0.600 M Methanol in Dodecane *81* **Solvent. Run 1: 0.0212 M**, 0.0163 **mEinsteins**, **methoxydimethylsilane**, 4.72×10^{-4} mmol, $\Phi = 0.0290$; product 4, 1.48 \times 10⁻³ mmol, $\Phi = 0.0907$; product 5, 7.75×10^{-6} mmol, $\Phi = 0.0048$, conversion, 3.19%. **Run 2**: 0.0212 M, 0.0163 mEinsteins, methoxydimethylsilane, 5.20×10^{-4} mmol, $\Phi = 0.0319$; product 4, 1.41×10^{-3} mmol, $\Phi = 0.0864$; product 5, 6.32×10^{-5} mmol, $\Phi = 0.0039$, conversion, 3.13% .

Photolysis of cis-2-Butenylmethoxydimethylsilane (4) in Methanol. **A solution of 102** *mg* **(0.708 mmol) of butenylsiane 4 and 17.9** *mg* **(0.14 mmol) of mnonane** (internal **standard) in 40 mL of methanol was irradiated at 214 nm for 4 h, following the general procedure for direct photolyses.** GC-MS **analyses of aliquota after workup showed only three peaks** with **retention times and maan spectra** *correeponding* **to authentic samples 2,3, and 4. After a 1.8-h irradiation,** GC **analysis of an aliquot on column** C **gave 40% of reactant 1,12.6% of product 2, and 9.94% of product 4. Upon completion of the photolysis,** GC **analysis** showed *55%* **of 1 had** reacted **to give 21% of 2 and 11% of 4. The photolysis was diluted** with **40 mL of pentane and washed** *twice* with **40 mL of water, followed by** *drying* **over anhydrous sodium**

sulfate. The bulk of the pentane was distilled, and the reactant and photoproducts were isolated **by preparative GC on column B at 72 OC. Each of the products was further identified by** comparison of ¹H,¹³C NMR, IR, and MS data to authentic sam**ples.**

Acknowledgment. Partial support of this research by the *Office* of Research Support, Marquetta University, **and** the donors of the Petroleum Reeearch Fund, administered by the American Chemical Society, is gratefully acknowledged. The 300-MHz *NMR* spectrometer was purchased in part from a grant by the National Science Foundation (Grant CHE-8905465).

&&try NO. 1,16054-12-9; 2,75732-19-3; 2-d, 141556-99-2; 3,75732-22-8; 3-d, 141557-00-8; 4,75732-23-9; 4d, 141557-01-8; 5,98582-83-3; 8-d, 141557-02-0; methoxydimethylsilane, 18033- 75-5; cis-l,4-dibromobut-2-ene, 18866-73-4.

OM920058P

THF Ring-Opening and HID Exchange Reactions of (C,H4Me)2Zr(H) (THF)? Evidence for Hydrogenoiysis of Zr-Cp Bonds

Zhao-yu Guo, Prudence K. Bradley, and Richard F. Jordan* *Depertment of Chemkby, University of Iowa, Iowa City, Iowa 52242 Received December 6, 1881*

Summary: The cationic hydride Cp'₂Zr(H)(THF)⁺ (5; Cp' = **C5H4Me) reacts slowly in THF solution via THF ring** opening to yield Cp'₂Zr(OⁿBu)(THF)⁺ (7). Hydride 5 undergoes rapid H/D exchange with $D₂$ at the **Zr-H** site, and slow H/D exchange at the β Cp'-H sites. No H/D exchange at the α Cp'-H or Cp'-CH₃ sites is detected. It **is** proposed **that HID exchange at the Zr-H site proceeds** by a conventional σ -bond metathesis process and that exchange at the β Cp'-H site involves an intermediate **(Cp')(methylcyclopentadiene)Zr species formed by D2 addition across a Zr-Cp' bond. Exchange of H- and** "BuO⁻ ligands between Cp'₂Zr centers also leads indirectly to H/D exchange at the β Cp'-H sites of 7.

Cationic d^o alkyl complexes of general form $Cp_2Zr(R)^+$ (1) and $\text{Cp}_2\text{Zr}(R)(L)^+$ (2; L = labile ligand) are believed to be the active species in Cp_2ZrX_2 -based Ziegler-Natta
olefin polymerization catalysts.¹ Cationic hydrides olefin polymerization catalysts.¹ $\text{Cp}_2\text{Zr}(H)^+$ (3) and $\text{Cp}_2\text{Zr}(H)(L)^+$ (4) are of interest in this context as they are the expected products of β -H elimination or hydrogenolysis reactions of **1** and **2** and hence of chain-transfer reactions in $\rm Cp_2ZrX_2$ -based catalysts. Hydrides of this type are **also** intermediates in catalytic olefin/pyridine coupling reactions and likely intermediatea in olefin hydrogenation reactions.' We recently reported the synthesis of $Cp'_{2}Zr(H)(THF)^{+}$ (5; $Cp' = C_{5}H_{4}Me$) and its use in the synthesis of alkyls $\overline{Cp'}_2Zr(\overline{CH}_2CH_2R)$ -(THF)+.2 Complex **5** is one of the few cationic zirconium hydrides **known,** the others being the insoluble Cp ana-

logue $\mathbf{Cp}_2\mathbf{Zr}(\mathbf{H})(\mathbf{THF})^+$, several phosphine hydrides $(C_5H_4R)_2Zr(H)(PR_3)_2^+$, and {ethylenebis(tetrahydroindenyl)]Zr(H)(NMe₂Ph)⁺.^{3,4} In this note we describe the THF ring opening and H/D exchange chemistry of **5.**

Results and Discussion

Synthesis and Solution Structure of Cp'₂Zr(H)-**(THF)+ (5).** Hydride **5** is prepared in situ in THF by reaction of $\text{Cp}'_2\text{Zr}(CH_3)(THF)^+$ (6) with H₂ (23 °C, 7 d, 1.2 atm, eq 1).^{2,5} The low-temperature ¹H NMR spectrum

of 5 (-40 °C) in THF- d_8 solution features a resonance at δ 5.72 characteristic of a terminal Zr-H, a single Cp'-CH₃ resonance, and three broad singlets $(4/2/2 \text{ ratio})$ at δ 6.08 $(\alpha \text{ and } \beta)$, 5.90 (β) , and 5.53 (α) , which have been assigned to the β and α Cp' ring hydrogens by difference NOE experimenta. **This spectrum** is consistent **with** (i) the C,-symmetric moneTHF complex **shown,** in which the Cp' rings are equivalent and undergo rapid rotation but the sides of a given Cp' ring are diastereotopic, or (ii) a **C,** symmetric bis(THF) complex. 6 At higher temperatures,

⁽¹⁾ (a) For a recent review with extensive literature references, see: Jordan, R. F. *Adv. Organomet. Chem.* 1991, 32, 325. (b) Jordan, R. F.;
Taylor, D. F. J. *Am. Chem. Soc.* 1989, 111, 778. (c) Waymouth, R.; Pino, **P.** *J. Am. Chem. SOC.* **1990,112,4911. (2) Jordan, R. F.;** LaPointe, **R. E.; Bradley, P. K.; Baenziger, N. C.**

Organometallics **1989,8, 2892.**

^{(3) (}a) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L.
Organometallics 1987, 6, 1041. (b) Jordan, R. F.; Bradley, P. K.; Baen-ziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289.
(4) Grossman, R.

¹⁹⁹¹, *10*, **1501**.

(5) The counterion is BPh_4^- in all cases.

⁽⁵⁾ The counterion is BPh_4^- in all cases.
(6) (a) Exchange of THF and THF- d_8 is rapid on the chemical time scale so that resonances for coordinated THF are not observed. (b) Only **the mono-THF complex ie isolatd. See ref 2.**

site exchange of the H⁻ and THF- d_8 ligands (which presumably occurs via intermolecular THF exchange) broadens the Cp'-H resonances, and a broad singlet is observed.

THF Ring Opening of 5. Hydride 5 rearranges slowly (weeks) at ambient temperature and more rapidly **(48** h) at 60° C to vield cationic *n*-butoxy complex Cp_2Zr - $(OCH₂CH₂CH₂CH₃)(THF)⁺$ (7), which was isolated as a

THF- d_8 **solutions of 7 exhibit the expected** O **-ⁿBu patterns,** including resonances at δ 4.25 ⁽¹H) and 76.8 ⁽¹³C) for the Zr-OCH₂ fragment. The ¹H NMR of 7 is essentially unchanged between 25 and -40 °C and contains a single Cp-CH₃ resonance and multiplets for the α (δ 6.22) and β (δ 6.25) Cp' ring hydrogens (assignments confirmed by difference NOE experiments). This is consistent with rapid site exchange of the O-Bu and THF ligands, which *again* preaumably occurs via intermolecular THF exchange. Complex 7 was prepared independently by reaction of **6** with 1 equiv of *n*-butanol. Several cationic complexes related to 7 are known, including $\text{Cp}_2\text{Zr}(\text{OR})(\text{THF})^+$ (R = ^tBu, ⁿBu, CMePh₂)⁷ and $\text{Cp*}_2\text{Ti}(\text{OH})(\text{H}_2\text{O})^+$.⁸

Labeling experiments establish that the THF ring opening involves net nucleophilic attack by Zr-H at the THF α -carbon. Thermolysis of Cp'₂Zr(H)(THF- d_8)⁺ (5- d_8) in THF- d_8 yields $Cp'_2Zr(OCD_2CD_2CD_2CH)(THF-d_8)^4$ $(7-d_{16})$, the ¹H NMR spectrum of which exhibits a broad singlet for the CHD₂ group at δ 0.89, isotopically shifted **as** expected from the corresponding resonance (6 **0.95)** for unlabeled 7. Similarly, thermolysis of $Cp'_{2}Zr(D)(THF)^{+}$ in THF solution yields $\rm Cp'_2Zr(OCH_2CH_2CH_2CH_2D)$ -(THF)⁺ (²H NMR: δ 0.98).

The ring-opening reaction leading to 7 is similar to the reactions of $\text{Cp}_2\text{Zr}(\text{CH}_2\text{Ph})(\text{THF})^+$ with the external nucleophiles $\overline{PMe}_2\overline{P}h$ or NMe_3 , which yield $Cp_2Zr (\text{CH}_2\text{Ph})(\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{PMe}_2)$ ⁺ and $\text{Cp}_2\text{Zr-}$
 $(\text{CH}_2\text{Ph})(\text{OCH}_2\text{CH}_2\text{CH}_2\text{MMe}_3)$ ⁺, respectively.^{7b,9} The cationic phenyl complex $\text{Cp}_2\text{Zr}(\text{Ph})(\text{THF})^+$ initiates the ring-opening polymerization of THF by a similar process.^{7b} These reactions manifest the potent **Lewis** acidity of the Cp_2ZrR^+ fragment which activates the coordinated THF for (intra or intermolecular) nucleophilic attack.1°

 H/D Exchange of 5. The reaction of 5 with D_2 results **initially** in H/D exchange of the Zr-H ligand (eq **3),** which is complete in 24 h at $23 °C$, $630 mm D₂$ and is faster at higher D_2 pressures. This process is evidenced by the disappearance of the 'H NMR Zr-H resonance and is accompanied by the formation of HD (δ 4.52, t, J_{HD} = 42.6 Hz). ²H NMR experiments confirm deuterium incorpo-

ration at the Zr-H site. In a slower process at higher D₂ pressures, deuterium is also scrambled into the β Cp' ring H positions of 5 (eq **3).** This results in the reduction of the β Cp'-H resonances at δ 6.08 and 5.90 and is also accompanied by the formation of HD. There is no deuterium exchange at the α Cp'-H or Cp'-CH₃ positions as assessed by comparison of the intensities of the appropriate resonances to that of an internal standard. Complementary 2H NMR experiments confirm incorporation of D in the Cp'-H sites; however, the 2H **NMR** spectra were too broad at 25 and -40 °C to distinguish the α and β Cp'-H sites. The H/D exchange involving the β Cp'-H sites of 5 is too slow to be observed at **D2** pressures below ca. **3** atm at **25** ^oC and is unaffected by room light.

In a representative experiment, a THF- d_8 solution of $\text{Cp'}_2\text{Zr}(D)(\text{THF})^+$ (5-d₁) was charged with 4.7 atm D_2 (9 equiv) and maintained at 25 °C for 8 d. ¹H NMR analysis revealed a decrease in the β Cp'-H resonances, the formation of HD, and the appearance of the Zr-H resonance, indicating that H/D scrambling between the β Cp'-H sites of $5-d_1$, the Zr-D site of $5-d_1$, and D_2 had occurred. At this point, 44% of the β Cp'-H sites were deuterated. After **26** d under these conditions, the scrambling process had reached equilibrium, and 85% of the β Cp' sites and 68% of the Zr-H sites were deuterated. The higher D incorporation in the β Cp'-H site is consistent with the expected thermodynamic isotope effect which favors placement of D in the site with the higher vibrational frequency.¹¹

The THF ring-opening reaction leading to 7 is competitive with the H/D exchange process involving the β Cp'-H site of **5, as** established by the appearance and **growth** of the resonances of 7 during the *NMR* monitoring experiments. For example, in the specific experiment discussed above, **17%** conversion to 7 was observed after 8 d, and **33%** conversion after **26** d. Interestingly, the ratio of the β Cp'-H to α Cp'-H signal intensities of 7 $\frac{16}{\alpha}$ intensity ratio^{*}) decreases during the course of the reaction, indicating that incorporation of deuterium into the β Cp'-H sites of 7 **also** occurs. In fact, at all points during the reaction, this ratio is equal to the β/α intensity ratio for 5, i.e., the extent of D incorporation into the **j3** Cp'-H sites of 5 and 7 is **equal.** *As* 7 does not undergo H/D exchange with D_2 in the absence of $5¹²$ the observed incorporation

^{(7) (}a) Collins, S.; Koene, B. E.; Ramachandran, R.; Taylor, N. J. Organometallics 1991, 10, 2092. (b) Borkowsky, S. L.; Jordan, R. F.;
Hinch, G. D. Organometallics 1991, 9, 2574. (c) Jordan, R. F.; Dasher,
W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718.
(8) (a) Bochmann, M.; Jagg

Crganomet. Chem. 1988, 348, 291. (9) (a) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. D. *J. Am. Chem. Soc.* 1987, 109, 4111.

⁽¹⁰⁾ For reviews and leeding references to metal or other Lewis-acidmediated THF ring-opening reactions, see: (a) Penczek, S.; Kubissa, P.; Matyjaszewski, K. Adv. Polym. Sci. 1980, 37, 1. (b) DeShong, P.; Sidler, **D. R.** *J. Og.* **Chem. 1988,53, 4892. (c) Evans, W. J.; Ulibarri, T. A.; Chamberlain, L. R.; ZiUer, J. W.; Alvarez, D., Jr. Organometallics 1990, 9, 2124.**

^{(11) (}a) The equilibrium constant K for the net exchange of a single

D between β Cp'-H and Zr-H sites, $(C_5H_4Me)(Cp')Zr(D)(THF)^+$
 $(C_5H_3DMe)(Cp')Zr(H)(THF)^+$ $K_{eq} = K$, is given by $K = 4 \exp(ihc/2kT)(v_{C+H} - v_{C-D} - v_{Zr+H} + v_{Zr-D})$;
 fraction y of H in the β Cp'-H sites and the mole fraction z of H in the Zr-H site:^{11d} K = $\{4y^3(1-y)z\}/\{y^4(1-z)\}$. Using the observed equilibrium mole fractions y = 0.15, z = 0.32 in this equation yields K = 11, i 3rd ed.; Harper: New York, 1987; p 225. (c) Wolfsberg, M. Acc. Chem.
Res. 1972, 5, 225. (d) Bullock, R. M.; Headford, C. E. L.; Hennessy, K.
M.; Kegley, S. E.; Norton, J. R. J. Am. Chem. Soc. 1989, 111, 3897, and **accompanying supplementary material.**

of D into **7** must occur indirectly, most likely by the ligand redistribution process in *eq* **4.** This proposal is supported

by the observation that mixture of $(C_5H_2D_2Me)_2Zr$ -**(OCD2CD2CD2CD3)(THF-d8)+** (7-d1,; **100%** D-labeled in the β -Cp'-H sites) with unlabeled 5 (THF- d_8), at concentrations similar to those used in the D_2 reactions, results in complete scrambling of H^- and "BuO- ligands between labeled and unlabeled $Cp'_{2}Zr$ centers within 1 d at 25 °C. Analogous ligand redistribution reactions have been observed for other $\text{Cp}_2\text{Zr}(X)(L)^+$ complexes.¹³

H/D Exchange Mechanisms. Several mechanisms have been identified in the H_2 reactions of d^0 Cp₂M hydrides and alkyls.¹⁴ The simplest and probably most common pathway is the σ -bond metathesis process in which direct hydrogenolysis of M-R or M-H bonds *occurs*

(13) (a) Jordan, R. F.; Echols, S. F. *Znorg. Chem.* **1987,26,383. (b) See footnote 29 in: Wang, Y.; Jordan, R. F.; Echols, S. F.; Borkowsky, S. L.; Bradley, P. K.** *Organometallics* **1991,10, 1406.**

(14) Selected leading references: (a) Gell, K. I.; Posin, B.; Schwartz, J.; Williams, G. M. J. Am. Chem. Soc. 1981, 103, 6550. (b) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (c) Thompson, M. E.; Distater **J.; Dominguez, R.; Hanusa, T. P.** *Organometallics* **1986, 5, 263.**

via a four-center transition state. There is also evidence that addition of H_2 across M-Cp bonds to yield reactive d^0 Cp(cyclopentadiene) M^{IV} species occurs in some systems.¹⁵ Indirect processes involving initial formation of d2 **(pentamethylcyclopentadiene)(Cp*)M"** species (via migration of Zr-H to a Cp* ligand) followed by oxidative addition of H_2 have been implicated for $(C_5Me_5)_2Zr$ sys $tems.¹⁶$ The reslults described above suggest that the first two processes may be important in the H/D exchange chemistry of $Cp'_{2}Zr(H)(THF)^{+}$, as summarized in Scheme I.

In Scheme I, attack of D_2 at the central site of 5 (to yield 8), or at the lateral site cis to the Zr-H ligand (to yield 9), followed by σ -bond metathesis leads to H/D exchange of the Zr-H site. Attack of D_2 at the lateral site cis to THF leading to **10** is **also** possible but cannot lead to direct H/D exchange of Zr-H without **loss** of THF. In this case, addition of D_2 across a Zr-Cp' bond may occur, leading to diene dihydride **species 11.** Reversible **1,5 shifts** of the ex0 H of **11** to yield, e.g., **12,** followed by HD elimination, would lead to scrambling of D into the β Cp'-H sites as shown. There is no *direct* exchange between the $Zr-H$ and β Cp'-H sites of 5. The observed *net* exchange of H from the β Cp'-H sites to the Zr-D site in the reaction of $5-d_1$ with D_2 occurs indirectly via σ -bond metathesis of Zr-D with HD.

There is no obvious reason for the remarkable regiospecificity of this exchange process (complete exchange of β Cp'-H sites and no detectable exchange of α Cp'-H sites). However, incorporation of D in an α Cp'-H site (via pro*ce88e8* of the type in Scheme I) would *require* intermediates such *88* **13,** which may be sterically disfavored, and which contain a 1-methyl-1,3-cyclopentadiene ligand which in free/nonligated form is less stable than the 2-methyl-1,3-

⁽¹²⁾ The NMR spectrum of 7 (THF- d_8) under 4.7 atm D_2 was un-changed after 14 d at 25 °C.

⁽¹⁵⁾ Wochner, F.; Brintzinger, H. H. *J. Organomet. Chem.* **1986,309, 65.**

^{(16) (}a) McAlister, D. R.; Erwin, D. K.; Bercaw, J. E. *J. Am. Chem. SOC.* **1978,100,5966. See also: (b) Benfield, F. W. S.; Green, M. L. H.** *J. Chem. SOC., Dalton Trona.* **1974,1324. (c) Fachinetti, G.; Floriani, C.**

J. Chem. **SOC.,** *Chem. Commun.* **1974,516.**

cyclopentadiene ligand in **11** (in free form)." Exchange processes involving (i) direct migration of Zr-D to a Cp' ring to form a d^2 (Cp')(methylcyclopentadiene) Zr^{II} (THF)_n species or (ii) initial bimolecular loss of HD and formation of reactive, dinuclear μ - (η^5, η^1) -fulvene) species do not appear to be important in **this** system **because** no H/D exchange between the Zr-D and β Cp'-H sites is observed for 5-d₁ in the absence of D_2 ^{18,19}

Experimental Section

All manipulations were performed under an N_2 atmosphere or under vacuum **using** a Vacuum Atmospheres **drybox** or a highvacuum line. THF and THF-d₈ were purified by distillation from Na/benzophenone, stored in evacuated bulbs, and vacuumtransferred to reaction flasks or *NMR* **tubes.** *NMR* spectra were ¹³C chemical shifts are reported vs Me₄Si and were determined by reference to the residual 'H or **'Bc** solvent peaks. Elemental **analyses were** performed **by** E&R **Microanalytical** Laboratory Inc. viously.^{13b} All spectra contain normal BPh₄⁻ resonances.²

[Cp'aZr(H)(TEF)][BP4] (5). The preparation and complete characterizetion of this complex have been described previously? ¹H NMR (25 °C, THF-d₈): δ 6.10-5.50 (br s, 8 H, C₅H₄Me), 5.88 (br **s, 1** H, Zr-H), **2.21** (8, **6** H, CpCH3). 'H NMR **(-40** OC, THF-d₈): δ 6.08 (s, 4 H, α, β Cp'-H), 5.90 (s, 2 H, β Cp'-H), 5.72 *(8,* **1** H, Zr-H), **5.53** *(8,* **2** H, *u* Cp'-H), **2.24** *(8,* **6** H).

[Cp'aZr(OCH&H&H&H,)(THF)][BPh4] (7). A 100-mL glass bomb was charged with $[\text{Cp}'_2\text{Zr}(\text{CH}_3)(\text{THF})][\text{BPh}_4]$ (6; 570 **mg, 0.87 mmol), THF (50 mL, transferred at -78 °C), and H₂ (1)** atm at -196 °C, 3.9 atm at 25 °C). The bomb was sealed, warmed to 25 °C, and stirred for 4 d. A pale-straw-colored solution of **6** formed. The preaaure of the reaction veseel was reduced to **0.07** atm, and the solution was heated at *60* "C for **6** d. The resulting yellow solution of **7** was degassed and fiitered to remove a small

(19) Martin et al. observed that the hydrogenolyeis prodact of Cp'_2 Ti(allyl) undergoes regiospecific H/D exchange at the β Cp' sites; H. **A;** Van Gorkom, M.; **De** Jongh, R. 0. J. *Organomet. Chem.* 1972,36, 93. however, the organometallic species involved were not identified. Martin, amount of colorless solid. The fiitrate was evaporated in vacuo, **yielding** an off-white waxy solid. The crude product was dissolved in a **small** amount of THF, and hexane was added until a thick white slurry was obtained. The **slurry** was refrigerated overnight and filtered, and the resulting solid was washed with hexane and dried in **vacuo to** *dord* **7 as** a white solid **(310 mg,** *50%).* 'H **NMR (25** OC, THF-de): **6 6.25** (m, **4** H, @ Cp'-H)), **6.22** (m, **4** H, *a* Cp'-H), **4.25 (t,** $J = 7$ **Hz, 2 H,** OCH_2 **), 2.12 (s, 6 H, Cp'-CH₃), 1.56 (m, 2** H, OCH₂CH₂), 1.33 (m, 2 H, OCH₂CH₂CH₂²), 0.95 (t, $J = 7.5$ ipso), 117 (Cp'), 115 (Cp'), 76.8 (OCH₂), 36.8 (OCH₂CH₂), 19.8 for CIIH51B0zZr: C, **74.02;** H, **7.20. Found** C, **73.59;** H, **7.26.** Hz, 3 H, O(CH₂)₃CH₃). ¹³C NMR (25 °C, THF-d₈): δ 131 (Cp' (OCH₂CH₂CH₂), 14.6 (Cp'-CH₃), 14.2 (O(CH₂)₃CH₃). Anal. Calcd

 $[C_{P'2}^{\overline{V}}Z_{P}^{2}(\overline{OCD}_{2}CD_{2}CD_{2}CD_{2}H)(THF-d_{8})][BPh_{4}]$ (7- d_{16}). A THF-da solution of **6** in a sealed NMR tube was warmed at **60** OC for **2** d. A 'H NMR spectrum confirmed **>95%** conversion to **7-dls (95%** NMR scale). 'H NMR: 6 **6.25** (m, **4** H, Cp'-H), **6.22** (m, **4** H, Cp'-H), **2.11** *(8,* **6** H, Cp'-CH,), **0.89** (br *8,* **1** H, $ZrO(CD_2)_3CD_2H$).

Assignment of α and β Cp'-H Resonances of 5 and 7. Homonuclear 'H difference NOE measurements for **6** were carried out at -40 °C using the Bruker program NOEDIFF. The spectrum obtained with single-frequency irradiation of the Cp' -CH₃ reso**nance** was quantitatively compared to a **spectrum** obtained under identical conditions, but with the decoupler offset **1965** Hz downfield. A total of 32 transients (90° pulse, 2-min recycle time) were accumulated with alternation of the decoupler frequency every eight pulses. A **4.9%** enhancement in the intensity of the 6 **6.53** reaonance and a **2.9%** enhancement of the 6 **5.90** reaonance were observed. Therefore, these resonances were assigned to the α and β Cp'-H's, respectively.

Difference NOE measurements for 7 were carried out at 25 °C *using* the same procedure. In this case spectra obtained with irradiation of the Cp[']-CH₃ resonance or at 2459 Hz downfield of this resonance were compared. A **6.3%** enhancement in the intensity of 6 **6.22** resonance and a **2.7%** enhancement of the 6 **6.25** resonance were observed. On **this** baeis these reaonancea were assigned to the α and β Cp'-H's, respectively.²⁰

 \mathbf{H}/\mathbf{D} **Exchange of 5.** Solutions of 5 or $\mathbf{Cp'}_2\mathbf{Zr}(\mathbf{D})(\mathbf{THF})^+$ (5-d₁) were sealed in *NMR* tubes under D_2 (0-4.7 atm) and maintained at 25 °C. H/D exchange and formation of 7 were monitored by low-temperature ¹H NMR (-40 °C). The low temperature is required to distinguish the α and β Cp'-H sites of 5.

Acknowledgment. **This work** was supported by DOE Grant DEFG02-88ER13935. The AC-300 and AMX-360 NMR spectrometers were purchased with partial support by the NSF (CHE8822970) and the DOE (DE-FG05- 89ER75503) instrumentation programs, respectively. R.F.J. gratefully acknowledges a Sloan Foundation Research Fellowship and Union Carbide Research Innovation Awards. Helpful conversations with Prof. Jack Norton **are** appreciated.

OM9107496

⁽¹⁷⁾ **(a) Mclean, S.;** Haynes, P. *Tetruhedron* 1966,21,2329. (b) Stille, J. R.; Grubbs, R. H. J. Org. *Chem.* 1989,54,434.

⁽¹⁸⁾ Scheme I providea a *simple* explanation of **our** observations. It **ie also** poeeible that H/D exchange of **6** Cp'-H sites occurs via **8** and *9;* i.e., $\frac{8}{3}$ or $\frac{9}{3}$ could also undergo addition of D_2 across a Zr-Cp bond, leading to intermediates analogous to 11 but with THF in a lateral position. to intermediates analogous to 11 but with THF in a lateral position.
Conversely, it is also possible that H/D exchange of the Zr-H site occurs
indirectly via loss of HD from intermediate 11 (from methylcyclopentadiene and Zr-H). **The** more detailed studies required to **distinguish these** poeeibilitee are hindered by the competing THF ring-opening and ligand redistribution reactions discussed in the text.

^{(20) (}a) In contrast, NOE experiments by Newmark et **al.** establish that the α Cp'-H signal of Cp'₂ZrMe₂ is downfield of the β Cp'-H signal. We have confirmed this result. Newmark, R. A.; Boardman, L. D.; Siedle, A. R. *Inorg. Chem.* 1991,30, *853.* (b) See **also:** Davis, J. H.; Sun, H.; Redfield, D.; Stucky, **G.** D. *J. Magn. Reson.* 1980,37,441.