refined anisotropically. All calculations were carried out using the sHELX-76 program. For 2928 unique observed reflections [I $> 2\sigma(I)$] the final $R = 0.036$, $R_n = 0.042$, and GOF = 1.4. Full details of the structure determination are available as supplementary material. X-ray crystal data for 2e: Data collected at $22 °C$; $C_{30}H_{27}Co_2O_6P$, $fw = 632.38$, space group P_{21}/n , $a = 9.352$ **(2) A,** *b* = **20.174 (4) A, c** = **31.646 (5) A,** *V* = **5925.8 A8,** *2* = **8,** $D_c = 1.418$ g cm³, $F(000) = 2592$, λ (Mo Ka) = 0.71069 Å, μ (Mo $K\alpha$), = 12.1 cm⁻¹. Cell dimensions and intensities of 10 387 reflections $(2\theta_{\text{max}} = 50^{\circ})$ were measured. The structure was solved by the heavy-atom method, and **all** non-hydrogen atoms were refined anisotropically. All calculations were carried out using the SHELX-76 program. For 3168 unique observed reflections [I $> 2\sigma(I)$ the final $R = 0.052$, $R_{\rm w} = 0.048$, and GOR = 1.2. Only one of the two virtually identical independent molecules in the asymmetric unit is shown in the **ORTEP** diagram. **Only** the Co, P, and *0* atome were refined anisotropically; **all** the C atoms **were** refined isotropically. Full details of the structure determination are available **as** supplementary **material.**

Acknowledgment. We are grateful for support provided by the National Institutes of Health (Grant GM **34799)** and the Petroleum Research Fund, administered by the American Chemical Society. We thank Profs. **Sing** Fung and Fritz Schmitz for assistance with the spin saturation transfer and **NOE** experiments and Pressure Chemical Co. for a **gift** of cobalt carbonyl.

R48try No. 2a, 141610-084; *2b* (isomer **l), 1185786co;** *2b* (isomer **2), 118628345;** *2c* (isomer **l), 118576-65-1;** *2c* (isomer **2), 118628-35-6; 2d, 141527-15-3; 2e, 118576-66-2; 2f** (isomer 1), 141527-16-4; 2f (isomer 2), 141610-20-0; 2g (isomer 1), 118710-59-1; **2g** (isomer **2),118576-68-4; 2h, 118576-67-3; 21,141527-17-5;** *3a,* **141527-19-7;** *anti-3b,* **141527-21-1;** *syn3b,* **141610-10-8;** *anti-&,* **141527-23-3;** *sydk,* **141610-12-0;** *anti-a,* **141527-25-6;** *anti-%,* **141527-27-7;** *anti-31,* **141627-29-9;** *syn-31,* **141610-14-2;** *anti-Sg,* **141627-31-3;** *8yfl-&,* **141610-16-4;** *anti3h,* **141527-33-5;** *Si,* **141527-357;** *ab,* **141527-36-8; ab', 141610-17-5;** *k,* **141527-37-9;** $4c'$, 141610-18-6; 4d, 141527-39-1; 4e, 141527-40-4; 4g, 141527-38-0; **4&, 141610-19-7; ah, 141527-41-5.**

Supplementary Material Available: Tables of complete X-ray crystal data, refinement parameters, positional parameters, and bond lengths and angles for 4b and 2e (21 pages). Ordering information is given on any current mast

OM910764A

Lewis-Acid-Promoted Decarbonyiation of Coordinated Carbon Dioxide: Reactions of $(\eta^5\text{-}\text{MeC}_5\text{H}_4)_2\text{Nb}(\eta^2\text{-CO}_2)\text{CH}_2\text{SiMe}_3$ with **Lewis Acids**

Peng-fei Fu, Masood A. Khan, and Kenneth M. Nicholas'

oepertment of chennlstry and Biochmkby, The Universtty of oklehome, Not", *oklahome ⁷³⁰¹⁹*

Received January 13, 1992

The interaction of $Cp'_2Nb(\eta^2-CO_2)CH_2SiMe_3$ (1; $Cp' = \eta^5-MeC_5H_4$) with several Lewis acids has been studied and found to reault in facile decarbonylation of **1;** the **Nb-containing** products depend markedly on the Lewis acid partner. Reaction of 1 with LiPF₆ or BF₃.Et₂O causes both decarbonylation and deoxygenation, producing $[CP'_{2}Nb(F)CH_{2}SiMe_{8}]Z [Z = PF_{6}^{-}(3), BF_{4}^{-}(6)],$ which have been characterized spadroecopically and (for *3)* by X-ray diffraction; 3 is **also** produced in the reaction of the oxo derivative $Cp'_2Nb(O)CH_2SiMe_3$ (2) with LiPF₆ or BF₃-Et₂O. 1 reacts with ZnCl₂ first to form an adduct, $Cp'_2Nb(O)CH_2SiMe_3$ (2) with LiPF₆ or BF₃-Et₂O. 1 reacts with ZnCl₂ first to form an adduct, $Cp'_2Nb(OO)_2CH_2SiMe_3$. (CO) an adduct of $ZnCl_2$ with the oxo species 2, which has been characterized crystallographically; 8 is also produced
from 2 and $ZnCl_2$. Reaction of 1 with HgCl₂ rapidly produces an incompletely characterized product 10, which has been both decarbonylated and dealkylated. Although CdCl₂ does not react with 1 under comparable conditions, Me₃SiCl reacts rapidly with 1 to produce Cp'₂Nb(O)Cl (11), resulting from decarbonylation and dealkylation; the structure of **ll has** been established by X-ray diffraction.

Introduction

Expanding interest in **transition** metal-mediated chemical¹ and electrochemical² transformations of carbon dioxide **hae stimulated** efforts to elucidate the reactivity of

coordinated $CO₂$ ³ In this context, we reported recently the first example of photoinduced $CO₂$ disproportionation in the complex $Cp_2\hat{Mo}(\eta^2\text{-}CO_2)^4$ and its dark reactions with electrophilic agents⁵ and transition metal hydrides⁶ which

⁽¹⁾ Reviews: (a) Inoue, S.; Yamazaki, Y. Organic and Bio-organic
Chemistry of Carbon Dioxide; Kodansha Ltd.: Tokyo, 1982; Chapter 3.
(b) Eisenberg, R.; Hendrickson, D. E. Adv. Catal. 1979, 28, 79. (c)
Darensbourg, D.; Kuda 129; (d) Walther, D. Coord. Chem. Rev. 1987, 79, 135. (e) Kolomnikov,
I. S.; Lysyak, T. V. Russ. Chem. Rev. 1990, 59, 344. (f) Behr, A. Carbon
Dioxide Activation by Metal Complexes; VCH: Weinheim, FRG, 1988. **(2) Reviews: ref le.** *Catalytic Actiuation of Carbon Dioxide;* **ACS Sympoeium Seriee No. 363; Ayere, W. M., Ed.; American Chemical Scciety: Washington, DC, 1988, Chapters 5 and 6.**

^{(3) (}a) Harlow, R. L.; Kinney, J. B.; Hemkovitz, T. *J. Chem. SOC.,* Chem. Commun. 1980, 813. (b) Forschner, T.; Menard, K.; Cutler, A. R.
J. Chem. Soc., Chem. Commun. 1984, 121. (c) Giuseppetti, M. E.; Cutler, A. R. Organometallics 1987, 6, 970. (d) Gibson, D. H.; Ong, T. S. J. Am.
Chem. Soc. 1987, 109, 7191. (e) Senn, D. R.; Gladysz, J. A.; Emerson, K.;
Larsen, R. D. Inorg. Chem. 1987, 26, 2737. (f) Maher, J. M.; Lee, G. R.;
Co

A. *J. Chem. Soc., Dalton Trans.* 1978, 1398.

(4) Belmore, K. A.; Vanderpool, R. A.; Tsai, J.-C.; Khan, M. A.; Nicholas, K. M. *J. Am. Chem. Soc.* 1988, *110*, 2004.

(5) Tsai, J.-C.; Khan, M.; Nicholas, K. M. *Organometa*

Figure 1. ORTEP diagram for $[(MeCp)_2Nb(F)CH_2SiMe_3]PF_6$ (3, cation **only).**

ultimately produce cationic carbonyl complexes with formal transfer of oxide from coordinated $CO₂$ to the electrophilic agent.

We have **also** initiated studies **directed** toward modeling $CO₂$ insertion reactions into M-C bonds using $\text{Cr}'₂\text{Nb} (\eta^2$ -CO₂)CH₂SiMe₃ (1, Cp' = η^5 -MeC₅H₄), the only established example of a complex containing *both* $CO₂$ and alkyl ligands. Unexpectedly, **1** was found to undergo smooth *decarbonylation* rather than *insertion* when heated at *60* ^oC or irradiated at -20 °C, producing the new *oxo-alkyl* complex $Cp'_{2}Nb(O)CH_{2}SiMe_{3}$ (2) (eq 1).⁷ In continuing Co₂ insertion reactions into M-C bonds u
 $(\eta^2$ -CO₂)CH₂SiMe₃ (1, Cp' = η^5 -MeC₅H₄), the

lished example of a complex containing *both*

ligands. Unexpectedly, 1 was found to une

decarbonylation rather tha

$$
\text{Cp}'_2\text{Nb}(\eta^2-\text{CO}_2)\text{CH}_2\text{SiM}\text{e}_3 \xrightarrow{\Delta \text{ or } \hbar\nu}
$$

\n
$$
\text{Cp}'_2\text{Nb}(\text{O})\text{CH}_2\text{SiM}\text{e}_3 + \text{CO} \quad (1)
$$

efforts to promote migratory insertion reactions of 1, we have examined ita interaction with of a variety of Lewis acids, reagenta which have been shown previously to facilitate migratory insertions of alkyl metal *carbonyl* $(L_nM(CO)R)$ complexes.⁸

Results and Discussion

Reaction of $\text{Cp}'_2\text{Nb}(\text{CO}_2)\text{CH}_2\text{SiMe}_3$ **(1) with LiPF₆** and BF_3 ·OEt₂. The addition of excess LiPF₆ to a dichloromethane solution of $Cp'_2Nb(CO_2)CH_2SiMe_3$ (1) at room temperature causes a rapid color change from colorless to light yellow. The yellow microcrystalline product 3 was isolated **(75%** yield) by concentrating the reaction solution and cooling to **-10** "C. Compound **3 haa** been identified as the ionic complex $[Cp'_2Nb(F)CH_2SiMe_3]PF_6$ (eq 2); the fate of the CO₂-derived oxygen atom was not

Cp'₂Nb(η ²-CO₂)CH₂SiMe₃ + LiPF₆ \rightarrow

Cp'₂Nb(η ²-CO₂)CH₂SiMe₃ + LiPF₆ \rightarrow

$$
p'_2Nb(\eta^2-CO_2)CH_2SIMe_3 + LIPF_6 \rightarrow [Cp'_2Nb(F)CH_2SiMe_3]PF_6 + CO (2)
$$

determined. The 'H NMR spectrum of 3 shows singlets at **2.14** ppm, assigned **to** the methyl protons of the me-

thylcyclopentadienyl ligand, and at **3.55** and **0.14** ppm due to the methylene and methyl protons of the $CH₂SiMe₃$ group, respectively; the proton resonances of the methylcyclopentadienyl ring appear **as** multiplets at **6.65,6.59, 6.55,** and **6.48** ppm, indicating the absence of a vertical symmetry plane. The large downfield shift of the MeC₅H₄ and CH₂SiMe₃ resonances in 3 relative to 1 reflects the electron-deficient environment of the former. The FAB maas spectrum of 3 exhibited a prominent peak corresponding to the cationic $[Cp'_2Nb(\bar{F})CH_2SiMe_3]$ fragment. **An** X-ray crystal structure determination confirmed the assigned structure. The **ORTEP** diagram for 3 is shown in Figure 1; PF_6 ⁻ was disordered and hence is omitted for clarity. The basic pseudotetrahedral geometry of 3 is typical of Cp₂MXY complexes, with the observed bond lengths and *anglea* being unexceptional. To **our** knowledge, the structure of 3 provides the first crystallographically determined Cp2Nb-F bond length **(1.910 (2) A).** The $Nb-CH_2SiMe_3$ distance in 3 $(2.200 (4)$ Å) is slightly but **significantly** shorter than in the **oxo** derivative **2 (2.246 (4)** A^7) and the $ZnCl_2$ adduct of 2 (2.244 (3) \AA , vide infra).

Given the previously demonstrated tendency for 1 to decarbonylate upon heating⁷ and the O-centered attack of electrophiles on the isoelectronic Mo analogue, we suspected that the oxo-alkyl derivative $Cp'_2Nb(O)$ -CHzSiMe3 **(2)** or a Lewis acid adduct of **2** was an intermediate **in eq 2.** Indeed, the interaction of **2** with LiPF, under identical conditions **ala0** gives 3 **(62%),** supporting this hypothesis. Further insight into the reaction pathway was provided by monitoring the $1/LiPF_6$ reaction at -30-40 °C by ¹H NMR and IR. Under these conditions, the Cp'-H NMR absorptions of **1** at **5.11, 5.21,** and **5.98** ppm are replaced by a set of resonances at lower field $(6.44,$ **6.31, 6.25,** and **6.18** ppm), consistent with the formation of a l:LiPFs adduct **(4)** in which the electron density around the metal **is** reduced through the coordination of 1 to Li^+ or PF_5 (presumably through the oxygen(s) of the COz ligand). The **IR** spectrum of **4** (generated from 1 at **-40** OC) exhibited a prominent absorption at **1677** cm-', reduced significantly from ν (C=O) of 1, which suggests Li-O coordination of a μ -CO₂ ligand rather than a Nb-(CO)(OLi)+ species. The intermediate **4** is **only** stable at **-30** "C for **2** h, readily decomposing to 3 with liberation of carbon monoxide. The formation of free carbon monoxide in the reaction was confirmed during ¹³C NMR

⁽⁶⁾ Teai, J.4.; Khan, **M.; Nicholas,** *K. M. Organometallics 1991,10, 29.*

⁽⁸⁾ See, e.g.: Butts, S. B.; Straw, S. H.; Holt, E. M.; Sbn, R. E.; *Alcock,* N. **W.; Shriver,** D. **F.** *J. Am. Chem. SOC. 1980,102, a3.* tollman, J. P.; Finke, R. G.; Cawse, J. N.; Brauman, J. I. J. Am. Chem. Soc. 1978,
100, 4766. Martin, B. C.; Warner, K. E.; Norton, J. R. J. Am. Chem. Soc. 1978,
1986, 108, 33. Vaughn, G. D.; Krein, K. A.; Gladysz, J. A. Organometa 1986, 5, 936. Grimmett, D. L.; Labinger, J. A.; Bonfiglio, J. N.; Masuo, S. T.; Shearin, E.; Miller, J. S. Organometallics 1983, 2, 733. LaCroce, S. J.; Cutler, A. R. J. Am. Chem. Soc. 1982, 104, 2312. *(7)* Fu, P.-F.; Khan, M.; Nicholas, K. M. *Organometallics 1991, 10, 382.*

monitoring of the reaction of $Cp'_2Nb(^{13}CO_2)CH_2SiMe_3$ with LiPF₆ whereupon a prominent peak at 185 ppm $(^{13}CO)^9$ was observed. Significantly, intermediate **4** was not detectad during parallel 'H *NMR* monitoring of the reaction of α **zo** complex 3 with LiPF₆, further supporting the conclusion that **4** is an adduct of 1. The rapid conversion of metal-oxo compounds to metal halides by the action of **Lewis** acid halides **has** been observed previously.1° Thus, the reaction of 1 with $LIPF₆$ is believed to proceed by initial formation of adduct **4** (Scheme I), followed by decarbonylation to the oxo adduct **5** (undetected), which reacts further to give product 3.

The reaction of 1 with BF_3 ·OEt₂ in methylene chloride (carried out in an NMR tube) at room temperature was found to produce the analogous tetrafluoroborate salt $[Cp'_2Nb(\overline{F})CH_2SiMe_3]BF_4$ (6, eq 3). The ¹H NMR ve product 3.

on of 1 with $BF_3 \cdot OEt_2$ in methylene ch

in an NMR tube) at room temperature

duce the analogous tetrafluoroborat
 $H_2 \text{SiMe}_3 \xrightarrow{BF_3 \cdot OEt_2}$
 $CH_2 \text{SiMe}_3 \xrightarrow{-\text{CO}}$
 $O' \cdot \text{Nb(F)CH}_2 \text{SiMe}_3 \xrightarrow{BF_3 \cdot OEt_2}$

\n A system of the two adduct 5 (undetected), which reacts further to give product 3. The reaction of 1 with
$$
BF_3 \cdot OEt_2
$$
 in methylene chloride (carried out in an NMR tube) at room temperature was found to produce the analogous tetrafluoroborate salt $[Cp'_2Nb(F)CH_2SiMe_3]BF_4$ (6, eq 3). The ¹H NMR $Cp'_2Nb(CO_2)CH_2SiMe_3 \xrightarrow{-CO} COP_2$ (Cp' $_2Nb(F)CH_2SiMe_3]BF_4 \xleftarrow{BF_3 \cdot OEt_2} Cp'_2Nb(O)CH_2SiMe_3$ (3)\n

spectrum of **6** was identical to that of 3; the presence of the BF4- ion in **6** was **confiied** by ita *'eF NMR* **spectrum,** which exhibited a characteristic peak at -147 ppm.¹¹ The interaction of 3 with BF_3 -OEt₂ in CH_2Cl_2 also was found to produce **6** at room temperature.

Reaction of 1 with ZnCl₂. The reaction of 1 with a suspension of anhydrous $ZnCl₂$ in dichloromethane at room temperature resulted in the formation of a pale yellow **1:l** adduct **7** which was isolated by rapid precipitation with hexane (Scheme 11). The indicated **1:l** composition for **7** was supported by elemental analysis, although the instability of **7** (vide infra) prevented acquisition of completely satisfactory microanalytical data. The infrared **spectrum** of **7** exhibits a *c=O* stretching absorption **(1609** cm-l) of significanty reduced energy relative to the **starting** $CO₂$ complex 1 (1709 cm⁻¹). The presence of the $CO₂$ moiety in the adduct **7** was further verified by comparison of ita **IR** spectum with the corresponding product from $\rm Cp'_2Nb(^{13}\rm CO_2)CH_2SiMe_3$ and $\rm ZnCl_2$. The ¹³C-labeled product **7* shows** the appropriate isotopic red shift of the M40z **atretching** absorption from **1609** to **1563** cm-'. The **'H** and 13C *NMR* spectra of **7** are very similar to those of 1 except that the resonances of the MeCp ligands are

Figure 2. ORTEP diagram for $[(MeCp)_2Nb(CH_2SiMe_3)O\cdot ZnCl_2]_2$ **(8).**

shifted slightly downfield. Three potential binding sites for the ZnCl₂ in adduct 7 should be considered: the oxygen(s) of the $CO₂$ ligand, the niobium, and the MeCp π electron system. Although this issue could best be addressed by an X-ray structure determination, efforts to obtain cryatah of **7** always resulted in decomposition (vide infra). The substantial IR shift in $\nu(M-CO_2)$ in going from 1 to **7,** the modest NMR chemical shift differences, and the formally d^0 nature of 1^{12} are most consistent with interaction of $ZnCl₂$ with the oxygen(s) of the $CO₂$ ligand. This conclusion **also** best accounts for the subsequent chemistry observed for **7** (vide infra) and more generally for the reactions of 1 with other Lewis acids which also result in decarbonylation. Product **7** thus may be added to the growing number of bimetallic μ -CO₂ complexes.^{3b-e,13} Additionally, a ZnBr₂ adduct $(\mu_2$ -O,O) of a cluster μ_3 -CO₂ complex has been reported by Caulton and co-workers recently. 14

Complex **7** was found to be unstable in solution, gradually decomposing to a new compound **8** (90% yield) with loss of CO. The latter was determined by 13C NMR monitoring of the transformation of 7^* (* = $^{13}CO_2$) to 8 which was accompanied by the appearance of the resonance for 13C0 at **185** ppm. The decarbonylated product **8,** which **also** *can* be prepared independently in high yield

⁽⁹⁾ Bradley, J. C.; Millar, J. M.; Hill, E. W. *J. Am. Chem. SOC.* **1991, 113,4016. The chemical shift of carbon monoxide was independently**

checked using enriched ¹³CO in CDCl₃.
(10) Levason, W.; Ogden, J. S.; Rest, A. J.; Turff, T. W. *J. Chem. Soc.*,
Dalton Trans. 1982, 1877. Lappert, M. F.; Prokai, B. J. Chem. Soc. A **1967,129.**

NMR Chemical Shifts; **Wiley-Interscience: New York, 1970. (11) Dungan, C. H.; Van Wazer, J. R.** *Compilation* **of** *Reported '@F-*

⁽¹²⁾ The Nb(V, d^0) formulaton considers the CO_2 ligand as CO_2^2 ⁻. The fact that 1 is colorless, relatively air stable, and has a long n^2 -C-O bond **length18 supporta** this **formulation; recent electrochemical studies, how**ever, have found that 1 undergoes irreversible electrochemical oxidation with CO₂ evolution (Nicholas, K. M.; DuBois, D. Unpublished results, **1991).**

⁽¹³⁾ Fachinetti, G.; Floriani, C.; Zanassi, P. F. J. Am. Chem. Soc. 1978, 100, 7405. Audett, J. D.; Collins, T. J.; Santarsiero, B. D.; Spies, G. H.
J. Am. Chem. Soc. 1982, 104, 7352. Tso, C. T.; Cutler, A. R. J. Am. Chem. *SOC.* **1986,108,6069. Pilato, R. S.; Housmekerides, C. E.; Jemakoff, P.; Rubin, D.; Geoffroy, G. L.; Rheingold, A. L.** *Organometallics* **1990, 9, 2333. Vites, J. C.; Steffey, B. D.; Giuseppetti-Dery, M. E.; Cutler, A. R.** Organometallics 1991, 10 , 2827. Steffey, B. D.; Vites, J. C.; Cutler, A. R. Organometallics 1991, 10 , 3432. Lee, G. R.; Cooper, N. J. Organometallics 1985, 4, 794; 1985, 4, 1467. Gibson, D. H.; Ong, T.-S.; Ye, M. Orga **1363.**

⁽¹⁴⁾ Lundquist, E. G.; Huffman, J. C.; Folting, K.; Mann, B. E.; Caulton, K. G. *Znorg. Chem.* **1990,29,128.**

from $Cp'_2Nb(0)CH_2SiMe_3$ (3) and $ZnCl_2$, shows little difference from **2** in its **IR, 'H** NMR, and 13C NMR spectra; the Nb=O stretching frequency exhibits a small **red** *shift* from **837** *cm-'* in **2** to **828** *cm-'* in *8;* **all** the proton resonances in the 'H NMR spectrum of **8** shift slightly downfield $(\Delta \delta = 0.1 - 0.5$ ppm) compared to that of 2. The structure of **8** was established by X-ray diffraction **(Figure** 2) and consists of a centrosymmetric dimeric structure with a Zn_2Cl_4 unit bridging two $\text{Cp}'_2\text{Nb}(\text{O})\text{R}$ fragments through a Nb-&Zn linkage. Complex **8** constitutes one of the few structurally characterized Lewis acid adducta of a metal-oxo compound,¹⁵ and hence, a few features should be noted. Coordination of **Zn** to the Nb-0 unit causes a slight elongation **(0.05 A)** of the Nb-0 bond compared to that in **2** and no significant change in the **Nb-C(l)** length or the **O-Nb-C(l)** angle. The **Nb-0-Zn** linkage is decidedly bent but **within the** range observed in the few previous structures **(158-175').**

Reactions of 1 with $HgCl₂$ and $Me₃SiCl$. Treatment of 1 with HgCl₂ in dichloromethane or diethyl ether at room temperature produces a red precipitate immediately which *can* be **isolated** by fitration and purified by slow crystallization from acetone/hexane. The product is not soluble in toluene, THF', hexane, or halogenated solvents. The ¹H NMR spectrum of 10 in acetone- d_6 exhibits a group of **peaks aaaigned** to **the** protons of the MeCp group in the region **6.14.5** ppm, **which are** slightly downfield from thoee of the Cp'2NbR(0)*nZnC12 adducta **8** and **9,** but no resonances associated with the CH₂SiMe₃ group were present. Elemental **analysis suggested** an approrimate composition of $Cp_2'Cl_8Hg_2NbO$. Suitable crystals of 10 were obtained for X-ray **diffraction** after a long crystallization perid **(ca. 1** month), but final determination of the crystal structure was complicated by an apparent disorder problem. Nonetheless, the presence of $Cp_2Nb(Cl)$ -O units were clearly present, indicating that 10 is chemically and structurally **related** to **the oxo** adducts **8** and **9** formed with ZnCl₂, minus the CH₂SiMe₃ unit. We presume that HgCl₂, acting as the other Lewis acids, first binds to the $CO₂$ ligand, inducing decarbonylation, followed by electrophilic cleavage of the $Nb-CH_2SiMe_3$ bond, a well-precedented reaction of metal alkyls with HgX_2 .¹⁶

Given the facile reactions of $CO₂$ complex 1 with the acids $ZnCl₂$ and $HgCl₂$, we were suprised to find that no reaction *occurred* when 1 was stirred with a suspension of $CdCl₂$ in $CH₂Cl₂$ at room temperature for 2 days. We have no convincing explanation for these differences in reactivity but suspect that it may, in part, reflect differences in the limited solubilities of the three **salts** in the solvents employed.

Finally, the reaction of 1 with $Me₃SiCl$ was found to proceed rapidly, even at -80 °C. The toluene-soluble, Nb -containing product proved to be $Cp_2'Nb(O)Cl$ (11, eq. **4),** which was **isolated** in **52%** yield; no intermediate no convincing explanation for these differences in reactivity
out suspect that it may, in part, reflect differences in the
imited solubilities of the three salts in the solvents em-
ployed.
Finally, the reaction of 1 with

$$
Cp'_{2}Nb(\eta^{2}-CO_{2})CH_{2}SiMe_{3} \xrightarrow{Me_{9}SiCl} Cp'_{2}Nb(O)Cl + CO
$$

11 (4)

species could be detected by *NMR* monitoring at -80 "C in THF- d_8 . The identity of 11 was established by com-

Figure 3. ORTEP diagram for $(MeCp)_2Nb(O)Cl(11)$.

parison of its spectroscopic properties with thoee reported previouely," and ita structure (Figure **3)** was determined by X-ray diffraction for comparison with the **related** compounds 1,2,3,8, and **9.** The structure of 11 is unexceptional, with the observed bond lengths and angles being typical of those found in other Cp_2NbXY derivatives. However, it is interesting to note that the Nb-0 distance in 11 **(1.738 (5) A)** is identical to that in the oxo-alkyl derivative **2 (1.741 (3) A)** but somewhat shorter than that found in the $ZnCl₂$ adduct 8 (1.790 (5) Å). The Si-containing byproduct(s) formed in the reaction was not identified. The reaction of 1 with $Me₃SiCl$ thus induces both decarbonylation and dealkylation **as** was the *caw* for the reaction of 1 with $HgCl₂$.

In summary, the reaction of $Cp_2Nb(\eta^2-CO_2)CH_2SiMe_3$ $(1; Cp' = MeC_5H_4)$ with several Lewis acids results in its facile decarbonylation. With most of the acids tested, reactions proceeded rapidly at or below room temperature. This should be contrasted with the pure thermal decarbonylation of 1 which requires several hours in refluxing THF.' The Nb-containing products depend markedly on the Lewis acid partner. With LiPF_6 or $\text{BF}_3\text{-Et}_2\text{O}$, both decarbonylation and deoxygenation result to produce $[CP'_{2}Nb(F)CH_{2}SiMe_{3}]Z$ (2; $\bar{Z} = PF_{6}$, BF_{4}). Complex 1 reacts with $ZnCl₂$ first to form an adduct $Cp'₂Nb(CO₂)$ - $CH₂SiMe₃·ZnCl₂$ (7) which appears to have a novel μ -CO₂ unit bridging Nb and **Zn.** Complex **7** decomposes with CO loss to form $[Cp'_2Nb(CH_2SiMe_3)O·ZnCl_2]_2^2$ (8), a novel adduct of an **oxo** compound and the **Lewis** acid. Reaction of 1 with HgCl₂ rapidly produces an incompletely characterized product **9** which is both decarbonylated and dealkylated. Although $CdCl₂$ does not react with 1 under comparable conditions, Me₃SiCl reacts rapidly with 1 to produce $Cp'_2Nb(O)Cl$ (10), resulting from decarbonylation and dealkylation.

Generally, these reactions appear to proceed via initial interaction of the Lewis acid with the oxygen(s) of the ligated $CO₂$. This feature indicates a nucleophilic character

⁽¹⁵⁾ Stravropoulos, T.; Edwards, P. G.; Wilkinson, G.; Montevalli, M.; Malik, K. M. A.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1985, 2167. Hess, H.; Hartung, H. Z. Anorg. Allg. Chem. 1966, 344, 157. Matthew, M.; Ca **3197.**

⁽¹⁶⁾ Diecuesion and lead references: Collman, J. P.; Hegedue, L. S.; Norton, J. R.; Fmke, R. *G. Principles* **and** *Applications of Organo-metallic Chemistry;* **University Science Books: Mill Valley, CA, 1987; Chapter 8.1.**

⁽¹⁷⁾ Broussier, R.; Normand, H.; Gautheron, B. *J. Organometal. Chem.* **1978,155,347.**

 ${}^{\circ}R = \sum ||F_{\circ}|-|F_{\circ}||/\sum |F_{\circ}|$. ${}^{\circ}R_{\bullet} = [\sum w(|F_{\circ}|-|F_{\circ}|)^2/\sum wF_{\circ}^2]^{1/2}$. ${}^{\circ}GOF = [\sum w(|F_{\circ}|-|F_{\circ}|)^2/(m-n)]^{1/2}$.

for coordinated C02 in **1 as has** been observed in the chemistry of the isoelectronic and isolobal η^2 -CO₂ complex $\text{Cp}_2\text{Mo}(\text{CO}_2)^5$ and some η^1 -complexes.³ Although most of these reactions ultimately result in $CO₂$ splitting, reactions of electrophiles with the Mo complex proceed with *0* transfer to the electrophile and binding of CO to the metal, whereas the corresponding reactions with Nb derivative **1** result in dissociation of CO and retention of the Nb-0 linkage, consistent with the greater oxophilicity of the earlier metal niobium. The reluctance of **1** to undergo migratory insertion probably reflects both the energetic accessibility of the decarbonylation pathways (forming a strong Nb-0 bond) and the relatively strong Nb- $CH₂Sime₃$ bond.¹⁸ We are presently evaluating the importance of the latter factor in a study of a series of $\text{Cp}'_2\text{Nb}(\eta^2\text{-CO}_2)R$ compounds in which the alkyl group is systematically varied.

Experimental Section

Oeneral Methods. All reactions were performed under a *dry* oxygen-free **nitrogen** *or* **carbon** dioxide abcephere *uaiag* standard *Schlenk* and vacuum line techniques. Glassware **was** oven-dried at 120 °C overnight prior to use. Solvents were purified and dried **by refluxing** *over drying* **agents** for **2** h prior to dietjllation **(hexane,** ether, THF, and toluene were distilled from sodium/benzophenone; dichloromethane was distilled from **calcium** hydride). phenone; dichloromethane was distilled from calcium hydride).
The Lewis acids LiPF₆, BF₃-OEt₂, ZnCl₂, HgCl₂, and ClSiMe₃ were
obtained commercially. Cp⁷2Nb(7²-CO₂)CH₂SiMe₃ (1) was preprepared by using a ¹³CO₂ atmosphere (99.5% pure, from ICON Services Inc.) during the final step in preparing 1.

NMR spectra were recorded **on a** Varian **XL-300** FT-NMR spectrometer; 'H NMR spectra are referenced relative to **TMS** and **'BF** *NMR* spectra relative to CFsCL **lR spectra** were recorded **on** a Bio-rad ET-IR spectrometer. Maee (FAB) spectra were recorded on a VG ZAB-E or Kratos HRMS-25 mass spectrometer.

Reaction of $\text{Cp}'_2\text{Nb}(\eta^2\text{-}CO_2)\text{CH}_2\text{SiMe}_3$ **(1) with LiPF₆:** added **as** a solid to a stirred dichloromethane **(10 mL)** solution of **1** (38 *mg,* **0.10** "01) at room temperature. **The** reaction was completed in **5 min as** indicated by a color change from colorleas to light yellow. Filtration, concentration of the fiitrate to **6 mL,** and addition of **3 mL of** hexane gave yellow cryatale of 3 **(76%** baaed **on 1)** upon **cooling** at **-10** "C. **IR** (KBr pellet, *cm-') Y* **3127** (m), **2962 (m),** 2934 (m), **1496 (e), 1456 (a), 1382 (a), 1260 (a), 894** $[CP'_3Nb(F)CH_2SiMe_3]PF_6$ (3). Excess $LiPF_6$ (ca. 0.3 mmol) was

Table 11. Atomic Coordinates for the Non-Hydrogen Atoms

of 3									
atom	x	у	z						
Nb(1)	0.38140(3)	$-0.10375(3)$	0.62908(2)						
P(1)	0.41539(12)	$-0.02642(13)$	0.34291(6)						
Si(1)	0.68007(12)	0.03528(14)	0.56710(6)						
F(7)	0.4335(2)	0.0469(2)	0.6764(1)						
F(1)	0.5332(4)	$-0.0163(4)$	0.3940(2)						
F(2)	0.3016(4)	$-0.0473(4)$	0.2892(2)						
$\Gamma(3)$	0.3614(6)	$-0.1451(6)$	0.3860(3)						
F(4)	0.5079(5)	$-0.1315(6)$	0.3031(3)						
F(5)	0.4671(7)	0.0843(6)	0.3001(3)						
F(6)	0.3414(7)	0.0719(7)	0.3853(4)						
F(3')	0.2734(7)	$-0.0347(8)$	0.3856(4)						
F(4')	0.4329(9)	$-0.1705(9)$	0.3423(6)						
F(5')	0.5443(8)	$-0.0012(9)$	0.3035(5)						
F(6')	0.3883(8)	0.1230(6)	0.3409(5)						
C(1)	0.5485(4)	$-0.1037(4)$	0.5568(2)						
C(2)	0.7643(5)	0.0373(5)	0.6461(3)						
C(3)	0.8178(5)	0.0028(6)	0.5060(3)						
C(4)	0.5988(6)	0.1941(5)	0.5503(3)						
C(11)	0.1903(4)	0.0518(4)	0.6059(2)						
C(12)	0.1333(3)	$-0.0677(4)$	0.6265(2)						
C(13)	0.1618(4)	$-0.1622(5)$	0.5803(3)						
C(14)	0.2424(4)	$-0.1062(5)$	0.5329(2)						
C(15)	0.2622(4)	0.0247(4)	0.5483(2)						
C(16)	0.1790(5)	0.1798(5)	0.6369(3)						
C(21)	0.4666(4)	$-0.1969(4)$	0.7300(2)						
C(22)	0.5521(4)	$-0.2448(4)$	0.6814(2)						
C(23)	0.4701(4)	$-0.3213(4)$	0.6400(2)						
C(24)	0.3343(4)	$-0.3211(4)$	0.6638(3)						
C(25)	0.3288(4)	$-0.2410(4)$	0.7174(2)						
C(26)	0.5112(6)	$-0.1144(5)$	0.7840(3)						

(m), **832 (w), 741 (a), 568 (e);** 'H *NMR* **(300** *MHz,* CDCld **6 6.65** (m, **2** H, Cp), **6.59** (m, **2** H, Cp), **6.66** (m, **2** H, Cp), **6.48** (m, **2** H, Cp), **3.56** *(8,* **2** H, CHfii), **2.17** (d, **6** H, CHgCp), **0.14 (e, 9** H, Si(CHJs); **'9** *NMR* (CDCls) *6* **72.6** (d, *J~F* = **709** *Hz);* **MS** (FAB) **m/e (rel intensity) 357.2 (M⁺ - PF₆, 80), 338.2 (M⁺ - F - PF₆, 80), 338.2 (M⁺ - F - PF₆,** *m/e* (rei intensity) 357.2 (M⁺ - PF₆, 80), 338.2 (M⁺ - F⁻ PF₆, 14), 270.1 (M⁺ - CH₂SiMe₃ - PF₆, 12), 250.1 (M⁺ - F - CH₂SiMe₃ - PF6, **19).**

The reaction of 1 with $LIPF_6$ was monitored by ¹H NMR. A solution of **1 (5.0** *mg,* **0.013** mmol) in **0.60 mL** of CDCl, was added to a 5-mm NMR tube and the solution cooled to -30 °C. After the addition of approximately 1 equiv of LiPF₆, the ¹H NMR **spectnun of the mixture** waa recorded. 'H *NMR* **(300** *MHz,* CDC& at **-30** "C for intermediate **4)** *6* **6.44** (m, **2** H, Cp), **6.31** (m, **2** H, Cp), **6.25** (m, **2** H, Cp), **6.18** (m, **2** H, Cp), **2.48 (e, 2** H, CH2Si), 2.21 **(s, 6 H, CH₃Cp), 0.10 (s, 9 H, Si**(CH₃)₃). Compound **4 was** largely converted to salt 3 within minutes above -30 °C

Reaction of Cp'₂Nb(O)CH₂SiMe₈ (2) with LiPF₆. To a stirred solution of 2 (35 mg, 0.10 mmol) in 10 mL of CH₂Cl₂ was added an excess of solid LiPF₆. After the solution was stirred

⁽¹⁸⁾ Review on M-C bond strengths: Martinho Simoes, J. A.; Beau-**(19)** Brietow, **G. S.; Hitchcock,** P. B.; **Lappert, M. F.** *J. Chem. Soc.,* **champ, J. L. Chem.** *Reu.* **1990,90,629.**

Chem. Commun. **1981,1146.**

Table 111. Atomic Coordinates for the Non-Hydrogen Atoms **of 8**

гътошно от С									
atom	x	У	z						
Nb(1)	0.26850(2)	0.84433(2)	0.77401(2)						
$\mathbf{Zn}(1)$	0.49030(4)	1.03245(4)	0.86566(3)						
Cl(1)	0.31772(8)	1.15116(9)	1.01355(7)						
Cl(2)	0.57636(12)	1.18082 (12)	0.76515(10)						
$\operatorname{Si}(1)$	0.64956(9)	0.60347(9)	0.66755(7)						
0(1)	0.3937(2)	0.9319(2)	0.7965(2)						
C(1)	0.4325(3)	0.6673(3)	0.6644(2)						
C(2)	0.7419(4)	0.4656(4)	0.5600(3)						
C(3)	0.7412(3)	0.5056(4)	0.8021(3)						
C(4)	0.6989(4)	0.7650(4)	0.6286(3)						
C(11)	0.1931(3)	0.6465(3)	0.8732(3)						
C(12)	0.3547(3)	0.5999(3)	0.8910(3)						
C(13)	0.3686(3)	0.7046(3)	0.9524(2)						
C(14)	0.2203(4)	0.8194(3)	0.9709(3)						
C(15)	0.1097(3)	0.7833 (3)	0.9237(3)						
C(16)	0.1263(4)	0.5611(4)	0.8177(4)						
C(21)	0.1268(3)	1.0999(3)	0.6694(3)						
C(22)	0.0189(3)	1.0662(3)	0.7394(3)						
C(23)	0.0028(3)	0.9457(3)	0.6986(3)						
C(24)	0.1071(4)	0.8967(3)	0.6102(3)						
C(25)	0.1870(4)	0.9904(3)	0.5917(3)						
C(26)	0.1739(4)	1.2233(3)	0.6798(3)						

Table IV. Atomic Coordinates for the Non-Hydrogen Atoms **of 11**

for 5 min, the color of the mixture had changed from colorless to light yellow. Filtration, concentration of the fitrate to *5* **mL,** and cooling to -10 °C gave yellow crystals of 3 (62% based on 1).

Reaction of $\text{Cp}'_2\text{Nb}(\eta^2\text{-CO}_2)\text{CH}_2\text{SiMe}_3$ (1) with $\text{BF}_3\text{-OEt}_2$: [Cpt2Nb(F)CE2SiMealBF4 **(6).** To a 0.5-mL solution of 1 *(5.0* mg, 0.013 mmol) in CDCl₃ was added 1.6 μ L (0.013 mmol) of BF_3 . OEt₂ at room temperature. The solution turned light yellow immediately upon shaking. The ¹H NMR and ¹⁹F NMR spectra were then recorded, displaying a set of new resonances assigned to $[CD'_{2}Nb(F)CH_{2}Sime_{3}]BF_{4}$ (6). ¹H NMR (300 MHz, CDCl₃) & 6.65 (m, 2 H, Cp), 6.59 (m, 2 H, Cp), 6.55 (m, 2 H, Cp), 6.48 (m, 2 H, Cp), 3.55 *(8,* 2 H, CHzSi), 2.17 (d, 6 H, CH3Cp), 0.14 *(8,* 9 H, Si(CH₃)₃); ¹⁹F *NMR* (CDCl₃, relative to CF₃Cl) δ -147 (BF₄⁻);

MS (FAB) m/e (rel intensity) 357.0 (M⁺ - BF₄, 79), 339.0 (M⁺ $-$ BF₄ - CH₃, 6), 270.0 (M⁺ - BF₄ - CH₂Si(CH₃)₃, 64), 250.0 (M⁺ - BF₄ - F - CH₂Si(CH₃)₃).

Reaction of $\overline{Cp'_2Nb(\overline{O})CH_2SiMe_3}$ (2) with BF₃·OEt₂. To a 0.5-mL solution of 1 (5.0 mg, 0.013 mmol) in CDCl₃ was added 1.8 μ L (0.014 mmol) of BF_s-OE^t_o at room temperature; the solution turned light yellow immediately. The ¹H NMR and ¹⁹F NMR **spectra were then** recorded, displaying identical **sets** of reaonancea (for 6) to those produced in the reaction of 1 with $BF₃$ ^{-OEt₂.}

Reaction of 1 with ZnC12: **Cp'2Nb(C02)CH2SiMea*ZnClz (7).** To a solution of 1 (38.2 mg, 0.10 mmol) in 10 mL of dichloromethane was added ZnCl₂ solid (13.6 mg, 0.10 mmol). The mixture was stirred for 10 min and then fiitered. Addition of hexane to the fiitrate at -78 OC precipitated the adduct **7 as** a **(e),** 1715 **(a),** 1609 (vs), 1493 (w), 1466 (m), 1457 (m), 1389 (w), 1258 **(va),** 1246 (m), 1133 **(a),** 1045 **(m),** 848 **(81,** 826 **(va); lR** (for 2877 (w), 1664 (m), 1563 **(w),** 1495 (w), 1458 (w), 1382 (w), 1246 **(s),** 1234 **(a),** 1046 (m), 849 **(va),** 826 **(va);** 'H NMR (300 MHz, CDCl₃) δ 6.51 (m, 2 H, Cp), 6.12 (m, 2 H, Cp), 5.43 (m, 2 H, Cp), 5.42 (m, 2 H, Cp), 2.17 (s, 2 H, CH₂Si), 1.62 (s, 6 H, CH₃Cp), 0.15 (s, 9 H, Si(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.6, 120.8, 116.2, **107.6,98.9,95.8,31.9,14.5,4.5; MS** (FAB) *m/e* **(rel** intamity) **490.0** (M+ - co, as), *4s.o* (M+ - co - ci, 7.21,m.o (M+ - co - zncb $\begin{array}{c}\n\text{Im } -\text{CO}, 8.9, 400.0 \text{ (M}^{\circ} - \text{CO} - \text{Cl}, 7.2), 306.0 \text{ (M}^{\circ} - \text{CO} - \text{ZnCl}_2, \\
58), 339 \text{ (M}^{\circ} - \text{CO} - \text{ZnCl}_2 - \text{CH}_3, 100), 338 \text{ (M}^{\circ} - \text{CO}_2 - \text{ZnCl}_2,\n\end{array}$ 84). AnaL Calcd (Found): C, 39.4 (40.0); H, 4.8 (5.1). Attempts to obtain X-ray quality crystals of **7** by slow diffusion or evaporation from various solvents resulted in gradual decarbonylation to **8 (90%).** white solid (58%). IR (CDCl₃, cm⁻¹) ν 3100 (w), 2927 (vs), 2853 Cp'₂Nb(¹³CO₂)CH₂SiMe₃·ZnCl₂, CDCl₃, cm⁻¹) *v* 3105 (w), 2952 (s),

Reaction of 3 with ZnCl₂: [Cp'₂Nb(O)CH₂SiMe₃.ZnCl₂]₂ **(8).** *Oxo* complex 3 (35 mg, 0.10 mmol) was dissolved in 10 mL of dichloromethane, and to the stirred solution at room tem**perature was added ZnCl₂** (14 mg, 0.10 mmol); the solution became light yellow **within** 2 **min.** Aftar **stirring** for **an** additional 10 **min,** the mixture was filtered, the filtrate was concentrated to *6* **mL,** and 3 **mL** of hexane **was** added. Cooling of the mixture to -10 *"C* gave light yellow crystals of **8** (90%). **lR** (KBr, *cm-') v* 3101 (m), 2949 (m), 2892 (w), 1502 **(m),** 1454 **(m),** 1407 (w), 1379 (w), 1243 (8),1032 (w), 931 (m), *855* **(81,828 (va),** 750 (w), 716 (m), 677 (m), 612 (m); 'H NMR (300 MHz, CDC13) & 6.16 (m, 2 H, Cp), 6.12 (m, 2 H, Cp), 5.95 (m, 2 H, Cp), 5.84 (m, 2 H, Cp), 1.20 *(8,* 2 H, CH₂Si), 2.20 (s, 6 H, CH₃Cp), 0.11 (s, 9 H, Si(CH₃)₃); ¹³C *NMR* (FAB) m/e (rel intensity) 807 (M⁺ - 2Cp - CH₃, 6.1), 490.0 (M⁺ $\rm Cp'_2Nb(O)CH_2SiMe_3:ZnCl_2$, 19.5), 452.9 ($\rm M^+$ – $\rm Cp'_2Nb(O)$ - C_{P2}^{C} Ch₂SiMe₃:ZnCl₂ - Cl₃ 19.6), 452.9 (M⁺ - Cp⁻₂Nb(O)-
CH₂SiMe₃:ZnCl₂ - Cl₃ 19.6), 418.0 (M⁺ - Cp⁻₂Nb(O)-CH₂SiMe₃:ZnCl₂ - Cl, 19.6), 418.0 (M⁺ - Cp⁻₂Nb(O)-
CH₂SiMe₃:ZnCl₂ - 2Cl, 12.3), 355 (M⁺ - Cp⁻₂Nb(O)-CH₂SIMe₃:ZnCl₂ - ZCl, 12.3), 355 (M⁻ - Cp⁻₂Nb(O)-
CH₂SiMe₃:ZnCl₂ - ZnCl₂, 19.0), 339 (M⁺ - Cp⁻₂Nb(O) CH₂SIMe₃:ZnCl₂ - ZnCl₂, 19.0), 339 (M¹ - Cp⁷₂Nb(O)-
CH₂SiMe₃:ZnCl₂ - ZnCl₂ - Me, 72.2%). Single diamondlike crystale of **8** for X-ray **analpis** were obtained from hexane/dichloromethane at -10 °C. (75 MHz, CDCl3) & 117.7, **112.0,110.5,109.9,31.0,16.5,3.9;** MS

Reaction of 1 with HgCl₂. Addition of HgCl₂ (27.2 mg, 0.10) mmol) to a stirred diethyl ether solution (10 mL) of 1 (38.2 mg, 0.10 mmol) resulted in the formation of an orange precipitate 10 within a few minutes, which was collected by fiitration, washed with THF, and dried in vacuo **(60** mg). **lR** (KBr, cm-') *v* 3095 (m), *2930* (w), 1492 **(e),** 1451 (m), 1500 **(81,** 1255 (m), 1028 (2), 853 (vs), 743 (vs), 676 (s), 584 (m); ¹H NMR (300 MHz, acetone-d₆)

Table V. Selected Bond Dirtances **(A)** and **Angles** (de& **for 3,s.** and **11**

				11	
$MeCp(1)-Nb$ $MeCp(2)-Nb$ Nb-F $Nb-C(1)$	2.110(3) 2.106(4) 1.910(2) 2.199(4)	$MeCp(1)-Nb$ $MeCp(2)-Nb$ $Nb-0$ $Nb-C(1)$ $Zn(1)-O(1)$ $Zn(1) - Cl(1)$	2.149(3) 2.163(3) 1.802(2) 2.243(3) 1.908(2) 2.369(1)	$MeCp(1)-Nb$ $MeCp(2)-Nb$ $Nb-0$ $Nb-Cl$	2.177(2) 2.176(3) 1.732(1) 2.431(1)
MeCp-Nb-MeCp $F-Nb-C(1)$	132.0(2) 99.8(1)	$Zn(1) - Cl(2)$ MeCp-Nb-MeCp $O(1) - Nb - C(1)$ $Zn(1)-O(1)-Nb$ $O(1) - Zn(1) - Cl(1)$ $O(1) - Zn(1) - Cl(2)$	2.187(1) 129.7(1) 98.5(1) 161.3(1) 105.9(1) 120.0(1)	MeCp-Nb-MeCp O-Nb-Cl	129.1(1) 99.6(1)

6 6.42 (m, **2** H, Cp), **6.25** (m, **2** H, Cp), **6.18 (m, 2** H, Cp), **6.11** (m, **2** H, Cp), **2.12** *(8,* **6** H, CpCH3). Anal. Calcd (found) for Single crystals of **10** for X-ray analysis were obtained from acetone/hexane at -10 °C after several weeks. C12Hi&Hg2NbO: C, **15.1 (14.4);** H, **1.5 (1.5);** Hg, **42.1 (42.2).**

Reaction of 1 with Me₃SiCI: Cp₃Nb(Cl)O (11). To a stirred dichloromethane solution of 1 (38.2 mg, 0.10 mmol) was added CISiMe₃ (10.8 mg, 0.10 mmol); the solution became yellow immediately. After the **mixture** was *stirred* for **30 min,** the solvent was removed at reduced pressure. Trituration of the residue with toluene, followed by cooling of the toluene extracts at -10 °C, gave toluene, followed **by cooling** of the toluene *extracts* at **-10** OC, gave yellow **cryetala** of Cp'2Nb(C1)0 **(52%) (11). IR** (KBr, mi') *v* **³⁰⁷⁵** (w), **2922** (w), **1505 (a), 1453 (a), 1359** (m), **1220 (a), 1088** (m), **1023 (vs), 777** (m), *853* **(a), 816 (w), 617** (m); 'H **NMR (300** *MHz,* CDCU 6 **6.08** (m, **4** H, Cp), **5.99** (m, **2** H, Cp), **5.96** (m, **2** H, Cp), **2.19** *(8,* 6 H, Cp); MS (EI, 12 eV, DIP) m/e 301.9 (M⁺, 24.4), 265.9 (M⁺ - Cl, 27.7), 223.8 (M⁺ - MeCp, 100). These data are in agreement with those reported previously.¹⁷
X-ray Structure Determinations of 3, 8, and 11. Sin

reduced temperature **as** described above. The crystal data for all three compounds were measured on an Enraf-Nonius CAD-4 diffractometer using monochromated Mo Ka radiation $(\lambda =$ 0.71069 Å). The data were corrected for Lorentz and polarization

effects No absorption corrections **was** applied **since** it was **judged** to be insignificant in **all** three *cases.* The atomic **scattering** factors raphy, and the structures were solved and refined anisotropically
by the full-matrix least-squares method (SHELX-76). For 3, four of the six fluorine atoms of the PF₆⁻ ion were disordered and each of them was refiied with **60%** and **40%** occupancy at **two** sites. A summary of the crystal and data collection parameters is provided in Table I, positional parameters are given in Tables II-IV, and bond distances and angles are given in Table V.

Acknowledgment. We are grateful for support provided by the U.S. Department of Energy, Basic Energy Sciences, Chemistry Division (89ER **13997).** K.M.N. **also** acknowledges an AWU Faculty Fellowship supporting a sabbatical stay at the National Renewable Energy Laboratory where (in part) this paper was written.

Supplementary Material Available: Tables of thermal parameters and complete listings of interatomic distances and angles for **3,8,** and **11 (14** pages). Ordering information is given on any current masthead page.

OM9200159

Formation of Substituted Ferracyclopentadiene Complexes by the Reaction of Alkynes with Protonated Diferra-*u*-azaallyiidene **Complexes**

Thomas E. Snead, Chad A. Mirkin,+ Kuang-Lieh Lu, Son-Binh T. Nguyen, Wu-Chang Feng, Heather L. Beckman, and Oregory L. Geoffroy'

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Arnold L. Rheingold and Brian S. Haggerty

Department of Chemistry, The University of Delaware, Newark, Delaware 19716

Received December 23, 199 1

The dinuclear complexes $[Fe_2(\mu-C(H)(CH=NHR')](CO)_8][BF_4]$ $(R' = Bu^t$, Ph), which possess protonated μ_2 , η ¹-azaallylidene ligands and are derivatives of the parent methylene complex Fe₂(μ -CH₂)(CO)₈, react with alkynes $(R^1C\equiv CR^2)$ to give isomeric hydroxy-imino-ferracyclopentadiene complexes, $Fe_2(\mu$ -CR¹CR²C(OH)C(C(H)=NR'))(CO)₆, and amino-ferracyclopentadiene complexes, $Fe_2(\mu$ -CR¹CR²C(OH)C(C(H)=NR'))(CO)₆, an have been crystallographically characterized. They have a typical ferracyclopentadiene (ferrole) ring with
an iminium substituent (C(H)=NHR') on the α -carbon of the ring, which is hydrogen-bonded though the isolated as their BF₃ adducts Fe₂ $(\mu$ -CR¹CR²C(O-BF₃)C(C(H)=NHR'))(CO)₆, and two of these latter complexes nitrogen atom to the oxygen substituent on the β -carbon of the ferracyclopentadiene ring, which is in turn coordinated by the BF3 group. The BFs group *can* be removed by reaction with aqueous **base** to give the free hydroxy-imino-ferracyclopentadiene complexes. The amino-ferracyclopentadiene complex with R'
= Bu' and R¹ = R² = Ph has also been crystallographically characterized. It is a typical ferracyclopentadiene
complex w in near quantitative yield by an acid-catalyzed ring contraction of the 2-ferrapyridine complexes $Fe₂(\mu-CR¹CR²CHCHNR²)(CO)₆.$

Introduction

We recently reported that the protonated azaallylidene complexes 2a,b result from the addition of HBF₄.Et₂O and CO to **the** 2-ferrapyrrolinone complexes **la,b,** *eq* **1.'** Theae compounds are derivatives of the well-known complex $Fe_2(\mu$ -CH₂)(CO)₈ (3).² This latter compound has been

⁺Present address: Department of Chemistry, Northwestern

^{(1) (}a) Mirkin, C. A.; Lu, K.-L.; Geoffroy, G. L.; Rheingold, A. L.;
1999, D. J. Am. Chem. Soc. 1989, 111, 7279. (b) Mirkin, C. A.; Lu, K.-L.;
1999, D. J. Am. Chem. Soc. 1989, 111, 7279. (b) Mirkin, C. A.; Lu, K.-L.;
1991,