IIa, as crystallographically confirmed for HRu₄(CO)₁₂BAu₂[PPh₃]₂,⁸ but are consistent with an isomer of type IIb in which the steric requirements of the two gold(I) phosphine groups have forced the groups apart with concomitant rearrangement of the hydride and carbonyl ligands in the $HRu_4(CO)_{12}B$ fragment as seen for related iron systems.⁷ Thus, 3 is more correctly formulated as Ru_4 -(CO)₁₂BHAu₂{P(2-Me-C₆H₄)₃}₂. Significantly, when reporting details of the triphenylphosphine derivative HRu₄(CO)₁₂BAu₂{PPh₃}₂, we noted that the structure deviated slightly from C_2 symmetry and appeared to lie partway along a path which converted the M₄Au₂B core from its form in isomer IIa to that in IIb.8 The change from PPh₃ (Tolman cone angle $\theta = 145^{\circ}$) to P(2-Me-C₆H₄)₃ $(\theta = 194^{\circ})$ perturbs the system further.^{16,17}

Although, taken alone, the ¹¹B and ¹H NMR spectroscopic data for 3 suggest a structure of type IIb, the ³¹P NMR spectrum of 3 is not as simple as expected. At 298 K, the spectrum exhibits two signals at δ +63.8 and +37.3, which are of approximately equal intensities. Both resonances are present in redissolved samples of recrystallized 3. As the temperature is lowered to 190 K, the lower field resonance remains sharp but the signal at δ +37.3 collapses and becomes broad. The observed behavior may be interpreted in terms of the presence of two independent isomers of 3. The chemical shift at δ +63.8 is in the region expected for the two gold(I) phosphine units bridging an Ru-B edge (compare δ +57.4 in 2), and we assign this resonance to an isomer with structure IIb. The temperature-independent nature of this ³¹P NMR signal is consistent with a facile process^{3,7} that exchanges the two ${AuP(2-Me-C_6H_4)_3}$ groups. The chemical shift of $\delta + 37.3$ is at significantly higher field than would be expected for a phosphorus atom in the environment Ru-Au{P(2-Me- $C_6H_4)_3$ -B but is however consistent with the average of two signals, one corresponding to this environment and one assigned to a Ru-Au $\{P(2-Me-C_6H_4)_3\}$ -Ru bridge. By comparison with published data for the related systems Ru₄-(CO)₁₂CAu₂[PR₃]₂ (see below),²⁰ we would expect to observe

⁽¹⁶⁾ Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956. (17) Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽²⁰⁾ Cowie, A. G.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1984, 1710.

Figure 1. Molecular structure and atom numbering of 1. Hydrogen atoms were not located.

a ³¹P NMR spectral resonance for a butterfly hinge bridging Ru-Au{P(2-Me-C₆H₄)₃)-Ru unit at a shift similar to that of ClAuP(2-Me-C₆H₄)₃, viz. δ +6. An Ru-Ru hinge bridging mode for the AuPPh₃ group in Ru₃Fe-(CO)₁₂NAuPPh₃ has been confirmed crystallographically, and spectroscopic data imply that the AuPPh₃ group in Ru₄(CO)₁₂NAuPPh₃ is similarly sited.²¹ We therefore assign the second ³¹P NMR signal to a second isomer of **3** which has the structure IIc. At 298 K, the Ru-Ru and

Ru-B bridging gold(I) phosphine substituents are undergoing exchange on the NMR time scale. The ³¹P NMR spectroscopic data indicate that this exchange process has a higher activation barrier than that in the isomer of 3 with structure IIb.

We would not expect the ¹¹B and ¹H NMR spectroscopic data for the two isomers of 3 to be significantly different from one another; the environment of the boron atom in an isomer with structure IIc is essentially the same as that in 2. We observe that the ¹¹B and ¹H (for the Ru-H-B bound proton) NMR spectral signatures of 2 and 3 are in fact the same; note that the line widths of the ¹¹B NMR signals for 2 and 3 are broad (fwhm = 160 ± 10 Hz).

The proposed structure IIc may be compared to that crystallographically determined for the related butterfly carbide cluster $Ru_4(CO)_{12}CAu_2[PMe_2Ph]_2$. Here, one gold(I) phosphine unit bridges the hinge Ru-Ru edge while the second unit bridges completely across the wingtips of the butterfly.²⁰ Spectroscopic data are consistent with the same structure of $Ru_4(CO)_{12}CAu_2[PPh_3]_2$.²⁰ Formal substitution of the interstitial carbon atom for an isoelectronic $\{B + H\}$ combination carries with it greater steric requirements. The isomer of 3 with structure IIc is related to that of these carbide clusters, but the presence of the cluster-bound hydrogen atom apparently prevents the formation of the complete Ru(wing)-Au-Ru(wing) bridge.

Draper et al.

Table II. Atomic Coordinates ($\times 10^4$) and Isotropic Thermal Parameters ($\dot{A}^2 \times 10^3$) for 1

		•	· · ·	
	x	У	2	Ua
Au	1943.5 (3)	2147.3 (3)	2096.2 (2)	45.2 (1)
Fe(1)	1927 (1)	1114 (1)	4417.9 (8)	48.4 (4)
Fe(2)	2940 (1)	635 (1)	2745.7 (8)	48.3 (4)
Fe(3)	4273 (1)	1854 (1)	4155 (1)	69.2 (6)
Fe(4)	2267 (2)	3219 (1)	4669.1 (9)	72.6 (6)
P	1118 (2)	3148 (2)	1132 (1)	42.2 (7)
0(1)	1860 (8)	-1178 (6)	4296 (5)	83 (3)
O (2)	1315 (10)	1514 (7)	6344 (5)	97 (4)
O(3)	-793 (7)	1226 (7)	3765 (6)	92 (4)
0(4)	4074 (10)	-1463 (7)	2819 (7)	115 (4)
O(5)	581 (10)	-444 (8)	1800 (6)	119 (4)
O(6)	4772 (9)	663 (8)	1265 (6)	112 (4)
O(7)	5654 (15)	2741 (9)	5846 (8)	189 (7)
O(8)	5511 (9)	3341 (9)	3242 (8)	137 (6)
O(9)	6314 (9)	214 (12)	3660 (10)	178 (8)
O(10)	2940 (18)	3703 (11)	6589 (7)	203 (9)
0(11)	3456 (13)	5241 (8)	4510 (8)	147 (6)
O (12)	-535 (13)	3807 (8)	4982 (10)	170 (7)
C(1)	1910 (9)	-309 (7)	4305 (6)	54 (3)
C(2)	1561 (11)	1416 (8)	5597 (7)	70 (4)
C(3)	273 (9)	1178 (8)	4024 (6)	61 (4)
C(4)	3630 (10)	-611 (9)	2844 (7)	73 (4)
C(5)	1508 (11)	7 (8)	2178 (7)	68 (4)
C(6)	4024 (11)	691 (9)	1813 (8)	79 (5)
C(7)	5058 (15)	2435 (11)	5243 (11)	117 (7)
C(8)	5003 (11)	2798 (12)	3609 (10)	109 (7)
C(9)	5482 (10)	859 (13)	3848 (11)	110 (7)
C(10)	2736 (20)	3446 (13)	5820 (8)	140 (8)
C(11)	2987 (15)	4459 (11)	4562 (8)	106 (6)
C(12)	555 (16)	3608 (10)	4896 (10)	118 (7)
C(21)	2304 (13)	5064 (8)	2084 (8)	87 (5)
C(22)	2249 (20)	6177 (11)	2523 (9)	131 (8)
C(23)	1056 (26)	6730 (12)	2551 (11)	154 (10)
C(24)	-27 (18)	6260 (13)	2143 (9)	142 (8)
C(25)	-11 (13)	5183 (9)	1699 (6)	78 (4)
C(26)	1179 (10)	4589 (8)	1661 (5)	56 (3)
C(27)	3636 (12)	4523 (9)	2033 (10)	109 (6)
C(31)	2390 (13)	1968 (10)	-438 (7)	88 (5)
C(32)	3116 (16)	1911 (13)	-1250 (8)	121 (7)
C(33)	3523 (16)	2809 (17)	-1473 (11)	160 (10)
C(34)	3247 (14)	3742 (14)	-977 (10)	117 (7)
C(35)	2509 (10)	3881 (9)	-168 (7)	69 (4)
C(36)	2061 (9)	2978 (8)	95 (5)	53 (3)
C(37)	1902 (14)	951 (10)	-251 (7)	101 (6)
C(41)	-1594 (12)	2778 (15)	1395 (11)	128 (8)
C(42)	-2880 (14)	2554 (20)	1048 (17)	199 (15)
C(43)	-3213 (18)	2556 (15)	182 (18)	153 (13)
U(44)	-2279 (15)	2667 (11)	-388 (11)	108 (7)
U(45)	-964 (11)	2838 (9)	-101 (7)	76 (4)
U(46)	-615 (9)	2886 (8)	782 (6)	01 (4)
U(47) D	-1287 (14)	7918 (18) 7918 (18)	2370 (11) 2546 (6)	202 (10) 42 (2)
D	2401 (9)	2032 (7)	3040 (0)	40 (0)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Molecular Structure of 1. The molecular structure of 1 is shown in Figure 1, and selected bond distances and angles are collected in Table III. The structure is, as expected, related directly to that of the parent compound $HFe_4(CO)_{12}BH_2^{22,23}$ by the replacement of one bridging hydrogen atom by the AuP(2-Me-C₆H₄)₃ group and is thereby consistent with the isolobal principle.^{24,25} The present determination of the structure of 1 confirms an earlier proposal made for $HFe_4(CO)_{12}BHAuPPh_3$.³ The internal dihedral angle of the Fe₄ butterfly framework is 114.6° in 1 compared to 114.0° in $HFe_4(CO)_{12}BH_2^{22,23}$ and

⁽²²⁾ Wong, K. S.; Scheidt, W. R.; Fehlner, T. P. J. Am. Chem. Soc. 1982, 104, 1111.

 ⁽²³⁾ Fehlner, T. P.; Housecroft, C. E.; Scheidt, W. R.; Wong, K. S.
 Organometallics 1983, 2, 825.
 (24) Lauher, J. W.; Wald, K. J. Am. Chem. Soc. 1981, 103, 7648.

 ⁽²⁴⁾ Lauher, J. W.; Wald, K. J. Am. Chem. Soc. 1981, 103, 7648.
 (25) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237.

Table III. Selected Bond Distances (Å) and Angles (deg)

for 1							
(a) Bond Distances							
Au-Fe(2)	2.580 (1)	Au-P	2.321 (2)				
Au-B	2.310 (10)	Fe(1)-Fe(2)	2.680 (2)				
Fe(1) - Fe(3)	2.604 (2)	Fe(1)-Fe(4)	2.652 (2)				
Fe(2)-Fe(3)	2.675 (2)	Fe(1)-B	2.056 (11)				
Fe(3)-Fe(4)	2.663 (2)	Fe(2)-B	1.964 (9)				
Fe(3)-B	2.048 (9)	Fe(4)-B	2.008 (8)				
P-C(26)	1.827 (9)	P-C(36)	1.815 (8)				
P-C(46)	1.819 (9)						
	(b) Bond	Angles					
Fe(2)-Au-P	163.9 (1)	Fe(2)-Au-B	47.0 (2)				
P-Au-B	149.2 (2)	Fe(2)-Fe(1)-Fe(3	60.8 (1)				
Fe(2)-Fe(1)-Fe(4)	94.6 (1)	Fe(3)-Fe(1)-Fe(4) 60.9 (1)				
Fe(2)-Fe(1)-B	46.7 (2)	Fe(3)-Fe(1)-B	50.5 (2)				
Fe(4)-Fe(1)-B	48.5 (2)	Au-Fe(2)-Fe(1)	101.2 (1)				
Au-Fe(2)-Fe(3)	98.6 (1)	Fe(1)-Fe(2)-Fe(3) 58.2 (1)				
Au-Fe(2)-B	59.3 (3)	Fe(1)-Fe(2)-B	49.7 (3)				
Fe(3)-Fe(2)-B	49.5 (3)	Fe(1)-Fe(3)-Fe(2	61.0 (1)				
Fe(1)-Fe(3)-Fe(4)	60.5 (1)	Fe(2)-Fe(3)-Fe(4	94.4 (1)				
Fe(1)-Fe(3)-B	50.8 (3)	Fe(2)-Fe(3)-B	46.8 (2)				
Fe(4)-Fe(3)-B	48.3 (2)	Fe(1)-Fe(4)-Fe(3	58.7 (1)				
Fe(1)-Fe(4)-B	50.1 (3)	Fe(3)-Fe(4)-B	49.6 (3)				
Au-B-Fe(1)	137.1 (4)	Au-B-Fe(2)	73.8 (3)				
Fe(1)-B-Fe(2)	83.6 (4)	Au-B-Fe(3)	132.2 (4)				
Fe(1)-B-Fe(3)	78.8 (4)	Au-B-Fe(4)	125.2 (5)				
Fe(2)-B-Fe(3)	83.6 (3)	Fe(1)-B-Fe(4)	81.4 (4)				
Fe(2)-B-Fe(4)	161.0 (6)	Fe(3)-B-Fe(4)	82.1 (3)				
Au-P-C(26)	111.4 (3)	Au-P-C(36)	113.3 (3)				
$A_{11} - P - C(46)$	115.4 (4)						

the boron atom is 0.33 Å above the $Fe_{wingtip}$ ---Fe $_{wingtip}$ vector (viz. Fe(2)---Fe(4)) compared to 0.31 Å in the parent compound. In $HFe_4(CO)_{12}BH_2$, the boron atom is symmetrically placed between the two wingtip iron atoms $(Fe-B = 1.966 (6) \text{ and } 1.974 (6) \text{ Å}),^{22,23} \text{ whereas in 1, the}$ edge bridged by the hydrogen atom is slightly longer than that bridged by the gold(I) phosphine fragment (2.008 (8) versus 1.964 (9) Å). On the whole, however, the introduction of the heavy-metal unit causes little perturbation either to the Fe_4B cluster core or to the arrangement of the 12 carbonyl ligands.

Replacement of a boron-attached bridging hydrogen atom by an $\{AuP(2-Me-C_6H_4)_3\}$ fragment has been observed in the reaction of MeAuP(2-Me- C_6H_4)₃ with $B_{10}H_{14}$, and the structural characterization of the resultant auraborane $B_{10}H_{13}AuP(2-Me-C_6H_4)_3$ reveals distances of Au-B = 2.256(15) and 2.325 (16) Å and B-B = 1.745 (22) Å for the $B-Au\{P(2-Me-C_6H_4)_3)-B$ bridging unit.²⁶ These values compare with parameters for the three-center two-electron AuBFe bridging unit in 1 of B-Au = 2.310(10) Å, Au-Fe(2) = 2.580 (1) Å, and Fe(2)-B = 1.964 (9) Å. The angle subtended at the gold atom is $\angle B$ -Au-B = 44.8 (5)° in the auraborane²⁶ and $\angle B$ -Au-Fe(2) = 47.0 (2) Å in 1. Goldphosphorus distances compare as follows: 2.308 (3) Å in $B_{10}H_{13}AuP(2-Me-C_6H_4)_3^{26}$ and 2.321 (2) Å in 1. The structure of the gold(I) precursor (2-Me-C_6H_4)_3PAuCl has only recently been determined,²⁷ and a comparison of selected characteristic geometrical parameters for this and for corresponding values in 1 is given in Table IV. Apart from an increase in the Au-P bond length, there are no significant changes in the geometry of the {(2-Me- C_6H_4)₃PAu} fragment upon association with the cluster.

Cluster hydrides were not located but may be inferred from ¹H NMR spectroscopic data to be Fe-H-B and Fe-H-Fe bridging by nature. An inspection of the carbonyl ligand orientations illustrates that vectors O(8)C(8)Fe(3)

Table IV.	Comparison (of the (Geometrical	l Parameters of
the AuF	$(2-\text{Me-C}_6\text{H}_4)_3$	Group	in the Chlo	oride and in 1

· · · · ·	(2-Me-C ₆ H ₄) ₃ PAuCl ²⁷	1
	Distances (Å)	
Au-P	2.243 (2)	2.312 (2)
	Angles (deg)	
X-Au-P ^a	179.4 (1)	174.1
Au-P-Cinec	112.8 (3)	111.4 (3)
ipec	114.5 (3)	113.3 (3)
	114.2 (3)	115.4 (4)
Circo-P-Circo	104.7 (4)	105.9 (4)
- ipeo - ipeo	105.6 (4)	105.4 (4)
	104.1 (4)	104.5 (4)

^a X = Cl or (for 1) the midpoint of Fe(2)-B.

and O(3)C(3)Fe(1) point toward a common vacancy in the approximately octahedral coordination sphere of atoms Fe(1) and Fe(3). Similarly, extending the vector O(10)C-(10)Fe(4) leads to a coordination vacancy on atom Fe(4). Thus, we propose that the hydride ligands bridge edges Fe(1)-Fe(3) and Fe(4)-B as shown in structure I.

Deprotonation of 1 and 2. Treatment of 1 with Et₃N leads to the formation of $[Et_3NH][1]$ in ~95% yield. In the ¹H NMR spectrum, 1 exhibits a broad resonance at δ –7.7 and a sharp signal at δ –24.9 assigned to the Fe–H–B and Fe-H-Fe bridges, respectively. Upon addition of amine. both resonances disappear and a new signal, a collapsed quartet at δ -9.4, emerges. In the ¹¹B NMR spectrum, only a small shift from δ +136.0 for 1 to δ 137.0 for [Et₃NH][1] is observed; this implies a similar environment for the boron atom in each cluster.²⁸ Both the ¹H and ¹¹B NMR data are therefore consistent with the removal of a proton from the Fe-H-Fe site. This mimics the pattern of deprotonation for $HFe_4(CO)_{12}BH_2$ in which the sequence is loss of Fe-H-B followed by Fe-H-Fe.²⁹ In our case, the loss of a single proton from 1 is considered to be analogous to the loss of the second proton from $HFe_4(CO)_{12}BH_2.$

When ⁿBuLi is added to 1, deprotonation to give Li[1] does not occur. Instead, alkylation of the gold(I) phosphine group is observed as shown in eq 1. The ferraborane $HFe_4(CO)_{12}BHAuP(2-Me-C_6H_4)_3 + Li^nBu \rightarrow$

$$Li[HFe_4(CO)_{12}BH] + {}^{n}BuAuP(2-Me-C_6H_4)_3 (1)$$

product was characterized by comparing its spectroscopic properties with those previously reported for salts of [HFe₄(CO)₁₂BH]⁻.²⁹⁻³¹ The reaction of 1 with "BuLi therefore parallels the alkylation of LAuCl (L = phosphineligand), first documented by Coates et al.³²

In contrast to 1, 2 deprotonates by loss of an Ru-H-B bridging hydrogen atom. The high-field region of the ¹H NMR spectrum of [Et₃NH][2] consists of a single sharp resonance at δ -20.9. In the ¹¹B NMR spectrum, a shift in the resonance from δ +132.1 to +171.4 accompanies deprotonation and this implies a significant change in the environment of the boron atom and an increase in the degree of direct boron to metal interaction. The difference in deprotonations of 1 and 2 is consistent with the differences in deprotonations of the parent clusters HFe₄(C-O)₁₂BH₂ and HRu₄(CO)₁₂BH₂.^{29,33} Formation of the Fused Cluster Anions [{HM₄-

 $(CO)_{12}BH_{2}Au^{-}$ ([4]⁻, M = Fe; [5]⁻, M = Ru). The

⁽²⁶⁾ Wynd, A. J.; McLennan, A. J.; Reed, D.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1987, 2761.

⁽²⁷⁾ Harker, C. S. W.; Tiekink, E. R. T. Acta Crystallogr., Sect. C 1990, 46, 1546.

 ⁽²⁸⁾ Rath, N. P.; Fehlner, T. P. J. Am. Chem. Soc. 1988, 110, 5345.
 (29) Rath, N. P.; Fehlner, T. P. J. Am. Chem. Soc. 1987, 109, 5273. (30) Housecroft, C. E.; Buhl, M. L.; Long, G. J.; Fehlner, T. P. J. Am. Chem. Soc. 1987, 109, 3323.

⁽³¹⁾ Housecroft, C. E.; Fehlner, T. P. Organometallics 1986, 5, 379.
(32) Calvin, G.; Coates, G. E.; Dixon, P. S. Chem. Ind. 1959, 1628.
(33) Hong, F.-E.; McCarthy, D. A.; White, J. P.; Cottrell, C. E.; Shore, S. G. Inorg. Chem. 1990, 29, 2874.

Figure 2. Comparison of the infrared spectra (ν_{CO} only) of (a) 1 and (b) [4]⁻.

formation of 1 may only be achieved if a carefully controlled 1:1 reaction between $[HFe_4(CO)_{12}BH]^-$ and (2-Me-C₆H₄)₃PAuCl is carried out. In the presence of >1 molar equiv of the gold(I) phosphine, a competitive pathway involving Au-P bond cleavage becomes significant. With an approximately 3-fold excess of (2-Me- C_6H_4)₃PAuCl, the yield of 1 is reduced to ~30% and the major product, obtained in $\sim 50\%$ yield, is [Au{P(2-Me- $C_6H_4)_3_2[{HFe_4(CO)_{12}BH}_2Au] ([Au{P(2-Me-C_6H_4)_3}_2][4]).$ The cluster anion [4]⁻ is produced as a result of Au-P bond cleavage.⁶ A similar pathway is followed in reactions of $[HFe_4(CO)_{12}BH]^-$ with LAuCl where L = PEt₃, PMe₃, PPhMe₂, and PPh₂Me.⁶ However, in these cases this pathway competes not with the formation of the monogold but with that of the digold derivative⁷ and [AuL₂][4] is not a predominant product.

We have also studied the reaction of ClAu(dppm)AuCl with [PPN][HFe₄(CO)₁₂BH]. The dppm ligand is small enough⁷ to bridge over the top of the Fe₄B butterfly core, and HFe₄(CO)₁₂BAu₂(dppm) (6) is formed in ~40% yield. Compound 6 is a digold derivative of type IIa. However, the pathway to the fused anion [4]⁻ is also favorable and [4]⁻ forms in ~30% yield. Note that, in this case, the counterion is [PPN]⁺ rather than the bis(phosphine)gold(I) cation as in the reactions with monodentate phosphines described above.

The ruthenium analog of [4]⁻, [5]⁻, may be prepared in 40% yield as its [PPN]⁺ salt via the reaction of [PPN]-[HRu₄(CO)₁₂BH] with ClAu(dppm)AuCl. Both [4]⁻ and [5]⁻ possess ¹¹B and ¹H NMR spectral signatures that closely resemble those of compounds 1 and 2, respectively. The ¹¹B NMR resonance for [4]⁻ of δ +134.0 is close to that of 1 (δ +136.0), and that of [5]⁻ (δ +133.9) compares favorably with that of 2 (δ +132.1). Similarly, ¹H NMR data for [4]⁻ are similar to those of 1 (δ -6.4 (Fe-H-B) and -24.9 (Fe-H-Fe) versus δ -7.7 (Fe-H-B) and -24.9 (Fe-H-Fe), respectively) and shift values for [5]⁻ are comparable to those of 2 (δ -4.1 (Ru-H-B) and -20.9 (Ru-H-Ru) versus δ -4.7 (Ru-H-B) and -20.8 (Ru-H-Ru), respectively). The infrared spectrum in the carbonyl region of [4]⁻ is very similar to that of 1 (Figure 2) and similarly for [5]⁻ and 2. Only the fact that the clusters were anionic as opposed

Figure 3. Molecular structure of $[4]^-$ determined for the [Au-(PMePh₂)₂]⁺ salt (see text). The anion is disordered, with the gold atom occupying two chemically equivalent sites. Only one occupancy is depicted in the figure. Hydrogen atoms were not located.

Figure 4. Core structure of $[4]^-$ showing the two chemically equivalent sites of the gold atoms.

to being neutral suggested the possibility of their fused nature. This was confirmed by FAB mass spectral data and definitively so by X-ray diffraction studies of $[Au-{PMePh_2}][4]$ and [PPN][5].

Molecular Structure of $[Au\{PMePh_2\}_2][4]$. The molecular structure of the anion $[4]^-$ is presented in Figure 3, and selected bond distances and angles are listed in Table VI. The structure consists of two $\{HFe_4(CO)_{12}BH\}$ fragments fused in a "face-to-face" manner via a single gold atom which bridges one $Fe_{wingtip}$ -B edge of each cluster unit. The geometry of each butterfly fragment varies little from that described above for compound 1; the bridging $Au(P(2-Me-C_6H_4)_3)$ ligand of 1 is replaced in $[4]^-$ by the bridging Au atom.

The internal dihedral angle of the Fe₄ skeleton is 116.6 (3)° in [4]⁻ compared to 114.6° in 1, and the boron atom lies 0.39 Å above the Fe_{wingtip}-Fe_{wingtip} axis compared to 0.33 Å in 1. The anion contains two chemically equivalent Au atom sites (Figure 4), with occupancies of 0.402 (1) for Au(1) and 0.098 (1) for Au(3). Hydrogen atoms were not located, but from NMR spectroscopic data and from an inspection of the carbonyl ligand orientations we propose that they bridge edges Fe(1)-Fe(2) and Fe(3)-B (or Fe-(4)-B). As in 1, the gold-bridged Fe-B edge is shorter than the hydrogen-bridged edge in [4]⁻ with Fe(2)-B = 2.082 (12) Å and Fe(4)-B = 1.990 (12) Å.

Figure 3 illustrates that the two $\{HFe_4(CO)_{12}BH\}$ units reside in a mutually cis arrangement with respect to coordination about the gold(I) center. (This description is for convenience only and does not imply that the geometry about the gold(I) atom should be considered as being square planar; see below.) The two cluster subunits are twisted with respect to one another with a spiro twist angle

Table V. Atomic Coordinates ($\times 10^4$) and Isotropic Thermal Parameters ($\dot{A}^2 \times 10^3$) for $[Au(PMePh_2)_2][4]$

	x	У	z	Ua
Au(1)	0	7090.4 (7)	2500	44.1 (3)*
Au(2)	2500	7500	0	71.0 (3)*
Fe(1)	1124.6 (7)	7881 (2)	3651.9 (6)	54.0 (6)*
Fe(2)	1704.5 (7)	8620 (2)	2965.3 (5)	48.3 (5)*
Fe(3)	788.1 (7)	10196 (2)	3192.6 (6)	54.3 (6)*
Fe(4)	1062.7 (7)	6229 (2)	2926.3 (5)	49.4 (6)*
Au(3)	0	9295 (3)	2500	42 (1)*
P	1727 (2)	7022 (4)	439 (1)	64 (1)*
Ō(1)	1674 (5)	5461 (11)	4134 (4)	118 (5)*
O (2)	-167 (5)	7279 (12)	3749 (4)	114 (5)*
O (3)	1394 (5)	9511 (11)	4484 (3)	99 (4)*
0(4)	2834 (5)	7025 (10)	2876 (4)	100 (5)*
O (5)	1355 (4)	9041 (11)	1987 (3)	87 (4)*
0(6)	2473 (4)	11121 (9)	3128 (3)	81 (4)*
$\dot{\mathbf{O}(7)}$	-341 (4)	10940 (11)	3593 (4)	108 (5)*
0(8)	1571 (4)	12008 (10)	3834 (4)	99 (4)*
0(9)	794 (5)	12254 (9)	2453 (3)	90 (4)*
0(10)	224(4)	4119 (9)	3233 (3)	93 (4)*
0(11)	2150 (4)	4472 (11)	3201 (4)	111 (5)*
O(12)	1110 (4)	5407 (11)	1988 (3)	90 (4)*
$\tilde{C}(1)$	1468 (7)	6376 (13)	3932 (4)	75 (5)*
$\tilde{C}(2)$	328 (6)	7517 (12)	3707 (4)	67 (5)*
Č(3)	1292 (6)	8904 (13)	4154 (4)	66 (5)*
C(4)	2373 (6)	7597 (13)	2913 (5)	69 (5)*
C(5)	1490 (5)	8900 (13)	2368 (4)	66 (5)*
C(6)	2157 (5)	10188 (12)	3070 (4)	59 (4)*
$\tilde{C}(\tilde{7})$	91 (6)	10647 (14)	3431 (5)	81 (6)*
Č(8)	1284 (5)	11250 (13)	3585 (4)	66 (5)*
C(9)	781 (5)	11462 (12)	2734 (4)	64 (5)*
C(10)	543 (5)	4937 (12)	3109 (4)	66 (5)*
C(11)	1751 (6)	5185 (13)	3116 (4)	70 (5)*
C(12)	1079 (5)	5716 (13)	2353 (4)	66 (5)*
B B	767 (5)	8189 (13)	2981 (5)	49 (4)*
C(21)	1791 (7)	8108 (14)	940 (5)	87 (6)*
C(22)	774 (9)	6543 (18)	-247 (6)	136 (12)
C(23)	177	6741	-476	182(17)
C(24)	-214	7743	-321	197 (19)
C(25)	-8	8546	61	227 (22)
C(26)	589	8347	289	188 (18)
C(27)	980	7346	135	106 (5)
$\widetilde{C}(28)$	2038 (4)	4179 (11)	409 (3)	93 (7)*
C(29)	2044	2797	563	108 (8)*
Cian	1748	2451	938	91 (7)*
C(31)	1447	3487	1159	106 (8)*
C(32)	1442	4868	1005	87 (6)*
C(33)	1737	5214	630	64 (5)*

^a Asterisks denote equivalent isotropic U values, defined as onethird of the trace of the orthogonalized U_{ij} tensor.

of 30.9 (5)° at the gold atom. The origin of this twist presumably arises from the close proximity of pairs of carbonyl ligands on the two cluster units, since nonbonded CO--O(a)C(a) interactions are at a maximum when atoms Fe(4), B, Au(1), B(a), and Fe(4a) are coplanar. This point will be addressed further below.

The phosphine ligands in the $[AuL_2]^+$ cations are a mixture of PMePh₂ and PMe₂Ph molecules. Occupancy refinement shows PMePh₂ to be present as a 63 (1)% component of the mixture. The geometry of the cation is unexceptional with linear coordination at the gold(I) center $\angle P-Au-P = 180.0$ (1)°. Each Au-P bond length is 2.300 (4) Å. There are no significant cation-anion interactions.

Molecular Structure of [PPN][5]. The molecular structure of $[5]^-$ is given in Figure 5, and selected bond distances and angles are listed in Table VIII. Two chemically similar, but crystallographically independent, half-anions are situated on inversion centers. Thus, the anion comprises two inversionally related cluster subunits, fused via a gold atom in a "face-to-face" orientation and in a mutually trans configuration with atom Au(1) lying on a crystallographic inversion center (as with $[4]^-$, the use of the descriptor trans is given for convenience only and

Table VI. Selected Bond Distances (Å) and Angles (deg) for [4]⁻

101 [*]						
(a) Bond Distances						
Fe(4)-Au(1)	2.615 (1)	Au(1)-B	2.300 (12)			
Fe(1)-Fe(2)	2.630 (2)	Fe(1)-Fe(3)	2.649 (2)			
Fe(1)-Fe(4)	2.660 (2)	Fe(2)-Fe(3)	2.650 (2)			
Fe(2)-Fe(4)	2.668 (2)	Fe(1)-B	2.065 (13)			
Fe(2)-B	2.082 (12)	Fe(3)-B	2.015 (12)			
Fe(4)-B	1.990 (12)					
	(b) Bon	d Angles				
Fe(4)-Au(1)-B	47.2 (3)	Fe(4)-Au(1)-Fe(4	ta) 143.4 (1)			
B-Au(1)-Fe(4a)	164.9 (3)	B-Au(1)-B(a)	125.8 (6)			
Fe(2)-Fe(1)-Fe(3)	60.3 (1)	Fe(2)-Fe(1)-Fe(4	60.6 (1)			
Fe(3)-Fe(1)-Fe(4)	95.5 (1)	Fe(2)-Fe(1)-B	50.9 (3)			
Fe(2)-Fe(1)-B	48.7 (3)	Fe(4)-Fe(1)-B	47.8 (3)			
Fe(1) - Fe(2) - Fe(3)	60.2 (1)	Fe(1)-Fe(2)-Fe(4) 60.3 (1)			
Fe(3)-Fe(2)-Fe(4)	95.2 (1)	Fe(1)-Fe(2)-B	50.4 (4)			
Fe(3)-Fe(2)-B	48.6 (3)	Fe(4)-Fe(2)-B	47.6 (3)			
Fe(1)-Fe(3)-Fe(2)	59.5 (1)	Fe(1)-Fe(3)-B	50.3 (4)			
Fe(2)-Fe(3)-B	50.8 (3)	Au(1)-Fe(4)-Fe(1	L) 98.9 (1)			
Au(1)-Fe(4)-Fe(2)	100.1 (1)	Fe(1)-Fe(4)-Fe(2	59.1 (1)			
Au(1)-Fe(4)-B	58.0 (3)	Fe(1)-Fe(4)-B	50.2 (4)			
Fe(2)-Fe(4)-B	50.6 (3)	Au(1)-B-Fe(1)	133.3 (6)			
Au(1)-B-Fe(2)	135.0 (7)	Fe(1)-B-Fe(2)	78.7 (4)			
Au(1)-B-Fe(3)	127.8 (5)	Fe(1)-B-Fe(3)	81.0 (5)			
Fe(2)-B-Fe(3)	80.6 (4)	Au(1)-B-Fe(4)	74.7 (4)			
Fe(1)-B-Fe(4)	82.0 (5)	Fe(2)-B-Fe(4)	81.8 (4)			
Fe(3)-B-Fe(4)	157.5 (6)		.,			
	φ	X	N			

Figure 5. Molecular structure of [5]⁻ determined for the [PPN]⁺ salt. Hydrogen atoms were not located. One of the two chemically similar but crystallographically different independent anions is shown.

does not imply that the Au(I) atom is in a formal square-planar environment; see discussion below). The gold atom bridges one $Ru_{wingtip}$ -B edge of each cluster unit. The structure of each $\{Ru_4(CO)_{12}B\}$ subunit is similar to that of both the parent ruthenaborane $HRu_4(CO)_{12}BH_2^{33}$ and of $HRu_4(CO)_{12}BAu_2(PPh_3)_2$.⁸ The internal dihedral angle of the Ru_4 butterfly is 116.1° (average) in [5]⁻ compared to 118° in $HRu_4(CO)_{12}BH_2^{33}$ and 117.4° in $HRu_4(CO)_{12}BAu_2(PPh_3)_2$.⁸ The boron atom is displaced above the $Ru_{wingtip}$ - $Ru_{wingtip}$ axis (viz, Ru(1)---Ru(3) in Figure 5) by 0.375 Å (average) in [5]⁻ compared to 0.39 Å in H- $Ru_4(CO)_{12}BH_2^{33}$ and 0.37 Å in $HRu_4(CO)_{12}BAu_2(PPh_3)_2$.⁸ Thus, as observed previously for the Fe₄B core in related auraferraboranes,¹⁹ the Ru_4B cluster core appears to be resistant to structural change as cluster-bound hydrogen atoms are replaced by one or more gold(I) phosphine fragments.

Hydrogen atoms were not located in [5]⁻, but as in 1 and [4]⁻, NMR spectroscopic data and an inspection of the orientations of the carbonyl ligands show that each cluster subunit possesses two hydrogen atoms bridging edges Ru(2)-Ru(4) and Ru(1)-B(1), respectively. In the parent cluster $HRu_4(CO)_{12}BH_2$, the two $Ru_{wingtip}-B$ edges, viz.

Table VII. Atomic Coordinates ($\times 10^4$) and Isotropic Thermal Parameters ($A^2 \times 10^3$) for [PPN][5]

	Labie VII.	Atomic Cool	uillaves (AIO	, and isotropic	I HOI MA	I I AIAMOULI	([1 1 1.][0]	
	x	У	z	Ua		x	У	z	Ua
Ru(1)	7335.9 (14)	4200.4 (10)	872.8 (5)	39.9 (5)*	C(12)	8960 (22)	3973 (16)	1999 (7)	67 (9)*
Ru(2)	8848.0 (15)	2568.8 (9)	579.7 (5)	37.7 (5)*	C(13)	-823 (25)	4803 (16)	3866 (8)	73 (9)*
Ru(3)	11311.4 (14)	3695.7 (10)	535.4 (5)	35.5 (5)*	C(14)	1471 (22)	4092 (16)	3455 (7)	66 (8)*
Ru(4)	9952.3 (15)	3973.1 (10)	1416.0 (5)	39.5 (5)*	C(15)	2008 (20)	5543 (13)	4280 (8)	61 (8)*
Ru(5)	902.3 (16)	4334.0 (10)	4118.7 (5)	44.3 (5)*	C(16)	3626 (20)	4071 (14)	5077 (7)	55 (7)*
Ru(6)	2883.7 (15)	3100.6 (10)	4558.6 (5)	38.9 (5)*	C(17)	4153 (22)	2139 (15)	4776 (8)	65 (8)*
Ru(7)	1043.4 (16)	2330.5 (10)	5154.5 (5)	42.6 (5)*	C(18)	3947 (18)	3522 (12)	4066 (7)	48 (7)*
Ru(8)	163.5 (16)	2321.5 (10)	4113.6 (5)	45.6 (5)*	C(19)	1671 (22)	1040 (14)	5055 (7)	61 (8)*
Au(1)	10000	5000	0	33.6 (3)*	C(20)	2222 (24)	2624 (14)	5777 (8)	69 (9)*
Au(2)	0	5000	5000	42.5 (4)*	C(21)	-603 (25)	1029 (13)	5398 (7)	69 (9)*
P (1)	3070 (5)	9332 (3)	1907 (2)	41 (2)*	C(22)	11 (21)	937 (15)	4073 (8)	71 (8)*
P(2)	3172 (5)	7965 (4)	2691 (2)	47 (2)*	C(23)	-144 (26)	2304 (15)	3402 (8)	83 (10)*
N	3255 (17)	8399 (10)	2171 (5)	51 (6)*	C(24)	-1716 (24)	2545 (15)	4217 (8)	73 (9)*
B(1)	9307 (24)	4135 (13)	619 (7)	46 (8)*	C(31)	3446 (11)	9673 (7)	945 (4)	49 (5)
B(2)	811 (23)	3541 (13)	4711 (7)	43 (7)*	C(32)	4020	9496	497	60 (5)
0(1)	5821 (16)	3165 (11)	1600 (5)	82 (7)*	C(33)	4966	8772	442	62 (5)
O(2)	6742 (16)	6208 (10)	1375 (6)	84 (7)*	C(34)	5338	8224	836	63 (5)
O(3)	4929 (14)	3823 (10)	4 (5)	71 (6)*	C(35)	4765	8401	1284	48 (4)
O(4)	6366 (14)	1349 (9)	812 (5)	69 (6)*	C(36)	3819	9126	1339	39 (4)
U(5)	7999 (15)	2637 (10)	-536 (4)	67 (6)*	U(41)	783 (12)	10489 (7)	1808 (5)	60 (5)
0(6)	10644 (17)	843 (10)	414 (6)	90 (7)*	C(42)	-628	10618	1688	82 (7)
O(7)	13247 (16)	2170 (10)	935 (7)	93 (7)* 70 (6)*	C(43)	-1030	9817	1014	77 (6)
	13447 (14)	0384 (10) 0000 (10)	617 (D) 540 (5)	70 (6)+ 76 (6)+	O(44)	-1023	0009	1409	00 (<i>1</i>) 70 (0)
0(9)	11729 (16)	3000 (10)	-040 (0)	/0 (0)* 02 (7)*	C(40)	30/ 1000	0/01	10/9	72 (6)
O(10)	12007 (10)	3209 (13)	1907 (0)	93 (7)*	C(40)	1290 5110 (19)	9001 10905 (0)	1/04	00 (0) 70 (0)
O(11)	100/4 (1/)	0140(10)	1000 (0)	04 (1)*	C(51)	0119 (10) 5015	11500 (9)	2142 (4)	12(0)
O(12)	0409 (10) _1019 (19)	4024 (13)	2042 (0) 9719 (6)	90 (0)* 106 (9)*	C(52)	0010 5901	11007	2440	04(1)
O(13)	-1912(10) 1919(10)	2025 (14)	3068 (5)	100 (8)*	C(53)	4070	11605	2011	04 (7) 90 (7)
O(14)	1012 (19) 9646 (10)	6917 (10)	3000 (J) 1970 (7)	107 (8)*	C(55)	2974	10000	3000	50 (1) 73 (6)
0(16)	2040 (15) 4045 (16)	4651 (11)	5401 (5)	86 (7)*	C(56)	3808	10413	2702	50 (5)
O(17)	4800 (17)	1629 (11)	4939 (7)	94 (7)*	C(61)	4059 (15)	6296 (9)	2200 (4)	67 (6)
0(18)	4664 (14)	3739 (10)	3788 (5)	69 (6)*	C(62)	4614	5382	2177	88 (7)
O(19)	2042 (19)	262 (10)	4991 (6)	94 (7)*	C(63)	5073	4994	2620	92 (8)
O(20)	3001 (20)	2778 (13)	6142 (5)	108 (8)*	C(64)	4976	5521	3086	83 (7)
O(21)	-1630 (18)	1720 (12)	5544 (7)	105 (8)*	C(65)	4421	6436	3110	79 (7)
O(22)	-168 (20)	105 (10)	4038 (7)	107 (8)*	C(66)	3962	6823	2667	51 (5)
O(23)	-424 (26)	2228 (15)	2967 (6)	142 (11)*	C(71)	5420 (14)	9064 (10)	3154 (4)	70 (6)
O(24)	-2787 (17)	2682 (15)	4305 (8)	119 (9)*	C(72)	6190	9686	3540	93 (8)
Č(1)	6386 (17)	3526 (13)	1325 (7)	46 (7)*	C(73)	5642	9960	3986	88 (7)
C(2)	6931 (19)	5429 (14)	1188 (7)	52 (7)*	C(74)	4324	9612	4046	95 (8)
C(3)	5797 (19)	3970 (13)	330 (7)	50 (7)*	C(75)	3554	8990	3660	82 (7)
C(4)	7258 (18)	1801 (13)	721 (7)	50 (7)*	C(76)	4102	8716	3214	53 (5)
C(5)	8292 (17)	2575 (12)	-124 (6)	43 (6)*	C(81)	888 (17)	6831 (10)	2819 (6)	105 (9)
C(6)	10039 (21)	1492 (13)	488 (7)	60 (8)*	C(82)	-520	6684	2846	120 (10)
C(7)	12504 (19)	2752 (13)	808 (7)	53 (7)*	C(83)	-1368	7473	2874	122 (10)
C(8)	12642 (16)	4756 (13)	702 (6)	44 (6)*	C(84)	-808	8409	2876	139 (12)
C(9)	11583 (20)	3283 (12)	-136 (7)	59 (8)*	C(85)	600	8556	2849	109 (9)
C(10)	11671 (19)	3525 (14)	1761 (7)	56 (7)*	C(86)	1448	7767	2820	68 (6)
C(11)	10451 (21)	5323 (14)	1513 (6)	57 (8)*					

^a Asterisks denote equivalent isotropic U values, defined as one-third of the trace of the orthogonalized U_{ii} tensor.

those corresponding to Ru(1)-B(1) and Ru(3)-B(1), are equal in length within experimental error $(2.111 \ (6)$ and $2.106 \ (6) \ Å)$.³³ In [5]⁻, the hydrogen-bridged edge is similar to the gold-bridged edge: Ru(1)-B(1) = 2.12 (2) Å compared to 2.10 (2) Å. This feature is consistent with the trend observed above for the auraferraboranes 1 and $[4]^-$.

Comparison of the Structures of [4]⁻ and [5]⁻. Crystallographically characterized compounds in which a gold(I) center acts as a point of fusion for two cluster fragments and is four-coordinate are few.^{6,34,35} A related silver(I) compound³⁶ and several mercury(II) species have been structurally characterized.³⁷⁻⁴⁴ In several of these

reports, the linking metal atom is described as being sphybridized and therefore pseudolinear as would be expected for Au(I), or Hg(II) species. The sp hybrid is involved in a three-center two-electron bridging interaction that renders the local environment about the heavy-metal atom four-coordinate. For the fusion of two simple triangular cluster units, there are two possible orientations (trans and cis) as shown in Figure 6a; these orientations are the extreme cases in which the gold and four "donor" atoms are taken as being coplanar. Recently, Di Vaira et

⁽³⁴⁾ Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1981, 753.

⁽³⁵⁾ Di Vaira, M.; Stoppioni, P.; Peruzzini, M. J. Chem. Soc., Dalton Trans. 1990, 109.

⁽³⁶⁾ Gade, L. H.; Johnson, B. F. G.; Lewis, J.; McPartlin, M.; Powell,

H. R. J. Chem. Soc., Chem. Commun. 1990, 110.
 (37) Fajardo, M.; Gômez-Sal, M. P.; Holden, H. D.; Johnson, B. F. G.;
 Lewis, J.; McQueen, R. C. S.; Raithby, P. R. J. Organomet. Chem. 1984, 267, C25.

⁽³⁸⁾ Gómez-Sal, M. P.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Syed-Mustaffa, S. N. A. J. Organomet. Chem. 1984, 272, C21.

⁽³⁹⁾ Farrugia, L. J. J. Chem. Soc., Chem. Commun. 1987, 147.

 ⁽⁴⁰⁾ Finster, D. C.; Grimes, R. N. Inorg. Chem. 1981, 20, 863.
 (41) Johnson, B. F. G.; Kwik, W.-L.; Lewis, J.; Raithby, P. R.; Saharan, V. R. J. Chem. Soc., Dalton Trans. 1991, 1037.

⁽⁴²⁾ Gong, J.; Huang, J.; Fanwick, P. E.; Kubiak, C. P. Angew. Chem., Int. Ed. Engl. 1990, 29, 396.

⁽⁴³⁾ Ermer, S.; King, K.; Hardcastle, K. I.; Rosenberg, E.; Manotti Lanfredi, A. M.; Tiripicchio, A.; Tiripicchio Camellini, M. Inorg. Chem. 1983. 22. 1339.

⁽⁴⁴⁾ Rosenberg, E.; Hardcastle, K. I.; Day, M. W.; Gobetto, R.; Hajela, S.; Muftikian, R. Organometallics 1991, 10, 203.

Table VIII. Selected Bond Distances (Å) and Angles (deg) for One of the Crystallographically Independent Half Anions [5]⁻

molecule A		molecule B		
	(a) Bond]	Distances		
Ru(1)-Ru(2)	2.834 (2)	Ru(7)-Ru(8)	2.827 (2)	
Ru(1)-Ru(4)	2.823 (2)	Ru(6)-Ru(7)	2.823 (2)	
Ru(2)-Ru(3)	2.851 (2)	Ru(5)-Ru(6)	2.860 (2)	
Ru(2)-Ru(4)	2.878 (2)	Ru(6)-Ru(8)	2.893 (2)	
Ru(3)-Ru(4)	2.858 (2)	Ru(5)-Ru(8)	2.865 (2)	
Ru(1) - B(1)	2.123 (24)	Ru(7)-B(2)	2.175 (20)	
Ru(2) - B(1)	2.197 (18)	Ru(6) - B(2)	2.205 (22)	
Ru(3)-B(1)	2.099 (24)	Ru(5) - B(2)	2.053 (20)	
Ru(4)-B(1)	2.200 (20)	Ru(8)-B(2)	2.215 (17)	
Ru(3)-Au(1)	2.700 (1)	Ru(5)-Au(2)	2.711 (1)	
Au(1)-Ru(3A)	2.700 (1)	Au(2)-Ru(5A)	2.711 (1)	
Au(1)-B(1)	2.322 (21)	Au(2)-B(2)	2.288 (19)	
Au(1)-B(1A)	2.323 (21)	Au(2)-B(2A)	2.288 (19)	
	(b) Bond	Angles		
Ru(2)-Ru(1)-Ru(4)	61.2 (1)	Ru(6) - Ru(7) - Ru(8)	61.6 (1)	
Ru(2)-Ru(1)-B(1)	50.1 (5)	Ru(6)-Ru(7)-B(2)	50.3 (6)	
Ru(4)-Ru(1)-B(1)	50.4 (5)	Ru(8)-Ru(7)-B(2)	50.5 (5)	
Ru(1)-Ru(2)-RU93)	94.0 (1)	Ru(7) - Ru(6) - Ru(5)	94.1 (1)	
Ru(1)-Ru(2)-Ru(4)	59.2 (1)	Ru(7)-Ru(6)-Ru(8)	59.3 (1)	
Ru(3)-Ru(2)-Ru(4)	59.8 (1)	Ru(5)-Ru(6)-Ru(8)	59.7 (1)	
Ru(1)-Ru(2)-B(1)	47.9 (6)	Ru(7)-Ru(6)-B(2)	49.4 (5)	
Ru(3)-Ru(2)-B(1)	47.0 (6)	Ru(5)-Ru(6)-B(2)	45.6 (5)	
Ru(4)-Ru(2)-B(1)	49.2 (5)	Ru(8)-Ru(6)-B(2)	49.3 (5)	
Ru(2)-Ru(3)-Ru(4)	60.5 (1)	Ru(6)-Ru(5)-Ru(8)	60.7 (1)	
Ru(2)-Ru(3)-Au(1)	94.3 (1)	Ru(6)-Ru(5)-Au(2)	95.0 (1)	
Ru(4)- $Ru(3)$ - $Au(1)$	99.2 (1)	Ru(8)-Ru(5)-Au(2)	97.8 (1)	
Ru(2)-Ru(3)-B(1)	49.9 (5)	Ru(6)-Ru(5)-B(2)	50.1 (6)	
Ru(4)-Ru(3)-B(1)	49.9 (5)	4u(8)-Ru(5)-B(2)	50.3 (5)	
Au(1)-Ru(3)-B(1)	56.2 (6)	Au(2)-Ru(5)-B(2)	55.3 (5)	
Ru(1)-Ru(4)-Ru(2)	59.6 (1)	Ru(7)-Ru(8)-Ru(6)	59.1 (1)	
Ru(1)-Ru(4)-Ru(3)	94.1 (1)	Ru(7)-Ru(8)-Ru(5)	93.9 (1)	
Ru(2)-Ru(4)-Ru(3)	59.6 (1)	Ru(6)-Ru(8)-Ru(5)	59.6 (1)	
Ru(1)-Ru(4)-B(1)	48.1 (6)	Ru(7)-Ru(8)-B(2)	49.3 (5)	
Ru(2)-Ru(4)-B(1)	49.1 (5)	Ru(6)-Ru(8)-B(2)	49.0 (6)	
Ru(3)-Ru(4)-B(1)	46.8 (6)	Ru(5)-Ru(8)-B(2)	45.5 (5)	
Ru(1)-B(1)-Ru(3)	160.1 (11)	Ru(7)-B(2)-Ru(5)	159.4 (11)	
Ru(1)-B(1)-Ru(4)	81.5 (8)	Ru(7)-B(2)-Ru(8)	80.2 (6)	
Ru(3)-B(1)-Ru(4)	83.3 (8)	Ru(5)-B(2)-Ru(8)	84.2 (7)	
Ru(1)-B(1)-Ru(2)	82.0 (8)	Ru(7)-B(2)-Ru(6)	80.2 (7)	
Ru(2)-B(1)-Ru(3)	83.1 (7)	Ru(6)-B(2)-Ru(5)	84.3 (8)	
Ru(2)-B(1)-Ru(4)	81.8 (7)	Ru(6)-B(2)-Ru(8)	81.8 (7)	
Ru(1)-B(1)-Au(1)	124.7 (10)	Ru(7)-B(2)-Au(2)	123.5 (9)	
Ru(3)-B(1)-Au(1)	75.1 (7)	Ru(5)-B(2)-Au(2)	77.1 (6)	
Ru(3)-Au(1)-B(1)	48.7 (6)	Ru(5) - Au(2) - B(2)	47.6 (5)	
Ru(3A) - Au(1) - B(1)	131.3 (6)	Ru(5A)-Au(2)-B(2)	132.4 (5)	
B(1)-Au(1)-B(1A)	180.0 (1)	B(2)-Au(2)-B(2A)	180.0 (1)	

al., have shown that, in solution, the gold atom that fuses together two P_3 units in [{MeC(CH₂PPh₂)₃)MP₃}₂Au]⁺ (M = Co, Rh, Ir) is fluxional with respect to motion over the P_3 fragments, thereby rendering all six phosphorus atoms equivalent; this effectively equilibrates the trans and cis isomers, although the trans isomer is preferred in the solid state.³⁵

The fusion of two cluster units, each of which possesses two different "donor sites" (as in the metallaboranes reported here), leads to the possibility of cis and trans isomers with respect to a formal square-planar coordination sphere (Figure 6b). The sp hybrid bonding scheme naturally allows flexibility with respect to the orientation of the two cluster subunits, and limiting coordination geometries will be square planar ($\alpha = 0$ or 180°) and tetrahedral ($\alpha = 90^{\circ}$). The work of Rosenberg et al. has indicated that, at temperatures above -40 °C, the triruthenium-based cluster subunits in {Ru₃(CO)₉(C₂^tBu)}₂Hg undergo motion with respect to the central mercury atom such that there is rapid interconversion of the cis and trans isomers.⁴⁵ In Table IX, values of α (defined in the table) are listed for structurally characterized members of this growing group of compounds. It would appear, both in summarizing

Figure 6. Possible geometries for the fusion of two cluster subunits: (a) two M_3 units bonded to the central atom (M') via M-M'-M bridges mutually trans or cis with respect to the orientations of the M_3 units; (b) two M_4X asymmetrical subunits bonded via M-(M')-X interactions mutually trans or cis with respect to the placement of the M and X atoms.

Table IX. Comparison of the Geometries at the Four-Coordinate Central Atom Ag(I), Au(I), or Hg(II) in Fused Compounds of the Type [{cluster}₂M]^{n± a}

	angle α	
compd	(deg)	ref
$[{HOs_3(CO)_{10}}_2Au]^-$	06	34
$[[HOs_3(CO)_{10}]_2Ag]^-$	06	36
CpCoB ₃ H ₄ C ₂ Me ₂] ₂ Hg	06	40
$[Ru_3(CO)_{10}(\mu - NO)]_2Hg$	27.6	38
$[[HFe_4(CO)_{12}BH]_2Au]^-$	30.9 (5)	6, this work
$[{Ni_2(\mu-CNMe)(CNMe)_{4}(dppm)}_{2}Hg]^{2+}$	34.6 (1)	42
$[Os_{10}(CO)_{24}C]_{2}Hg]^{2-}$	38.4	36
$[Ru_3(CO)_9(C_2^{t}Bu)]_2Hg$	44.6	43
$CpCoFe_2(CO)_7(\mu_3-COMe)$	46.2	39
[(MeC(CH ₂ PPh ₂) ₃)CoP ₃] ₂ Au] ⁺	50.4 (3)	35
$[(MeC(CH_2PPh_2)_3)RhP_3]_2Au]^+$	51.1 (1)	35
[((MeC(CH ₂ PPh ₂) ₃)IrP ₃] ₂ Au] ⁺	51.5 (4)	35
$H(\mu_3-S)Os_3(CO)_9]_2Hg$	65	44
$[CpRhFe_2(CO)_7(\mu_3-COMe)]_2Hg$	71.9	3 9
$[{Ru_6(CO)_{16}C}_2Hg]^{2-}$	74°	41
$[[HRu_4(CO)_{12}BH]_2Au]^-$	180^{d}	this work

 ${}^{a}\alpha$ is defined as 0 or 180° for a square-planar geometry and 90° for tetrahedral coordination. b Trans isomer as defined in Figure 6a. °Value calculated by us from atomic coordinates. d Trans isomer as defined in Figure 6b.

comments made by individual authors^{39,40,42} and by inspection of the structures themselves, that the values of α obtained for the solid state are determined primarily by a combination of intramolecular steric and crystal-packing effects.

Anions $[4]^-$ and $[5]^-$ represent an interesting pair of compounds that differ only by a change from first- to second-row transition metal in the cluster subunit. The $\{Ru_4(CO)_{12}\}$ fragment is larger than its iron counterpart, and bond lengths involving the gold atom in $[4]^-$ (Figure 3) are Fe(4)-Au(1) = 2.615 (1) Å and Au(1)-B = 2.300 (12) Å and in $[5]^-$ (Figure 5) are Ru(3)-Au(1) = 2.700 (1) Å and Au(1)-B(1) = 2.32 (2) Å. This increase in skeletal size does not necessarily permit a greater separation between carbonyl ligands attached to adjacent cluster subunits, since

⁽⁴⁵⁾ Hajela, S.; Novak, B. M.; Rosenberg, E. Organometallics 1989, 8, 468.

Figure 7. Labeling scheme for nonbonded carbonyl separations in model trans and cis isomers of $[{HM_4(CO)_{12}BH}_2Au]^-(M = Fe, Ru)$: (a) $\alpha = 0^\circ$; (b) $\alpha = 180^\circ$. In each model, the gold atom is in a planar environment. Carbonyl ligands not involved in close contacts are omitted for clarity.

there is a significant increase in the average M-CO distance from iron (average 1.794 Å in [4]⁻) to ruthenium (average 1.920 Å in [5]⁻). Those nonbonded separations that will be important in determining minimal energy conformations for the two anions are shown in Figure 7.46 The two extreme arrangements (viz. cis and trans isomers with a planar environment at the gold atom) have values of $\alpha = 0$ and 180°, respectively. For $\alpha = 0^{\circ}$ and M = Fe, the shortest nonbonded CO---OC separation is 2.5 Å,46 while for M = Ru, it is 2.3 Å.⁴⁶ For $\alpha = 180^{\circ}$ and M = Fe, Ru, the shortest CO---OC distance is 3.2 and 3.1 Å, respectively.⁴⁶ Noting that the sum of the van der Waals radii of two oxygen atoms is 3.0 Å,⁴⁷ we suggest that, as a result of steric factors, the trans isomer should be favored over the cis for both M = Fe and M = Ru. However, the crystallographic data confirm this structure only for M =Ru.

In an attempt to understand the structural preference shown by anion [4]⁻, we have followed changes in the nonbonded carbonyl separations as a function of angle α starting from a model compound with the unfavorable cis isomer ($\alpha = 0^{\circ}$) for M = Fe. Repulsive interactions such as those labeled a, c, and e in Figure 7 are "turned off" as α increases, but at the same time, new and significant cross-interactions (f and g in Figure 7a) are "turned on". The experimental angle in $[4]^-$ of $\alpha = 30.9^\circ$ corresponds to a relatively favorable balance between these two sets of interactions. A value of α in the range of ~40-65° leads to exceptionally short CO---OC separations for f and g. We suggest that the crystallographically determined structure for anion [5] - is as would be predicted by steric considerations but that the observed structure of [4]⁻ (Figure 3) is a result of a combination of steric effects and crystal-packing effects. Perhaps it is significant that the cation is not common to the crystallographically determined structures reported here, but on the other hand, there are no apparent cation-anion interactions in either structure.

Relationship between [4]⁻ or [5]⁻ and 1 or 2. The formation of either of the cluster anions [4]⁻ and [5]⁻ must proceed via Au-P bond cleavage, and it seems reasonable to propose that these anions are generated respectively via the monogold derivatives 1 and 2. This is most easily understood if we consider the formation of $[AuL_2][4]$ (L = P(2-Me-C₆H₄)₃, PMe₃, PEt₃, PMe₂Ph, PMePh₂), in which the stoichiometry of the compound is identical with that of the monogold derivative HFe₄(CO)₁₂BHAuL. The

Figure 8. Reaction of $[Au[P(2-Me-C_6H_4)_3]_2][4]$ with concentrated HCl monitored over a period of 13.5 h by ¹H NMR spectroscopy. Resonances corresponding to Fe-H-B bridging protons in [4]⁻, 1, and HFe₄(CO)₁₂BH₂ are labeled A-C, respectively. Signals for the Fe-H-Fe protons are coincident for the three compounds.

relationship between $[AuL_2][4]$ and $HFe_4(CO)_{12}BHAuL$ may be described in terms of a ligand redistribution (eq 2).

$$2HFe_4(CO)_{12}BHAuL \rightarrow [AuL_2]^+ + [{HFe_4(CO)_{12}BH}_2Au]^- (2)$$

In order to test the role of 1 as a direct precursor to $[AuL_2][4]$, a sample of pure 1 was combined in dichloromethane with molar equivalents of both [PPN][HFe₄(C-O)₁₂BH] and (2-Me-C₆H₄)₃PAuCl in the presence of TlPF₆. Within 10 min, the solution had changed from brown to dark green and, after chromatographic separation, $[Au]P-(2-Me-C_6H_4)_3]_2][4]$ was isolated in ~50% yield. One related cluster fusion reaction that has previously been reported is the formation of [PPN][{HOs₃(CO)₁₀}_2Au]. Significantly, this compound is generated by treating the monogold derivative HOs₃(CO)₁₀AuPR₃ (R = Et, Ph) with [PPN]Cl.³² However, when 1 was treated with [PPN]Cl, the only recoverable products were [PPN][HFe₄(CO)₁₂BH] and (2-Me-C₆H₄)₃PAuCl.

The process of cluster fusion may be reversed by combining $[Au\{P(2-Me-C_6H_4)_{3|2}][4]$ with either [PPN]Cl or acid. Reaction with [PPN]Cl in dichloromethane solution at room temperature resulted in the formation of $[PP-N]{HFe_4(CO)_{12}BH}$ within 15 min, and no intermediate compound was detected. However, the addition of concentrated hydrochloric acid to $[Au\{P(2-Me-C_6H_4)_{3|2}][4]$ in CH_2Cl_2 resulted in a slow reaction that could be monitored by infrared or ¹¹B or ¹H NMR spectroscopy. Over a period of 13 h, the decay of $[Au\{P(2-Me-C_6H_4)_{3|2}][4]$ was observed to give first 1 and then $HFe_4(CO)_{12}BH_2$ (Figure 8). Changes in the region of the spectrum associated with the Fe-H-B bridging hydrogen atom proved to be the most instructive method of monitoring the transformations, with

⁽⁴⁶⁾ Calculated distances are only approximate and clearly reflect the molecular symmetry inherent in each of the structures depicted in Figures 3 and 5.

⁽⁴⁷⁾ Bondi, A. J. Phys. Chem. 1964, 68, 441.

the respective ¹H NMR resonance shifting from δ –6.4 for [4]⁻ to δ -7.7 for 1 and finally to δ -11.9 for HFe₄(CO)₁₂-BH₂²² (treatment of pure 1 with concentrated HCl generates $HFe_4(CO)_{12}BH_2$ and $(2-Me-C_6H_4)_3PAuCl more or$ less quantitatively). $[Au\{P(2-Me-C_6H_4)_3\}_2][4]$ is rapidly and cleanly converted to 1, while complete regeneration of the all-hydrogenated butterfly cluster is a much slower process. There was no attempt to make a detailed kinetic study of the degradation mechanism.

To Fuse or Not to Fuse?

The reaction of [HFe₄(CO)₁₂BH]⁻ with 1 equiv of LAuCl leads to the simple monogold derivative $HFe_4(CO)_{12}BH$ -AuL, which is stable with respect to conversion to HFe₄- $(CO)_{12}BAu_2L_2$ only when L is the sterically demanding ligand P(2-Me-C₆H₄)₃. In other cases (L = PMe₃, PEt₃, PMe₂Ph, PMePh₂) the preferred product is [AuL₂][{H- $Fe_4(CO)_{12}BH_{2}Au$, which, although possessing the same stoichiometry as HFe4(CO)12BHAuL, contains two {H- $Fe_4(CO)_{12}BH$ subclusters fused about a gold(I) atom and results from Au-P cleavage and a redistribution of the phosphine ligands. As one goes from $[HFe_4(CO)_{12}BH]^-$ to the ruthenium analog, the tetrametal butterfly increases in size and the reaction of $[HRu_4(CO)_{12}BH]^-$ with LAuCl, even in the case of $L = P(2-Me-C_6H_4)_3$, leads to the competitive formation of $HRu_4(CO)_{12}BHAuP(2-Me-C_6H_4)_3$ and $\operatorname{Ru}_4(\operatorname{CO})_{12}BHAu_2\{P(2-Me-C_6H_4)_3\}_2$ as well as $[\{HRu_4(C O_{12}BH_{2}Au^{-}$. For the ruthenium clusters, the fused

system $[{HRu_4(CO)_{12}BH}_2Au]^-$ appears to be a particularly favorable product.

Acknowledgments are made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work, to the SERC for a studentship (to S.M.D.), to the Cambridge Commonwealth Trust and Tate and Lyle Corp. for a studentship (to M.S.S.), and to the NSF for a grant (CHE 9007852) toward the purchase of a diffractometer at the University of Delaware. Johnson-Matthey is thanked for generous loans of RuCl₃. C.E.H. thanks Dr. Lutz H. Gade for several useful discussions.

Registry No. 1, 141292-25-3; 2, 141292-27-5; 3 (isomer 1), 141292-34-4; 3 (isomer 2), 141319-39-3; 4, 141292-33-3; [PPN][4], 141292-32-2; [PPN][5], 141292-36-6; $[Au\{P(2-Me-C_6H_4)_3\}_2][5]$, 141292-31-1; 6, 141292-28-6; [Et₃NH][Fe₄(CO)₁₂BHAuP{(2-Me- $C_{6}H_{4}$]], 141319-38-2; HFe₄(CO)₁₂BHAu{P(c-C_{6}H_{11})_{3}, 141292-26-4; [Et₃NH][HRu₄(CO)₁₂BAuP{(2-Me-C₆H₄)₃]], 141319-36-0; [PP-N][HFe4(CO)12BH], 108008-77-1; {(2-Me-C6H4)3}PAuCl, 83076-07-7; {(c-C₆H₁₁)₃}PAuCl, 49763-41-9; ClAu(dppm)AuCl, 37095-27-5; Au, 7440-57-5; Fe, 7439-89-6; Ru₄(CO)₁₂BAu₃{P(2-Me-C₆H₄)₃}, 141292-29-7; Ru, 7440-18-8; [PPN][HRu4(CO)12BH], 125476-27-9.

Supplementary Material Available: Tables of bond distances, bond angles, thermal parameters, and H atom coordinates for 1, [Au(PMePh₂)₂][4], and [PPN][5] (17 pages). Ordering information is given on any current masthead page.

OM9107707

Gas-Phase Reactions of Molybdenum Oxide Ions with Small Hydrocarbons

Carolyn J. Cassady*

Department of Chemistry, Miami University, Oxford, Ohio 45056

Stephen W. McElvany

Code 6113/Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5000

Received October 25, 1991

The gas-phase ion/molecule reactions of Mo⁺, MoO⁺, and MoO₂⁺ with small alkanes, alkenes, and C_6 hydrocarbons have been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Product branching ratios and reaction rate constants are reported. Dehydrogenation dominates the reactions, with little cleavage of the strong Mo⁺-O and OMo⁺-O bonds. Aside from the production of MoO(CO)⁺ from MoO_2^+ and ethene, no evidence is found for the formation of oxygenated hydrocarbons, either as neutral reaction products or as ligands bound to Mo^+ . However, the reactions of Mo^+ , MoO^+ , and MoO_2^+ differ in terms of both rates and pathways. In contrast to the slow reaction rates of the d⁵ system Mo⁺ several MoO^+ and MoO_2^+ reactions proceed at or near the collision rate. Variations are also seen in product ion distributions, and for MoO_2^+ , unique reaction pathways involving dehydration and the elimination of small hydrocarbons occur. While Mo⁺ and MoO⁺ yield only products which are the result of C-H insertion, MoO_2^+ is capable of inserting into the C–C bonds of organic molecules.

Introduction

Transition-metal oxides are common catalysts in oxidation processes. Oxygen atom transfer involving oxometal groups (M=O) plays a prominent role in these reactions. Although many transition-metal compounds can undergo oxygen transfer, molybdenum compounds are the most widely studied and employed. Over 100 oxygen-transfer reactions have been characterized for molybdenum compounds.¹ These involve a wide range of processes, including the epoxidation of alkenes² and alcohols,³ the ammoxidation of alkenes to nitriles,⁴ the oxyhydration of alkenes to alcohols, aldehydes, and ketones,⁵ the oxidative

^{(1) (}a) Holm, R. H. Chem. Rev. 1987, 87, 1401. (b) Kung, H. H. Transition Metal Oxides: Surface Chemistry and Catalysis; Studies in Surface Science and Catalysis Series; Elsevier: New York, 1989; Vol. 45.

^{(2) (}a) Landau, R.; Sullivan, G. A.; Brown, D. Chemtech 1979, 9, 602. (b) Mimoun, H.; Seree de Roch, I.; Sajus, L. Tetrahedron 1970, 26, 37.
(c) Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42, 1587.
(d) Daniel, C.; Keulks, G. W. J. Catal. 1972, 24, 529.
(3) Sharpless, K. B.; Verhoeven, T. R. Aldrichim. Acta 1979, 12, 63.
(4) (a) Reddy, B. M.; Narsimha, K.; Sivaraj, C.; Roa, P. K. Appl. Catal.
1989, 55, L1. (b) Burrington, J. D.; Kartisch, C. T.; Grasselli, R. K. J.

Catal. 1983, 81, 489. (c) Burrington, J. D.; Kartisch, C. T.; Grasselli, R. K. J. Catal. 1984, 87, 363.

^{(5) (}a) Tan, S.; Moro-oka, Y.; Ozaki, A. J. Catal. 1970, 17, 125. (b) Moro-oka, Y.; Takita, Y.; Ozaki, A. J. Catal. 1971, 23, 183. (c) Pitchai, R.; Klier, K. Catal. Rev. 1986, 28, 13. (d) Khan, M. M.; Somorjai, G. A. J. Catal. 1986, 28, 13.