Thiophene Carbon-Sulfur Bond Cleavage by Cobalt. Synthesis, Structure, and Dynamlcs of [**(C,Me,)Co],(C,H,S)**

William D. Jones' and Robert M. Chin

Department of Chemistry, University of Rochester, Rochester, New York 14627

ReceW December 27, 1991

Summary: The reaction of $(C_5Me_5)Co(C_2H_4)_2$ with **thiophene proceeds thermally to give the unusual dimer** $[(C_5\text{Me}_5)Co]_2(C_4H_4S)$. An X-ray structure shows that a **carbon-sulfur bond has been cleaved and the sulfw and a-carbon bridge the two metal centers. The compound crystallizes in monoclinic space group P2,/n with** *a* = **8.512 (2) Å,** $b = 14.566$ **(4) Å,** $c = 18.954$ **(4) Å,** $\beta =$ 100.15 (2)^o, *Z* = 4, and *V* = 2313.2 (2.0) Å³. In solu**tion, the complex shows dynamic behavior In which the** μ_2 -C₄H₄S group flip-flops from one metal center to the **other. Modeling of this behavior** *gives* **activation parameters** $\Delta H^* = 8.6$ (3) kcal/mol and $\Delta S^* = -13.8$ (1.3) eu.

There **has** been substantial interest in the interactions of homogeneous transition-metal complexes with thiophene derivatives as models for hydrodesulfurization (HDS) catalysis. The latter process is carried out industrially in the hydroprocessing of oil over a cobalt-containing molybdenum sulfide catalyst.' Recent reviews have covered a variety of coordination geometriea and reaction pathways found in homogeneous thiophene complexes.² One of the more intriguing of these pathways involves the reaction in which the aromatic thiophene ring is broken open by oxidative addition to a transition metal.

Earlier work in our lab **has** provided an example of this type of C-S bond cleavage, and the oxidative addition **has** been shown to *occur* by way of initial coordination of the thiophene sulfur, followed by migration of the α -carbon to the metal center, thereby producing a six-membered metallathiahexadiene ring (eq 1).³ Angelici has seen this

same type of reaction in a related iridium complex, although the immediate precursor was an η^4 -thiophene lig-
and.⁴ Other complexes in which the C-S bond of a Other complexes in which the C-S bond of a thiophene derivative **are** cleaved **are ale0** known, although the polynuclear binding of the ligand masks the initial C-S cleavage adduct. $5-7$

In this paper we report the first example of a cobalt complex that cleaves the C-S bond of thiophene. The work stems from **the** discovery that the rhodium complex

Figure 1. ORTEP drawing of $[(C_5Me_5)Co)_2(C_4H_4S)$. Ellipsoids **are ahown** at the **60%** level, and hydrogen **atoms** have been **omitted** for clarity.

 $(C_5Me_5)Rh(C_2H_4)_2$ reacts with thiophene to give a ringopened C-C coupled product, $[(C_5Me_5)Rh]_2[\mu_2-1,2,3,4-1]$ η ⁴-5,6,7,10- η ⁴-S(CH)₈S], by way of an initial C-S insertion.⁸

Results and Discussion

The cobalt complex $(C_5Me_5)Co(C_2H_4)_2$ reacts with excess thiophene in benzene solution at 70 **"C.** Reaction is apparent after heating for only a few minutes, **as** the redorange solution becomes dark black. Ethylene was removed periodically by freeze-pump-thaw degassing, ultimately leading to the isolation of a black solid following solvent removal. **This** solid was examined by 'H NMR spectroecopy, showing a large broad singlet at *6* 1.892 and four multipleta at 3.249, 4.542, 5.581, and 9.145 in a 30:1:1:1:1 ratio. The ¹³C JMOD NMR spectrum (recorded at *-50* "C to decrease quadrupolar broadening by the cobalt) shows four downfield singlet resonances at *6* 187.91, 139.24, 120.85, and 85.08 and two distinct sets of C_5Me_5 resonances. These observations led to the formulation of the product as $[(C_6Me_6)Co)_2(C_4H_4S)$ (1) (eq 2), in which

the cobalt **has** inserted into the thiophene C-S bond to form a six-membered ring that is chelated to a second $(C_5Me_5)Co$ moiety.

A singlecrystal X-ray determination of the **structure** of **1 confirms** the above assignment. The complex *crystallizes* in a monoclinic space group $P2_1/n$ with $Z = 4$, and routine solution of the structure showed evidence for disorder of the bridging ligand, in which the bridging ring had interchanged the locations of the **sulfur** and the coordinated double bond, and in which the n^2 -coordinated double bond

⁽¹⁾ Schuman, S. C.; Shalit, H. *Catal. Rev.* **1970,4, 246-313.**

⁽²⁾ Angelici, R. J. *Acc. Chem. Res.* 1988, 21, 387–394. Rauchfuss, T.
B. *Prog. Inorg. Chem.* 1991, 39, 259–329. Angelici, R. J. Coord. Chem.
Rev. 1990, 105, 61–76. Friend, C. M.; Roberts, J. T. *Acc. Chem. Res.* 1988, **21,394-400.**

⁽³⁾ Jones, W. D.; Dong, L. J. Am. Chem. Soc. 1991, 113, 559–564.
Dong, L.; Duckett, S. B.; Ohman, K. F.; Jones, W. D. J. Am. Chem. Soc.
1992, 114, 151–160.

⁽⁴⁾ Chen, J.; Daniels, L. M.; Angelici, R. J. *J. Am. Chem. SOC.* **1990,** 112, 199-204.

⁽⁶⁾ King, **R. B.; Treichel, P. M.; Stone, F. G. A.** *J. Am. Chem.* **SOC.** 1961, 83, 3600-3604.

⁽⁶⁾ Hübener, P.; Weiss, E. *J. Organomet. Chem.* 1977, 129, 105–115.
(7) Ogilvy, A. E.; Skaugset, A. E.; Rauchfuss, T. B. *Organometallics* **1988, 7, 1171-1177.**

⁽⁸⁾ Jones, W. D.; Chin, R. M. *Angew. Chem., Znt. Ed. Engl.* **1992,31, 351-368.**

Table I. Selected Distances (Å) and Angles (deg) for $[(C_5Me_5)Co]_2(C_4H_4S)^d$

Comparative Bond Lengths							
$Co(1) - S(1A)$	2.120(4)	$Co(1)-S(1B)$	2.19 (1)				
$Co(2)-S(1A)$	2.204(4)	$Co(2) - S(1B)$	2.028(7)				
$Co(1)-C(24A)$	1.90(1)	$Co(2)-C(24B)$	2.05(2)				
$S(1A) - C(21A)$	1.94(2)	$S(1B) - C(21B)$	2.08(4)				
$C(21A) - C(22A)$	1.36(2)	$C(21B) - C(22B)$	1.30(5)				
$C(22A) - C(23A)$	1.40(2)	$C(22B) - C(23B)$	1.19(4)				
$C(23A) - C(24A)$	1.53(2)	$C(23B) - C(24B)$	1.41(4)				
$Co(2) - C(23A)$	2.12(1)	Co(1) – C(23B)	2.21 (3)				
$Co(2)-C(24A)$	2.07(1)	$Co(1)-C(24B)$	2.18(2)				
$CEN(1)-Co(1)$	1.67	$CEN(2)-Co(2)$	1.67				
$Co(1)-Co(2)$	2.484(2)						
Comparative Bond Angles							
$Co(2)-Co(1)-S(1A)$	56.5(1)	$Co(1)$ - $Co(2)$ - $S(1B)$	56.9(3)				
Co(2)–Co(1)–C(24A)	54.4 (3)	$Co(1)$ - $Co(2)$ - $C(24B)$	56.5 (7)				
$S(1A) - Co(1) - C(24A)$	94.7 (4)	$S(1B) - Co(2) - C(24B)$	96.4 (8)				
$Co(1)-Co(2)-S(1A)$	53.4 (1)	$Co(2)$ - $Co(1)$ - $S(1B)$	51.0(2)				
Co(1)-Co(2)-C(23A)	78.8 (4)	$Co(2)$ - $Co(1)$ -C $(23B)$	72.3 (7)				
$Co(1)-Co(2)-C(24A)$	48.4 (3)	$Co(2)-Co(1)-C(24B)$	51.7(6)				
$S(1A) - Co(2) - C(23A)$	84.6 (3)	$S(1B) - Co(1) - C(23B)$	79.2 (7)				
$S(1A) - Co(2) - C(24A)$	87.7 (3)	$S(1B) - Co(1) - C(24B)$	88.2 (7)				
$C(23A)$ -Co(2)-C(24A)	42.9 (5)	$C(23B)$ - $Co(1)$ - $C(24B)$	37(1)				
$Co(1)-S(1A)-Co(2)$	70.1 (1)	$Co(1) - S(1B) - Co(2)$	72.1 (3)				
$Co(1)-S(1A)-C(21A)$	99.1 (5)	$Co(2)-S(1B)-C(21B)$	89(1)				
$Co(2)-S(1A)-C(21A)$	100.0(5)	$Co(1) - S(1B) - C(21B)$	101 (1)				
$S(1A) - C(21A) - C(22A)$	113(1)	$S(1B) - C(21B) - C(22B)$	108(3)				
$C(21A) - C(22A) - C(23A)$	122 (1)	$C(21B) - C(22B) - C(23B)$	125(3)				
Co(2)-C(23A)-C(22A)	116.0 (9)	$Co(1)$ -C $(23B)$ -C $(22B)$	126 (2)				
Co(2)-C(23A)-C(24A)	67.0 (6)	$Co(1)$ -C $(23B)$ -C $(24B)$	70(1)				
$C(22A)$ -C(23A)-C(24A)	121 (1)	$C(22B) - C(23B) - C(24B)$	119 (3)				
$Co(1)-C(24A)-Co(2)$	77.2 (4)	Co(1) – C(24B) – Co(2)	71.9 (8)				
Co(1)-C(24A)-C(23A)	116.6 (8)	$Co(2)-C(24B)-C(23B)$	105 (2)				
Co(2)-C(24A)-C(23A)	70.0 (6)	$Co(1)-C(24B)-C(23B)$	73 (1)				

149.7

^aData for the disordered molecules A and B are in opposing columns. CEN(1) is the centroid of the C_5Me_5 ligand attached to Co(1), and CEN(2) is the centroid of the C_6Me_5 ligand attached to $Co(2)$.

 $Co(2)-C(24A)-C(23A)$ 70.0 (6) $Co(1)-C(24B)-C(23B)$ $Co(2)-Co(1)-CEN(1)$ 155.3 $Co(1)-Co(2)-CEN(2)$

had changed cobalt atoms (effectively a C_2 rotation of the $SC₄H₄$ group perpendicular to the Co-Co axis). The solution proceeded to model this **type** of disorder, with **69/31** refined populations for the two sites. **An ORTEP** drawing is shown in Figure **1.** Unfortunately, the effect of the disorder renders discussion of the bond lengths unreliable, and it is difficult to **ascertain** if the noncoordinated double bond is localized. The σ -vinylic double bond that π -coordinates to the second cobalt does appear to be lengthened slightly. The opened thiophene ligand is puckered in such a fashion that the cobalt, **sulfur,** C(23), and C(24) are nearly planar, but with the $C(21)-C(22)$ double bond lying above this plane. The cobalt-cobalt distance of 2.484 Å is in the range seen for other dicobalt species with bridging ligands, such as $[(C_5Me_5)Co)_2(\mu\text{-}CH_2)(CO)_2$ (2.502 Å),⁹ but is longer than that of the multiply bonded dimers $\text{Col}_2(\mu\text{-NO})_2$ (2.372 Å).¹¹ Other bond distances are given in Table I, and coordinates are listed in Table **11.** such as $[(C_5Me_5)C_2]_2(\mu$ -CO)₂ (2.338 Å)¹⁰ and $[(C_5H_5)$ -

The observation of a broad resonance in the **'H** NMR spectrum at room temperature suggests that a fluxional process equilibrates the two C_5Me_5 rings (eq 3). When

the temperature is lowered to -50 °C (THF- d_8 solvent),

Table II. Positional Parameters and B_{eq} Values for $[(C_5Me_5)Co]_2(C_4H_4S)$

- , , , , , , , , ,							
Atom	x	y	z	$B_{\rm eq}$, \mathbf{A}^2			
Co(1)	0.3756(1)	0.35724(7)	0.70670(5)	3.21(5)			
Co(2)	0.3166(1)	0.25371(8)	0.60119(5)	3.28(5)			
S(1A)	0.5448(4)	0.3233(2)	0.6411(2)	3.91(7)			
S(1B)	0.356(1)	0.2075(6)	0.7037(4)	3.9			
C(1)	0.4790(9)	0.4405(6)	0.7883(4)	3.5(4)			
C(2)	0.349(1)	0.3939(5)	0.8076(4)	3.7(4)			
C(3)	0.2126(9)	0.4173(5)	0.7582(4)	3.3(4)			
C(4)	0.254(1)	0.4828(5)	0.7095(4)	3.9(4)			
C(5)	0.420(1)	0.4950(5)	0.7280(4)	4.0 (4)			
C(6)	0.232(1)	0.3053(6)	0.4999(4)	4.2(4)			
C(7)	0.100(1)	0.2782(6)	0.5317(4)	3.6(4)			
C(8)	0.119(1)	0.1843(6)	0.5498(4)	4.0(4)			
C(9)	0.258(1)	0.1521(6)	0.5272(4)	4.4(4)			
C(10)	0.329(1)	0.2237(7)	0.4971(4)	4.7(5)			
C(11)	0.651(1)	0.4352(8)	0.8258(5)	7.3(6)			
C(12)	0.515(1)	0.5600(6)	0.6904(5)	7.4(6)			
C(13)	0.145(1)	0.5324(6)	0.6517(5)	6.8(5)			
C(14)	0.044(1)	0.3845(7)	0.7615(5)	7.0(6)			
C(15)	0.356(1)	0.3290(7)	0.8706(4)	6.5(5)			
C(16)	0.263(1)	0.3974(7)	0.4715(5)	7.7(6)			
C(17)	$-0.042(1)$	0.3365(7)	0.5392(4)	5.9(5)			
C(18)	0.006(1)	0.1289(7)	0.5838(5)	7.1(5)			
C(19)	0.319(1)	0.0534(7)	0.5332(6)	8.3(6)			
C(20)	0.478(1)	0.2208(9)	0.4645(5)	8.5(7)			
C(21A)	0.657(2)	0.226(1)	0.6987(8)	4.6(4)			
C(21B)	0.586(4)	0.170(3)	0.691(2)	4.6			
C(22A)	0.559(2)	0.155(1)	0.7099(8)	5.2(4)			
C(22B)	0.659(4)	0.244(3)	0.676(2)	5.2			
C(23A)	0.394(1)	0.159(1)	0.6844(6)	3.6(2)			
C(23B)	0.605(3)	0.320(2)	0.675(2)	3.6			
C(24A)	0.292(2)	0.2361(9)	0.7071(6)	3.1(2)			
C(24B)	0.496(3)	0.349(2)	0.615(1)	3.1			

Figure **2. Eyring plot for the "flip-flop" of the thiophene** ligand **in 1.**

the broad resonance is observed to separate into two distinct resonances at *6* **1.900** and **1.568.** Spectra were recorded at intermediate temperatures, and computer modeling of the coalescence behavior by complete band shape analysis¹² allowed the determination of the rate as a function of temperature. **An** Eyring plot of this data (Figure 2) gives the activation parameters $\Delta H^* = 8.6$ (3) kcal/mol and $\Delta S^* = -13.8$ (1.3) eu. During the coalescence of the two C_5Me_5 rings, the four olefin resonances remain sharp.

The formation of this dimeric complex is believed to occur by way of initial loss of ethylene, followed by thiophene coordination and insertion **into** the **C-S** bond. Loss of the second ethylene most likely occurs in this $\mathrm{Co}^{\mathrm{III}}$ intermediate, which then reacts with another $[(C_5Me_5)Co]$ fragment to produce the dimer. It is interesting to compare

⁽⁹⁾ Herrmann, W. A.; Huggins, J. M.; Bauer, C.; Ziegler, M. L.; Pfis-(10) Circinamin, W. A.; **Tuggins, J. M.; Dauer, U.;** *Cirganomet. Chem.* 1984, 262, 253-262.
terer, H. J. *Organomet. Chem.* 1984, 262, 253-262.
(10) Cirjak, L. M.; Ginsberg, R. E.; Dahl, L. F. *Inorg. Chem.* 1982, 21,

^{940-957.}

⁽¹¹⁾ Bemnl, I.; **Korp,** J. D.; Reisner, G. M.; Herrmann, W. A. J. *Organomet. Chem.* 1977,139,321-336.

____ (12) Snndetr6m, J. *Dynumic NMR Spectroscopy;* Academic Press: New York, 1982.

this reaction with the rhodium analog, in which the 16-

electron intermediate $[(C_5Me_5)Rh(SCH=CHCH=CH)]$ dimerizes to give a product with a -S(CH)₈S- *chain*.⁸ Also of interest is comparison with the tetramethylthiophene complexes studied by Rauchfuss and co -workers.¹³ Thermal decomposition of $(C_5Me_5)Rh(\eta^4-C_4Me_4S)$ initially gives the bis(thiophenyl) adduct $((C_5Me_5)Rh)[(C_5Me_5)$ - $Rh(C_4Me_4S)_{2}$, which then goes on to give small amounts of a complex assigned as the rhodium-tetramethylthiophene analog of **1.** Of substantial interest are the iron complexes studied by Hübener and Weiss⁶ and Rauchfuse.⁷ The former workers have found that reaction of **2** methylthiophene with $Fe₃(CO)₁₂$ gives a diiron product **(0.7** % yield) containing a similar ring-opened bridging thiophene unit that was crystallographically characterized. No mention was made **as** to the rigidity of this species, but Rauchfuss has reported similar diiron derivatives in which a ring-opened benzothiophene bridges the two metal centers, and has confirmed the presence of a "flip-flop" of the organic ligand by dynamic 13C NMR spectroscopy. **This** thiaferrole complex was also shown to undergo further desulfurization to give a ferrole derivative and FeS.

Conclusions

In summary, this paper reports the first example of a cobalt complex that **is** capable of activating thiophene via **C-S bond** cleavage. *As* cobalt is **an** integral part of commercial **HDS** catalysts, this work may serve to model species that are actively involved in **HDS.**

Experimental Section

General Comments. All manipulations were done under nitrogen, either in a **glovebox** or on a high-vacuum line. All solvents were distilled from benzophenone ketyl under nitrogen. All materials were of reagent grade quality and were used without described.¹⁴ NMR spectra were recorded on a Bruker AMX-400 spectrometer. X-ray data were collected using an Enraf-Noniw **Cad4** diffractometer. further purification. $(C_5\overline{\text{Me}_b})\text{Co}(C_2\overline{\text{H}_4})_2$ was prepared as previously

Synthesis of $[(C_5Me_5)Co]_2(C_4H_4S)$. $(C_5Me_5)Co(C_2H_4)_2$ (97 m g, 0.39 mmol) was dissolved in 8 mL of C_6H_6 and thiophene (0.65 mL, 8.12 mmol) added to the dark red-orange solution. The solution was placed in a Teflon stopcock sealed ampule, freeze- pump-thaw degassed three times, and heated in an **oil** bath at **70 OC** for **1** h. **The** sample was then hem-pump-thaw degd and heated for another **¹h.** This *cycle* **was** repeated a third **time,** after which **the** solvent was removed under vacuum **(lo4** mm, **26 OC)** and **the** black solid that remained washed with hexane, yielding pure product (74 mg, 80%). Anal. Calcd for Co₂SC₂₄H₃₄: **C, 81.10; H, 7.25. Found: C, 81.24; H, 7.18. ¹H NMR** (-60 °C) **, toluene-d₈):** δ **9.371 (d, J = 7.0 Hz, 1 H), 5.927 (t, J = 5.1 Hz, 1 H), 6.031** (d, J - 6.8 *Hz,* **1 HI, 3.540** (t, J ⁼**6.0 Hz, 1 H), 2.023 (e, 16 H), 1.644 (s,16 H). '8cl1H) NMR** (-60 **OC,** THF-dd: **6 187.91** (8) , 139.24 (8) , 120.85 (8) , 89.97 (8) , 87.88 (8) , 85.08 (8) , 11.49 (8) , **10.48** *(8).*

X-ray Structure of $[(C_{\delta}Me_{\delta})Co]_{2}(C_{4}H_{4}S)$. A single crystal of the complex was mounted, and cell constants were obtained from 25 centered reflections with values of χ between 0 and 70°. Routine data collection of one quadrant of data was undertaken on **the primitive** monoclinic cell, **as indicated** in Table **III.** Axial photoe were wed to confirm **the** chosen **axes** and showed no e vidence for "super lattice" effects. The Molecular Structure Corp. *TFXSAN* analysis software package was used for data reduction and solution.¹⁵ A Patterson map solution of the structure to locate the **two** cobalt atoms, followed by expamion of **the structure** with the program **DIRDIF,** revealed **all** non-hydrogen atoms. After isotropic refinement, the initial model showed residual electron **peaks** on either side of **the sulfur** and in the center of the **C- (23)-C(24)** double bond. These were modeled **as** a disordered SCH-CHCH-CH ligand with the opposite orientation, in which **the sulfur and** C=C double bond had **exchanged sib** and in which the double bond had changed cobalt atoms to which it was η^2 bound. There was no evidence for disordered atoms corresponding to the C_sMe_s rings, suggesting that these atoms lies in virtually bound. There was no evidence for disordered atoms corresponding
to the C_5Me_5 rings, suggesting that these atoms lies in virtually
the same locations in the disordered partners. In the final model
used, the pairs of $S($ used, the pairs of S(1A/B), C(21A/B), C(22A/B), C(23A/B), and
C(24A/B) atoms were refined with pairwise equivalent isotropic thermal parameters while constraining the populations to vary together. Following isotropic refinement, an absorption correction was applied wing the program **DIFABS.** Full matrix least **squares** anisotropic refinement of the nondieordered non-hydrogen atoms (with hydrogens attached to nondisordered carbons in idealized poeitions) wan carried out to convergence. In the **final** model, the populations of the disordered atoms refined to **88.8 (6)-31.4** *(6).* **Fractional** coordinates **am given** in Table I and *selected* **distances** and angles in Table **11.**

Acknowledgment is made to the National Science Foundation (Grant CHE-9102318) for their support of this work.

Supplementary Material **Available: PLUTO** drawing of the disordered model and tables of crystal data, bond distances and angles, and positional and thermal parameters **(12** pages). Or- dering information is given on any current masthead page.

OM9108031

⁽¹³⁾ Luo, S.; Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. J. *Am. Chem.* **SOC. 1992,114, 1732-1735.**

where $w = [a^x (F_o) + (pr_o^x)^x]^{\alpha}$ for the non-Poisson contribution weighting
scheme. The quantity minimized was $\sum w([F_o] - [F_o])^2$. Source of scat-
tering factors *f_o f', f''*: Cromer, D. T.; Waber, J. T. *International Table for X-Ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol IV, Tables 2.2B and 2.3.1.