(C,Me,)Co(Et2C2B3H,,-R) Metallacarborane Sandwich Electron-Withdrawing Substituents' Complexes as Versatile Synthons. Introduction of

Kent W. Piepgrass, Kenneth E. Stockman, Mlchal Sabat, and Russell N. Grimes'

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

RecelvedJanuary 13, 1992

As part of our development of small *nido-metallacarborane complexes* as organometallic building-blocks, the controlled syntheses of $(C_5Me_5)Co(Et_2C_2B_3H_4-R)$ and $(C_5Me_5)Co(Et_2C_2B_3H_3-R_2)$ derivatives in which R is an acyl, trifluoroacyl, ester, nitrile, nitro, chloro, bromo, or iodo group were mvestigated. The attack of electrophilic reagents (R^+) on the B-B edge of the $(C_5Me_5)Co(Et_2C_2B_3H_4)$ - anion (1-), which was demonstrated earlier (preceding article and earlier papers) to give regiospecific B(5)-R substitution, in the present work produced B(5)-R and/or B(4/6)-R derivatives. Efficient syntheses of the B(5)-chloro, the present work produced B(5)-R andlor B(4/6)-R derivatives. Efficient syntheses of the B(@-chloro, -bromo, and -iodo derivatives were acheved via treatment of **1-** with MeS02C1, BrCHzCN or BrCHzN02, and CF₃I, respectively; further reaction of the monochloro compound gave the dichloro and trichloro species. In contrast to this B(5)-substitution pattern, reactions of 1^- with $\text{C}(\text{O})\text{CF}_3\text{Cl}$ gave exclusively the B(4/ 6)-C(0)CF3 derivative. Treatment of neutral **1** with N-halosuccinimides gave exclusively the monohalo $[B(4/6)-X]$ derivatives $(X = Cl, Br, I)$ in nearly quantitative yield; further halogenation of these species $[10(4)/2]$ denotes $(X - 3)$, it is easily quantizative yield, further hangemetion of these species
chords on $1 - \text{with}$ and 2 with can be applicable products quantitatively. The reaction of 1 with acetyl
chorde in THF at which undergoes 0-acetylation and rearrangement to give **2.** The remarkable formation of **2** differs from the **usual** enol acetate formation in organic chemistry in that, in the present case, the only primary source of $-(C=0)$ is the acylating agent itself. New compounds were isolated in most cases as air-stable crystals and characterized via ^{1}H , ^{13}C , and ^{11}B NMR, IR, UV-visible, and mass spectra. Crystal data for 2: spac group $P2_1/n$; $Z = 4$; $a = 8.368$ (2), $b = 18.757$ (5), $c = 14.234$ (4) Å; $\beta = 97.25$ (2)°; $V = 2216$ (2) Å³; $R = 0.037$ for 3856 reflections having $F_o^2 > 3.0\sigma(F_o^2)$.

Introduction

The synthetic utility of $nido-LM(R_2C_2B_3H_5)$ metallacarborane complexes (in which L is an aromatic hydrocarbon and M is Fe, Co, or Ru) is substantially enhanced by the addition of organic functional groups to the C_2B_3 ring.¹ Such derivatization is important in the development of this chemistry, for two reasons. As has been demonstrated in earlier work, 2^{-5} linking groups bound to the carborane ligand can be used to construct multicage metallacarborane oligomers and polymers; in principle, a wide variety of organic polymerization reactions could be employed once the necessary functional groups are introduced. Here we simply take advantage of the stability of the $MC₂B₃$ cage and its ability to survive a wide range of reaction conditions without degradation, not unlike the development of extraordinarily robust polymers from the icosahedral $m-C_2B_{10}H_{12}$ carborane.⁶

A different role for attached substituents arises when they influence the electronic properties of the C_2B_3 ring itself and thereby alter its chemistry, especially ita ability to form sandwich complexes with metals. The importance of such effects became clear to us when we found, seren-

1990, 9, 1177.

references therein.

dipitously, that attachment of electron-withdrawing groups such **as** acetyl and chloro to the middle boron [B(5)] promotes formation of tetradecker sandwiches via coordination of the C_2B_3 face to transition-metal ions.⁷ This, in turn, creates the possibility of fine-tuning or tailoring the properties of $LM(R_2C_2B_3H_5)$ complexes via appropriate derivatization. Accordingly, the work described here was undertaken in order to develop efficient methods for introducing synthetically useful electron-withdrawing **sub**stituents.

An earlier report8 from our laboratory described a straighfforward method for regiospecific alkylation at B(5) (the middle boron) via reaction of a nido-LM $(R_2C_2B_3H_4)^$ anion with alkyl halides, and the accompanying paper' extends this approach to the synthesis of a variety of $B(5)-CH₂-R$ derivatives in which R is an active group. For the most part, these preparations proceeded similarly to those of the simple B(B)-alkyl compounds. However, in using this approach to introduce electron-withdrawing groups directly onto the carborane ring (without an intervening $CH₂$ unit), we found that the chemistry is more complex, in some cases leading to substitution at $B(4/6)$, and in others taking entirely unexpected turns. These findings are described in the present report.

Results and Discussion

Synthesis of B(6)-Substituted Acetyl and Vinyl Ester Derivatives. In attempting to extend the B-alkylation⁸ reaction of $(C_5Me_5)\overline{Co}(Et_2C_2B_3H_5)$ (1, Scheme **IA)** to other **types** of organic groups, we initially chose the B(5)-acetyl species **as** a desirable target compound which

⁽¹⁾ Organotransition-Metal Metallacarboranes. **24.** Part **23:** Piep-

grass, K. W.; Grimes, R. N. Preceding paper in this issue.
(2) Recent reviews: (a) Grimes, R. N. Chem. Rev. 1992, 92, 251. (b)
Grimes, R. N. Cyclocarborane-Stabilized Multidecker/Multicluster Sandwich Compounds and Linked Molecular Systems. In *Electron-Deficient Boron and Carbon Clusters*; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley and Sons: New York, 1991; Chapter 11, pp. 261–285.
(3) Attwood, M

⁽⁴⁾ Davis, J. H., Jr.; Benvenuto, M. A.; Grimes, R. N. *Inorg. Chem.* **1991,30, 1765.**

⁽⁵⁾ Benvenuto, M. A. Ph.D. Thesis, University of Virginia, 1991.
Benvenuto, M. A.; Grimes, R. N. Submitted for publication.
(6) Peters, E. N. *Ind. Eng. Chem. Prod. Res. Dev.* 1984, 23, 28 and

⁽⁷⁾ Piepgrase, K. W.; Davis, J. H., Jr.; Sabat, M.; Grimes, R. N. *J. Am. Chem. SOC.* **1991,113,681.**

⁽⁸⁾ Davis, J. H., Jr.; Attwood, M. D.; Grimes, R. N. *Organometallics* **1990, 9, 1171.**

might serve **as** a useful precursor to metallacarboranebased oligomers and polymers via acyl polymerization reactions. To this end, the bridge-deprotonated anion **1** was reacted with acetyl chloride in THF at -76 °C. Workup in air afforded in *66%* yield (based on **1** consumed) a yellow air-stable solid **2** which clearly was not the intended B-acetyl complex 3, as shown by its ^{11}B , ^{1}H , and **'9c** *NMR* and infrared spectra (Tables 11-V)? A trace product isolated from this reaction was characterized **as** a THF-substituted derivative, $(C_6Me_6)Co(Et_2C_2B_3H_3-5 OC₄H₈$) (4), an isomer of the previously reported $B(4)$ 6)-THF compound **(27** in the preceding paper).

The multinuclear **NMR** and **mass** spectroscopic data at first suggested that 2 was an acetyl acetonate derivative, although the proton **NMR** spectrum was not entirely consistent with this aseignment. However, a single-crystal X-ray diffraction study disclosed that **2** is in fact a B- (6)-vinyl ester complex (Scheme lB), an unexpected result which is entirely in accord with the NMR data.⁹

The solid-state geometry of 2 is shown in Figure 1, and relevant data are listed in Tables VI-IX. All hydrogen **atoms** were located, and the structure exhibits no anomalous features. The $MC₂B₃$ cage parameters are closely *similar* to those in previously reported complexes of this class,¹⁰ only one of which, $[(C_5Me_5)Co(Me_2C_2B_3H_4)-\mu-$ HgCl],^{10c} contains the Co(C₆Me₆) moiety. The C(2)-C(3) distance $[1.412 (3)$ Å] is typical of *nido-MC₂B₃* clusters, reflecting some multiple-bond character in the carborane

Faure 1. Molecular structure of 2 (terminal **hydrogens omitted).**

C-C interaction. The vinyl ester group **has** an unusually short carboxyl $[C(11)-O(2)]$ distance $(1.187 (4)$ Å) and a relatively small $C(9)-O(1)-C(11)$ angle [117.7 (2)°], consistent with an increase in **s** character in C(9) and O(1) which *can* be attributed to withdrawal of p electron density by the carborane ring ligand.

In a strange twist of the kind that sometimes occurs in research, our initial belief that **2 was** an acetyl acetonate led us to attempt the formation of a $Ni(acac)_2$ complex via reaction of **2-** with nickel(I1) bromide. Athough it was doomed to fail in its intended purpose, this was a truly fortuitous experiment' since it produced instead the quadruple-decker sandwich complex (C_5Me_5) Co- $(Et_2C_2B_3H_2-C(O)Me)]_2Ni$, representing a new class of metallacarborane species, and enabled us to develop a practical synthetic route to these previously inaccessible

⁽⁹⁾ A prelimii report of this **work hae appeared: Piepgram, K. W.; Davis, J. H., Jr.; Sabat, M.; Grimes, R. N.** *J. Am. Chem.* **SOC. 1991,113,** *680.*

^{(10) (}a) Brennan, J. P.; Grimes, R. N.; Schaeffer, R.; Sneddon, L. G. Inorg. Chem. 1973, 12, 2276. (b) Pipal, J. R.; Maxwell, W. M.; Grimes, R. N. Ibid. 1978, 17, 1447. (c) Finater, D. C.; Grimes, R. N. Ibid. 1981, *20,863.* **(d) Borodimky, L.;** Sinn, **E.; Grimes, R. N.** *Zbid.* **1982,21,1928.**

Table I. $(C_5Me_5)Co(Et_2C_2B_3H_2R^4R^5R^6)$ Major Products

aIsolated yields, **bed** on metallacarborane employed (yields based on **1** coneumed are given in parentheses). *Prepared from **2.** ePrepared from **11.** dPrepared from **12.** .From reaction with (CHzCO)zNCl. *f* Prepared from **14.** #Prepared from (C5Me5)Co- (Et₂C₂B₃H₄-5-Me). ^hPrepared from 16. 'From reaction with BrC- $H_2\tilde{C}N.$ From reaction with BrCH₂NO₂. * From reaction with (CHzCO)zNBr. 'Prepared from **20.** "'From reaction with (CH2C-O)zNI. "Prepared from **23.**

compounds. A detailed account of this chemistry will be presented elswehere.¹¹

Conversion of **2** to the desired acetyl derivative 3 was readily achieved by base-catalyzed cleavage, **as** shown in Scheme IC. The mechanism of formation of **2** from **1-**

presents an intriguing problem. A priori, one might assume that the B(5)-acetyl species 3 is formed initially and subsequently reacts (in ita enolate form) with acetyl chloride to generate **2;** indeed, the formation of enol acetates via attack of acyl halides on enolate anions is wellknown.12 However, this route is effectively excluded in the present case, since we have established that 3 is not a precursor to **2.** Treatment of 3 or ita deprotonated anion **3-** with acetyl chloride generated no detectable **2,** and there is no evidence that 3 is preaent in solution in the formation of **2** from **1-** and acetyl chloride. When **this** latter reaction **was** monitored (via TLC **analyeis)** at room temperature **as** a function of time, 3 was not produced at detectable levels. A possible mechanism for the formation of **2,** presented in Scheme 11, involves initial reaction of an acetyl group at the nucleophilic B-B edge of **1-** to form the acetylbridged intermediate **2a.** Formation of such bridged species **has** been proposed **as** a general pathway for the $B(5)$ -alkylation of 1 ⁸ its iron-arene and ruthenium-arene analogues,⁸ and the $nido-R_2C_2B_4H_6$ carboranes.¹³ The formation of B-X-B bridged derivatives in which **X** is Si, **Ge, Sn,** or **Pb has** been demonshated in **reactions** of group $\frac{1}{2}$ *N* (14) alkyl halides with $B_5H_5^-$ and $R_2C_2B_4H_5^-$ anions.¹⁴ In the B-alkylation of $C_2B_9H_{11}^2$ via reactions with alkyl halides, μ -alkyl intermediates containing three-center, 2-electron B-C-B bonds have been isolated and characterized.¹⁵

In the postulated intermediate **2a,** net transfer of electron density from the acetyl group to the carborane cage would polarize the carboxyl region, favoring the enolate form whose C -O⁻ unit would likely undergo O-acetylation followed by rearrangement (interchange of the organic moiety with H(5)) to generate **2 as** shown. *As* is often the

⁽¹¹⁾ Piepgrass, K. W.; Hölscher, M., Jr.; Sabat, M.; Grimes, R. N. Manuscript in preparation.

⁽¹²⁾ The reaction of PhC(0)Cl with diethyl **[lithio(trimethylailyl)-** methyl]phoephonate (Carey, F. **A; Court, A. S.** *J. Org.* Chem. **1972,37,** 979) is an example of O-acylation in organosilicon chemistry; the preference for O- over C-acylation in this case was attributed to steric him-
drance by the Me₈Si and P(O)(OEt₂) substituents. In this reaction the dec

⁽¹³⁾ Davis, J. H., Jr.; Grimes, R. **N.** *Znorg.* Chem. **1988, 27, 4213. (14)** (a) Gainee, **D.** F.; **Iom,** T. V. J. Am. Chem. SOC. **1968,90,6617.** (b) Thompson, M. L.; Grimes, R. N. *Inorg. Chem.* 1972, 11, 1925. (c) Tabereaux, A.; Grimes, R. N. *Inorg. Chem.* 1973, 12, 792.
(15) Knyazev, S. P.; Brattsev, V. A.; Stanko, V. I. Zh. Obshch. Khim.
1977, 47, 2627; J. Gen.

J.

Table 11. 115.8-MHz **l*B FT NMR** Data for **(CIMe~)Co(2,3-Et~~~H~-4-R4-5-R5-6-R6)** Complexes

^e Shifts relative to BF₃·OEt₂, positive values downfield; H—B coupling constant in hertz is given in parentheses, when resolved. Spectra were recorded in *n*-hexane solution except where otherwise indicated. ⁵ Dav 4776. ^cCH₂Cl₂ solution. ^dTHF ring is proposed to bond to both B(5) and B(4,6).

case in reactions of 1⁻, protonation to form neutral 1 is a posed mechanism and provides a rationale for its occur-
competing process, in this case regenerating over 50% of rence in this particular case, which is so far

competing process, in this case regenerating over **50%** of rence in this **particular** *case,* which is *80* far unique in boron the starting complex. The strong electron-withdrawing cluster chemistry. (Electrophilic attack of acetyl chloride the starting complex. The strong electron-withdrawing cluster chemistry. (Electrophilic attack of acetyl chloride character of the 1⁻ cluster lends plausibility to this pro- or benzoyl chloride on other carborane substra

Table IV. 75.5-MHz ¹³C FT NMR Data^{a,b}

compd	
2	169.8 (C=O), 160 (br, C ₂ B ₃), 111.8 (t, =CH ₂), 92.6 (C ₅), 23.0 (t, CH ₂), 21.6 (q, COCH ₃), 17.6 (q, CH ₃), 9.8 (q, C ₅ Me ₅)
3	113 (br, C ₂ B ₃), 93.1 (C ₅), 37.2 (q, COCH ₃), 23.0 (t, CH ₂), 17.5 (q, CH ₃), 9.9 (q, C ₅ Me ₅)
	113 (br, C ₂ B ₃), 106 (br, C ₂ B ₃), 92.5 (C ₅), 74 (br, BCH), 68.6 (t, OCH ₂), 32.2 (t, CH ₂), 27.9 (t, CH ₂), 22.8 (t, Et CH ₂), 21.8 (t, Et
	CH ₂), 18.8 (q, CH ₃), 16.8 (q, CH ₃), 10.4 (q, C ₅ Me ₅)
5	117 (br, C ₂ B ₃), 112 (br, C ₂ B ₃), 94.0 (C ₅), 22.8 (t, CH ₂), 19.7 (t, CH ₂), 17.6 (q, CH ₃), 17.2 (q, CH ₃), 9.9 (q, C ₅ Me ₅)
	185 (br, C—O), 172.6 (CO ₂), 113 (br, C ₂ B ₃), 96.7 (C ₆), 51.1 (OCH ₃), 23.0 (CH ₂), 17.5 (CH ₃), 9.8 (C ₅ Me ₅)
	110 (br, C ₂ B ₃), 92.8 (C ₅), 35.5 (CMe ₃), 27.0 (Me ₃), 22.9 (CH ₂), 17.6 (CH ₃), 10.0 (C ₅ Me ₅)
9	179 (br, C=0), 111 (br, C ₂ B ₃), 92.4 (C ₅), 64.8 (OCH ₂), 39.2 (CMe ₂), 31.4 (CH ₂), 29.0 (CH ₂), 27.7 (Me ₃), 22.9 (Et CH ₂), 17.9 (Et
	CH_3), 14.7 (br, BCH_2), 10.0 (C_5Me_5)
10	111 (br, C ₂ B ₃), 92.4 (C ₅), 63.4 (OCH ₂), 35.6 (CH ₂), 28.8 (CH ₂), 22.9 (Et CH ₂), 17.9 (Et CH ₃), 10.0 (C ₅ Me ₅)
11	111 (br, C ₂ B ₃), 93.6 (C ₅), 22.7 (CH ₂), 17.7 (CH ₂), 9.6 (C ₅ Me ₅)
12	109 (br, C ₂ B ₃), 105 (br, C ₂ B ₃), 94.3 (C ₆), 23.1 (t, CH ₂), 20.0 (t, CH ₂), 17.9 (q, CH ₃), 15.7 (q, CH ₃), 9.0 (q, C ₅ Me ₅)
13	103 (br, C ₂ B ₃), 95.1 (C ₅), 20.2 (CH ₂), 15.9 (CH ₃), 8.4 (C ₅ Me ₅)
14	110 (br, C ₂ B ₃), 104 (br, C ₂ B ₃), 92.9 (C ₅), 22.7 (CH ₂), 19.3 (CH ₂), 17.2 (CH ₃), 15.1 (CH ₃), 9.2 (C ₅ Me ₅)
15	104 (br, C ₂ B ₃), 93.7 (C ₅), 19.6 (CH ₂), 15.3 (CH ₃), 8.5 (C ₅ Me ₅)
16	110 (br, C ₂ B ₃), 104 (br, C ₂ B ₃), 93.2 (C ₅), 23.3 (CH ₂), 20.1 (CH ₂), 18.2 (CH ₃), 15.9 (CH ₃), 9.3 (C ₅ Me ₅), -4 (br, BCH ₃)
17	105 (br, C ₂ B ₃), 94.0 (C ₅), 20.2 (CH ₂), 16.0 (CH ₃), 8.6 (C ₅ Me ₅), -6 (br, BCH ₃)
18	111 (br, C ₂ B ₃), 93.7 (C ₅), 22.6 (CH ₂), 17.7 (CH ₃), 9.8 (C ₅ Me ₅)
19	111 (br, C ₂ B ₃), 105 (br, C ₂ B ₃), 94.5 (C ₅), 23.0 (CH ₂), 20.8 (CH ₂), 18.0 (CH ₃), 15.7 (CH ₃), 9.1 (C ₅ Me ₅)
20	110 (br, C ₂ B ₃), 105 (br, C ₂ B ₃), 93.6 (C ₅), 23.0 (CH ₂), 20.6 (CH ₂), 18.0 (CH ₃), 15.7 (CH ₃), 9.9 (C ₅ Me ₅)
21	105 (br, C ₂ B ₃), 93.0 (C ₅), 20.1 (CH ₂), 15.2 (CH ₃), 9.1 (C ₅ Me ₅)
22	112 (br, C ₂ B ₃), 93.6 (C ₅), 22.4 (CH ₂), 17.8 (CH ₃), 10.0 (C ₅ Me ₅)
23	110 (br, C ₂ B ₃), 106 (br, C ₂ B ₃), 93.7 (C ₅), 23.2 (CH ₂), 22.3 (CH ₂), 18.1 (CH ₃), 16.9 (CH ₃), 10.0 (C ₅ Me ₅)
24	105 (br, C ₂ B ₃), 94.0 (C ₅), 20.5 (CH ₂), 15.3 (CH ₃), 8.7 (C ₅ Me ₅)
25	127 (br, BCN), 113 (br, C ₂ B ₃), 93.8 (C ₅), 22.6 (CH ₂), 17.5 (CH ₂), 9.8 (C ₅ Me ₅)
26	128 (br, BCN), 112 (br, C ₂ B ₃), 93.8 (C ₆), 22.6 (CH ₂), 21.6 (CH ₂), 17.6 (CH ₃), 17.1 (CH ₃), 9.8 (C ₆ Me ₆)

^aCDC13 solution. bShifta relative to Me,Si; all spectra broad-band-decoupled except where couplings are indicated.

a C_2B_3 open face, e.g. $C_2B_9H_{12}$ anions,¹⁶ generates the expected B-acyl derivatives with no evidence of a vinyl ester analogous to **3.** Similarly, treatment of C-lithiated 1,2- or 1,7- $C_2B_{10}H_{12}$ clusters with acetyl chloride affords C-acetyl carboranes¹⁷). Moreover, reactions of 1⁻ with acyl halides other than acetyl chloride gave no **species analogous** to **2** (vide infra).

From the standpoint of organic chemistry, the formation of **2** from **1-** is remarkable in that the acylating agent is itself the only source of $-C=0$ in this system, in contrast to the usual case wherein acylation occurs on an existing carboxyl-containing substrate.12

Reactions with Other Acyl Halides. The treatment of 1- with trifluoroacetyl chloride gave, on workup in air, the B(4)-trifluoroacetyl derivative **6 (obtained as** a racemic mixture with the equivalent $B(6)-C(0)CF_3$ compound). This structure is clearly evident from the 1:1:1 ¹¹B NMR pattem, and indicates that powerful electron-withdrawing groups such **as** trifluoroacetyl may end up on B(4/6) rather than B(5) **as** is the case with alkyl or organomethyl substituents. 1,8 A rationale for this observation is that the introduction of strong electron attractors perturbs the normal electron distribution in the C_2B_3 ring, inducing higher negative charge on B(4/6) relative to B(5). The latter situation is found in unsubstituted nido- $R_2C_2B_4H_6$ carboranee, whose deprotonated anions alkylate preferentially at $B(4/6)^{13}$ —an observation that is consistent with MNDO calculations¹⁸ on parent 2,3-C₂B₄H₈ which place the higher negative charge on B(4) and B(6).

In the present work the trifluoracetyl reaction **was** the only case in which the addition of a functional group to *unsubstituted* **1-** occurred in significant yield at B(4/6). *As* will be seen, B(4/6)-substituted trace products (e.g., 8) were found, and cyano addition produced both B-substituted isomers, but only $C(O)CF₃$ provided a clear-cut example of selective B(4/6) substitution on the **1-** anion. This appears to correlate with the extremely high electrophilicity of the latter group.

Treatment of **1-** with methylmalonyl chloride gave the B(5)-C(0)CH2C(O)OMe derivative **(6)** in moderately low yield, but a reaction with trimethylacetyl chloride over an extended period at room temperature afforded only a very **small** amount of the B(5)-trimethylacetyl product **7,** which was characterized by 'H NMR and mass spectroscopy. When this reaction was conducted over a much shorter time, a different set of products was isolated, consisting of the B(4/6)-CHOHCMe₃ (8) and B(5)-(CH₂)₄OC(O)-CMe₃ (9) derivatives, both isolated in low yield, and the B(5)-(CH₂)₄OH species (10) which was the main product. The last two compounds are assumed to have formed via addition of THF to the metallacarborane substrate, followed by opening of the OC_4H_8 ring to give 10 and subsequent acetylation to form **9.** In both reactions, large amounts of neutral **1** were recovered.

Synthesis of Chloro, Bromo, and Iodo Derivatives. In the course of **this** investigation a variety of reagents and conditions were employed in attempts to prepare Bhalogenated derivatives of **1.** Here we report only the synthetically most important findings.

Chlorination of **1-** was effected via treatment with methanesulfonyl chloride, which produced the B(5)-C1 species **11** almost quantitatively, accompanied by a trace of the B(4/6,5)-dichloro compound **12;** in contrast to many other reactions of **1-** in THF, reprotonation of the anion to form **1** was almost nil. Stepwise treatment of **11** with additional equivalents of methanesulfonyl chloride gave **12** and the B(4,5,6)-trichloro derivative **13** in high and moderate yield, respectively. In these reactions and in the corresponding B(5)-bromination and -iodination, described below, the presumed mechanism is analogous to that of the alkyl additions, δ i.e., electrophilic attack at the B-B edge of **1-** with the halogen ultimately binding to B(5), the most negative boron position.

An alternative, and synthetically complementary, approach to halogenation employing N-halosuccinimides generated exclusively B(4/6)-halo derivatives via an **as**sumed free radical mechanism, in which substitution oc*curs* at the relatively electropositive B(4) and B(6) positions adjacent to carbon. Treatment of neutral **1** with N-

⁽¹⁶⁾ Brattaev, V. A.; Knyazev, 5. P.; Stanko, V. I. *Zh. Obshch. Khim.*

⁽¹⁷⁾ Zakhnrkm, L. I.; **L'vov, A. I.** *Zh. Obshch. Khim.* **1967,37,1217. (18) Dewar, M. J. S.; McKee, M. L. Znorg.** *Chem.* **1980, 19, 2662. 1976,46,1419.**

Table V. Infrared Absorptions (cm⁻¹, Neat Films on KBr Plates)^{a,b}

^aMicrocrystalline films obtained by evaporation of solutions. b Legend: vs = very strong, s = strong, m = medium, w = weak, sh = shoulder, $br = broad.$ Characteristic of acetate.

Table VI. Experimental X-ray Diffraction Parameters and

chlorosuccinimide in THF gave the $B(4/6)$ –Cl derivative **14** in 95% isolated yield; subsequent reaction of **14** with the same reagent afforded the B(4,6)-dichloro species **15,** *again* in **95%** yield. No evidence of B(5)-substitution was seen in either procedure.

Alkylhalo-B,B'-disubstituted and B,B',B"-trisubstituted complexes of **1** were prepared from the B-methyl derivative⁸ $(C_5Me_5)Co(Et_2C_2B_3H_4-5-Me)$ via bridge-deprotonation to form the anion **1-** followed by treatment with methanesulfonyl chloride to give the 5-methyl-4/6-chloro species **16.** Repetition of this sequence with the latter compound gave the 5-methyl-4,6-dichloro derivative **17.**

Electrophilic bromination of **1-** was most efficiently accomplished with bromoacetonitrile and bromonitromethane, which produced the B(5)-Br complex **18** in 56 and 75% isolated yields, respectively. The former reaction also gave a trace of the B(4/6,5)-dibromo species **19, as** well as a 19% yield of the $B(5)-CH_2CN$ derivative (see preceding paper¹). The treatment of neutral 1 with Nbromosuccinimide, **as** expected, gave the B(4/6)-Br derivative **20,** and further bromination of the latter species gave the $B(4,6)-Br_2$ complex 21, both reactions proceeding essentially quantitatively.

The analogous iodo derivatives were synthesized similarly. The B(5)-iodo complex **22** was prepared in good yield by reaction of **1-** with iodotrifluoromethane, while the reaction of **1** with N-iodosuccinimide generated the B(4/6)-iodo product **23;** iodination of **23** with the same reagent gave the $B(4,6)$ -diiodo species 24. Again, both procedures gave quantitative yields.

Synthesis of Cyano and Nitro Derivatives. The reaction of **1-** with p-toluenesulfonyl cyanide afforded, on workup, both the B(5)-CN and B(4/6)-CN complexes **(25** and **26,** respectively) in a total yield of about 20% with considerable recovery of neutral **1.** The preparation of a nitro-substituted derivative was less successful, a treatment of 1⁻ with NO_2 ⁺BF₄⁻ affording the B(4/6)-NO₂ species 27 in very low yield, identified by proton NMR and mass spectra.

Attempted Syntheses of Fluoro, Vinyl, Benzoyl, and Malonyl Derivatives. Reactions of **1-** with excess

Table VII. Positional and Thermal Parameters for 2

methanesulfonyl fluoride or with 1 equiv of benzoyl chloride or malonyl chloride gave no isolable products; in each case neutral 1 **was** recovered in ca. **50%** yield. Treatment of the metallacarborane anion with vinyl bromide gave only a trace of a product which was tentatively identified from ita proton **NMR** and **mass** spectra **as** a B-CH=CH2 derivative **(28),** with substantial recovery of **1.**

Summary

As was noted in the Introduction, this work was designed with two purposes in mind: to explore the chemical reactivity of **1-** toward electrophilic reagents and, at a practical level, to develop efficient routes to derivatives containing electron-withdrawing groups for use in the synthesis of multidecker complexes. In general, the **pattern** observed in reactions with organomethyl halides, 1,8 in which monoeubatitution takes place selectively at B(5), **was** repeated here; a notable exception was trifluoroacetyl addition, which occurred only at B(4/6). *As* discussed above, these findings can be at least qualitatively explained on the basis of charge distribution in the C_2B_3 carborane ring and the relative electrophilicity of the attacking reagents. The contrasting reactions of N -halosuccinimides with neutral **1,** which are assumed to proceed via a free radical mechanism, afford exclusively $B(4/6)$ -halogenated

Table VIII. Bond Distances **(A) in 2**

$Co-C(2)$	2.066(2)	$C(3M) - C(3E)$	1.505(4)
$Co-C(3)$	2.066(2)	$C(3)-B(4)$	1.529 (4)
$Co-C(1R1)$	2.056(2)	$C(9)-C(10)$	1.318(4)
$Co-C(1R2)$	2.055(2)	$C(9)-B(5)$	1.573(3)
$Co-C(1R3)$	2.061(2)	$C(1R1) - C(1R2)$	1.415 (4)
$Co-C(1R4)$	2.076(2)	$C(1R1) - C(1R5)$	1.410 (3)
$Co-C(1R5)$	2.074(2)	$C(1R1) - C(1R6)$	1.515 (4)
$Co-B(4)$	2.043(2)	$C(11) - C(12)$	1.504(4)
$Co-B(5)$	2.042(3)	$C(1R2) - C(1R3)$	1.417(4)
$Co-B(6)$	2.044(2)	$C(1R2) - C(1R7)$	1.507 (4)
$O(1) - C(9)$	1.432(3)	$C(1R3) - C(1R4)$	1.426 (3)
$O(1) - C(11)$	1.345(3)	$C(1R3) - C(1R8)$	1.514 (4)
$O(2) - C(11)$	1.187(4)	$C(1R4) - C(1R5)$	1.424(3)
$C(2) - C(2M)$	1.516(3)	$C(1R4) - C(1R9)$	1.495 (3)
$C(2) - C(3)$	1.412(3)	$C(1R5)-C(1R10)$	1.502 (3)
$C(2)-B(6)$	1.527(3)	$B(4)-B(5)$	1.807 (4)
$C(2M) - C(2E)$	1.513(4)	$B(5)-B(6)$	1.787(4)
$C(3M) - C(3)$	1.522(3)	$B(4)-H(4)$	1.07
		$B(4)-H(45)$	1.31
		$B(5)-H(45)$	1.27
		B(5)-H(56)	1.30
		B(6)–H(6)	1.12
		B(6)–H(56)	1.32

Table IX. Selected Bond Angles (deg) in 2

products. In combination, these approaches allow considerable synthetic versatility, **as** they can be employed sequentially to generate mixed-halogen and di- and trisubstituted derivatives if desired.

In some *cases,* notably the syntheses of the vinyl and nitro derivatives, the preparative routes chosen gave unsatisfactory results. Fortunately, for synthetic purposes, however, the most highly sought products-the mono- and dihalo and acetyl species-were obtained in **good** to excellent yields. These compounds are amenable to transition-metal complexation leading to formation of multidecker sandwich complexes.^{7,11} As a general observation, the extensive derivatization described in this and the accompanying paper, together with prior work, demonstrates clearly the stability of transition-metal metallacarboranes such **as 1** under a wide variety of experimental conditions and underline their value **as** synthetic building block reagents.

Experimental Section

Except where otherwise indicated, materials, instrumentation, analyses, and general procedures were **as** described in earlier publications in this series.¹ All new products gave unit-resolution mass spectra in good agreement with calculated patterns based on natural isotope distributions, supported by high-resolution mass measurements or elemental analyses. Visible-UV spectra were recorded in CH₂Cl₂ solution.

Reaction of \mathbf{i}^- with Acetyl Chloride. A 0.52-g (1.7-mmol) sample of **1** was deprotonated by treatment with n-butyllithium under vacuum in THF at -76 "C **as** described elsewhere.' To this

solution was added, via syringe, 2.1 mmol of acetyl chloride at -76 "C, and the resulting dark orange-brown solution was stirred for 3 days at room temperature, after which the greenish yellow solution was opened to air, the solvent was removed by evaporation, the dark brown solid residue was taken up in $CH₂Cl₂$, and the resulting solution was filtered through 2 cm of silica. The fitrate was evaporated, and the dark brown residue was chro- $\frac{1}{2}$ matographed on a silica column in 1:1 hexane/CH₂Cl₂, giving two yellow bands of which the first was 1 (0.290 g, 54%). The second band was yellow-brown $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(=CH_2)$ -OC(0)Me) **(2)** (0.160 g, **0.400** mmol,24%). Further elution with a few milligrams of yellow oil and characterized as $(C_5Me_5)Co (2,3-Et_2C_2\overline{B}_3H_4-5-C_4H_8)$ (4). Exact mass for 2: calcd for $^{56}Co^{16}O_2^{12}Co_{20}^{11}B_3^1H_{34}^4$, 398.2170; found, 398.2156. Visible-UV absorptions (nm; percent absorbance given in parentheses): 370 (12%) , 298 (95%) , 244 (81%) . Anal. Calcd for CoOC₂₀B₃H₃₇ (4): C, 62.41; H, 9.69. Found: C, 62.34; H, 9.63. Visible-UV absorptions: 286 (8l%), 234 (32%).

A 0.275-g (0.574-"01) sample of **2** was dissolved in **50** mL of methanol, 42 *mg* of NaOH was added, and the solution was heated at 50 \degree C for 1 h, which produced a color change to pale green. Following addition of excess NH4Cl the solution was evaporated, the residue was taken up in CH₂Cl₂, the solution was filtered, and the fitrate was evaporated. The residue was chromatographed on a **silica** column in **5050** hexane/CHzC12, producing several light yellow bands which were **2** and minor cleavage products, and a major band which was dark yellow **3,** obtained on evaporation of the solution **as** a crystalline solid (0.204 g, 0.476 mmol, 83%). Exact mass: calcd for ${}^{59}Co^{16}O^{12}C_{18}{}^{11}B_3{}^{1}H_{32}{}^{1}$, 356.2064; found, 356.2057. Visible-UV absorptions: 334 (14%), 288 (95%), 236 (49%). Conversion of 2 to $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(O)Me)$ (3).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-C(O)CF_3)$ (5). Compound **1** (0.301 g, 0.96 mmol) was placed in a two-neck round-bottom **flask** fitted with a septum. The flask was evacuated on a vacuum line, 50 **mL** of dry THF was added by distillation, and the reactor was cooled to -78 °C, at which point 0.56 mL of tert-butyllithium (1.7 M in hexane, 0.96 mmol) was added via syringe. The solution slowly turned orange **as** it was warmed to room temperature and stirred for 30 min. The flask was again cooled to -78 °C and 1.04 mmol of trifluoroacetyl chloride was condensed into the mixture, causing an immediate color change to red. After stirring at -78 °C for 10 min, the cold bath was removed and stirring was continued for 1.5 h, during which the solution turned brown and then green. The mixture was opened to the **air,** solvent was removed by rotary evaporation, the residue was taken up in hexane, and the solution was filtered through 2 *cm* of silica. The column was then washed with dichloromethane. The hexane wash was taken to dryness and column-chromatographed on silica in hexane, affording one yellow band which was recovered 1 (0.125 g, 42%). The CH₂Cl₂ wash was taken to dryness and chromatographed on a silica column using 2:1 hexane/CH₂Cl₂, **giving** one major orange band which was collected **as** yellow-orange crystalline **5** (0.108 g, 0.26 mmol, 27%). Anal. Calcd for $CoF₃OC₁₈B₃H₂₉: C, 52.76; H, 7.13; F, 13.91. Found: C, 54.27;$ H, 7.55; F, 13.13. VisibleW absorptions: **400** (ll%), *348* (24%), 290 (92%), 262 (79%), 240 (51%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(O)CH_2C(O)$ *0%)* **(6).** *According* to the above procedure, **0.34 mL** (3.17 mol) of methylmalonyl chloride was added to 1^- in THF at -78 °C. The solution turned red and became darker as it was stirred for 30 **min.** The flask was placed in a salt-ice water bath, causing a rapid color change to brown, and was stirred for 2 h. The bath was removed and the solution stirred overnight, during which it became olive green. Workup **as** above gave l (0.287 g, 54%) in the hexane wash, and the CH_2Cl_2 solution with thin-layer-chromatographed to give **6 (0.055** g, 0.14 mmol, 8%). Anal. Calcd for $CoO_3C_{20}B_3H_{34}$: C, 58.04; H, 8.28. Found: C, 58.16; H, 8.45.

Reactions of 1⁻ with Trimethylacetyl Chloride. (a) $Me₃CC(O)Cl$ (0.16 mL, 1.30 mmol) was added to 0.257 g (0.82 Me₃CC(O)Cl (0.16 mL, 1.30 mmol) was added to 0.257 g (0.82 mmol) of 1⁻ in THF at -78 °C, and the solution was raised to 0
°C over a 4-h period. After overnight stirring at room temperature, the brown solution was worked up **as** above and the residue of the CH_2Cl_2 wash was chromatographed on a TLC plate in 1:1 hexane/ \overline{CH}_2Cl_2 , affording a yellow band which was further purified by TLC in hexane to give 5 mg (1%) of $(C_5Me_5)Co(2,3-$ Et₂C₂B₃H₄-5-CHOHCMe₃) (7), identified from its proton NMR and mass spectra. Visible-UV absorptions for 7: 334 (16%), 290 (95%), 286 (94%), 240 (50%).

(b) Me3CC(0)C1 (0.24 mL, 1.95 mmol) was added to 0.317 g (1.00 mmol) of 1⁻ in THF at -78 °C. After 15 min the -78 °C bath was removed and the solution was stirred for 4 h at room temperature, at which point it was olive green. The solvent was removed, the residue was washed with hexane followed by $\mathrm{CH_2Cl_2},$ and the silica was stripped with MeOH. The hexane wash contained 1 (60 mg, 19%). The CH_2Cl_2 wash was chromatographed on a TLC plate in 1:1 hexane/ CH_2Cl_2 , giving 6 mg (2%) of $(C_5Me_8)Co(2,3-Et_2C_2B_3H_4-4/6-CHOHCMe_3)$ (8) and 10 mg (2%) of $(C_5Me_1)Co(2,3-Et_2C_2B_3H_4-5-CH_3)$, $OC(O)CMe_3$ (9). The of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-CH_2)_4OC(O)CMe_3$ (9). methanol wash was column-chromatographed in $CH₂Cl₂$ to give one band, consisting of 60 mg (16%) of $(C_5\overline{Me}_5)Co(2,3 Et_2C_2B_3H_4-5-(CH_2)_4OH$ (10). Anal. Calcd for $CoOC_{21}B_3H_{40}$ (8): C, 63.07; H, 10.08. Found: C, 66.19; H, 10.64. Visible-UV absorptions for 8: 340 (14%), 288 *(88%),* 248 (57%), 238 (55%). Visible-UV absorptions for **9**: 332 (17%), 288 (93%), 240 (52%). Anal. Calcd for CoOC₂₀B₃H₃₈ (10): C, 62.25; H, 9.93. Found: C, 63.08; H, 10.22. Visible-UV absorptions for **10:** 332 (15%), 288 (91%), 238 (57%).

Synthesis of $(C_6Me_5)Co(2,3-Et_2C_2B_3H_4-5-Cl)$ **(11). Meth**anesulfonyl chloride (0.5 mL, 6.46 mmol) was added to 1⁻ (1.058 g, 3.37 mmol) at $0 °C$, producing an immediate color change to brown. The bath was removed and the solution stirred for 2 h, during which it turned yellow-green. The solution was stirred an additional 2 h and rotary-evaporated, and the residue was washed with $CH₂Cl₂$ and column-chromatographed in hexane. Three **bands** were obtained, consisting of 1 (16 *mg,* 1.5%), **11** (1.067 g, 3.06 mmol,91%), and a trace of the dichloro derivative **12.** *AnaL* Calcd for CoClC₁₆B₃H₂₉: C, 55.19; H, 8.39. Found: C, 56.19; H, 8.51. Visible-UV absorptions: 380 (26%), 308 (95%), 254 (83%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4/6,5-Cl_2)$ **(12).** Methanesulfonyl chloride (0.10 mL, 1.29 mmol) was added to 11⁻ (0.417 g, 1.14 mmol) at -78 °C, producing an immediate color change to red. The bath was removed and the solution stirred for 30 min, which produced a pale green color. The solution was stirred an additional 3.5 h and rotary-evaporated, and the residue was washed with CH₂Cl₂ and column-chromatographed in hexane. A large yellow band was obtained, the first part of which (9 mg) was a mixture of **11** and **12** and the remainder of **12** (0.394 g, 1.03 mmol, 90%). Anal. Calcd for $CoCl_2C_{16}B_3H_{28}$: C, 50.22; H, 7.38. Found: C, 51.27; H, 7.48.

Synthesis of $(C_5Me_8)Co(2,3-Et_2C_2B_3H_2-4,5,6-Cl_3)$ (13). Methanesulfonyl chloride $(0.08 \text{ mL}, 1.04 \text{ mmol})$ was added to 12^{-} (0.421 g, 1.10 mmol) at -78 "C, producing an immediate color change to red. The bath was removed and the solution stirred for 2 h, during which it turned green. The solution was stirred for 3 days (producing a lighter green color) and rotary-evaporated, and the residue was washed with CH_2Cl_2 and column-chromatographed in hexane. The first band was **12** (60 mg, 14%), and the second was **13** (0.094 g, 0.23 mmol, 21%). Compound **13** decomposes slowly on silica. Anal. Calcd for $CoCl₃Cl₃B₃H₂₇$: C, 46.07; H, 6.52. Found: C, 47.14; H, 6.72. Visible-UV absorptions: 292 (85%), 248 (31%), 236 (35%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-Cl)$ (14) and sample of **1** was dissolved in 50 mL of THF, 42 mg (0.318 mmol) of N-chlorosuccinimide was added, and the solution was stirred in vacuo and monitored periodically by ¹¹B NMR spectroscopy. There was no immediate color change, but the initially yellow solution slowly turned green and the change was complete after 4 h. Removal of solvent via rotary evaporation, followed by solution of the residue in hexane and elution on a silica column, afforded 106 mg (0.31 mmol, 95%) of orange, crystalline, air-stable **14.** $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-Cl_2)$ (15). A 100-mg (0.318-mmol)

A 100-mg sample of **14** was dissolved in THF, 1.5 equiv of N-chlorosuccinimide was added with no immediate color change, and the solution was stirred with periodic monitoring by ${}^{11}B$ NMR spectroscopy. Over a 4-h period the solution turned aqua blue. The reaction reached completion in 4 h, after which the solvent **was** removed, the residue was extracted in hexane, and the solution was fiitered through 3 cm of silica gel. Evaporation of the solvent gave 109 mg (0.29 mmol, 99%) of pure orange crystalline **15.**

In an alternative procedure, **15** was **also** prepared directly from **1** via reaction of a 100-mg sample with 2.5 equiv of N-chlorosuccinimide, with workup **as** above to give an essentially quantitative yield of crystalline product. Anal. Calcd for CoClC₁₀B₃H₂₉ (14): C, 55.19; H, 8.39. Found: C, 55.44; H, 8.31.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4/6-Cl-5-Me)$ **(16).** Methaneaulfonyl cbloride (0.10 **mL,** 1.29 mmol) was added to 0.185 g (0.56 mmol) of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-5Me)^-$ (see ref 8) at -78 °C, producing an immediate color change to red. The solution was stirred at 0° C for 1 h and then at room temperature for 1 h, after which it was taken to dryness and the residue washed through silica with CH_2Cl_2 and column-chromatographed in hexane. The first band obtained was cobaltacarborane starting material $(20 \text{ mg}, 11\%)$ and the second was 16 $(0.164 \text{ g}, 0.45 \text{ mmol})$, 81%). Anal. Calcd for CoClC₁₇B₃H₃₁: C, 56.37; H, 8.63. Found: C, 56.91; H, 8.81. Visible-W absorptions: 332 (18%), *290* (92%), 242 (62%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_2-4,6-Cl_2-5-Me)$ (17). Methanesulfonyl chloride (0.07 mL, 0.90 mmol) was added to **16-** $(0.242 \text{ g}, 0.66 \text{ mmol})$ at -78 °C , producing an immediate color change to red. The solution was stirred at room temperature for 4 days, during which it turned black. The solution was taken to dryness and the residue washed through silica with $CH₂Cl₂$ and column-chromatographed in 1:l hexane/CH2C12 to give **17** (0.148 g, 0.37 mmol, 56%). Anal. Calcd for $CoCl₂C₁₇B₃H₃₀: C, 51.47;$ H, 7.62. Found: C, 52.05; H, 7.82. Visible-UV absorptions: 338 (17%), 288 **(88%),** 250 (45%), 238 (42%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-Br)$ **(18).** Bromoacetonitrile (0.40 mL, 5.74 mmol) was added to **1-** (0.336 g, 1.07 mmol) at 0° C, causing an immediate color change to dark brown. The mixture was stirred at room temperature for 4 h with no appreciable change in color. The solvent was removed, the residue washed with CH_2Cl_2 , and the solution was columnchromatographed starting with hexane. The first band was **1** (16 mg, 5%), followed by **18** (0.234 g, **0.60** mmol, 56%) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4/6,5-Br_2)$ (19, 5 mg, 1%). The same procedure using bromonitromethane in place of bromoacetonitrile gave 18 in 75% yield. Anal. Calcd for $BrCoC_{16}B_3H_{29}$ (18): C, 48.94; H, 7.44. Found: C, 49.14; H, 7.45. Visible–UV absorptions: **288** (86%), **248** (33%), **236** (42%). **Anal. Calcd for Br₂CoC_{lB}B₃H₂₈** (19): C, 40.75; H, 5.98. Found: C, 42.96; H, 6.23. Visible–UV absorptions: 366 (6%), 332 (14%), 292 **(90%),** 240 (54%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-Br)$ (20) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-Br_2)$ (21). The procedures described above for the synthesis of **14** and **15** were followed using N -bromosuccinimide. Reaction of 100 mg (0.318 mmol) of 1 with 57 mg (0.32 mmol) of the brominating agent produced an imcomplete in $<$ 5 min, affording on workup 122 mg (0.31 mmol, 98%) of orange crystalline **20.** Bromination of this species with 1.5 equiv of N -bromosuccinimide resulted in a color change from orange to dark orange-brown. The reaction reached completion in <5 **min** and gave 119 *mg* (0.34 mmol,99%) of orange crystalline **21.** The latter compound was also obtained quantitatively on treatment of **1** with 2.5 equiv of the same reagent. Anal. Calcd for CoBrC₁₆B₃H₂₉ (20): C, 48.94; H, 7.44. Found: C, 49.11; H, 7.56. Anal. Calcd for $CoBr_2C_{16}B_3H_{28}$ (21): C, 40.75; H, 5.98. Found: C, 40.85; H, 6.18.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-I)$ **(22).** Iodotrifluoromethane (2.93 mmol) was condensed into a solution of **1-** (0.99 mmol) at -78 °C, producing an immediate blood red color.
The solution was stirred at -78 °C for 10 min and then at room temperature for 1.5 h, during which the solution turned dark orange. Following removal of solvent, the residue was washed with hexane and column-chromatographed in pentane, producing two bands of which the first was **1** (16 mg, 5%) and the second **was 22** (0.264 g, 0.60 mmol, 61%). Anal. Calcd for $\text{ICoC}_{16}B_3H_{29}$: C, 43.71; H, 6.65. Found: C, 43.86; H, 6.66. Visible-UV absorptions: 328 (13%), 290 (88%), 244 (41%), 236 (45%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-I)$ **(23) and** $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-I_2)$ (24). The procedures described above for the synthesis of **14** and **15** were followed using *N*iodosuccinimide. Reaction of 100 mg (0.318 mmol) of **1** with 72 mg (0.32 mmol) of the iodinating agent produced an immediate color change from yellow to brownish-orange and was complete in <5 min, affording on workup 140 mg (0.31 mmol, 99%) of

orange crystalline **23.** Iodination of this species with 1.5 equiv of N-bromosuccinimide, which produced an immediate color change from orange to dark orange-brown, gave 127 mg (0.34 mmol,99%) of orange crystalline **24.** The latter compound was **also** obtained quantitatively on treatment of **1** with 2.5 equiv of N-iodosuccinimide. Anal. Calcd for CoIC₁₆B₃H₂₉ (23): C, 43.71; H, 6.65. Found: C, 44.17; H, 6.61.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-CN)$ (25) and **(C,Me,)Co(2,3-Et2CzBsE4-4/6-CN) (26).** p-Toluenesulfonyl cyanide (0.627 g, 3.46 mmol) was added via a tip-tube to a solution of 1⁻ (0.290 g, 0.92 mmol) at -78 °C, producing a brownish-yellow solution. The bath **was** removed and the solution stirred for 30 min, after which the solvent **was** removed and the residue was washed with CH₂Cl₂ and then column-chromatographed starting with hexane, which produced 1 (0.124 g, 43% recovery). The solvent was changed to 1:1 hexane/CH₂Cl₂, affording one band which was collected and placed on a TLC plate in the same solvent. Two bands were obtained, the first of which was **25** (35 mg, 0.10 mmol, 11%) and the second was 26 (23 mg, 0.07 mmol, 8%). Anal. Calcd for CoNC₁₇B₃H₂₉ (25): N, 4.13; C, 60.27; H, 8.63. Found: N, 4.09; C, 60.53; H, 8.62. Visible-UV absorptions: 288 (87%), 244 (27%), 234 (32%). Anal. Calcd for $CoNC_{17}B_3H_{29}$ (26): N, 4.13; C, 60.27; H, 8.63. Found: N, 3.92; C, 60.50; H, 8.60. Visible-UV absorptions: 286 (95%), 248 (50%), 234 (43%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-NO_2)$ (27). Nitronium tetrafluoroborate (4.5 mL of 0.5 M solution in sulfolane, 2.25 mmol) was added to 1⁻ (0.301 g, 0.96 mmol) at -78 °C. The solution immediately turned brown. After stirring at -78 °C for 30 min and at room temperature for 30 min, the solvent was removed and the residue washed with hexane followed by CH_2Cl_2 . The hexane wash was column-chromatographed in hexane, affording only 1 (0.048 g, 16% recovery). The CH_2Cl_2 wash was chromatographed on a silica column in 1:1 hexane/CH₂Cl₂, giving a band of **1** followed by a small band of **27** (5 mg, 0.01 mmol, 1.5%), identified by **lH NMR** and mass spectroscopy.

Reaction of **1-** with Vinyl Bromide. Vinyl bromide (1.03 mmol) was reacted with 1⁻ (0.303 g, 0.96 mmol) under the conditions of the preceding synthesis, affording on workup only **1** (55% recovery) and a trace of an air-sensitive compound whose **lH NMR** and mass spectra were consistent with the formulation as a vinyl derivative, $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4CH=CH_2)$ (28). Other Attempted Reactions of **1-.** Treatment of **1-** with excess methanesulfonyl fluoride gave only **¹**(46% recovery). Reaction with excess p-toluenesulfonyl isocyanate resulted in the loss of all starting material and gave no characterizable product. **Reactions** of **1-** with 1 equiv of benzoyl chloride or malonyl chloride gave only **1** in ca. 50% recovery.

X-ray Structure Determination **on 2.** Relevant **crystal data** and experimental parameters are listed in Table VI. Intensities were collected on a Nicolet P3m diffractometer (Mo K α , λ = 0.7107 Å). The unit cell was determined using the setting angles of 20 high-angle reflections. The intensities of three standard reflections were monitored showing no significant decay. Empirical absorption corrections were made using the program **DI-FABS1'** with transmission factors in the range 0.88-1.22. All **calculations** were performed on a VAXstation **3520** computer uaing was solved by heavy-atom techniques (Patterson and Fourier maps). Full-matrix least-squares refinement with anisotropic thermal parameters for all non-hydrogen atoms yielded the final R of 0.037. *All* hydrogen atoms were located from the difference Fourier maps and included **as** fixed contributions to the structure factors. Only those reflections for which $I > 3.0\sigma(I)$ were used in the final refinement of the structural parameters.

Acknowledgment. The support of the National Science Foundation (Grant No. CHE 90-22713) and the U.S. Army Research Office is gratefully acknowledged. We thank Professor Frank Carey for enlightening discussions on O-acylation mechanisms, Mark Benvenuto for the unit-resolution mass spectra, Dr. Xiangsheng Meng for the $11B$ NMR spectra, and Markus Hölscher for the preparation of the B(4,5,6)-trichloro derivative. We are indebted to Dr. James Davis for initiating work on the reaction of **1-** with acetyl chloride.

OM920014G

(19) Walker, N.; Stuart, D. *Acta Crystallogr.* **1983,** *A39,* **158.** *(20) TEXSAN: Single Crystal Structure Analysis Software,* Vereion *5.0;* Molecular Structure Corp.: The Woodlands, TX **77381, 1989.**

Tungsten-Oxo Complexes with Amido Ligands: A Simple Example of the Stereochemical and Dynamic Consequences of Competing ?r-Donor Effects

Jean Pierre Le Ny, Marie-Thérèse Youinou, and John A. Osborn^{*}

Laboratoh **de** *Chimie* **des Mteux de** *Transitbn et* **de Catehse** *(w1A 424 du CNRS), 4 rue BkQe Pascal, 67000 Strasbowg, France*

Received September 27, 199 1

Complexes of tungsten(VI) of the type $WO(CH_2Bu^t)_2(NR_2)Cl$ 1 and $WO(CH_2Bu^t)_3(NR_2)$ 2 (1a, 2a, R = Et; 1b, 2b, R = Me; 2c, R = pyrrolidinate) have been synthesized and characterized. The proton NMR spectra of these compounds indicated that the stereochemistry was different from that of the chloride analogues. Further, the variable-temperature **NMR** data showed these complexes to be stereochemically nonrigid where exchange of the *NR,* group or equilibration of the neopentyl groups **occurred.** The structure of WO(CH₂Bu^t)₃(NEt₂) (2a) was established by X-ray diffraction and is in agreement with the NMR observations; the amido ligand adopts a position cis to the oxo, with the NR_2 group parallel to the $W=0$ vector. This ligand arrangement results from the competing π -donor demands of the amido and oxo ligands. $C_{19}H_{43}NOW$ crystallizes in the monoclinic space group $\tilde{P2}_1/c$ (No. 14), $a = 9.632$ (2) Å, $b = 12.961$ (3) Å, $c = 18.192$ (4) Å, $\beta = 104.62$ (2)°, $V = 2197.6$ Å³, $Z = 4$, ρ (calcd) = 1.467 g cm⁻³, $R_F = 0.027$

Introduction

For several years we have been interested in high-oxidation-state organometallic chemistry, particularly that of $W(VI)$ and $Mo(VI)$. The role played by strong π -donor ligands (e.g., oxo, imido) or moderate π -donors (e.g., alkoxo) was critical in the stabilizing and the fine tuning of the

reactivity of such metal centers in catalysis. The amido anion NR_2^- has been used extensively as a ligand in early annual metal of anion *m-* $\frac{1}{2}$ and is consulted and denoted and anion NR_2^- has been used extensively as a ligand in early transition metal chemistry¹⁻³ and is generally considered

⁽¹⁾ Bradley, **D.** C.; Chisholm, M. H. *Acc. CheM. pes.* **1976, 9, 273. (2)** Chisholm, **M.** H.; Rothwell, I. P. In *Comprehenszue Organometallic Chemistry;* Wilkinson, **G.,** Ed.; Pergamon Press: New York, **1982;** p **161.**