Synthesis and 2D NMR Studies of {Bls(pyrazolyl)borato)rhodium(I) Complexes with Weak Rh-H-C Interactions and the X-ray Crystal Structure of {(Cyclooctane-I ,5-diyl) bis(pyrazol-1-yl) borato)(1,5-cyclooctadiene) rhallum

Massimo Bortolin, Urs E. Bucher, Heinz Rüegger, and Lulgi M. Venanzi^{*}

Laboratorhm iik Anorgankche Chemin, Ek\$?@&s&che Twhnkhe Mchschuh9, *UniverSitatstrasse 6,* CH-8092 Zürich, Switzerland

Albert0 Albinati and Francesca Lianza

Ism0 dl Chhh Farmaceutlce dell' Unhwsit5 dl h4&no, Win Abnuzl42, I-20 13 1 Mbno, Ita&

Swiatoslaw Trofimenko

Du Pont Electronics Department, Experimental Station, Wilmington, Delaware 19898

Received November 4, 199 1

The novel rhodium(I) complexes $[Rh(BBN)(3-R-pz)_2](LL)]$ (LL = 2 CO, COD (1,5-cyclooctadiene), and
NBD (norbornadiene); $R = H$ and CH_3 ; $pz = 1$ -pyrazolyl; BBN = 9-borabicyclo[3.3.1] nonane) were syn-
thesized and characterized in the
sized and characterized in solution by one- and two-dimensional multinuclear NMR spectroscopy. The
¹H NMR spectra of all the compounds show that one of the methine protons $(H¹)$ of the BBN moiety is
considerabl spectroscopy, show that this proton is placed in proximity to the rhodium center. This is confirmed by the X-ray solid-state structure of $[Rh_{[BBN(pz)_2]}(COD)]$ (space group *Pnma, a* = 12.940 (2), *b* = 13.697 (2), *c* = 11.959 (2) **A;** *2* = **4;** *R* = **0.034,** *R,* = 0.041 for 1485 observed reflections), which **shows** that the Rh-H8 (corresponding to HI' above) separation in this compound is 2.42 (4) **A.** This interaction *can* be described as "agostic", albeit of the weak type, and might make a contribution to the lack of the inversion of the boatlike $\overline{Rh(NN)}_2B$ ring which, however, is characteristic for the complexes $[Rh(Ph_2Bpz_2)(LL)]$ (LL = 2CO, NBD, and COD).

Introduction

Divalent metal ions of the first transition **as** well **as** other transition series form a wide variety of organometallic compounds with bis(pyrazolyl)borate anions $[R_2B(pz)_2]^ (R = H, alkyl, or aryl).$ ¹⁻³ Ligands of this type, containing two alkyl or aryl substituents **on** the boron atom, are particularly intereating **because** they form stable four- and six-coordinate complexes with metal centers having a nosix-coordinate complexes what modulo construct in the all-
ninert gas configuration,¹⁻³ e.g., the molybdenum(II) com- \mathbf{p} lexes $\mathbf{[Mo[Et_2B(pz)_2](\eta^3\text{-}All)(CO)_2]}$ $\mathbf{(All = C_3H_5, 2\text{-}PhC_3H_4, }$ and C_7H_7).^{1c,2,3} A characteristic feature of these compounds, **as** well **as** many other coordinatively unsaturated species, is the presence of a strong interaction between the metal center and one CH group. Thus, the hydrogenmolybdenum **distances** in the latter two complexes above have been calculated to be **as** short **as** ca. 2.15 **A** and ca. 1.93 Å, respectively, and for the C_3H_5 complex, a distance of **2.24 (2) A has** been found from X-ray **data2 This** M-H interaction was explained by Cotton and co-workers³ as strong three-center two-electron bonding. It is now generally referred to as "agostic bonding".⁴

The C-H bonds involved in interactions of this type show some unusual spectroscopic properties. Thus, the infrared stretching vibrations are lower than **usual** and found at approximately 2700 cm⁻¹, e.g., at 2704 and 2664 cm^{-1} for $[{\rm Mo(Et_2B(pz)_2)}(\eta^3{\rm -}C_3H_5)(\rm{CO})_2]$, ¹c while their ¹H *NMR* mnancea **are** coneiderably *shifted* to **high** field, e.g., $\delta = -2.4$ ppm, in the octahedral molybdenum complex A^{Ic}

Weaker C-H-M interactions have also been reported⁵ for compounds where the observed H-M distances are of the order of ca. 2.5 **A.** However, here one finds strong deshielding of the protons interacting with the metal. Nevertheless, it has been proposed⁵ that this kind of interaction is related to agostic bonding.

A C-H interaction of the latter type **has** been reported for the square planar complex $[Ni(Et_2B(pz)_{2}]_2]$.^{1b,d} It has **also** been found that this compound is considerably more

⁽¹⁾ (a) "rof'imenko, S. *J.* **Am. Chem. SOC. 1967,89, 3170. (b)** Trot? **menko, S.** *J.* **Am. Chem.** *SOC.* **1967,89,6288. (c) Trofmenko, S. Acc.** *Chem.* **Rea. 1971,4, 17.**

^{(2) (}a) Trofimenko, S. J. Am. Chem. Soc. 1968, 90, 4754. (b) Trofimenko, S. *Inorg. Chem.* 1970, 9, 2493.

(3) (a) Cotton, F. A.; Jeremic, M.; Shaver, A. *Inorg. Chim. Acta* 1972,

6, 543. (b) Cotton, F. A.; Jeremic, M.; S **3210.**

^{(4) (}a) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, (b) Brookhart, M.; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem.

^{1988,36,1.} (6) (a) Albinati, A; Pregonin, P. S.; Wombacher, F. *Znorg.* **Chem. ISSO,** 29, 1812. (b) Anklin, C. G.; Pregosin, P. S. Magn. Reson. Chem. 1985, 23, 671. (c) Albinati, A.; Anklin, C. G.; Ganazzoli, F.; Rüegg, H.; Pregosin, P. S. *Inorg. Chem.* 1987, 26, 503. (d) Albinati, A.; Arz, C.; Pregosin, P

stable against oxidation than its corresponding bis(hydrido)borate analogue $[Ni(H_2B(pz)_{2}]_{2}]$.^{1b} This stabilizing effect was originally attributed to agostic interactions^{1b} but more recently, this reactivity difference **has** been attributed to steric blocking.^{4a,6} Also LCAO-MO calculations indicate that there is **no** significant Ni-H interaction in [Ni- ${E_t}_2B(pz)_{2|2}$.⁷ However, *NMR* data leave no doubt that, in solution, there is preferential interaction between one of the CH₂ groups (δ = 3.7 ppm) and the nickel atom in this complex.lb Interestingly, this additional stability is not observed for complexes with tetrahedral coordination geometries, e.g., for the pairs $[Mn(Et_2B(pz)_{2}]/[Mn(H_2B (pz)_{2}$ ₂^{1b} and $[Fe(Et_{2}B(pz)_{2}]_{2}/[Fe(H_{2}B(pz)_{2}]_{2}]$.^{Ib}

Recently the synthesis of the new bis(pyrazoly1)borate ligand **1,** containing the **%borabicyclo[3.3.l]nonane** (BBN) fragment, was reported! **This** ligand forms stable com-

plexes with a number of transition metal ions. **An** X-ray crystallographic study of $[Co(BBN(pz)₂]$ shows the presence of two agostic interactions, each involving the hydrogen atom on one of the methine **carbons** and cobalt, which can, therefore, be considered **as** having pseudooc**tahedral** coordination. However, **as** thia complex is paramagnetic, ita *NMR* **spectrum** consists only of broad lines? In order to correlate X-ray structural and NMR data, the compounds $[Rh(BBN(3-R-pz)_2](LL)](R = H \text{ and } CH_3; LL = 2CO,$ norbornadiene (NBD), and cyclooctadiene (COD)) were prepared, their solution structures were established by NMR, and the X-ray solid-state structure of [Rh- $(BBN(pz)₂)(COD)$] was determined. Finally, the spectroscopic characteristics of these complexes were compared with those of the analogous derivatives containing the ligand **3,** where the BBN fragment has been replaced by a diphenylboron moiety.

Results and Discussion

1 and **2** were prepared according to eq 1. **Synthesis. Ligands.** The potassium **salts** of ligands

$$
[(BBN]H]_2 + 4(3-R-pzH) + 2KOH \rightarrow 2K(BBN)(3-R-pz)_2] + 2H_2O + 2H_2
$$
 (1)

The critical step was **the** removal of the water produced. For this purpose a $CaH₂-filled$ Soxhlet column was employed instead of the Dean-Stark trap used in earlier preparations? The white crystalline, air-stable **salts,** ob**tained** in high yields by **this** method, are very soluble in DMSO and DMF, moderately soluble in THF, methanol,

(6) (a) Echols, H. M.; Dennis, D. Acta *Crystollogr.* **1974,** *EN,* **2173.**

(b) Echols, H. M.; Dennis, D. Acta Crystallogr. 1976, B32, 1627.
(7) Saillard, J. Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006. **(8) Trofmenko, S.; Calabreme, J. C.; Thompson, J. 5. Angew.** *Chem.*

ethanol, and acetone, but insoluble in water, ether, and hydrocarbon solvents.

Complexes. The potassium **salts** of the appropriate bis(pyrazoly1)borate anions reacted with the rhodium complexes $[Rh_2Cl_2(LL)_2]$ according to

12 $Ph₂B$ $Ph₂B$ H NBD
H COD con The producte, obtained in moderate yields, are yellow to orange solids, stable under normal laboratory conditions.

 CH_{3}

H 2CO
H NBI

 $\rm Ph_2B$

10 11

Solution Studies. **(a) NMR Spectra of Ligands 1-3.** The ${}^{1}H$, ${}^{13}C$, and ${}^{15}N$ NMR data are consistent with the three ligands having C_{2v} symmetry, i.e., both pyrazole rings appear as magnetically equivalent, as do the phenyl groups in 3 and each pair of carbon atoms in α -, β -, and γ -positions to the boron atom in the BBN fragment. A full report on theae and related pyrazolylborate ligands will be published elsewhere.1°

(b) NMR Spectra of Rhodium(1) Complexes. Carbon and proton NMR evidence (Tables I-111) shows that the $C_{2\nu}$ symmetry of ligand 3 is preserved in the com- $(pz)_2$ (COD)] (12) one finds by ¹H and ¹³C NMR spectroscopy only one type of phenyl substituent and only a single resonance for the olefinic CH unit at room temperature. *As* it is **known** from X-ray work that in the solid state the $Rh(NN)$ ²B chelate ring in bis(pyrazolyl) complexes **has** a static boat conformation, the *NMR* **data** for **12** *can* be rationalized by assuming fast inversion of thia ring on the NMR time scale (see Scheme I). pounds $[\text{Rh}(Ph_2B(pz)_2](LL)]$, 10-12. Thus, in $[Rh(Ph_2B-$

On the other hand, in the complexes $[Rh(BBN(pz)₂]$ -(U)], **4-9,** the **%borabicycl0[3.3.l]nonane** moiety **gives rise** to a total of five aliphatic carbon resonances having relative integrals of 1:2:2:2:1, for the $1'$ -, $2' + 8'$ -, $3' + 7'$ -, $4' + 6'$, and 5'-positions, respectively. Those of compound [Rh- $\{BBN(pz)_2\}(CO)_2$ (4) are shown in the ¹³C-coupled inverse

^{1989.102.201.} ----. ---, **(9) Trofmenko, S.; Hulsbergen, F. B.; Reedijk, J.** *Inorg. Chim.* **Acta 1991,183,203.**

⁽¹⁰⁾ Manuscript in preparation.

^a The spectra were recorded in CDCl₃ at room temperature. Chemical shifts (ppm) relative to $(CH_3)_4$ Si and coupling constants (Hz). Abbreviations used: for **signal** multiplicity **s,** singlet; br, broad singlet; d, doublet, dd, doublet of doublets, t, triplet; m, multiplet. Phenyl and 9-BBN carbons are labeled i, ipso; o, ortho; m, meta; p, para and α , β , and γ starting at the boron substitutions. **⁵IR:** ν_{CO} stretching bands (symmetric and asymmetric) for compound **4** appear at 2080 and 2015 cm-l and for **7** at 2075 and 2013 cm-l.

Table **11.** '% **NMR** Data for **Compounds** 4-9"

	4	5	6	7	8	9		
Pyrazole Ring								
$\delta(C^5)$	134.5	133.3	134.2	135.1	133.3	134.4		
δ (C ⁴)	104.8	103.5	104.4	104.5	103.8	104.7		
$\delta(C^3)$	141.9	136.9	138.5	149.0	147.8	148.3		
δ (CH ₃)				15.8	14.8	15.6		
J(Rh.C ³)		2.21		2.03	1.76			
9-BBN Ring								
$\delta(C^1)$	30.8	31.2	28.5	31.7	29.9	27.9		
$\delta(C^5)$	20.1	20.7	20.05	20.9	21.7	22.2		
δ (CH ₂ ^{4'})	32.2	32.3	32.9	32.2	32.1	32.4		
$\delta{\rm (CH_2^{2'})}$	30.3	30.5	30.9	30.5	30.9	30.7		
δ (CH ₂ ^{3'})	24.3	24.4	25.0	24.3	24.3	24.5		
Diene								
$\delta(C^{1''})$	b	52.8	79.1	c	51.0	78.3		
$\delta(C^{2})$		54.7	81.1		53.5	77.5		
$\delta(C^{3})$		50.7	31.3		49.9	30.4		
δ (C ^{4"})		61.1	31.2		61.1	30.1		
$\delta(C^{5})$					49.2			
J(Rh, C ¹)	Ь	6.1	12.0	C	9.7	12.6		
$J(\mathbf{Rh}, \mathbf{C}^{2})$		9.7	13.7		10.8	13.2		

^aThe spectra were recorded in CDCl₃ at room temperature: Chemical shifts (ppm) relative to CH_3)₄ Si and coupling constants (Hz) . ${}^{b}\delta(CO) = 186.1$; ${}^{1}J(Rh,C) = 67.3$. ${}^{c}\delta(CO) = 185.6$; ${}^{1}J(Rh,C) = 67.1$.

2D correlation," which appears in **Figure 1.** Furthermore, in these complexes the protons on carbons **1'** and **5'** have very different chemical **shifts,** e.g., **6** = **4.53** and **1.32** ppm for compound **6.** Thus it must be concluded that, in the BBN complexes, the chelate ring conformation is static and that **this** conformational preference is strong, **as** there is *no indication* of a dynamic interchange at **100** "C in toluene-ds. This preference might result from restricted

Figure 1. The ¹³C⁻¹H (62.9/250 MHz) heteronuclear correlation experiment for $\left[\text{Rh}(\text{BBN}(p\text{z})_2)(\text{CO})_2\right]$ (4) showing (a) the assignment of the carbon and proton resonances and (b) the method for obtaining the **'J(C,H)** parameter.

flexibility of the BBN moiety imposed by ita bicyclic nature, although a contribution from the interaction of one of the hydrogens of BBN with the metal center cannot be excluded. In this context it should be noted that conformational rigidity of $BBN(pz)_2$ has also been observed in some copper(1) complexes of the type [Cu{BBN- $(pz)_2$ (L)], $L = CH_3CN$ or PPh_3 ¹⁰ where the hydrogencopper interaction competes efficiently for the fourth coordination site.

In order to use the solution **NMR** data for a more de-

^{(11) (}a) Summers, **M.** F.; **Marzilli, L. G.; Bax, A.** *J.* Am. Chem. *SOC.* 1986,108,4285. **(b) Bax,** A.; Griffey, R. H.; **Hawkins, B. L.** *J. Am. Chem. SOC.* **1983,105,7188.**

^e The spectra were recorded in CDCl₃ at room temperature. Abbreviations as in Table I. ^b IR: $\nu_{\text{(CO)}}$ stretching bands (symmetric and asymmetric) for compound 10 appear at 2074 and 2013 cm⁻¹. Compounds 10–12 sho **BF₃**-OE_{t₃}. $d\delta$ (CO) = 185.3; ¹J(Rh,C) = 67.4.

Figure 2. The 250-MHz 2D-NOESY **spectrum** for [Rh(BBN- (pz)₂}(COD)] (6), showing the spatial relationships between the different ligands.

tailed discussion of the structures of the complexes in solution, a complete assignment of the **'H** and **13C** resonances was carried out.

Figure 3. Schematic representation of the spatial relationship of the interacting atoms in the **NOE** spectra of **6** (top) and **6** (bottom).

Pyrazolyl Fragment. The assignment of the **'H** spectra followed entirely from two-dimensional nuclear Overhauser spectroscopy (NOESY12) (e.g., see Figure **2),** showing proximity of **H6** to protons of the BBN entity (or the phenyl **groups** in **10-121,** whereas **H3** is close in space to the olefinic units **as** in **5,6,11,** and **12** *(see* the drawings of the half-molecules in Figure 3). The carbon **spectrum** was then **assigned** from the **'H-l9C** correlation experiment.

⁽¹²⁾ Jeener, J.; Meier, B. H.; Bachmann, **P. Emt,** R. **R.** *d. Chem. Phys.* **1979,** *71,4646.*

9-BBN Fragment. Its reduced symmetry with respect to the free ligands **1** and **2,** mentioned above, leads to inequivalence of the 1'- and *5'-,* **as** well **as** 2'- and 4'-positions in the molecule, giving rise to five carbon signals. The 13 C $^{-1}$ H correlation experiment (e.g., see Figure 1) relates these carbon signals to those of the hydrogens directly attached to them. In particular, **as** can be seen for [Rh(BBN(pz),)(CO),] **(4)** in this figure, the 1'-carbon is related to a relatively deshielded proton resonance at $\delta = 2.73$ ppm, while the 5'-carbon is associated with a proton in the expected range $(\delta = 1.37$ ppm). The remaining carbon and hydrogen resonances were assigned from a combination of homo- (COSY¹³) and homonuclear (HMQC¹¹) correlation spectroscopy, supported by twodimensional Overhauser experiments described below.

Olefinic Ligand. The resonances of the cyclooctadiene and norbornadiene moieties were conveniently assigned by 2D '3C-lH correlation techniques after dealing with the lower symmetry via 2D-NOESY experiments, outlined in more detail below. **A** similar treatment was used for the phenyl groups in the complexes 10-12.

Aspects of **the Solution Structure of the BBN Complexes 4-9.** Having arrived at an unambiguous **as**signment of relevant protons in the molecules containing the BBN-derived ligands, one can proceed to discuss some **aspects** of the three-dimensional *NMR* solution **structures** of the complexes. It is now well established¹⁴ that considerable insight into the spatial relationships of ligands in organometallic complexes *can* be derived from two-dimensional Overhauser spectroscopy. This is best illustrated here in the case of $[Rh(BBN(pz)₂](COD)]$ (6) by considering the NOESY **spectrum** depicted in **Figure** 2 and the schematic drawing in Figure 3.

Starting with the pyrazolyl proton H^3 , at $\delta = 7.25$ ppm, **as a** convenient entry point into the system of ligands, the NOESY **spectrum shows a** *cross* **peak** to an olefinic proton resonating at $\delta = 4.17$ ppm. Consequently, these two hydrogens have to be positioned on the same side of the rhodium coordination plane. The second olefinic proton $(\delta = 3.98 \text{ ppm})$ is in close proximity to the unique 1[']-hydrogen of the BBN fragment, the latter proton showing additional close contacts to the BBN 2'-hydrogens, **as** expected, and **also** to the ex0 protons (4") of the cyclooctadiene moiety. In a short triangulation, these observations allow poeitioning of the 1'-hydrogen approximately above the rhodium center. It should be noted here that the second 5'-hydrogen shows no NOE to olefinic protons and does not exchange slowly with the other methine protons via, for example, inversion of the $Rh(NN)_2B$ ring.

The particular location of the 1'-hydrogen of 9-BBN and the thermal stability of the $Rh(NN)_{2}B$ ring conformation indicate that there could be an agostic interaction⁵ between a carbon-hydrogen bond and the rhodium.

Generally, three effecta, observable by NMR spectroscopy, are recognized **as** being indicative for this type of bonding: (i) the value of the 'H chemical shift, (ii) the reduction in the magnitude of the scalar coupling constant 'J(C,H), and (iii) the presence of a **scalar** coupling to the metal nucleus for spin $I = \frac{1}{2}$ nuclei, ¹⁰³Rh, in our case.

While the values of δH are most easily accessible, their changes **are** not very well understood, **as** both considerable shielding¹⁵ and deshielding⁵ are observed. It is noteworthy that in compounds **4-9** deshielding is observed and that the chemical *shifts* of **the** proton in question increase when going from the carbon monoxide to the NBD and COD derivatives, e.g., from 2.73 to 3.81 and 4.53 ppm, for compounds **4-6,** respectively. The 3-methylpyrazolyl, **7-9,** derivatives show even higher deshielding ($\delta = 3.07, 5.03$) and 5.45 ppm, respectively) when compared with their unsubstituted analogs.

Effects ii and iii are probably better understood: the C-H-M interaction should decrease the C-H bond order, and thus, $^{1}J(C,H)$ should decrease with increasing the M-H bond order. Using routine methods, the NMR **pa**rameters $J(C,H)$ and $J(Rh,H)$, are not readily extractable from the spectra of compounds **4-9 as** (1) the broadness of the hydrogen resonances, due to unresolved couplings to other protons of the BBN fragment, precludes the **direct** observation of a rhodium coupling, and (2) the coupling constant ${}^{1}J(C,H)$ cannot be obtained from the protoncoupled 13C **spectrum as** the resonances of the carbons in α -position to boron are broadened by partially relaxed coupling to the adjacent quadrupolar nucleus, thereby causing a considerable decrease of the signal-to-noise ratio.

However, there is now a very convenient way to obtain the $J(C,H)$ constants, i.e., by means of the heteronuclear correlation experiment using proton detection, 11 where this parameter *can* be read from the appropriate **rows** through the two-dimensional **matrix** (e.g., **see** Figure 1). It is found (see Table I) that the ${}^{1}J(C^{1},H^{1})$ values are approximately 110 Hz, slightly (but significantly in terms of errors involved) smaller than the corresponding values of ca. 116 Hz for ${}^{1}J(C^{5}, H^{5})$ in complexes $4-9$, as well as in ligands **1** and **2** (117.7 Hz).

The $J(Rh,H)$ values are even more difficult to obtain. Comparison of the width at half-height of the resonances due to H^1 and H^5 , where the latter is resolved, indicates that $J(Rh,H)$ must be small. To obtain an estimate of these values a proton-detected rhodium-proton correlation. opttnized for *small* coupling constanta, was **recorded.** For $[Rh(BBN(3-Me-pz)₂](COD)]$, **(9)** $(\delta(^{103}Rh) = 1205$ ppm) this experiment showed correlation peaka between rhodium and $(1) H⁴, H⁵$ and the methyl of the pyrazolyl and (2) the olefinic and the ex0 protons of the BBN moiety. The absence of such a correlation peak for H^1 may be either due to a vanishingly *small* coupling constant *J(Rh,H")* with an upper limit of **ca.** 0.4 *Hz* or result from faster relaxation of the H^1 ' proton in the relevant double- and zero-quantum terms compared to the pyrazolyl and olefinic protons.

The rather **small** (ca *5%)* reduction in J(C,H) and the likely very small magnitude of $J(Rh,H)$, taken together, **suggeat** that the **obeerved** interaction of the C-H bond with the metal is of the "pregostic" or weak interaction type (In this context *pregostic* can be understood either-as *preagostic,* i.e., on the way to becoming agostic, or agostic of the weak type comprehensively described by Pregosin and co -workers.^{5}). To support these findings from solution data, an X-ray crystal structure determination of **[Rh-** {BBN(pz),](COD)] **(6)** in the solid state was *carried* out and is described below.

X-ray Crystal Structure of { **(Cyclooctane-1,s**diyl)bis(pyrazol-1-yl)borato)(1,5-cyclooctadiene)rho**dium (6).** The crystala contain discrete molecules of [Rh(BBN(pz),)(COD)] **(6)** separated by normal van der

⁽¹³⁾ Rance, **M.; Smnwn, 0. W.; Bodenhausen, G.; Wagner, G.; Enret, R. R.; WMhrich, K.** *Biochem. Biophys. Res. Commun.* **lS@,** *117,* 458.

⁽¹³⁾ Rance, M.; Sørensen, O. W.; Bodenhausen, G.; Wagner, G.; Ernst, R. R.; Wüthrich, K. *Biochem. Biophys. Res. Commun.* 1983, *117*, 458. (14) (a) Albinati, A.; Ammann, C.; Pregosin, P. S.; Rüegger, H. *Organometallics Organomet. Chem.* **1992,423,416.**

⁽¹⁵⁾ (a) Carr, N.; be, B. J.; Orpen, A. G.; Spencer, J. L. *J. Chem.* Soc., Chem. Commun. 1988, 926. (b) Cracknell, R. B.; Orpen, A. G.;
Spencer, J. L. J. Chem. Soc., Chem. Commun. 1984, 326; 1986, 1005. (c) Arliguie, T.; Chaudret, B.; Jalon, F.; Lahoz, F. J. Chem. Soc., Chem.
Commun. 1988, 998. (d) Heddon, D.; Roundhill, D. M.; Fultz, W. C.;
Rheingold, A. L. Organometallics 1986, 5, 336. (e) Koya, N.; Morokuma,
K. J. Am. Chem

Figure 4. ORTEP view of the molecule $[Rh(BBN(pz)_2)(COD)]$ **(6).**

Table IV. Selected Bond Distances (A) and Angles (deg)

for $[Rh(CsH14)B(pz)2$ (COD)] (6) (Esd's in Parentheses)							
Rh–N1	2.107(3)	B-N2	1.590(4)	$C1-C2$	1.373(6)		
Rh–C9	2.121(5)	B-C4	1.620(7)	$C2-C3$	1.364(6)		
Rh–C10	2.116(5)	$C8 - H8$	0.90(4)	$C9-C10$	1.370(7)		
$\mathrm{Rh}\text{-}m^a$.	2.004(5)	$N1-C1$	1.342(5)	$C10-C11$	1.494(8)		
Rh–H8	2.42(4)	$N1-N2$	1.360(4)	$C11 - C11$ '	1.455(8)		
B-C8	1.575(8)	$N2-C3$	1.383(5)				
	$N1-Rh-N1'$	86.5(1)		$C10 - Rh - C10'$	82.3(2)		
	$N1-Rh-C9$	160.6 (2)	$Rh-H8-C8$		137.(3)		
	N1-Rh-C10	161.6 (1)	$Rh-N1-N2$		120.2(2)		
	N1-Rh-C9	92.3(2)	$N2 - B - N2'$		101.3(3)		
	$N1 - Rh - C10'$	92.7(1)	$N2$ –B–C 8		112.6(3)		
	$N1-Rh-m^a$	179.0 (1)	$N2 - B - C4$		112.2(3)		
	$\mathrm{N1}\text{--}\mathrm{Rh}\text{--}m^a$	92.7(2)	B-C8-H8		110 (3)		
m -Rh- ma		88.2 (2)	$B-N2-C3$		131.7(3)		
	$C9 - Rh - C9'$	82.5 (2)					

 a m and m' are the midpoints of the bonds C9–C10 and C9–C10, **respectively. Primed atoms are related to those unprimed by the** symmetry operation $x, y + \frac{1}{2}, z$.

Waals distances. **An ORTEP** view of the molecule is **shown** in Figure 4. A selection of relevant interatomic distances and bond angles is given in Table **IV.**

The molecule **contains** a crystallographic mirror plane going through the rhodium, boron, and bridgehead carbon atoms C4 and C8 of 9-BBN, rendering the two halves of the molecule equivalent. These have **been** denoted **as** primed and unprimed atoms in Figure 4 (It should be **noted** here that the atomic numbering employed for the cryetal structure differs from that used for the discussion of the *NMR* spectra.). The coordination geometry at the rhodium atom *can* be regarded **as square** planar if only the two coordinated nitrogens and *C==C* **bonds are** considered. If one **also** takes **into** account the Rh-H8 interaction, then the complex should be described **as** square pyramidal. Interestingly, one **finds** that, **as** is common in complexes of **this** *etructure,* **the** rhodium atom is placed slightly above the plane defined by the basal donor atoms N1 and N1' and *m* and *m'* (these being the midpoints between C9 and C10 and CV and ClW, respectively; 0.01 **A).**

The Rh-C9 and Rh-C10 distances must be considered **as** being **equal** given the values of the standard deviations (2.121 **(5)** and 2.116 *(5)* **A,** respectively). These distances,

as the other **bonding** parameters for the **Rh-COD** moiety, do not differ significantly from those found in the related compound $[Rh(\eta^2-B(pz)_4](\text{COD})]$ (13).¹⁶

The Rh-N distances (2.107 (3) A) and the N1-Rh-N1' bond angle (86.5 (1)^o) are similar to the corresponding parameters in compound **13,** although the ligands in the two complexes are not identical. It should be **noted** here that in the pseudooctahedral complex $[Co(BBN(pz)₂]₂]$ (14) the analogous $N-Co-N$ angles are 90.6 (1)^o and 89.4 (1)^o. However, **all** other bond lengths and angles in complex **6** agree well with those reported for compound **14.**

As found in **this** compound, the **Rh(NN)2B** heterocyclic ring is bent into a boatlike conformation, bringing the bridgehead H atom of 9-BBN, H8, in proximity to the rhodium center. This hydrogen atom could be located and refined, and the Rh-H8 (Rh-H") separation is 2.42 (4) *k* Although **this** distance is shorter than the sum of the van der **Waals** radii of rhodium and hydrogen, it is relatively large when compared to reported typical metal-hydrogen separations of agostic type, which are in the range of 1.8-2.2 *k4* The Rh-H8 interaction, **as** mentioned earlier, is probably better described as weak interaction, of pregostic type, similar to those found in platinum and palladium complexes, e.g., *trans*-[PtCl₂(benzoquinoline)- $(PEt₃)$] $(2.53 \ (8)$ Å), reported previously.^{5a}

Conclusions

The solution and X-ray structural **data** obtained for the square planar rhodium complexes of bis(pyrazoly1)borate ligands of the type $\{BBN(3-R-pz)_2\}$ clearly show the presence of only weak M--H--C interactions in compounds of this type, in agreement with the recent LCAO-MO calculations on $[Ni[Et_2B(pz)₂]₂]⁷$ The hydrogen is directed here toward a filled metal orbital and is probably involved in a three-center four-electron bond of the type proposed for $[NPr_4]_2[PtCl_4]$ -cis- $[PtCl_2(NH_2Me)_2]$,¹⁷ as opposed to the situation in $[Mo(Et₂B(pz)₂)(\eta^3$ -allyl)^{(CO})₂], where the metal forma a strong three-center two-electron bond because it needs electrons and gets them from the C-H $bond.²$

Experimental Section

Materials. Pyrazole and 9-borabicyclo[3.3.1]nonane were purchased from Fluka **AG, and 3-methylpyrazole was obtained** from Merck AG. They were used without further purification. **Toluene (Puriss p.a from Fluka AG) was used as such; tetrahydrofuran was freshly distilled from sodium hydride under an atmosphere of nitrogen. Hexane and acetonitrile were dietilled from calcium hydride and stored over a molecular sieve (3 A).** The organometallic starting materials $[Rh_2Cl_2(CO)_4]$,¹⁸ $[Rh_2Cl_2(COD)_2]$ (COD = cyclooctadiene),¹⁹ and $[Rh_2Cl_2(NBD)_2]$ (NBD = norbornadiene)²⁰ were prepared as described in the appropriate references. Ligand 3 was available from an earlier study.^{1b}

pyrazole (17.02 g and 20.53 g for 1 and 2, respectively; 0.250 mol) **and KOH (7.01 g, 0.125 mol) were placed in a three-necked round-bottom flask equipped with a magnetic stirring** bar, **a thermometer, a serum stopper, and a Soxhlet extractor whom** thimble was filled with ca. 15 g of CaH₂. Toluene (300 mL) was **added, and the mixture was refluxed for 18 h at a bath temperature of 140** *"C.* The **suspension containing a white precipitate** $K[C_3H_{14}]B(3-R-pz)_2]$ (1, $R = H$; 2, $R = CH_2$). The appropriate

(18) McCleverty, J. A.; Wilkinson, *G. Znorg. Synth.* **1%6,8,211. (19) Chatt, J.; Venanzi, L. M.** *J. Chem. SOC.* **1967,4735.**

⁽¹⁶⁾ Cocivera, M.; Fergueon, G.; Kaitner, B.; Lalor, F. J.; O'Sullivan,

D. J.; Parvez, M.; Ruhl, B. Organometallics 1982, J., 1132.
(17) Brammer, L.; Charnock, J. M.; Goggin, P. L.; Goodfellow, R. J.;
Orpen, A. G.; Koetzle, T. F. J. Chem. Soc., Dalton Trans. 1991, 1789.

⁽²⁰⁾ **Abel, E. W.; Benett, M. A.; Wilkinson,** *G. J. Chem.* **Soe. 1969, 3178.**

(4-12)

compd	v	R	LL	yield, %	mp, ^o C	Сª	Hª	N^c
	BBN	н		79	>240	56.97 (57.15)	6.93(6.85)	19.23 (19.04)
	BBN	CH ₃		75	>240	58.99 (59.63)	7.64(7.51)	17.05 (17.38)
	Ph ₂ B	н			>240	63.95 (63.91)	4.86 (4.77)	16.31 (16.56)
	BBN	H	2 _{CO}	52	$146 - 147$	46.21 (46.41)	5.00 (4.87)	13.62 (13.53)
	BBN	H	NBD	60	234-236	55.74 (56.03)	6.16(6.27)	12.60 (12.44)
	BBN	н	COD	47	219-221	56.27 (56.68)	7.00(6.92)	11.92 (12.00)
	BBN	CH ₃	2CO	64	$156 - 158$	48.58 (48.90)	5.46(5.47)	12.78 (12.67)
	BBN	CH ₃	NBD	55	$210 - 212$	56.06 (57.76)	6.77(6.74)	11.13(11.71)
	BBN	CH ₃	COD	42	$226 - 228$	57.68 (58.32)	7.38 (7.34)	11.25 (11.33)
10	Ph_2B	н	2CO	58	$198 - 200^b$	52.39 (52.44)	3.57(3.52)	12.36 (12.23)
11	Ph_2B	н	NBD	57	>240	60.43 (60.76)	5.04 (4.89)	11.44(11.34)
12	Ph_2B	н	COD	81	$237 - 239$	60.88 (61.20)	5.62(5.53)	11.06 (10.98)

^aCalculated values are given in parentheses. ^bDecomposition.

was allowed to cool to 60 °C, and then a distillation assembly was mounted in place of the Soxhlet extractor. The 9-borabicyclo- [3.3.l]nonane **(250 mL** of a **0.5** M solution in *dry* and degassed THF) was then added dropwise through a syringe. After a few minutea evolution of hydrogen gas **started,** ita volume was measured with a "wet-test meter", and THF was slowly removed by distillation while the gas evolution continued. After **2** h, **3.2** L of H2 were **collected** while the temperature was allowed to increase to 140 °C. Then ca. 50 mL of toluene was distilled off and replaced by **100 mL** of hexane. The reaulting precipitate was removed by filtration, and the residue was washed three times with hot hexane and then dried in vacuo. Recrystallization from THF/hexane afforded **29.2** g **(79%)** of **1** (mp **>240** "C) and **30.2** g **(75%)** of **2** (mp **>250** "C), respectively.

Complexes 4-12. To solutions of the appropriate $[Rh_2Cl_2(LL)_2]$ compound **(150** mg in **10 mL** of CH3CN) were gradually added at **-20** *OC* **2** equiv of the pyrazolylborate ligands. The mixture was **stirred** for **an** additional **1** h while the temperature **was** allowed to rise to **25** "C. After the solvent was removed in vacuo, the residue was extracted with **50** mL of hexane and the extract fitered through Celite to remove KC1. The hexane was again removed in vacuo, and the resulting product was recrystallised by careful addition of CH_3CN to a CH_2Cl_2 solution and storage at -20 °C for 20 h. Yields, melting points, and analytical data for these complexes are given in Table V.

Analytical Measurements. C, H, and N analyses were performed by the **'Mikroelementamdytisches** Laboratorium der Eidgenössischen Technischen Hochschule Zürich".

Physical Measurements. Melting pointa were obtained from samples in open capillary tubes with a Büchi SMP-20 melting point apparatus, and no **comections** were applied. **Infrared** spectra were recorded in KBr pellets on a Perkin-Elmer Model **883** spectrophotometer.

NMR Spectroscopy. One-dimensional 'H **(500.13/250.13** MHz), **'9c (125.7/62.9 MHz),** 16N **(50.7** MHz), "Rh **(15.8** *MHz),* and ¹³C-DEPT²¹ and two-dimensional DQF-COSY,¹³ NOESY,¹² and HMQC" *NMR* spectra were recorded on Bruker **AMX** *500* and Bruker WM **250** spectrometers. "B NMR spectra were obtained at 80.3 MHz on a Bruker AC **250** spectrometer. The chemical **shift** scales are relative to internal TMS ('H and 13C) and CH₃NO₂ (¹⁵N) and external BF₃·Et₂O (¹¹B), whereas ¹⁰³Rh shifts are on the absolute scale $Z = 3.16$ MHz, whereas TMS resonates at exactly 100 MHz.

Crystallography. Air-stable yellow crystals of [{BBN-(pz)₂Rh(COD)] (6), suitable for X-ray diffraction, were obtained
by crystallization from acetonitrile. A prismatic crystal was mounted on a glass fiber at random orientation on an Enraf-Nonius CAD4 diffractometer for unit cell and space group determination and for data collection. Systematic absences were consistent with the orthorhombic space groups **Pna2** and Prim. The latter, centrosymmetric space group was chosen **as (1)** it is consistent with the molecular geometry in solution and **(2)** it required a smaller number of parameters in the least-squares refinement. The choice was later confirmed by the successful refinement.

(21) Doddrell, D. **M.;** Pegg, D. T.; Bendall, **M.** R. J. *Magn. Reson.* **1982,48,323.**

Table VI. Experimental Data for the X-ray Diffraction $Study of $\frac{f}{C_sH_1}$ B (pz)_s $\frac{3}{Rh}$ (COD)]$

formula	$C_{22}H_{32}BN_4Rh$
mol wt	466.24
cryst dimens, mm	$0.15 \times 0.25 \times 0.30$
data coll T , $^{\circ}$ C	23
cryst syst	orthorhombic
space group	Pnma
a, A	12.940 (2)
b, A	13.697 (2)
c, A	11.959 (2)
V, Λ^3	2119.7(5)
Z	4
$\rho_{\rm cald}$, g cm ⁻³	1.460
μ , cm ⁻¹	8.07
radiation	Mo K α (graphite monochromated λ
	$= 0.71069$ A)
measd reficns	$+h,+k,+l$
θ range, deg	$2.7 < \theta < 27.0$
scan type	$\omega/2\theta$
scan width, deg	$1.10 + 0.35$ tan θ
max counting time, a	75
bkdg time, s	$0.5 \times$ scan time
max scan speed, deg min ⁻¹	5.2
prescan rejection limit	$0.55(1.82\sigma)$
prescan acceptance	$0.025(40.00 \sigma)$
horiz receiving slit, nm	$1.70 + \tan \theta$
vert receiving slit, mm	4.0
no. of data coll	2409
no. of obsd reficns (n_0)	1485
$(F_0 ^2 > 3.0\sigma(F ^2))$	
no. of params refined (n_v)	144
R^a	0.034
$R_{\bullet}^{\ b}$	0.041
GOF ^c	1.357

 $w[F_0|^2]^{1/2}$, where $w = (\sigma^2(F_0))^{-1}$ and $\sigma(F_0) = (\sigma^2(F_0))^2$ $(\overline{F}_0)^2$ ²]^{1/2}/2 \overline{F}_0 with $f = 0.040$ and $\sigma(I)$ based on counting statistics alone. c GOF = $\left[\sum w(|F_o| - 1/k|F_c|\right)^2/(n_o - n_v))^{1/2}$. ${}^{\circ}R = \sum_{k=0}^{\infty} |F_{0}| - 1/k|F_{0}| / \sum_{k=0}^{\infty} |F_{0}| \cdot \frac{1}{1!} R_{w} = \frac{[\sum w(|F_{0}| - 1/k|F_{0}])^{2}}{2 \cdot 2! (|F_{0}| - 1/k|F_{0}|)^{2}}$

Unit cell dimensions were obtained by least-squares fit of the 28 values of 25 high-order reflections $(9.6^{\circ} < 20 < 18.2^{\circ})$ using the CAD4 centering routines. A list of crystallographic and other relevant data are given in Table VI.

Data were collected with variable scan speed to ensure constant statistical precision on the collected intensities. **Three standard** reflections, used to check the stability of the crystal and of the experimental conditions, were measured every hour; no significant variation **was** detected. The orientation of the crystal was **checked** by measuring three reflections every 300 measurementa. Data by measuring three reflections overy year and for decay,
were corrected for Lorentz and polarization factors and for decay, using the data reduction programs of the CAD4-SDP package.⁵ An empirical absorption correction was applied by using azimuthal ψ -scans of three "high-x" angle reflections ($\chi > 86.9^{\circ}$; 10.7° < 2θ < **15.7O).** The standard deviations on intensitiea were calculated in the term of statistics alone, while those on F_o were calculated

⁽²²⁾ Enraf-Noniua Structure Determination Package, SDE **Enraf-**Nonius: Delft, **The** Netherlands, **1980.**

Table VII. Final Positional Parameters and Equivalent Thermal Parameters (A^3) for $[Rh((C_8H_{14})B(pz)_2](COD)]$ (6) $[Fe/H_{14}]$ **Parameters** $[Fe/H_{14}]$

(TABO & TH T OT CHANGEON)									
	atom	x	y	z	B_{∞}				
	Rh	0.54732(4)	0.250	0.13165(3)	3.876 (8)				
	N1	0.6380(2)	0.1446(2)	0.0489(2)	3.74(6)				
	N2	0.6701(2)	0.1603(2)	$-0.0579(2)$	3.19(6)				
	C1	0.6927(4)	0.0681(3)	0.0866(4)	4.85 (9)				
	C2	0.7589(3)	0.0349(3)	0.0054(3)	5.5 (1)				
	C3	0.7430(3)	0.0949(3)	$-0.0840(4)$	4.43 (8)				
	C4	0.6595(4)	0.250	$-0.2552(4)$	3.8(1)				
	C5	0.6180(3)	0.1575(3)	$-0.3142(3)$	4.95 (9)				
	C6	0.5028(4)	0.1376(3)	$-0.2997(3)$	4.83(9)				
	C7	0.4623(3)	0.1549(3)	$-0.1814(3)$	4.14 (8)				
	C8.	0.5018(4)	0.250	$-0.1266(4)$	3.23(9)				
	C9	0.4979(4)	0.3521(4)	0.2538(4)	6.8(1)				
	C10	0.4286(4)	0.3516(4)	0.1671(4)	6.2(1)				
	C11	0.3252(5)	0.3031(4)	0.1682(6)	9.5(2)				
	C12	0.4788(6)	0.3031(5)	0.3652(4)	11.1(2)				
	В	0.6235(4)	0.250	$-0.1255(5)$	2.9(1)				
	H8	0.477(3)	0.250	$-0.056(4)$	$1.1(9)*$				
	H9	0.557(3)	0.096(3)	0.252(4)	$4(1)$ *				
	H10	0.433(3)	0.401(3)	0.115(3)	$4(1)$ *				

^aStarred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $({}^{1}/_{3})$ [$a^{2}B(1,1)$ + $b^{2}B(2,2)$ + $c^{2}B$ -**(3,311.**

as reportad in Table W. Inianaities were considered **as** observed if $F_o^2 \geq 3.0\sigma(F^2)$ and used for the resolution and refinement of the structure. A value of $F_o = 0.0$ was given to those reflections **having** negative net intensities. The structure was solved by the combination of Patterson and Fourier methods and refined by full-matrix least-squares procedures (the function minimized was

 $[\sum w(F_d - 1/kF_d)^2]$ with $w = [\sigma^2(F_d)]^{-1}$. No extinction correction was deemed to be necessary.

The **scattering** factore used, **corrected** for the **real** and *imaginary* parts of the anomalous dispersion, were taken from the literature. In the fiaal Fourier difference **maps,** most of the hydrcgem could be located, in particular those bound to C8, C9, and C10. These hydrogen atoms, were considered to be chemically significant and therefore were refined, **startiag** from **the** experimental coordinatea therefore were refined, starting from the experimental coordinates
using isotropic temperature displacements. The contribution of
the remaining hydrogens, in their idealized positions (C-H = 0.95
 λ P = 5.0.42) was taken \AA , $B = 5.0 \AA$ ²), was taken into account but not refined. Anisotropic temperature factors were used for all non-hydrogen atoms. Upon convergence (no parameter shift of $>0.2\sigma(p)$), the last Fourier difference map showed no significant feature. *All* calculations were carried out by using the SDP crystallographic package.²² Final atomic coordinatea and equivalent thermal fadore **are** given in Table **VII.**

Acknowledgment. U.E.B. gratefully acknowledges the **B 0.6236 (4) 0.260 -0.1266** *(6)* **2.9 (1)** support of the 'Forschungskommission der ETH Ziirich" **H8 0.477 (3) 0.260** *-0.056* **(4) 1.1 (9)*** and **A.A.** acknowledges financial support from **MURST.** We thank Prof. P. S. Pregosin for valuable discussion.

Supplementary **Material** Available: Anisotropic displacement parametera (Table Sl), calculated hydrogen **poeitions** (Table S2), and an extended list of bond **distances** and angles (Table **S3)** for **6** (10 pages). Ordering information is given on any current masthead page.

OM910688B

Reactions of the 17-Electron Complex $\{\eta^5 - C_5H_5Cr(CO)_3\}$ **with Alkyl Halides**

Celeste A. MacConnachie, James M. Nelson, and Michael C. Baird'

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6

Received March 20, 1002

Solutions of the compound $[q^5-C_5H_5Cr(CO)_3]_2$ react with a series of organic halides RX $(R = Me,$ $CH_2CH=CH_2$, $CH_2CH=CHCO_2Me$, CH_2Ph , CH_2CO_2R' (R' = Me, Et), CH_2CN , $CH(CO_2Me)_2$; X = Br, I) to form the corresponding alkyl- and halochromium compounds η^5 -C₆H₆Cr(CO)₃R and η^5 -C₅H₆Cr(CO)₃X. The new alkylchromium compounds are characterized by elemental analyses where possible, otherwise by spectroscopic techniques and comparisons with the compounds synthesized by reactions of the same alkyl halides with Na[η^5 -C₆H₆Cr(CO)₃]. In contrast, organic halides containing one or more β -hydrogen atoms, RCH₂CH₂X, react to form η^5 -C₆H₆Cr(CO)₃H, η^5 -C₆H₆Cr(CO)₃X, RCH=CH₂, and RC $[\eta^5-C_6H_6Cr(\tilde{C}O)_3]_2$ is known to dissociate spontaneously in solution at ambient temperature to the highly reactive, 17-electron, metal-centered radical species $[\eta^5-C_5H_6Cr(CO)_3]$, it is suggested that the reactions involve initial halogen abstraction from the alkyl halides by $\{\eta^5\text{-}C_6H_6Cr(CO)_3\}$, followed, for alkyl halides containing no β -hydrogen atoms, by coupling of the resulting alkyl radical with a second molecule of ${q_0}^5$ -C₆H₆Cr(CO)₃). For alkyl halides containing β -hydrogen atoms, analyses of product distributions are consistent with initial halogen abstraction by η^5 -C₆H₆Cr(CO)₃} from RCH₂CH₂X followed by H-atom abstraction from RCH₂CH₂[•] to give η^5 -C₅H₅Cr(CO)₃H and olefin. As the concentration of η^5 -C₅H₅Cr(CO)₃H increases, a secondary process, in which the radical RCH₂CH₂[•] abstracts an H-atom from becomes competitive. Observed coalescence of the η^5 -C₅H₅⁻¹H NMR resonance of $[\eta^5$ -C₅H₅Cr(CO)₃]₂ with those of η^5 -C₅H₅Cr(CO)₃X (X = H, Br, I) is interpreted in terms of facile X-atom exchange proceeds via X-atom abstraction processes by $[\eta^5-C_5H_5Cr(CO)_3]$.

Although organotransition metal chemistry has long been dominated by compounds containing closed-shell, 18-electron configurations,' recent years have seen the development of a very extensive chemistry of electronically

unsaturated, 17-electron complexes.2 While most known examples of the latter class of paramagnetic, metal-centered radicals are unstable with respect to a wide variety of coupling, atom abstraction and disproportionation re-

⁽²³⁾ *International Tables for X-ray Crystallography;* **Kynoch Press: Birmingham, England, 1974;** Vol. IV.

⁽¹⁾ Collman, J. p.; Hegedus, L. s.; **Norton, J. R.; Finke, R.** *G. fin- cipks and Applications of Orgonotransition Metal Chemistry;* **Univer**ciples and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.

^{(2) (}a) Baird, **M.** *C. Chem. Rev.* **1988,88,1217. (b)** Trogler, **W.** C., Ed. *Organometallic Radical Process;* **Elsevier: Amsterdam, 1990.**