$(C_5Me_5)Co(Et_2C_2B_3H_4-R)$ Metallacarborane Sandwich **Complexes as Versatile Synthons.** Introduction of Electron-Withdrawing Substituents¹

Kent W. Piepgrass, Kenneth E. Stockman, Michal Sabat, and Russell N. Grimes*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

Received January 13, 1992

As part of our development of small nido-metallacarborane complexes as organometallic building-blocks, the controlled syntheses of $(C_5Me_5)Co(Et_2C_2B_3H_4-R)$ and $(C_5Me_5)Co(Et_2C_2B_3H_3-R_2)$ derivatives in which R is an acyl, trifluoroacyl, ester, nitrile, nitro, chloro, bromo, or iodo group were investigated. The attack of electrophilic reagents (R⁺) on the B-B edge of the $(C_5Me_5)Co(Et_2C_2B_3H_4)^-$ anion (1⁻), which was demonstrated earlier (preceding article and earlier papers) to give regiospecific B(5)-R substitution, in the present work produced B(5)-R and/or B(4/6)-R derivatives. Efficient syntheses of the B(5)-chloro, -bromo, and -iodo derivatives were achieved via treatment of 1⁻ with MeSO₂Cl, BrCH₂CN or BrCH₂NO₂, and CF₃I, respectively; further reaction of the monochloro compound gave the dichloro and trichloro species. In contrast to this B(5)-substitution pattern, reactions of 1⁻ with C(0)CF₃Cl gave exclusively the B(4/ $6)-C(O)CF_3$ derivative. Treatment of neutral 1 with N-halosuccinimides gave exclusively the monohalo [B(4/6)-X] derivatives (X = Cl, Br, I) in nearly quantitative yield; further halogenation of these species using the same reagents gave the $B(4,6)-X_2$ dihalo products quantitatively. The reaction of 1⁻ with acetyl chloride in THF at -78 °C did not form the expected B(5)-acetyl complex, giving instead the B(5)-(2-vinyl complex) are the same reagent. acetate) derivative 2 in good yield; the structure was proved via X-ray crystallography. Base-catalyzed cleavage of 2 readily afforded the B(5)-acetyl compound 3. The formation of 2 does not involve the acetyl species 3 as an intermediate and is proposed to occur via formation of a B-C-B acetyl-bridged intermediate which undergoes O-acetylation and rearrangement to give 2. The remarkable formation of 2 differs from the usual enol acetate formation in organic chemistry in that, in the present case, the only primary source of -(C=0)- is the acylating agent itself. New compounds were isolated in most cases as air-stable crystals and characterized via ¹H, ¹³C, and ¹¹B NMR, IR, UV-visible, and mass spectra. Crystal data for 2: space group $P2_1/n$; Z = 4; a = 8.368 (2), b = 18.757 (5), c = 14.234 (4) Å; $\beta = 97.25$ (2)°; V = 2216 (2) Å³; R = 0.037 for 3856 reflections having $F_0^2 > 3.0\sigma(F_0^2)$.

Introduction

The synthetic utility of nido-LM(R₂C₂B₃H₅) metallacarborane complexes (in which L is an aromatic hydrocarbon and M is Fe, Co, or Ru) is substantially enhanced by the addition of organic functional groups to the C_2B_3 ring.¹ Such derivatization is important in the development of this chemistry, for two reasons. As has been demonstrated in earlier work,²⁻⁵ linking groups bound to the carborane ligand can be used to construct multicage metallacarborane oligomers and polymers; in principle, a wide variety of organic polymerization reactions could be employed once the necessary functional groups are introduced. Here we simply take advantage of the stability of the MC_2B_3 cage and its ability to survive a wide range of reaction conditions without degradation, not unlike the development of extraordinarily robust polymers from the icosahedral m-C₂B₁₀H₁₂ carborane.⁶

A different role for attached substituents arises when they influence the electronic properties of the C_2B_3 ring itself and thereby alter its chemistry, especially its ability to form sandwich complexes with metals. The importance of such effects became clear to us when we found, seren-

1990, 9, 1177.

dipitously, that attachment of electron-withdrawing groups such as acetyl and chloro to the middle boron [B(5)]promotes formation of tetradecker sandwiches via coordination of the C_2B_3 face to transition-metal ions.⁷ This, in turn, creates the possibility of fine-tuning or tailoring the properties of $LM(R_2C_2B_3H_5)$ complexes via appropriate derivatization. Accordingly, the work described here was undertaken in order to develop efficient methods for introducing synthetically useful electron-withdrawing substituents.

An earlier report⁸ from our laboratory described a straightforward method for regiospecific alkylation at B(5)(the middle boron) via reaction of a $nido-LM(R_2C_2B_3H_4)^{-1}$ anion with alkyl halides, and the accompanying paper¹ extends this approach to the synthesis of a variety of B(5)-CH₂-R derivatives in which R is an active group. For the most part, these preparations proceeded similarly to those of the simple B(5)-alkyl compounds. However, in using this approach to introduce electron-withdrawing groups directly onto the carborane ring (without an intervening CH_2 unit), we found that the chemistry is more complex, in some cases leading to substitution at B(4/6), and in others taking entirely unexpected turns. These findings are described in the present report.

Results and Discussion

Synthesis of B(5)-Substituted Acetyl and Vinyl Ester Derivatives. In attempting to extend the B-alkylation⁸ reaction of $(C_5Me_5)Co(Et_2C_2B_3H_5)$ (1, Scheme IA) to other types of organic groups, we initially chose the B(5)-acetyl species as a desirable target compound which

⁽¹⁾ Organotransition-Metal Metallacarboranes. 24. Part 23: Piepgrass, K. W.; Grimes, R. N. Preceding paper in this issue. (2) Recent reviews: (a) Grimes, R. N. Chem. Rev. 1992, 92, 251. (b)

Grimes, R. N. Cyclocarborane-Stabilized Multidecker/Multicluster Sandwich Compounds and Linked Molecular Systems. In Electron-Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; John Wiley and Sons: New York, 1991; Chapter 11, pp. 261–285. (3) Attwood, M. D.; Davis, J. H., Jr.; Grimes, R. N. Organometallics

⁽⁴⁾ Davis, J. H., Jr.; Benvenuto, M. A.; Grimes, R. N. Inorg. Chem. 1991, 30, 1765.

⁽⁵⁾ Benvenuto, M. A. Ph.D. Thesis, University of Virginia, 1991.

Benvenuto, M. A.; Grimes, R. N. Submitted for publication. (6) Peters, E. N. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 28 and references therein.

⁽⁷⁾ Piepgrass, K. W.; Davis, J. H., Jr.; Sabat, M.; Grimes, R. N. J. Am. Chem. Soc. 1991, 113, 681.

⁽⁸⁾ Davis, J. H., Jr.; Attwood, M. D.; Grimes, R. N. Organometallics 1990, 9, 1171.

might serve as a useful precursor to metallacarboranebased oligomers and polymers via acyl polymerization reactions. To this end, the bridge-deprotonated anion 1⁻ was reacted with acetyl chloride in THF at -76 °C. Workup in air afforded in 55% yield (based on 1 consumed) a yellow air-stable solid 2 which clearly was not the intended B-acetyl complex 3, as shown by its ¹¹B, ¹H, and ¹³C NMR and infrared spectra (Tables II-V).⁹ A trace product isolated from this reaction was characterized as a THF-substituted derivative, $(C_5Me_5)Co(Et_2C_2B_3H_3-5-OC_4H_8)$ (4), an isomer of the previously reported B(4/ 6)-THF compound (27 in the preceding paper).

The multinuclear NMR and mass spectroscopic data at first suggested that 2 was an acetyl acetonate derivative, although the proton NMR spectrum was not entirely consistent with this assignment. However, a single-crystal X-ray diffraction study disclosed that 2 is in fact a B-(5)-vinyl ester complex (Scheme 1B), an unexpected result which is entirely in accord with the NMR data.⁹

The solid-state geometry of 2 is shown in Figure 1, and relevant data are listed in Tables VI–IX. All hydrogen atoms were located, and the structure exhibits no anomalous features. The MC₂B₃ cage parameters are closely similar to those in previously reported complexes of this class,¹⁰ only one of which, $[(C_5Me_5)Co(Me_2C_2B_3H_4)-\mu-$ HgCl],^{10c} contains the Co(C₅Me₅) moiety. The C(2)–C(3) distance [1.412 (3) Å] is typical of *nido*-MC₂B₃ clusters, reflecting some multiple-bond character in the carborane

Figure 1. Molecular structure of 2 (terminal hydrogens omitted).

C-C interaction. The vinyl ester group has an unusually short carboxyl [C(11)-O(2)] distance (1.187 (4) Å) and a relatively small C(9)-O(1)-C(11) angle [117.7 (2)°], consistent with an increase in s character in C(9) and O(1) which can be attributed to withdrawal of p electron density by the carborane ring ligand.

In a strange twist of the kind that sometimes occurs in research, our initial belief that 2 was an acetyl acetonate led us to attempt the formation of a Ni(acac)₂ complex via reaction of 2⁻ with nickel(II) bromide. Athough it was doomed to fail in its intended purpose, this was a truly fortuitous experiment⁷ since it produced instead the quadruple-decker sandwich complex [(C_5Me_5)Co-($Et_2C_2B_3H_2$ -C(O)Me)]₂Ni, representing a new class of metallacarborane species, and enabled us to develop a practical synthetic route to these previously inaccessible

⁽⁹⁾ A preliminary report of this work has appeared: Piepgrass, K. W.; Davis, J. H., Jr.; Sabat, M.; Grimes, R. N. J. Am. Chem. Soc. 1991, 113, 680.

 ^{(10) (}a) Brennan, J. P.; Grimes, R. N.; Schaeffer, R.; Sneddon, L. G.
 Inorg. Chem. 1973, 12, 2276. (b) Pipal, J. R.; Maxwell, W. M.; Grimes,
 R. N. *Ibid.* 1978, 17, 1447. (c) Finster, D. C.; Grimes, R. N. *Ibid.* 1981, 20, 863. (d) Borodinsky, L.; Sinn, E.; Grimes, R. N. *Ibid.* 1982, 21, 1928.

Table I. (C5Me5)Co(Et2C2B3H2R4R5R6) Major Products

compd	R⁵	R ⁴ , R ⁶	yield (%)ª
2	$C(-CH_2)OC(0)Me$	H, H	25 (55)
3	C(O)Me	н, н	83 ⁶
5	н	C(O)CF ₃ , H	27 (46)
6	C(O)CH ₂ C(O)OMe	н, н	8 (18)
11	Cl	Н, Н	91 (92)
12	Cl	Cl, H	90°
13	Cl	Cl, Cl	21 ^d
14	н	Cl, H	95 ^e
15	н	C1, C1	99e.t
16	Me	Cl, H	81*
17	Me	C1, C1	56 ^h
18	Br	Н, Н	56 (59), ⁱ 75 ^j
20	Н	Br, H	98*
21	н	Br, Br	99 ^{k,l}
22	I	Н, Н	61 (64)
23	н	I, H	99 ^m
24	н	I, I	99 ^{m,n}
25	CN	Н, Н	11 (19)
26	Н	CN, H	8 (13)

^a Isolated yields, based on metallacarborane employed (yields based on 1 consumed are given in parentheses). ^b Prepared from 2. ^c Prepared from 11. ^d Prepared from 12. ^e From reaction with (CH₂CO)₂NCl. ^f Prepared from 14. ^d Prepared from (C₅Me₅)Co-(Et₂C₂B₃H₄-5-Me). ^b Prepared from 16. ⁱ From reaction with BrCH₂CO., ^j From reaction with BrCH₂NO₂. ^k From reaction with (CH₂CO)₂NI. ⁱ Prepared from 23.

compounds. A detailed account of this chemistry will be presented elswehere.¹¹

Conversion of 2 to the desired acetyl derivative 3 was readily achieved by base-catalyzed cleavage, as shown in Scheme IC. The mechanism of formation of 2 from 1^-

presents an intriguing problem. A priori, one might assume that the B(5)-acetyl species 3 is formed initially and subsequently reacts (in its enolate form) with acetyl chloride to generate 2; indeed, the formation of enol acetates via attack of acyl halides on enolate anions is wellknown.¹² However, this route is effectively excluded in the present case, since we have established that 3 is not a precursor to 2. Treatment of 3 or its deprotonated anion 3^{-} with acetyl chloride generated no detectable 2, and there is no evidence that 3 is present in solution in the formation of 2 from 1^- and acetyl chloride. When this latter reaction was monitored (via TLC analysis) at room temperature as a function of time, 3 was not produced at detectable levels. A possible mechanism for the formation of 2, presented in Scheme II, involves initial reaction of an acetyl group at the nucleophilic B-B edge of 1^- to form the acetylbridged intermediate 2a. Formation of such bridged species has been proposed as a general pathway for the B(5)-alkylation of 1,8 its iron-arene and ruthenium-arene analogues,⁸ and the $nido-R_2C_2B_4H_6$ carboranes.¹³ The formation of B-X-B bridged derivatives in which X is Si, Ge, Sn, or Pb has been demonstrated in reactions of group IV (14) alkyl halides with $B_5H_8^-$ and $R_2C_2B_4H_5^-$ anions.¹⁴ In the B-alkylation of $C_2B_9H_{11}^{2-}$ via reactions with alkyl halides, μ -alkyl intermediates containing three-center, 2-electron B-C-B bonds have been isolated and characterized.15

In the postulated intermediate 2a, net transfer of electron density from the acetyl group to the carborane cage would polarize the carboxyl region, favoring the enolate form whose $C-O^-$ unit would likely undergo O-acetylation followed by rearrangement (interchange of the organic moiety with H(5)) to generate 2 as shown. As is often the

(b) Tabereaux, A.; Grimes, R. N. Inorg. Chem. 1973, 12, 792.
 (15) Knyazev, S. P.; Brattsev, V. A.; Stanko, V. I. Zh. Obshch. Khim.
 1977, 47, 2627; J. Gen. Chem. USSR (Engl. Transl.) 1977, 47, 2398.

⁽¹¹⁾ Piepgrass, K. W.; Hölscher, M., Jr.; Sabat, M.; Grimes, R. N. Manuscript in preparation.

⁽¹²⁾ The reaction of PhC(O)Cl with diethyl [lithio(trimethylsilyl)methyl]phosphonate (Carey, F. A.; Court, A. S. J. Org. Chem. 1972, 37, 979) is an example of O-acylation in organosilicon chemistry; the preference for O- over C-acylation in this case was attributed to steric hindrance by the Me_3Si and $P(O)(OEt_2)$ substituents. In this reaction the acylation occurred at an oxygen present in the original substrate, in contrast to the formation of 2.

⁽¹³⁾ Davis, J. H., Jr.; Grimes, R. N. Inorg. Chem. 1988, 27, 4213.
(14) (a) Gaines, D. F.; Iorns, T. V. J. Am. Chem. Soc. 1968, 90, 6617.
(b) Thompson, M. L.; Grimes, R. N. Inorg. Chem. 1972, 11, 1925. (c) Tabereaux, A.; Grimes, R. N. Inorg. Chem. 1973, 12, 792.

Table II. 115.8-MHz ¹¹B FT NMR Data for (CrMer)Co(2.3-Et.-C.B.H.-4-R⁴-5-R⁵-6-R⁵) Complexes

compd	R⁵	R ⁴ , R ⁶	δ (J _{BH} , Hz) ^a	area ratio	
16	н	H, H	7.5 (146), 3.9 (134)°	1:2	
2	$C(-CH_2)OC(O)Me$	Н, Н	11.7, -0.9 (125)	1:2	
3	C(O)Me	Н, Н	7.8, 2.8 (116)	1:2	
4	$-OC_4H_8-$	\mathbf{H}^{d}	11.6, 4.3 (<196)	1:2	
5	H	C(O)CF ₃ , H	7.4 (153), 5.2 (156), -2.0	1:1:1	
6	C(O)CH ₂ C(O)OMe	Н, Н	11.0, 1.3 (111)	1:2	
8	Н	CHOHCMe ₃ , H	5.9, 4.0, 1.4	1:1:1	
9	$(CH_2)_4OC(O)CMe_3$	Н, Н	21.8, 0.8	1:2	
10	(CH ₂)₄OH	Н, Н	21.7, 0.0 (84)	1:2	
11	Cl	Н, Н	20.6, -1.5 (137)	1:2	
12	Cl	Cl, H	17.4, 8.7, -1.7 (138)	1:1:1	
13	Cl	Cl, Cl	14.0, 8.6	1:2	
14	н	Cl, H	14.5, 4.3 (108)	1:2	
15	н	Cl, Cl	13.8, -0.3 (134)	2:1	
16	Me	Cl, H	16.7, 9.7, -0.4 (124)	1:1:1	
17	Me	Cl, Cl	12.7, 9.2	1:2	
18	Br	Н, Н	12.9, 0.1 (145)	1:2	
19	Br	Br, H	11.6, 5.6, -0.1 (126)	1:1:1	
20	Н	Br, H	9.5, 5.2 (150), 3.7 (140)	1:1:1	
21	н	Br, Br	9.2, 2.1 (150)	2:1	
22	I	н, н	2.5 (115), -2.6	2:1	
23	Н	I, H	7.9 (145), 5.0 (135), -0.93	1:1:1	
24	H	I, I	6.4 (138), -2.1	1:2	
25	CN	H, H	4.0 (134), 1.3	1:2	
26	H	CN, H	7.0 (152), 4.8 (148), -5.3	1:2	

^a Shifts relative to BF₃·OEt₂, positive values downfield; H—B coupling constant in hertz is given in parentheses, when resolved. Spectra were recorded in *n*-hexane solution except where otherwise indicated. ^bDavis, J. H., Jr.; Sinn, E.; Grimes, R. N. J. Am. Chem. Soc. 1989, 111, 4776. ^cCH₂Cl₂ solution. ^dTHF ring is proposed to bond to both B(5) and B(4,6).

Table	III.	300-MHz	¹ H FT	NMR	Data ^{a-c}
-------	------	---------	-------------------	-----	---------------------

compd	δ
1 ^d	2.09 (m, CH ₂), 1.89 (m, CH ₂), 1.76 (s. C _k Me _k), 1.10 (m, CH ₂), -5.54 (br s, B-H-B)
2	5.16 (s, -CH ₂), 5.03 (s, -CH ₂), 2.15 (s, C(O)Me), 2.07 (m, CH ₂), 1.85 (m, CH ₂), 1.70 (s, C ₅ Me ₅), 1.07 (t, CH ₃), -4.9 (vbr,
	B-H-B)
3	2.18 (s, C(O)Me), 2.05 (m, CH ₂), 1.88 (m, CH ₂), 1.66 (s, C_5Me_5), 1.08 (t, CH ₃), -5.2 (vbr, B-H-B)
4	3.94 (m, BCHO), 3.86 (m, OCH ₂), 3.65 (dt, OCH ₂), 2.13 (m, CH ₂), 2.05 (m, CH ₂), 1.89 (m, CH ₂), 1.73 (s, C_5Me_5), 1.14 (t, CH ₃),
	1.10 (t, CH_3), -5.5 (vbr s, B-H-B), -6.0 (vbr s, B-H-B)
5	2.65 (m, CH ₂), 2.07 (m, CH ₂), 1.83 (m, CH ₂), 1.70 (s, C_5Me_5), 1.09 (t, CH ₃), 0.93 (t, CH ₃), -5.38 (br s, B-H-B)
6	5.24 (s, COCH ₂ CO), 3.73 (s, OCH ₃), 2.08 (m, CH ₂), 1.90 (m, CH ₂), 1.69 (s, C_5Me_5), 1.10 (t, CH ₃), -5.1 (br s, B-H-B)
7	3.30 (br, BCH), 2.11 (m, CH ₂), 1.87 (m, CH ₂), 1.77 (s, C_5Me_5), 1.09 (t, CH ₃), 0.90 (s, CMe ₃), -5.36 (br s, B-H-B), -5.98 (
•	$\mathbf{B} - \mathbf{H} - \mathbf{B}(\mathbf{M}) = $
8	4.04 (br t, BCH), 2.56 (m, CH ₂), 2.11 (m, CH ₂), 1.86 (m, CH ₂), 1.71 (s, C_5Me_5), 1.10 (t, CMe ₃), 0.84 (br t, ^e CH ₃), -4.9 (vbr s,
0	$\mathbf{B} - \mathbf{H} - \mathbf{B}_{1} = 0.0 \text{ (VDI 8, B} - \mathbf{H} - \mathbf{B})$
3	4.03 (i, OCH_2), 2.11 (ii), CH_2), 1.05 (iii), OH_2), 1.12 (ii), O_5 (iii), OH_2), 1.07 (iii), OH_2), 1.19 (ii), OH_2), 1.08 (ii), OH_2), 1.08 (ii), OH_2), 1.08 (ii), OH_2), 1.08 (iii), OH_2), 0.04 (iii), OH_2), 0.04 (iii), OH_2), 0.04 (iii), OH_2), 0.04 (iii), OH_2), 0.04 (iii), OH_2), 0.04 (iii), 0.04 (iiii), 0.04 (iii), 0.04 (iiii), 0.04 (iii), 0.04 (iii), 0.04 (iii
10	v_{1} D C m_{2} , -0.40 (m_{1} s) $D - m - D$) 2.42 (0.00 H) 2.11 (m_{1} C H) 1.25 (m_{1} C H) 1.72 (a_{2} C M a_{3}) 1.61 (m_{1} C H) 1.27 (m_{2} C H) 1.02 (t_{2} C H) 0.84 (h_{2} + D C H) -5.45
10	$(b, c) = \mathbf{R} - \mathbf{H} = \mathbf{R}$
11	(0.5, 0.5, 0.1, 0.5) 213 (m CHa) 187 (m CHa) 177 (s CaMea) 110 (t CHa) -398 (br s B-H-B)
12	2.11 (m, CH ₂), 1.84 (m, CH ₂), 1.73 (s. C-Me ₂), 1.16 (c) (H ₃), 1.07 (t, CH ₂), -1.88 (hr s. B-H-B), -3.77 (hr s. B-H-B)
13	2.09 (m, CH ₂), 1.70 (s, C, Me ₂), 1.09 (t, CH ₂), -1.67 (br s, B $-H-B$)
14	2.14 (m, CH ₂), 2.01 (m, CH ₂), 1.85 (m, CH ₂), 1.76 (s, C ₄ Me ₄), 1.12 (t, CH ₂), 1.05 (t, CH ₂), -3.87 (br s, B-H-B), -5.77 (vbr s,
	B-H-B)
15	2.14 (m, CH ₂), 1.95 (m, CH ₂), 1.74 (s, C_5Me_5), 1.09 (t, CH ₃), -3.66 (vbr s, B-H-B)
16	2.10 (m, CH ₂), 1.84 (m, CH ₂), 1.70 (s, $C_{5}Me_{5}$), 1.09 (t, CH ₃), 1.04 (t, CH ₃), -3.25 (br s, B-H-B), -5.11 (br s, B-H-B)
17	2.09 (m, CH ₂), 1.67 (s, $C_{5}Me_{5}$), 1.07 (t, CH_{3}), -3.1 (vbr s, $B-H-B$)
18	2.14 (m, CH ₂), 1.87 (m, CH ₂), 1.77 (s, C ₅ Me ₅), 1.09 (t, CH ₃), -4.22 (br s, B-H-B)
19	2.13 (m, CH ₂), 1.84 (m, CH ₂), 1.72 (s, C_5Me_5), 1.10 (t, CH ₃), 1.07 (t, CH ₃), -2.25 (br s, B-H-B), -3.92 (br s, B-H-B)
20	2.18 (m, CH ₂), 2.01 (m, CH ₂), 1.90 (m, CH ₂), 1.74 (s, C_5Me_5), 1.12 (t, CH ₃), 1.05 (t, CH ₃), -3.85 (vbr s, B-H-B), -5.63 (vbr s, C ₅ Me ₅), -5.63 (vbr s, C_5Me ₅
••	
21	2.08 (m, CH_2), 1.78 (s, C_5Me_5), 1.11 (t, CH_3), -3.28 (vbr s, $B-H-B$)
22	2.16 (m, CH ₂), 1.88 (m, CH ₂), 1.71 (s, C ₅ Me ₆), 1.09 (t, CH ₃), -4.60 (b rs, B $-H-B$)
23	2.15 (m, CH ₂), 1.95 (m, CH ₂), 1.77 (s, C ₅ Me ₆), 1.14 (t, CH ₃), 1.06 (t, CH ₃), -3.89 (or s, B-H-B), -5.43 (br s, B-H-B)
24 92	2.05 (m, Ch_2), 1.78 (8, C_5Me_5), 1.11 (1, Ch_3), -3.28 (VDT 8, $B^{}H^{}B$)
40 26	2.10 (m, CH_2), 1.50 (m, CH_2), 1.60 (s, C_{5} /Neb,), 1.09 (t, CH_2), -5.0 (VOT s, $D^{}\Pi^{}D)$
20	2.11 (III, \Box_{12}), 1.00 (III, \Box_{12}), 1.10 (5, \Box_{13}), 1.12 (1, \Box_{13}), 1.09 (1, \Box_{13}), \Box_{23} (1, \Box_{23}), \Box_{23} (1, \Box_{23}), \Box_{23}), \Box_{23} (1, \Box_{23}
	a_{00} (a_{1} , a_{12} , a_{10} (a_{1} , a_{12} , a_{10} (b_{1} , a_{12} (b_{1} a_{1} , a_{10} (b_{1} , a_{12}), a_{11} b_{1} , b_{11} b_{1} , b_{11} b_{1}
° Shif	ts relative to Me Si. Integrated peak areas in all cases are consistent with the assignments given. Legend: $m = multiplet$, $s =$
singlet,	$d =$ doublet, $t =$ triplet, $q =$ quartet. $B-H_{terminal}$ resonances are broad quartets and mostly obscured by other signals. $CDCl_3$
solution	. "Davis, J. H., Jr.; Sinn, E.; Grimes, R. N. J. Am. Chem. Soc. 1989, 111, 4776. "Unresolved doublet of triplets.

case in reactions of 1⁻, protonation to form neutral 1 is a competing process, in this case regenerating over 50% of the starting complex. The strong electron-withdrawing character of the 1⁻ cluster lends plausibility to this proposed mechanism and provides a rationale for its occurrence in this particular case, which is so far unique in boron cluster chemistry. (Electrophilic attack of acetyl chloride or benzoyl chloride on other carborane substrates having

Piepgrass et al.

Table IV. 75.5-MHz ¹³C FT NMR Data^{a,b}

compu	0
2	169.8 (C=O), 160 (br, C ₂ B ₃), 111.8 (t, =CH ₂), 92.6 (C ₅), 23.0 (t, CH ₂), 21.6 (q, COCH ₃), 17.6 (q, CH ₃), 9.8 (q, C ₅ Me ₅)
3	113 (br, C_2B_3), 93.1 (C_5), 37.2 (q, COCH ₃), 23.0 (t, CH ₂), 17.5 (q, CH ₃), 9.9 (q, C_5Me_5)
4	113 (br, C_2B_3), 106 (br, C_2B_3), 92.5 (C_5), 74 (br, BCH), 68.6 (t, OCH ₂), 32.2 (t, CH ₂), 27.9 (t, CH ₂), 22.8 (t, <i>Et</i> CH ₂), 21.8 (t, <i>E</i>
	CH_2), 18.8 (q, CH_3), 16.8 (q, CH_3), 10.4 (q, C_5Me_5)
5	117 (br, C_2B_3), 112 (br, C_2B_3), 94.0 (C_5), 22.8 (t, CH_2), 19.7 (t, CH_2), 17.6 (q, CH_3), 17.2 (q, CH_3), 9.9 (q, C_5Me_5)
6	185 (br, C=O), 172.6 (CO ₂), 113 (br, C ₂ B ₃), 96.7 (C ₅), 51.1 (OCH ₃), 23.0 (CH ₂), 17.5 (CH ₃), 9.8 (C ₅ Me ₅)
7	110 (br, C_2B_3), 92.8 (C_5), 35.5 (CMe ₃), 27.0 (Me ₃), 22.9 (CH ₂), 17.6 (CH ₃), 10.0 (C_5Me_5)
9	179 (br, C=O), 111 (br, C ₂ B ₃), 92.4 (C ₅), 64.8 (OCH ₂), 39.2 (CMe ₂), 31.4 (CH ₂), 29.0 (CH ₂), 27.7 (Me ₃), 22.9 (Et CH ₂), 17.9 (Et
	CH_3 , 14.7 (br, BCH ₂), 10.0 (C ₅ Me ₅)
10	111 (br, C_2B_3), 92.4 (C_5), 63.4 (OCH ₂), 35.6 (CH ₂), 28.8 (CH ₂), 22.9 (<i>Et</i> CH ₂), 17.9 (<i>Et</i> CH ₃), 10.0 (C_5Me_5)
11	111 (br, C_2B_3), 93.6 (C_5), 22.7 (CH ₂), 17.7 (CH ₂), 9.6 (C_5Me_5)
12	109 (br, C_2B_3), 105 (br, C_2B_3), 94.3 (C ₅), 23.1 (t, CH ₂), 20.0 (t, CH ₂), 17.9 (q, CH ₃), 15.7 (q, CH ₃), 9.0 (q, C ₅ Me ₅)
13	103 (br, C_2B_3), 95.1 (C_5), 20.2 (CH ₂), 15.9 (CH ₃), 8.4 (C_5Me_5)
14	110 (br, C_2B_3), 104 (br, C_2B_3), 92.9 (C ₅), 22.7 (CH ₂), 19.3 (CH ₂), 17.2 (CH ₃), 15.1 (CH ₃), 9.2 (C ₅ Me ₅)
15	104 (br, C_2B_3), 93.7 (C_5), 19.6 (CH ₂), 15.3 (CH ₃), 8.5 (C_6Me_5)
16	110 (br, C_2B_3), 104 (br, C_2B_3), 93.2 (C ₆), 23.3 (CH ₂), 20.1 (CH ₂), 18.2 (CH ₃), 15.9 (CH ₃), 9.3 (C ₅ Me ₅), -4 (br, BCH ₃)
17	105 (br, C_2B_3), 94.0 (C_5), 20.2 (CH ₂), 16.0 (CH ₃), 8.6 (C_5Me_5), -6 (br, BCH ₃)
18	111 (br, C_2B_3), 93.7 (C_5), 22.6 (CH ₂), 17.7 (CH ₃), 9.8 (C_5Me_5)
19	111 (br, C_2B_3), 105 (br, C_2B_3), 94.5 (C ₆), 23.0 (CH ₂), 20.8 (CH ₂), 18.0 (CH ₃), 15.7 (CH ₃), 9.1 (C ₅ Me ₅)
20	110 (br, C_2B_3), 105 (br, C_2B_3), 93.6 (C ₆), 23.0 (CH ₂), 20.6 (CH ₂), 18.0 (CH ₃), 15.7 (CH ₃), 9.9 (C ₅ Me ₅)
21	105 (br, C_2B_3), 93.0 (C_5), 20.1 (CH ₂), 15.2 (CH ₃), 9.1 (C_5Me_5)
22	112 (br, C_2B_3), 93.6 (C_5), 22.4 (CH ₂), 17.8 (CH ₃), 10.0 (C_5Me_5)
23	110 (br, C_2B_3), 106 (br, C_2B_3), 93.7 (C ₅), 23.2 (CH ₂), 22.3 (CH ₂), 18.1 (CH ₃), 16.9 (CH ₃), 10.0 (C ₅ Me ₅)
24	105 (br, C_2B_2), 94.0 (C_5), 20.5 (CH ₂), 15.3 (CH ₃), 8.7 (C_5Me_5)
25	127 (br, BCN), 113 (br, C_2B_3), 93.8 (C_5), 22.6 (CH_2), 17.5 (CH_2), 9.8 (C_5Me_5)
26	128 (br, BCN), 112 (br, C ₂ B ₃), 93.8 (C ₅), 22.6 (CH ₂), 21.6 (CH ₂), 17.6 (ČH ₃), 17.1 (CH ₃), 9.8 (C ₅ Me ₅)

^a CDCl₃ solution. ^b Shifts relative to Me₄Si; all spectra broad-band-decoupled except where couplings are indicated.

a C_2B_3 open face, e.g. $C_2B_9H_{12}^-$ anions,¹⁶ generates the expected B-acyl derivatives with no evidence of a vinyl ester analogous to 3. Similarly, treatment of C-lithiated 1,2- or $1,7-C_2B_{10}H_{12}$ clusters with acetyl chloride affords C-acetyl carboranes¹⁷). Moreover, reactions of 1⁻ with acyl halides other than acetyl chloride gave no species analogous to 2 (vide infra).

From the standpoint of organic chemistry, the formation of 2 from 1⁻ is remarkable in that the acylating agent is itself the only source of -C==O- in this system, in contrast to the usual case wherein acylation occurs on an existing carboxyl-containing substrate.¹²

Reactions with Other Acyl Halides. The treatment of 1⁻ with trifluoroacetyl chloride gave, on workup in air, the B(4)-trifluoroacetyl derivative 5 (obtained as a racemic mixture with the equivalent $B(6)-C(0)CF_3$ compound). This structure is clearly evident from the 1:1:1 ¹¹B NMR pattern, and indicates that powerful electron-withdrawing groups such as trifluoroacetyl may end up on B(4/6) rather than B(5) as is the case with alkyl or organomethyl substituents.^{1,8} A rationale for this observation is that the introduction of strong electron attractors perturbs the normal electron distribution in the C_2B_3 ring, inducing higher negative charge on B(4/6) relative to B(5). The latter situation is found in unsubstituted nido-R₂C₂B₄H₆ carboranes, whose deprotonated anions alkylate preferentially at $B(4/6)^{13}$ —an observation that is consistent with MNDO calculations¹⁸ on parent 2,3-C₂B₄H₈ which place the higher negative charge on B(4) and B(6).

In the present work the trifluoracetyl reaction was the only case in which the addition of a functional group to unsubstituted 1^- occurred in significant yield at B(4/6). As will be seen, B(4/6)-substituted trace products (e.g., 8) were found, and cyano addition produced both B-substituted isomers, but only $C(O)CF_3$ provided a clear-cut example of selective B(4/6) substitution on the 1⁻ anion. This appears to correlate with the extremely high electrophilicity of the latter group.

Treatment of 1⁻ with methylmalonyl chloride gave the $B(5)-C(0)CH_2C(0)OMe$ derivative (6) in moderately low yield, but a reaction with trimethylacetyl chloride over an extended period at room temperature afforded only a very small amount of the B(5)-trimethylacetyl product 7, which was characterized by ¹H NMR and mass spectroscopy. When this reaction was conducted over a much shorter time, a different set of products was isolated, consisting of the B(4/6)-CHOHCMe₃ (8) and B(5)-(CH₂)₄OC(O)- CMe_3 (9) derivatives, both isolated in low yield, and the $B(5)-(CH_2)_4OH$ species (10) which was the main product. The last two compounds are assumed to have formed via addition of THF to the metallacarborane substrate, followed by opening of the OC_4H_8 ring to give 10 and subsequent acetylation to form 9. In both reactions, large amounts of neutral 1 were recovered.

Synthesis of Chloro, Bromo, and Iodo Derivatives. In the course of this investigation a variety of reagents and conditions were employed in attempts to prepare Bhalogenated derivatives of 1. Here we report only the synthetically most important findings.

Chlorination of 1⁻ was effected via treatment with methanesulfonyl chloride, which produced the B(5)-Cl species 11 almost quantitatively, accompanied by a trace of the B(4/6,5)-dichloro compound 12; in contrast to many other reactions of 1⁻ in THF, reprotonation of the anion to form 1 was almost nil. Stepwise treatment of 11 with additional equivalents of methanesulfonyl chloride gave 12 and the B(4,5,6)-trichloro derivative 13 in high and moderate yield, respectively. In these reactions and in the corresponding B(5)-bromination and -iodination, described below, the presumed mechanism is analogous to that of the alkyl additions,⁸ i.e., electrophilic attack at the B-B edge of 1^- with the halogen ultimately binding to B(5), the most negative boron position.

An alternative, and synthetically complementary, approach to halogenation employing N-halosuccinimides generated exclusively B(4/6)-halo derivatives via an assumed free radical mechanism, in which substitution occurs at the relatively electropositive B(4) and B(6) positions adjacent to carbon. Treatment of neutral 1 with N-

⁽¹⁶⁾ Brattsev, V. A.; Knyazev, S. P.; Stanko, V. I. Zh. Obshch. Khim.

^{1976, 46, 1419.} (17) Zakharkin, L. I.; L'vov, A. I. Zh. Obshch. Khim. 1967, 37, 1217. (18) Dewar, M. J. S.; McKee, M. L. Inorg. Chem. 1980, 19, 2662.

Table V. Infrared Absorptions (cm⁻¹, Neat Films on KBr Plates)^{a,b}

compd	absorptions
2	2960 (vs), 2927 (s), 2910 (sh), 2867 (s), 2514 (s), 1869 (m br), 1750 (vs), 1448 (m), 1379 (vs), 1368 (vs), 1363 (sh), 1237 (vs), 1201
3	(v_{s}) , $v_{1020}(s)$, $v_{103}(s)$, $v_{103}(s)$, $v_{13}(s)$, v
	(s), 1340 (m), 1199 (s), 1029 (s), 944 (m), 846 (m), 773 (s)
4	3295 (m), $2960 (vs)$, $2924 (vs)$, $2869 (s)$, $2522 (s)$, $1856 (m)$, $1518 (w)$, $1478 (m)$, $1468 (m)$, $1461 (m)$, $1450 (s)$, $1380 (s)$, $1376 (s)$, $1042 (m)$, $1029 (s)$, $2929 (m)$, $774 (m)$, $740 (m)$, $740 (m)$, $1020 (m)$, 1020
5	2965 (s), 2928 (s), 2871 (m), 2554 (m), 2518 (m), 1868 (m), 1673 (s), 1481 (m), 1469 (m), 1453 (m), 1384 (m), 1282 (m), 1189 (vs),
	1131 (vs), 1083 (s), 1030 (m), 899 (m), 704 (s), 636 (w)
7	3611 (w), 2959 (s), 2922 (vs), 2919 (vs), 2864 (m), 2849 (s), 2499 (m), 1477 (m), 1466 (m), 1463 (m), 1453 (m), 1389 (w), 1377 (m), 1929 (m), 1919 (m), 1919 (m), 1929 (m), 1929 (m), 1919 (m), 1929
8	1362 (m), 1213 (W), 1165 (W), 1027 (W), 996 (W), 982 (W), 912 (W), 867 (W)3251 (hr.w.) 3167 (hr.w.) 2961 (vs) 2927 (vs) 2868 (s) 2538 (s) 2509 (s) 1866 (m) 1729 (m) 1637 (m) 1632 (s) 1621 (m) 1614
Ū	(m), 1474 (s), 1470 (s), 1461 (m), 1453 (m), 1388 (w), 1381 (m), 1360 (m), 1157 (w), 1030 (w), 905 (w), 833 (w)
9	2960 (vs), 2927 (vs), 2868 (s), 2491 (s), 1918 (w), 1869 (w), 1729 (vs), 1506 (m), 1480 (s), 1464 (m), 1457 (s), 1452 (m), 1376 (s),
10	1366 (m), 1284 (s), 1155 (vs), 1052 (w), 1029 (m), 895 (m), 775 (m) 2907 (by m), 2000 (vg), 2006 (vg), 2867 (c), 2401 (c), 1029 (m), 1712 (m), 1504 (m), 1480 (m), 1466 (m), 1460 (m), 1490 (m), 1076
10	(m), 1250 (vs), 2520 (vs), 2520 (vs), 2520 (vs), 2451 (s), 1552 (w), 1115 (w), 1504 (w), 1450 (m), 1450 (
11	2965 (vs), 2929 (vs), 2868 (s), 2526 (vs), 2332 (s), 1888 (w), 1469 (s), 1451 (s), 1377 (vs)
13	2873 (vs), 2935 (s), 2872 (m), 1469 (m), 1456 (s), 1448 (s), 1437 (m), 1405 (m), 1377 (vs), 1364 (s), 1333 (m), 1105 (m), 1012 (vs),
14	913 (s), 810 (s), 777 (s), 712 (m), 667 (m), 564 (m), 490 (m) 2962 (va) 2927 (s) 2868 (m) 2544 (m) 2507 (m) 2361 (m) 2338 (w) 1384 (m) 1365 (m)
15	2970 (vs), 2930 (m), 2857 (w), 2554 (m), 1480 (m), 1451 (s), 1379 (m), 1110 (m), 1080 (m), 1061 (m), 1011 (m), 950 (m)
16	2959 (vs), 2927 (vs), 2909 (vs), 2866 (s), 2488 (s), 1916 (br w), 1523 (w), 1467 (s), 1449 (s), 1379 (s), 1305 (m), 1161 (w), 1085 (m),
17	1031 (m), 888 (m), 813 (m), 775 (m) 2061 (m), 2062 (m), 2962 (m), 2962 (m), 1466 (m), 1426 (m), 1290 (m), 1262 (m), 1207 (m), 1006 (m), 1008 (m), 1015 (m),
17	2501 (vs), 2525 (vs), 2605 (si), 2652 (s), 1406 (s), 1426 (s), 1426 (m), 1560 (m), 1562 (m), 1507 (m), 1036 (w), 1026 (m), 1015 (m), 950 (w), 803 (m), 762 (m)
18	2928 (s), 2919 (s), 2911 (s), 2525 (s), 2508 (s), 1869 (m), 1559 (m), 1472 (s), 1465 (m), 1456 (s), 1448 (s), 1375 (vs), 1050 (w), 1027
	(s), 965 (m), 821 (m), 802 (vs), 767 (vs)
19	2965 (vs), 2928 (vs), 2868 (s), 2855 (s), 2529 (s), 1874 (w), 1536 (w), 1479 (m), 1466 (m), 1458 (m), 1450 (s), 1430 (s), 1378 (vs), 1184 (m), 1059 (m), 1059 (m), 090 (m), 071 (m), 024 (m), 955 (m), 916 (m), 924 (m), 755 (m), 664 (m), 1450 (s), 1378 (vs), 1184 (m), 1059 (m), 1059 (m), 1059 (m), 071 (m), 024 (m), 955 (m), 916
20	2965 (w), 2927 (s), 2869 (m), 2545 (m), 2497 (m), 2342 (w), 1490 (s), 1450 (s), 1381 (s), 1361 (s)
21	2961 (vs), 2925 (vs), 2868 (s), 2514 (m), 1844 (w), 1450 (m), 1429 (m), 1382 (s), 1376 (s), 1041 (m), 801 (m), 790 (m)
22	3260 (s), 3233 (s), 2961 (vs), 2945 (m), 2925 (s), 2910 (s), 1558 (m), 1465 (vs), 1381 (s), 1025 (s), 951 (s), 800 (m), 782 (vs), 762 (vs), 742 (m), 602 (m)
23	2960 (s), 2927 (vs), 2867 (s), 2546 (m), 2493 (m), 1450 (s), 1431 (m), 1370 (s), 1355 (s)
24	2959 (s), 2923 (s), 2851 (s), 2561 (m), 1456 (m), 1425 (m), 1420 (m), 1363 (m), 925 (m)
25	2964 (vs), 2928 (s), 2910 (s), 2866 (s), 2646 (s), 2521 (vs), 1814 (m), 1566 (m), 1472 (vs), 1465 (s), 1456 (s), 1378 (vs), 1074 (w), 1097 (s), 949 (m), 879 (m), 774 (m), 734 (m), 1814 (m), 1566 (m), 1472 (vs), 1465 (s), 1456 (s), 1378 (vs), 1074 (w), 1097 (s), 949 (m), 979 (m), 774 (m), 724 (m), 1814 (m), 1566 (m), 1472 (vs), 1465 (s), 1456 (s), 1378 (vs), 1074 (w), 1097 (s), 1097
26	2962 (vs), 2925 (vs), 2855 (s), 2549 (m), 2513 (m), 1635 (m), 1437 (s), 1378 (m), 1028 (w), 919 (w)

^a Microcrystalline films obtained by evaporation of solutions. ^bLegend: vs = very strong, s = strong, m = medium, w = weak, sh = shoulder, br = broad. ^cCharacteristic of acetate.

Crystal Data for (C ₅ Me ₅)Co(2,3-Et ₂ C ₂ B ₃ H ₄ -5-C(=CH ₂)OC(O)Me) (2)					
space group	$P2_1/n$				
a, Å	8.368 (2)				
b, Å	18.757 (5)				
c, Å	14.234 (4)				
β, deg	97.25 (2)				
V, Å ³	2216				
Z	4				
μ , cm ⁻¹ (Mo K α)	7.8				
transm factors	0.88-1.22				
λ, Å	0.7107				
$D(calcd), g cm^{-3}$	1.19				
cryst size, mm	$0.38 \times 0.32 \times 0.27$				
2θ range, deg	2-55				
no. of refins measd	5113				
no. of refins obsd $(I > 3.00\sigma(I))$	3856				
R	0.037				
R	0.053				
largest peak in final diff map, e/Å ³	0.33				

Table VI. Experimental X-ray Diffraction Parameters and

chlorosuccinimide in THF gave the B(4/6)-Cl derivative 14 in 95% isolated yield; subsequent reaction of 14 with the same reagent afforded the B(4,6)-dichloro species 15, again in 95% yield. No evidence of B(5)-substitution was seen in either procedure.

Alkylhalo-B,B'-disubstituted and B,B',B"-trisubstituted complexes of 1 were prepared from the B-methyl derivative⁸ (C_5Me_5)Co(Et₂ $C_2B_3H_4$ -5-Me) via bridge-deprotonation to form the anion 1⁻ followed by treatment with methanesulfonyl chloride to give the 5-methyl-4/6-chloro species 16. Repetition of this sequence with the latter compound gave the 5-methyl-4,6-dichloro derivative 17.

Electrophilic bromination of 1^- was most efficiently accomplished with bromoacetonitrile and bromonitromethane, which produced the B(5)-Br complex 18 in 56 and 75% isolated yields, respectively. The former reaction also gave a trace of the B(4/6,5)-dibromo species 19, as well as a 19% yield of the B(5)-CH₂CN derivative (see preceding paper¹). The treatment of neutral 1 with Nbromosuccinimide, as expected, gave the B(4/6)-Br derivative 20, and further bromination of the latter species gave the B(4,6)-Br₂ complex 21, both reactions proceeding essentially quantitatively.

The analogous iodo derivatives were synthesized similarly. The B(5)-iodo complex 22 was prepared in good yield by reaction of 1^- with iodotrifluoromethane, while the reaction of 1 with N-iodosuccinimide generated the B(4/6)-iodo product 23; iodination of 23 with the same reagent gave the B(4,6)-diiodo species 24. Again, both procedures gave quantitative yields.

Synthesis of Cyano and Nitro Derivatives. The reaction of 1⁻ with *p*-toluenesulfonyl cyanide afforded, on workup, both the B(5)–CN and B(4/6)–CN complexes (25 and 26, respectively) in a total yield of about 20% with considerable recovery of neutral 1. The preparation of a nitro-substituted derivative was less successful, a treatment of 1⁻ with NO₂+BF₄⁻ affording the B(4/6)–NO₂ species 27 in very low yield, identified by proton NMR and mass spectra.

Attempted Syntheses of Fluoro, Vinyl, Benzoyl, and Malonyl Derivatives. Reactions of 1⁻ with excess

Table VII. Positional and Thermal Parameters for 2

Positional	Parameters
POSILIODE	I Farameters

atom	x	У	z	atom	x	У	z
Co	0.34956 (3)	0.15858 (1)	0.82704 (2)	H(2EC)	0.3833	0.1397	0.4964
O (1)	0.5019 (2)	0.3590 (1)	0.8307 (1)	H(3MA)	0.1250	0.0276	0.6917
O(2)	0.4667 (3)	0.3889 (1)	0.6774 (1)	H(3MB)	0.0107	0.0621	0.7569
$\mathbf{C}(2)$	0.3331 (3)	0.1387(1)	0.6834 (1)	H(3EA)	-0.1170	0.0359	0.6026
C(2M)	0.4033 (4)	0.0781 (1)	0.6314 (2)	H(3EB)	-0.1020	0.1170	0.6226
C(2E)	0.3811(6)	0.0926(2)	0.5260(2)	H(SEC)	0.0052	0.0806	0.5574
C(3M)	0.0683 (3)	0.0719(1)	0.6998(2)	H(4)	0.0341	0.2121	0.8079
C(3)	0.1784(3)	0.1367(1)	0.7130(2)	H(6)	0.5619	0 2163	0.7069
C(3E)	-0.0547(5)	0.0788 (2)	0.6135(3)	H(6RA)	0 1936	0 2115	1 0141
C(9)	0.3396 (3)	0.3337(1)	0.8261(2)	H(6RB)	0.3219	0 2151	1.0960
C(10)	0.2395(4)	0.3718(1)	0.8700(2)	H(6RC)	0.3578	0.2610	1 0229
$C(1R_1)$	0.3592 (4)	0.01664(1)	0.9717(2)	H(7RA)	0.7190	0.2130	1 0222
C(11)	0.5525(4)	0.3816(1)	0.7498(2)	H(7RB)	0.6761	0 2469	0.9176
C(12)	0.3020(4) 0.7313(4)	0.3943 (2)	0.7648 (3)	H(7RC)	0.5830	0.2782	0.9763
$C(1\mathbf{R}_2)$	0.7010(4) 0.5157(3)	0.0040(2) 0.1725(1)	0.9448(2)	H(8RA)	0.7548	0.0537	0.8950
C(1R3)	0.5496 (3)	0.1089 (1)	0.8973 (2)	H(SRR)	0.7710	0 1 3 7 1	0.8533
C(1R4)	0.0400 (0)	0.1000(1)	0.8953(2)	H(SRC)	0.6701	0.1571	0.0000
C(1R5)	0.9063 (3)	0.0000 (1)	0.0000(2)	H(ORA)	0.0701	-0.0428	0.7510
C(1R6)	0.2303 (5)	0.0332 (1)	1 0906 (9)	H(ORR)	0.4400	-0.0428	0.5004
C(1R7)	0.2100 (0)	0.2202(2)	0.0714(3)	H(ORC)	0.4001	-0.0152	0.7507
C(1R)	0.0047 (4)	0.2017 (2)	0.8586 (3)	H(10RA)	0.2337	0.0204	1 0197
C(1R0)	0.7001 (3)	-0.0115(1)	0.0000 (0)	H(10kh)	0.1401	0.0017	0.8065
C(1R3)	0.4027 (3)	-0.0110(1)	0.0600 (2)	$\mathbf{H}(10\mathbf{R})$	0.2000	0.9406	0.0300
$\mathbf{P}(\mathbf{A})$	0.1370 (3)	0.0000(2)	0.3003(2) 0.7709(9)	H(10D)	0.1213	0.0450	0.0719
D(4) D(5)	0.1340 (3)	0.2011(1)	0.7750(2)		0.0343	0.0273	0.9132
D(0) D(6)	0.3008 (3)	0.2054(1)	0.7105(2) 0.7197(9)	H(10RC)	0.0005	0.0900	0.5403
$\mathbf{H}(0)$	0.4327 (3)	0.2001 (1)	0.7127 (2)	H(12A) H(19B)	0.7000	0.3350	0.7120
H(2MA)	0.3022	0.0300	0.0400	H(12D) H(19C)	0.7510	0.4002	0.0120
H(2MD) H(9FA)	0.0109	0.0720	0.0027	H(120) H(45)	0.1940	0.3013	0.0100
H(2EA)	0.4503	0.1040	0.0400	H(40) H(56)	0.1000	0.2010	0.7310
П(260)	0.4200	0.0004	0.4000	H(00)	0.3511	0.2042	0.0921
			Thermal Param	eters			
atom	<i>U</i> 11	U22	U33	U12	U13		U23
<u> </u>	0.0329 (1)	0.0346 (1)	0.0347 (1)	-0.0007 (1)	0.0039 (1)	0	0042 (1)
0(1)	0.0020(1)	0.0040(1)	0.053(1)	-0.0192(8)	0.0133 (8)	0	0001 (7)
O(2)	0.010(2)	0.078(1)	0.068(1)	0.008(1)	0.0260(0)	ő	028 (1)
C(2)	0.055(1)	0.070(1)	0.038(1)	0.000(1)	0.024 (1)	0	0012 (8)
C(2M)	0.000 (2)	0.042(1)	0.057(1)	0.001(1)	0.0000 (0)		004(1)
C(2F)	0.000 (2)	0.098 (3)	0.059 (2)	0.007(1)	0.019 (1)	-0	009 (2)
C(3M)	0.059(1)	0.053(1)	0.061(1)	-0.015(1)	-0.009(1)	0	005 (1)
C(3)	0.047(1)	0.042(1)	0.041(1)	-0.0023 (9)	-0.0027 (9)	0	.0050 (9)
C(3E)	0 108 (2)	0.095(2)	0.094(2)	-0.043 (2)	-0.046 (2)	0	016 (2)
C(9)	0.066 (1)	0.038(1)	0.043(1)	0.020(2)	0.013(1)	0	005 (1)
C(10)	0.000(1)	0.046(1)	0.065(2)	0.015 (1)	0.025(1)	ں 	002 (1)
C(1R1)	0.081 (2)	0.049 (1)	0.037(1)	0.001 (1)	0.004(1)	-0 0	005 (1)
C(11)	0.001 (2)	0.040(1)	0.065 (2)		0.004(1)	0	001 (1)
C(12)	0.006 (2)	0.114(3)	0.089 (2)	-0.046(2)	0.024(1)	ں 	007 (2)
$C(1P_{9})$	0.067 (2)	0.055(1)	0.050 (2)		-0.016(1)		015(1)
C(1R3)	0.036 (1)	0.060 (1)	0.063 (1)	-0.002 (1)	-0.005(1)	0	0.010(1)
C(1RA)	0.040 (1)	0.001(1)	0.046 (1)	0.0009 (9)	-0.0016 (8)	0	010 (1)
C(1R5)	0.048 (1)	0.052(1)	0.040(1)	-0.003 (1)	0.0059 (9)	0	013 (1)
C(1R6)	0.164 (4)	0.071(2)	0.050(1)	0.006 (2)	0.031 (2)		.008 (1)
C(1R7)	0.120(3)	0.078 (2)	0.087(2)	-0.052(2)	-0.049 (2)	-0	023 (2)
C(1R8)	0.035 (1)	0 103 (2)	0.149 (3)	0.002(2)	0.019 (2)	0	040(2)
C(1R9)	0.075 (2)	0.041(1)	0.071(2)	0.009 (1)	0.003(1)	0	.011 (1)
C(1R10)	0.055 (1)	0.097 (2)	0.070(2)	-0.007 (1)	0.020(1)	۰ ۱	.032 (2)
B(4)	0.039(1)	0.048(1)	0.051(1)	0.004(1)	0.003(1)	ň	.007 (1)
B(5)	0.047(1)	0.041(1)	0.041(1)	0.002(1)	0.010 (1)	ň	.004 (1)
B(6)	0.050 (1)	0.043 (1)	0.042 (1)	-0.001 (1)	0.014(1)	ŏ	.001 (1)

methanesulfonyl fluoride or with 1 equiv of benzoyl chloride or malonyl chloride gave no isolable products; in each case neutral 1 was recovered in ca. 50% yield. Treatment of the metallacarborane anion with vinyl bromide gave only a trace of a product which was tentatively identified from its proton NMR and mass spectra as a B—CH—CH₂ derivative (28), with substantial recovery of 1.

Summary

As was noted in the Introduction, this work was designed with two purposes in mind: to explore the chemical reactivity of 1^- toward electrophilic reagents and, at a practical level, to develop efficient routes to derivatives containing electron-withdrawing groups for use in the synthesis of multidecker complexes. In general, the pattern observed in reactions with organomethyl halides,^{1,8} in which monosubstitution takes place selectively at B(5), was repeated here; a notable exception was trifluoroacetyl addition, which occurred only at B(4/6). As discussed above, these findings can be at least qualitatively explained on the basis of charge distribution in the C₂B₃ carborane ring and the relative electrophilicity of the attacking reagents. The contrasting reactions of N-halosuccinimides with neutral 1, which are assumed to proceed via a free radical mechanism, afford exclusively B(4/6)-halogenated

Table VIII. Bond Distances (Å) in 2

Co-C(2)	2.066 (2)	C(3M)-C(3E)	1.505 (4)
Co-C(3)	2.066 (2)	C(3)-B(4)	1.529 (4)
Co-C(1R1)	2.056 (2)	C(9)-C(10)	1.318 (4)
Co-C(1R2)	2.055 (2)	C(9)-B(5)	1.573 (3)
Co-C(1R3)	2.061 (2)	C(1R1)-C(1R2)	1.415 (4)
Co-C(1R4)	2.076 (2)	C(1R1)-C(1R5)	1.410 (3)
Co-C(1R5)	2.074 (2)	C(1R1) - C(1R6)	1.515 (4)
Co-B(4)	2.043 (2)	C(11)-C(12)	1.504 (4)
Co-B(5)	2.042 (3)	C(1R2)-C(1R3)	1.417 (4)
Co-B(6)	2.044 (2)	C(1R2)-C(1R7)	1.507 (4)
O(1)-C(9)	1.432 (3)	C(1R3)-C(1R4)	1.426 (3)
O(1)-C(11)	1.345 (3)	C(1R3)-C(1R8)	1.514 (4)
O(2)-C(11)	1.187 (4)	C(1R4)-C(1R5)	1.424 (3)
C(2) - C(2M)	1.516 (3)	C(1R4)-C(1R9)	1.495 (3)
C(2) - C(3)	1.412 (3)	C(1R5)-C(1R10)	1.502 (3)
C(2) - B(6)	1.527 (3)	B(4) - B(5)	1.807 (4)
C(2M)-C(2E)	1.513 (4)	B(5) - B(6)	1.787 (4)
C(3M) - C(3)	1.522 (3)	B(4) - H(4)	1.07
		B(4) - H(45)	1.31
		B(5)-H(45)	1.27
		B(5)-H(56)	1.30
		B(6)-H(6)	1.12
		B(6)-H(56)	1.32

Table IX. Selected Bond Angles (deg) in 2

C(2M)-C(2)-C(3)	123.5 (2)	C(1R2)-C(1R1)-C(1R5)	108.3 (2)
C(2M) - C(2) - B(6)	121.0 (2)	C(1R2)-C(1R1)-C(1R6)	125.8 (3)
C(3)-C(2)-B(6)	115.4 (2)	C(1R5)-C(1R1)-C(1R6)	125.7 (3)
C(2)-C(3)-C(3M)	123.3 (2)	C(1R1)-C(1R2)-C(1R3)	108.0 (2)
C(2)-C(3)-B(4)	115.6 (2)	C(1R1)-C(1R2)-C(1R7)	126.6 (3)
C(3M)-C(3)-B(4)	120.8 (2)	C(1R3)-C(1R2)-C(1R7)	125.0 (3)
C(2)-C(2M)-C(2E)	110.0 (2)	C(1R2)-C(1R3)-C(1R4)	108.1 (2)
C(3)-C(3M)-C(3E)	111.9 (2)	C(1R2)-C(1R3)-C(1R8)	126.5 (3)
C(3)-B(4)-B(5)	104.8 (2)	C(1R4)-C(1R3)-C(1R8)	125.4 (3)
B(4)-B(5)-B(6)	98.7 (2)	C(1R3)-C(1R4)-C(1R5)	107.3 (2)
C(9)-B(5)-B(4)	130.5 (2)	C(1R3)C(1R4)C(1R9)	125.6 (2)
C(9)-B(5)-B(6)	130.7 (2)	C(1R5)-C(1R4)-C(1R9)	126.9 (2)
C(2)-B(6)-B(5)	105.5 (2)	C(1R1)-C(1R5)-C(1R4)	108.3 (2)
O(1)-C(9)-C(10)	117.0 (2)	C(1R1)-C(1R5)-C(1R10)	126.5 (2)
O(1)-C(9)-B(5)	115.1 (2)	C(1R4)-C(1R5)-C(1R10)	125.1 (2)
C(10)-C(9)-B(5)	127.7 (2)	B(4)-H(45)-B(5)	89.1
C(9)-O(1)-C(11)	117.7 (2)	B(5)-H(56)-B(6)	86.4
O(1)-C(11)-O(2)	124.0 (3)		
O(1)-C(11)-C(12)	110.1 (3)		
O(2)-C(11)-C(12)	125.9 (3)		

products. In combination, these approaches allow considerable synthetic versatility, as they can be employed sequentially to generate mixed-halogen and di- and trisubstituted derivatives if desired.

In some cases, notably the syntheses of the vinyl and nitro derivatives, the preparative routes chosen gave unsatisfactory results. Fortunately, for synthetic purposes, however, the most highly sought products—the mono- and dihalo and acetyl species—were obtained in good to excellent yields. These compounds are amenable to transition-metal complexation leading to formation of multidecker sandwich complexes.^{7,11} As a general observation, the extensive derivatization described in this and the accompanying paper, together with prior work, demonstrates clearly the stability of transition-metal metallacarboranes such as 1 under a wide variety of experimental conditions and underline their value as synthetic building block reagents.

Experimental Section

Except where otherwise indicated, materials, instrumentation, analyses, and general procedures were as described in earlier publications in this series.¹ All new products gave unit-resolution mass spectra in good agreement with calculated patterns based on natural isotope distributions, supported by high-resolution mass measurements or elemental analyses. Visible–UV spectra were recorded in CH_2Cl_2 solution.

Reaction of 1^- with Acetyl Chloride. A 0.52-g (1.7-mmol) sample of 1 was deprotonated by treatment with *n*-butyllithium under vacuum in THF at -76 °C as described elsewhere.¹ To this

solution was added, via syringe, 2.1 mmol of acetyl chloride at -76 °C, and the resulting dark orange-brown solution was stirred for 3 days at room temperature, after which the greenish yellow solution was opened to air, the solvent was removed by evaporation, the dark brown solid residue was taken up in CH₂Cl₂, and the resulting solution was filtered through 2 cm of silica. The filtrate was evaporated, and the dark brown residue was chromatographed on a silica column in 1:1 hexane/CH₂Cl₂, giving two yellow bands of which the first was 1 (0.290 g, 54%). The second band was yellow-brown $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(=CH_2)-$ OC(0)Me) (2) (0.160 g, 0.400 mmol, 24%). Further elution with the same solvent afforded a yellow band which was collected as a few milligrams of yellow oil and characterized as (C5Me5)Co-(2,3-Et₂C₂B₃H₄-5-OC₄H₈) (4). Exact mass for 2: calcd for ${}^{69}Co^{16}O_2{}^{12}C_{20}{}^{11}B_3{}^{1}H_{34}{}^{+}$, 398.2170; found, 398.2156. Visible–UV absorptions (nm; percent absorbance given in parentheses): 370 (12%), 298 (95%), 244 (81%). Anal. Čalcd for CoOC₂₀B₃H₃₇ (4): C, 62.41; H, 9.69. Found: C, 62.34; H, 9.63. Visible-UV absorptions: 286 (81%), 234 (32%).

Conversion of 2 to $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(O)Me)$ (3). A 0.275-g (0.574-mmol) sample of 2 was dissolved in 50 mL of methanol, 42 mg of NaOH was added, and the solution was heated at 50 °C for 1 h, which produced a color change to pale green. Following addition of excess NH₄Cl the solution was evaporated, the residue was taken up in CH₂Cl₂, the solution was filtered, and the filtrate was evaporated. The residue was chromatographed on a silica column in 50:50 hexane/CH₂Cl₂, producing several light yellow bands which were 2 and minor cleavage products, and a major band which was dark yellow 3, obtained on evaporation of the solution as a crystalline solid (0.204 g, 0.476 mmol, 83%). Exact mass: calcd for ${}^{59}Co^{16}O^{12}C_{18}{}^{11}B_{3}{}^{11}H_{32}{}^{+}$, 356.2064; found, 356.2057. Visible–UV absorptions: 334 (14%), 288 (95%), 236 (49%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-C(O)CF_3)$ (5). Compound 1 (0.301 g, 0.96 mmol) was placed in a two-neck round-bottom flask fitted with a septum. The flask was evacuated on a vacuum line, 50 mL of dry THF was added by distillation, and the reactor was cooled to -78 °C, at which point 0.56 mL of tert-butyllithium (1.7 M in hexane, 0.96 mmol) was added via syringe. The solution slowly turned orange as it was warmed to room temperature and stirred for 30 min. The flask was again cooled to -78 °C and 1.04 mmol of trifluoroacetyl chloride was condensed into the mixture, causing an immediate color change to red. After stirring at -78 °C for 10 min, the cold bath was removed and stirring was continued for 1.5 h, during which the solution turned brown and then green. The mixture was opened to the air, solvent was removed by rotary evaporation, the residue was taken up in hexane, and the solution was filtered through 2 cm of silica. The column was then washed with dichloromethane. The hexane wash was taken to dryness and column-chromatographed on silica in hexane, affording one yellow band which was recovered 1 (0.125 g, 42%). The CH₂Cl₂ wash was taken to dryness and chromatographed on a silica column using 2:1 hexane/CH₂Cl₂, giving one major orange band which was collected as yellow-orange crystalline 5 (0.108 g, 0.26 mmol, 27%). Anal. Calcd for $CoF_3OC_{18}B_3H_{28}$: C, 52.76; H, 7.13; F, 13.91. Found: C, 54.27; H, 7.55; F, 13.13. Visible–UV absorptions: 400 (11%), 348 (24%), 290 (92%), 262 (79%), 240 (51%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-C(O)CH_2C(O)-OMe)$ (6). According to the above procedure, 0.34 mL (3.17 mmol) of methylmalonyl chloride was added to 1⁻ in THF at -78 °C. The solution turned red and became darker as it was stirred for 30 min. The flask was placed in a salt-ice water bath, causing a rapid color change to brown, and was stirred for 2 h. The bath was removed and the solution stirred overnight, during which it became olive green. Workup as above gave 1 (0.287 g, 54%) in the hexane wash, and the CH₂Cl₂ solution with thin-layer-chromatographed to give 6 (0.055 g, 0.14 mmol, 8%). Anal. Calcd for $CoO_3C_{20}B_3H_{34}$: C, 58.04; H, 8.28. Found: C, 58.16; H, 8.45.

Reactions of 1⁻ with Trimethylacetyl Chloride. (a) Me₃CC(O)Cl (0.16 mL, 1.30 mmol) was added to 0.257 g (0.82 mmol) of 1⁻ in THF at -78 °C, and the solution was raised to 0 °C over a 4-h period. After overnight stirring at room temperature, the brown solution was worked up as above and the residue of the CH₂Cl₂ wash was chromatographed on a TLC plate in 1:1 hexane/CH₂Cl₂, affording a yellow band which was further purified by TLC in hexane to give 5 mg (1%) of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-CHOHCMe_3)$ (7), identified from its proton NMR and mass spectra. Visible–UV absorptions for 7: 334 (16%), 290 (95%), 286 (94%), 240 (50%).

(b) Me₃CC(O)Cl (0.24 mL, 1.95 mmol) was added to 0.317 g (1.00 mmol) of 1⁻ in THF at -78 °C. After 15 min the -78 °C bath was removed and the solution was stirred for 4 h at room temperature, at which point it was olive green. The solvent was removed, the residue was washed with hexane followed by CH₂Cl₂, and the silica was stripped with MeOH. The hexane wash contained 1 (60 mg, 19%). The CH_2Cl_2 wash was chromatographed on a TLC plate in 1:1 hexane/CH₂Cl₂, giving 6 mg (2%) of $(C_5Me_5)C_0(2,3-Et_2C_2B_3H_4-4/6-CHOHCMe_3)$ (8) and 10 mg (2%) of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-(CH_2)_4OC(O)CMe_3)$ (9). The methanol wash was column-chromatographed in CH₂Cl₂ to give one band, consisting of 60 mg (16%) of (C₅Me₅)Co(2,3- $Et_2C_2B_3H_4$ -5-(CH₂)₄OH) (10). Anal. Calcd for CoOC₂₁B₃H₄₀ (8): C, 63.07; H, 10.08. Found: C, 66.19; H, 10.64. Visible-UV absorptions for 8: 340 (14%), 288 (88%), 248 (57%), 238 (55%). Visible–UV absorptions for 9: 332 (17%), 288 (93%), 240 (52%). Anal. Calcd for $CoOC_{20}B_3H_{38}$ (10): C, 62.25; H, 9.93. Found: C, 63.08; H, 10.22. Visible–UV absorptions for 10: 332 (15%), 288 (91%), 238 (57%).

Synthesis of $(C_8Me_8)Co(2,3-Et_2C_2B_3H_4-5-Cl)$ (11). Methanesulfonyl chloride (0.5 mL, 6.46 mmol) was added to 1⁻ (1.058 g, 3.37 mmol) at 0 °C, producing an immediate color change to brown. The bath was removed and the solution stirred for 2 h, during which it turned yellow-green. The solution was stirred an additional 2 h and rotary-evaporated, and the residue was washed with CH_2Cl_2 and column-chromatographed in hexane. Three bands were obtained, consisting of 1 (16 mg, 1.5%), 11 (1.067 g, 3.06 mmol, 91%), and a trace of the dichloro derivative 12. Anal. Calcd for $CoClC_{16}B_3H_{29}$: C, 55.19; H, 8.39. Found: C, 56.19; H, 8.51. Visible–UV absorptions: 380 (26%), 308 (95%), 254 (83%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4/6,5-Cl_2)$ (12). Methanesulfonyl chloride (0.10 mL, 1.29 mmol) was added to 11^- (0.417 g, 1.14 mmol) at -78 °C, producing an immediate color change to red. The bath was removed and the solution stirred for 30 min, which produced a pale green color. The solution was stirred an additional 3.5 h and rotary-evaporated, and the residue was washed with CH_2Cl_2 and column-chromatographed in hexane. A large yellow band was obtained, the first part of which (9 mg) was a mixture of 11 and 12 and the remainder of 12 (0.394 g, 1.03 mmol, 90%). Anal. Calcd for $CoCl_2C_{16}B_3H_{28}$: C, 50.22; H, 7.38. Found: C, 51.27; H, 7.48.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_2-4,5,6-Cl_3)$ (13). Methanesulfonyl chloride (0.08 mL, 1.04 mmol) was added to 12^- (0.421 g, 1.10 mmol) at -78 °C, producing an immediate color change to red. The bath was removed and the solution stirred for 2 h, during which it turned green. The solution was stirred for 3 days (producing a lighter green color) and rotary-evaporated, and the residue was washed with CH_2Cl_2 and column-chromatographed in hexane. The first band was 12 (60 mg, 14%), and the second was 13 (0.094 g, 0.23 mmol, 21%). Compound 13 decomposes slowly on silica. Anal. Calcd for $CoCl_3C_{16}B_3H_{27}$: C, 46.07; H, 6.52. Found: C, 47.14; H, 6.72. Visible–UV absorptions: 292 (85%), 248 (31%), 236 (35%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-Cl)$ (14) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-Cl_2)$ (15). A 100-mg (0.318-mmol) sample of 1 was dissolved in 50 mL of THF, 42 mg (0.318 mmol) of N-chlorosuccinimide was added, and the solution was stirred in vacuo and monitored periodically by ¹¹B NMR spectroscopy. There was no immediate color change, but the initially yellow solution slowly turned green and the change was complete after 4 h. Removal of solvent via rotary evaporation, followed by solution of the residue in hexane and elution on a silica column, afforded 106 mg (0.31 mmol, 95%) of orange, crystalline, air-stable 14.

A 100-mg sample of 14 was dissolved in THF, 1.5 equiv of N-chlorosuccinimide was added with no immediate color change, and the solution was stirred with periodic monitoring by ¹¹B NMR spectroscopy. Over a 4-h period the solution turned aqua blue. The reaction reached completion in 4 h, after which the solvent was removed, the residue was extracted in hexane, and the solution was filtered through 3 cm of silica gel. Evaporation of the solvent gave 109 mg (0.29 mmol, 99%) of pure orange crystalline 15. In an alternative procedure, 15 was also prepared directly from 1 via reaction of a 100-mg sample with 2.5 equiv of N-chlorosuccinimide, with workup as above to give an essentially quantitative yield of crystalline product. Anal. Calcd for CoClC₁₆B₃H₂₉ (14): C, 55.19; H, 8.39. Found: C, 55.44; H, 8.31.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4/6-Cl-5-Me)$ (16). Methanesulfonyl chloride (0.10 mL, 1.29 mmol) was added to 0.185 g (0.56 mmol) of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-5-Me)^-$ (see ref 8) at -78 °C, producing an immediate color change to red. The solution was stirred at 0 °C for 1 h and then at room temperature for 1 h, after which it was taken to dryness and the residue washed through silica with CH_2Cl_2 and column-chromatographed in hexane. The first band obtained was cobaltacarborane starting material (20 mg, 11%) and the second was 16 (0.164 g, 0.45 mmol, 81%). Anal. Calcd for $CoClC_{17}B_3H_{31}$: C, 56.37; H, 8.63. Found: C, 56.91; H, 8.81. Visible–UV absorptions: 332 (18%), 290 (92%), 242 (62%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_2-4,6-Cl_2-5-Me)$ (17). Methanesulfonyl chloride (0.07 mL, 0.90 mmol) was added to 16⁻ (0.242 g, 0.66 mmol) at -78 °C, producing an immediate color change to red. The solution was stirred at room temperature for 4 days, during which it turned black. The solution was taken to dryness and the residue washed through silica with CH₂Cl₂ and column-chromatographed in 1:1 hexane/CH₂Cl₂ to give 17 (0.148 g, 0.37 mmol, 56%). Anal. Calcd for CoCl₂C₁₇B₃H₃₀: C, 51.47; H, 7.62. Found: C, 52.05; H, 7.82. Visible–UV absorptions: 338 (17%), 288 (88%), 250 (45%), 238 (42%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-Br)$ (18). Bromoacetonitrile (0.40 mL, 5.74 mmol) was added to 1⁻ (0.336 g, 1.07 mmol) at 0 °C, causing an immediate color change to dark brown. The mixture was stirred at room temperature for 4 h with no appreciable change in color. The solvent was removed, the residue washed with CH_2Cl_2 , and the solution was columnchromatographed starting with hexane. The first band was 1 (16 mg, 5%), followed by 18 (0.234 g, 0.60 mmol, 56%) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3\cdot4/6,5-Br_2)$ (19, 5 mg, 1%). The same procedure using bromonitromethane in place of bromoacetonitrile gave 18 in 75% yield. Anal. Calcd for $BrCoC_{16}B_3H_{29}$ (18): C, 48.94; H, 7.44. Found: C, 49.14; H, 7.45. Visible–UV absorptions: 288 (86%), 248 (33%), 236 (42%). Anal. Calcd for $Br_2CoC_{16}B_3H_{28}$ (19): C, 40.75; H, 5.98. Found: C, 42.96; H, 6.23. Visible–UV absorptions: 366 (6%), 332 (14%), 292 (90%), 240 (54%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-Br)$ (20) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-Br_2)$ (21). The procedures described above for the synthesis of 14 and 15 were followed using N-bromosuccinimide. Reaction of 100 mg (0.318 mmol) of 1 with 57 mg (0.32 mmol) of the brominating agent produced an immediate color change from yellow to brownish-yellow and was complete in <5 min, affording on workup 122 mg (0.31 mmol, 98%) of orange crystalline 20. Bromination of this species with 1.5 equiv of N-bromosuccinimide resulted in a color change from orange to dark orange-brown. The reaction reached completion in <5 min and gave 119 mg (0.34 mmol, 99%) of orange crystalline 21. The latter compound was also obtained quantitatively on treatment of 1 with 2.5 equiv of the same reagent. Anal. Calcd for CoBrC₁₆B₃H₂₉ (20): C, 48.94; H, 7.44. Found: C, 49.11; H, 7.56. Anal. Calcd for $CoBr_2C_{16}B_3H_{28}$ (21): C, 40.75; H, 5.98. Found: C, 40.85; H, 6.18.

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-I)$ (22). Iodotrifluoromethane (2.93 mmol) was condensed into a solution of 1⁻ (0.99 mmol) at -78 °C, producing an immediate blood red color. The solution was stirred at -78 °C for 10 min and then at room temperature for 1.5 h, during which the solution turned dark orange. Following removal of solvent, the residue was washed with hexane and column-chromatographed in pentane, producing two bands of which the first was 1 (16 mg, 5%) and the second was 22 (0.264 g, 0.60 mmol, 61%). Anal. Calcd for ICOC₁₆B₃H₂₉: C, 43.71; H, 6.65. Found: C, 43.86; H, 6.66. Visible–UV absorptions: 328 (13%), 290 (88%), 244 (41%), 236 (45%).

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-I)$ (23) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_3-4,6-I_2)$ (24). The procedures described above for the synthesis of 14 and 15 were followed using *N*-iodosuccinimide. Reaction of 100 mg (0.318 mmol) of 1 with 72 mg (0.32 mmol) of the iodinating agent produced an immediate color change from yellow to brownish-orange and was complete in <5 min, affording on workup 140 mg (0.31 mmol, 99%) of

orange crystalline 23. Iodination of this species with 1.5 equiv of N-bromosuccinimide, which produced an immediate color change from orange to dark orange-brown, gave 127 mg (0.34 mmol, 99%) of orange crystalline 24. The latter compound was also obtained quantitatively on treatment of 1 with 2.5 equiv of N-iodosuccinimide. Anal. Calcd for $CoIC_{16}B_3H_{29}$ (23): C, 43.71; H, 6.65. Found: C, 44.17; H, 6.61. Synthesis of $(C_5Me_6)Co(2,3-Et_2C_2B_3H_4-5-CN)$ (25) and

Synthesis of $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-5-CN)$ (25) and $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4-4/6-CN)$ (26). *p*-Toluenesulfonyl cyanide (0.627 g, 3.46 mmol) was added via a tip-tube to a solution of 1⁻ (0.290 g, 0.92 mmol) at -78 °C, producing a brownish-yellow solution. The bath was removed and the solution stirred for 30 min, after which the solvent was removed and the residue was washed with CH_2Cl_2 and then column-chromatographed starting with hexane, which produced 1 (0.124 g, 43% recovery). The solvent was changed to 1:1 hexane/ CH_2Cl_2 , affording one band which was collected and placed on a TLC plate in the same solvent. Two bands were obtained, the first of which was 25 (35 mg, 0.10 mmol, 11%) and the second was 26 (23 mg, 0.07 mmol, 8%). Anal. Calcd for $CoNC_{17}B_3H_{29}$ (25): N, 4.13; C, 60.27; H, 8.63. Found: N, 3.92; C, 60.50; H, 8.60. Visible-UV absorptions: 286 (95%), 248 (50%), 234 (43%).

Synthesis of $(C_5Me_5)Co(2,3-\acute{Et}_2C_2B_3H_4-4/6-NO_2)$ (27). Nitronium tetrafluoroborate (4.5 mL of 0.5 M solution in sulfolane, 2.25 mmol) was added to 1⁻ (0.301 g, 0.96 mmol) at -78 °C. The solution immediately turned brown. After stirring at -78 °C for 30 min and at room temperature for 30 min, the solvent was removed and the residue washed with hexane followed by CH_2Cl_2 . The hexane wash was column-chromatographed in hexane, affording only 1 (0.048 g, 16% recovery). The CH_2Cl_2 wash was chromatographed on a silica column in 1:1 hexane/ CH_2Cl_2 , giving a band of 1 followed by a small band of 27 (5 mg, 0.01 mmol, 1.5%), identified by ¹H NMR and mass spectroscopy.

Reaction of 1⁻ with Vinyl Bromide. Vinyl bromide (1.03 mmol) was reacted with 1⁻ (0.303 g, 0.96 mmol) under the conditions of the preceding synthesis, affording on workup only 1 (55% recovery) and a trace of an air-sensitive compound whose ¹H NMR and mass spectra were consistent with the formulation as a vinyl derivative, $(C_5Me_5)Co(2,3-Et_2C_2B_3H_4CH=CH_2)$ (28).

Other Attempted Reactions of 1⁻. Treatment of 1⁻ with excess methanesulfonyl fluoride gave only 1 (46% recovery). Reaction with excess *p*-toluenesulfonyl isocyanate resulted in the loss of all starting material and gave no characterizable product. Reactions of 1⁻ with 1 equiv of benzoyl chloride or malonyl chloride gave only 1 in ca. 50% recovery.

X-ray Structure Determination on 2. Relevant crystal data and experimental parameters are listed in Table VI. Intensities were collected on a Nicolet P3m diffractometer (Mo K α , λ = 0.7107 Å). The unit cell was determined using the setting angles of 20 high-angle reflections. The intensities of three standard reflections were monitored showing no significant decay. Empirical absorption corrections were made using the program DI-FABS¹⁹ with transmission factors in the range 0.88-1.22. All calculations were performed on a VAX station 3520 computer using the TEXSAN 5.0 crystallographic software package.²⁰ The structure was solved by heavy-atom techniques (Patterson and Fourier maps). Full-matrix least-squares refinement with anisotropic thermal parameters for all non-hydrogen atoms yielded the final R of 0.037. All hydrogen atoms were located from the difference Fourier maps and included as fixed contributions to the structure factors. Only those reflections for which $I > 3.0\sigma(I)$ were used in the final refinement of the structural parameters.

Acknowledgment. The support of the National Science Foundation (Grant No. CHE 90-22713) and the U.S. Army Research Office is gratefully acknowledged. We thank Professor Frank Carey for enlightening discussions on O-acylation mechanisms, Mark Benvenuto for the unit-resolution mass spectra, Dr. Xiangsheng Meng for the ¹¹B NMR spectra, and Markus Hölscher for the preparation of the B(4,5,6)-trichloro derivative. We are indebted to Dr. James Davis for initiating work on the reaction of 1⁻ with acetyl chloride.

OM920014G

(19) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.
(20) TEXSAN: Single Crystal Structure Analysis Software, Version 5.0; Molecular Structure Corp.: The Woodlands, TX 77381, 1989.

Tungsten–Oxo Complexes with Amido Ligands: A Simple Example of the Stereochemical and Dynamic Consequences of Competing π -Donor Effects

Jean Pierre Le Ny, Marie-Thérèse Youinou, and John A. Osborn*

Laboratoire de Chimie des Métaux de Transition et de Catalyse (URA 424 du CNRS), 4 rue Blaise Pascal, 67000 Strasbourg, France

Received September 27, 1991

Complexes of tungsten(VI) of the type WO(CH₂Bu^t)₂(NR₂)Cl 1 and WO(CH₂Bu^t)₃(NR₂) 2 (1a, 2a, R = Et; 1b, 2b, R = Me; 2c, R = pyrrolidinate) have been synthesized and characterized. The proton NMR spectra of these compounds indicated that the stereochemistry was different from that of the chloride analogues. Further, the variable-temperature NMR data showed these complexes to be stereochemically nonrigid where exchange of the NR₂ group or equilibration of the neopentyl groups occurred. The structure of WO(CH₂Bu^t)₃(NEt₂) (2a) was established by X-ray diffraction and is in agreement with the NMR observations; the amido ligand adopts a position cis to the oxo, with the NR₂ group parallel to the W=O vector. This ligand arrangement results from the competing π -donor demands of the amido and oxo ligands. C₁₉H₄₃NOW crystallizes in the monoclinic space group P2₁/c (No. 14), a = 9.632 (2) Å, b = 12.961 (3) Å, c = 18.192 (4) Å, $\beta = 104.62 (2)^\circ$, V = 2197.6 Å³, Z = 4, ρ (calcd) = 1.467 g cm⁻³, R_F = 0.0276, R_{wF} = 0.0514.

Introduction

For several years we have been interested in high-oxidation-state organometallic chemistry, particularly that of W(VI) and Mo(VI). The role played by strong π -donor ligands (e.g., oxo, imido) or moderate π -donors (e.g., alkoxo) was critical in the stabilizing and the fine tuning of the reactivity of such metal centers in catalysis. The amido anion NR_2^- has been used extensively as a ligand in early transition metal chemistry¹⁻³ and is generally considered

Bradley, D. C.; Chisholm, M. H. Acc. Chem. Res. 1976, 9, 273.
 Chisholm, M. H.; Rothwell, I. P. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon Press: New York, 1982; p 161.