structure of **1** may not be the ground-state geometry of the molecule, even though no specific intermolecular contacts **are** found in the **crystal** lattice. **Similar** molecules such **as** $(\eta^5\text{-Me}_6C_6)_2\text{Si}$ have very shallow bending potentials and, therefore, exist **as** independent linear and bent forms in the same lattice.¹³

Although the tin atom adopts an essentially n^5 -bonding posture with respect to each of the C_2B_3 faces with the Sn-centroid distances of **2.105** and **2.087 A,** the average Sn-C distances **(2.708 (6) A)** are significantly longer than the average Sn-B **distances (2.355 (8) A),** thus making the metal slipped toward the three boron atoms with concomitant tightening of the C-C bond **(1.453 (8)** and **1.478** (7) \hat{A} in 1 **vs** 1.494 (7) \hat{A} in 2) on the C_2B_3 face in each ligand. Such slip distortions of the metallacarborane cages have been observed previously.⁴ The (ring centroid 1)-&-(ring centroid **2)** angle of **142.5"** in **1** is comparable to the corresponding angles in $(\eta^5$ -C₅H₅)₂Sn^{II} (145.8°)¹ and $(\eta^5$ -C₅Me₅)₂Sn^{II} (144.1^o),^{2a} and thus the bent geometry of **1** resembles those of the stannocene derivatives despite the

(13) Jutzi, P.; Kanne, D.; mer, C. *Angew. Chem., Int. Ed. Engl.* **1986,25,164.**

2- charge on each carborane ligand. Nonetheless, compound 1 represents the first $\text{tin}(\text{IV})$ sandwich complex ever to be reported.

The resulta of this investigation suggest that a number of novel complexes **containing** higher oxidation **states,** that are not normally produced by conventional synthetic ap proaches, can be synthesized by oxidizing the metal in the complex with **an** *oxidizing* **metal** reagent stronger than the complexed metal itself. We are currently exploiting this synthetic strategy in the preparation of hitherto unexplored carborane sandwich complexes of main-group elementa and early transition metals.

Acknowledgment. This work was supported by granta from the **Nationd** Science Foundation **(CHE91OOO48),** the Robert A. Welch Foundation (N-1016), and the donors of the Petroleum Research Fund, administered by the **Am**erican Chemical Society.

Supplementary Material Available: Tables of positional and thermal parameters, bond distances, and bond angles (5 pages). Ordering information is given on any current masthead page.

OM9202736

Ru₅(CO)₁₅B(AuPPh₃): A Novel Boride Cluster Formed by the **Degradation of Ru_s(CO)₁₇B(AuPPh₃)**

Catherine E. Housecroft, *^{,†} Dorn M. Matthews,[†] and Arnold L. Rheingold*^{,‡}

University Chemical Laboratory, Lensfleld Road, Cambridge CB2 1EW, U.K., and Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received June 1, 1992

Summary: **Under a pressure of CO (55 atm), Rue- (CO),,B(AuPPh,) extrudes one ruthenium vertex and** forms $Ru_5(CO)_{15}B(AuPPh_3)$ (2) as the only product. **Crystallographic characterization of 2 confirms** the **presence of a square-pyramidal Ru, core wlth an interstitial boron atom 0.375 A below the square** face. **2 is** the **first structurally elucidated exampie of a boride cluster built upon an M,B core.**

The emerging area of discrete molecular boride clusters **has** provided examples of boron atoms encapsulated within hexametallic cages; structurally characterized clusters are octahedral $(HRu_6(CO)_{17}B,^{1,2} [Fe_4Rh_2(CO)_{16}B]^{-,3}$ and $H_2Fe_3Rh_3(CO)_{15}B^3$) and trigonal prismatic ($[H_2Ru_6(C \overline{O}_{18}$ \overline{B}]⁻).⁴ During the reaction to form $[Fe_4Rh_2(CO)_{16}B]^-$, Fehlner has observed the formation of an intermediate species proposed to possess an Fe₄RhB core.³ Pentanuclear **DESALES 2014 DESALES 2014**

(2) Draper, S. M.; Housecroft, C. E.; Keep, A. K.; Matthewe, D. M.; Song, X.; Rheingold, A. L. *J. Organomet. Chem.* **1992,423, 241.**

Figure 1. Molecular structure of $Ru_5(CO)_{15}B(AuPPh_3)$ (2).

species are well exemplified for molecular transition-metal carbonyl carbides⁵⁻⁸ and nitrides.^{5,9,10} Our own work in

^{&#}x27;University Chemical Laboratory.

³ University of Delaware.

⁽¹⁾ Hong, F.-E.; Coffy, T. J.; McCarthy, D. A.; Shore, S. G. *Inorg. Chem.* **1989,28,3284.**

⁽³⁾ Bnndyopadhyay, A. K.; Khattar, R.; Puga, J.; Fehlner, T. P.; Rheingold, A. L. *Inorg. Chem.* **1992,31,465.**

⁽⁴⁾ Housecroft, C. E.; Matthewe, D. M.; Rheingold, A. L.; Song, X. *J. Chem.* **SOC.,** *Chem. Commun.* **1992,842.**

⁽⁵⁾ **Gourdon, A.; Jeannin, Y.** *J. Organomet. Chem.* **19811, 290, 199. (6) Johnson, B. F. G.;** Lewis, **J.; Nelson, W. J. H.; Nichob, J. N.;** Puga, **J.; Raithby, P. R.;** Mea, **M. J.; McPartlin, M.; Clegg, W.** *J. Chem. Soc., Dalton Trans.* **1983,277.**

the area of borides has concentrated on ruthenium-based clusters. We now report the successful synthesis of a pentaruthenium boride cluster via the degradation of a hexaruthenium species.

The anion $[Ru_6(CO)_{17}B]$ ⁻ was prepared from $[Ru_3(CO)_{17}B]$ ⁻ O ₂B₂H₆]⁻ as previously described.⁴ Treatment of a CH_2Cl_2 solution of $[\text{Ru}_6(\text{CO})_{17}\text{B}]$ ⁻ with Ph₃PAuCl in the presence of TIPF₆ gave red-brown $Ru_6(CO)_{17}B(AuPPh_3)$ (1) in $>90\%$ yield.¹¹ A solution of 1 in CH_2Cl_2 was placed in **an** autoclave under *55* atm of carbon monoxide for 14.5 h with constant stirring at room temperature. Upon chromatographic separation (with 2:1 hexane-CH₂Cl₂ as eluent) two fractions were obtained. The first to be collected was bright blue and was identified as $Ru_{6}(CO)_{16}B$ -(AuPPh3) (2),12 formed in approximately *50%* yield with respect to **1.** The second fraction was unreacted **1.**

A comparison of the llB NMR spectral data for **1** and 2 indicates that the environments about the boron atom are significantly different in the two compounds. 13,14 For 1, the ¹¹B NMR spectral shift of δ +194.4 is close to that of the parent hydrido cluster $HRu_{\beta}(CO)_{17}B^{1,2}$ and its conjugate base $[Ru_{\alpha}(CO)_{17}B]^{-1,14}$ implying that an octahedral core (crystallographically confirmed for HRu₆- $(CO)_{17}B$ ^{1,2} is present in 1. Consistent with this is the fact that the 11 B NMR signal for 1 is sharp¹¹ (fwhm 25 Hz). Compound 2 is characterized by an ¹¹B NMR spectral resonance at δ +172.5 with fwhm 175 Hz. In comparison to **1,** the higher field shift and the broader line width for **2** suggest that the boron atom resides in a metal cage which is more open and less symmetrical¹³ than that in 1 . This proposition has been confirmed crystallographically.

A crystal of 2 suitable for X-ray **analysis** was grown from $CH₂Cl₂$ layered with hexane.¹⁶ The molecular structure of 2 is shown in Figure 1. The five ruthenium atoms define a square-based pyramid, a core geometry that is consistent with the 74-valence-electron count of Ru_{5} - $(CO)_{15}B(AuPPh_3)$ provided that the AuPPh₃ unit functions **as** a pseudo-hydride ligand. Distances from the apical atom Ru(1) to the basal atoms Ru(2), Ru(3), Ru(4), and Ru(5) are 2.804 **(7),** 2.836 (7), 2.851 *(5),* and 2.870 (6) **A,** respectively. The boron atom residues 0.375 **A** below the square face defined by atoms $Ru(2)$, $Ru(3)$, $Ru(4)$, and Ru(5) and is within bonding contact of all five ruthenium atoms: Ru(1)-B = 2.28 (6) **A,** Ru(2)-B = 2.16 (4) **A,** Ru- 2.09 (4) Å. The position of the AuPPh₃ fragment is unprecedented. It caps the basal triangle defined by atoms Ru(3), Ru(4), and B and is asymmetrically placed with respect to and pendant from the square face of the Ru_{5} framework; Au-B = 2.26 *(5)* **A,** Au-Ru(3) = 2.775 (4) **A,** (3)°. The presence of the AuPPh₃ unit lengthens one of the edges of the square face of the Ru_5 core; $Ru(3)-Ru(4)$
= 3.054 (4) Å compared to an average of 2.898 (4) Å for the remaining three *edges.* With the exception of C(7)0(7), the carbonyl ligands are terminally bound. Ligand C(7)- $O(7)$ is bridging along the edge Ru(3)Au with Au-C(7) = (3)-B = 2.16 (4) A, Ru(4)-B = 2.03 *(5)* A, and Ru(5)-B = and Au-Ru(4) = 2.821 (5) Å and $\angle Ru(1)$ -B-Au = 151.4 2.56 (2) Å and $\angle Ru(3)-C(7)-O(7) = 146$ (3)°.

Several carbido clusters related to 2 have been structurally characterized. However, the location of the $AuPPh₃$ group in 2 contrasts with the sites noted in these carbides. $\text{Ru}_5(\text{CO})_{13}(\text{NO})\text{C}(\text{AuPEt}_3)^{18}$ and $\text{Os}_5(\text{CO})_{14}\text{C}(\text{AuPPh}_3)_{2}^{19}$ exhibit either M-M edge bridging or M_3 face capping (M = Ru, Os) gold(I) phosphine fragments, leaving the carbon atom exposed in the middle of the basal plane of the **M5** skeleton. In $M_5(CO)_{14}C(AuPEt_3)_2$ (M = Fe, ^{20,21} Ru²¹), one AuPEt₃ unit bridges one basal Fe-Fe edge while the second unit caps the entire basal plane, rendering the carbon atom fully interstitial. The preference shown by the gold atom in **2** to be associated with the boron atom follows a trend that we have previously observed in a series of $M₄$ -butterfly-based M_4BAu_x clusters (M = Fe, Ru; $x = 1-3$).²² The preference for the unusual μ_3 -AuPPh₃ group in 2 over the μ_4 site observed in $M_5(CO)_{14}C(AuPEt_3)_2$ (M = Fe, Ru) may be due to steric effects, perhaps the extra carbonyl ligand present in 2.

The transformation of **1** to 2 involves the extrusion of one ruthenium vertex from an octahedral $Ru₆$ cage. Corresponding changes in cluster nuclearity have been

⁽⁷⁾ Braye, E. H.; Dahl, L. F.; Hubel, W.; Wampler, D. L. J. Am. *Chem.* SOC. **1962,84,4633.** Hriljac, J. A.; Swepston, P. N.; Shiver, D. F. Organometallics **1985,4,158.** Lopatin, V. E.; Gubin, **S.** P.; Mikova, **N.** M.; Tsybenov, M. Ts.; Slovokhotov, Yu. L.; Struchkov, Yu. L. *J.* Organomet. Chem. **1986,292,275.** Tachikawa, M.; Sievert, A. C.; Muetterties, E. L.; Chem. 1980, 222, 210. 1 achina an M., Steven, A.C., intertuctually, 1725. Gourdon, A., B. Day, C. S.; Day, V. W. J. Am. Chem. Soc. 1980, 102, 1725. Gourdon, A.; Jeannin, Y. Organometallics 1986, 5, 2406. Henly, J. T.; Wils **C61.** Cowie, A. **G.;** Johnson, B. F. **G.;** Lewis, J.; Nicholla, J. N.; Raithby, P. R.; **Mea,** M. J. *J. Chem.* SOC., Dalton Trans. **1983,2311.** Bruce, M. r . t., tossues, w. s. o. c. c. et al. H.; Williams, M. L. J. Organomet. Chem.
I.; Skelton, B. W.; Whit, A. H.; Williams, M. L. J. Organomet. Chem.
1989, 369, 393. Bogdan, P. L.; Sabat, M.; Sunshine, S. A.; Woodcock, C.;
S

⁽⁸⁾ Johnson, B. F. G.; Lewis, J.; Nelson, W. J. H.; Nicholls, J. N.; Puga, J.; Raithby, P. R.; Rosales, M. J.; Schröder, M.; Vargas, M. D. *J. Chem.* SOC., Dalton Trans. **1983,2447.**

⁽⁹⁾ Blohm, M. L.; Gladfelter, W. L. Organometallics **1985, 4, 45.**

⁽¹⁰⁾ Tachikawa, M.; Stein, J.; Muetterties, E. L.; Teller, R. G.; Beno, M. A.; Gebert, E.; Williams, J. M. *J.* Am. Chem. SOC. **1980, 102, 6648.** Gibson, C. P.; Dahl, L. F. Organometallics **1988, 7,543.**

⁽m, *Ph*); 128-MHz ¹¹B NMR (CDCl₃; BF₃-OEt₂ reference) δ +194.4; 162-MHz ³¹P NMR (CDCl₃; H₃PO₄ reference) δ +73.2; IR (hexane, cm⁻¹) 2086 w, 2058 v, 322 am, 1994 m, 1975 w, 1824 w; FAB-MS in 3-NBA **(11) Ru₆(CO)₁₇B(AuPPh**₃) **(1): 400-MHz ¹H NMR (CDCl₃) δ 7.6–7.4**

⁽¹²⁾ **Ru₅**(CO)₁₈B(AuPPh₃) (2): 400-MHz ¹H NMR (CDCl₃) δ 7.8–7.4 (m, *Ph*); 128-MHz ¹¹B NMR (CDCl₃; BF₃·OEt₂ reference) δ +172.5; 162-MHz³¹P NMR (CDCl₃; H₃PO₄ reference) δ +63.1; IR (hexane, cm⁻¹) 2086
w, 2048 vs, 2032 m (sh), 2018 s, 1995 m, 1965 m, 1915 w; FAB-MS in
3-NBA matrix m/z 1395 (P⁺) with 5 CO losses (calcd for
¹²C₃₃¹H₁

⁽¹³⁾ Khattar, R.; Fehlner, T. P.; Czech, P. T. New J. Chem. **1991,15,** 705. **Fehlner, T. P.; Czech, P. T.; Fenske, R. F.** *Inorg. Chem.* **1990, 29,** *3103.* **Rath, N. P.; Fehlner, N. P. J. Am. Chem. Soc. 1988, 110, 5345.**

⁽¹⁴⁾ Housecroft, C. E. Adu. Organomet. Chem. **1991, 33, 1.**

⁽¹⁵⁾ Chipperfield, A. K.; Housecroft, C. E.; Raithby, P. R. Organometallics **1990, 9, 479.**

⁽¹⁶⁾ Crystal data for 2: C₃₃H₁₅AuBO₁₅PRu₅, fw 1395.5, monoclinic, *Cc*, $a = 15.994$ (4) Å, $b = 10.091$ (3) Å, $c = 25.864$ (6) Å, $\beta = 107.95$ (3)°, *V* = 1965.2 (7) Å³, *Z* = 4, $D_{\text{expl}} = 4.717$ g cm⁻³, $R(F) =$ **7.99% for 1968 independent, observed data (Siemens P4, 294 K, 20(max) =** 48° **,** $F_o \geq 4\sigma(F_o)$ **). A crystal of modest quality possessed** $2/m$ **Laue** = 48°, $F_o \ge 4\sigma(F_o)$. A crystal of modest quality possessed $2/m$ Laue symmetry; the noncentrosymmetric space group, Cc, was chosen on the basis of the systematic absences in the reflection data and the absence of 2-fold rotational symmetry in the molecule. Correction for absorption used an empirical method which obtains an absorption tensor from an expression relating F_0 and F_c .¹⁷ Limitations on the available data allowed anisotropic refmement of **only** the Au, Ru, and P atoms. The phenyl rings were rigidly constrained, and the hydrogen atoms were idealized.

⁽¹⁷⁾ Hop, H.; Moezzi, B. University of California at Davis, private communication.

⁽¹⁸⁾ Hendrick, K.; Johnson, B. F. G.; Lewis, J.; Mace, J.; McPartlin, M.; Morris, J. J. Chem. SOC., Chem. *Commun.* **1985, 1617.**

⁽¹⁹⁾ Johnson, B. F. G.; Lewis, J.; Nelson, W. J. H.; Nicholls, J. N.; Puga, J.; Raithby, P. R.; Rosales, M. J.; Schröder, M.; Vargas, M. D. J. Chem. SOC., Dalton Trans. **1983, 2447.**

⁽²⁰⁾ Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Rosales, M. J. J. Organomet. Chem. **1982,238, C73.**

⁽²¹⁾ Reference **473** cited in: Vargas, M. D.; Nicholls, J. N. Adu. Inorg. Chem. Radiochem. **1986,30,123.**

⁽²²⁾ Housecroft, C. E.; Rheingold, A. L. Organometallics **1987,6,1332.** Harpp, K. **S.;** Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. *J.* A. L.; Shongwe, M. S. Organometallics 1989, 8, 2651. Chipperfield, A. K.; Housecroft, C. E.; Rheingold, A. L. Organometallics **1990, 9, 681.**

observed in the conversions of $[Ru_6(CO)_{16}N]$ ⁻ to $[Ru_6(C-O)_{16}N]$ ⁻ $O_{14}N$ ⁻ (quantitative with 1 atm of CO at 25 °C)⁹ and $Ru_6(CO)_{17}C$ to $Ru_5(CO)_{15}C$ (quantitative with 80 atm of CO at 70[°]C0.⁶ We are currently studying methods of forming the anionic cluster $[Ru_{\alpha}(CO)_{\alpha}B]$, initially by removing the gold(1) phosphine group from **2.**

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this **reaearch,** to the SERC for a studentship (D.M.M.), and to the NSF for a grant

(CHE9007852) toward the purchase of a diffractometer at the University of Delaware. Johnson-Matthey is thanked for loans of RuCl₃. We acknowledge preliminary work by Ann K. Keep and Xuejing Song on the preparation of **1.**

Supplementary Material Available: Tables **of** crystal and refinement data, atomic coordinates, bond distances and angles, thermal parameters, and H atom fractional coordinates **(8 pages).** Ordering information is given on any current masthead page.

OM920309U

New Simple Route to Aiiylstannanes by Zinc-Mediated Coupling of Allyl Bromides with Bu₃SnCl or Bu₂SnCl₂ in an H₂O (NH₄Cl)/THF Medium

Tommaso Carofiglio, Daniele Marton, and Giuseppe Tagliavini

Dlpartmto dl Chimka Inorganlca, Metalkwganla **ed** *Analitla, UniversM di Padova, Via Marzolo 1, I-35131 Padova, Italy*

Received June 4, 1992

Summary: A new zinc-mediated coupling reaction of allyl and allyl-like bromides with Bu₃SnCI (1) or Bu₂SnCI₂ (2), performed in H₂O (NH₄CI)/THF medium, represents an **easy route to the following organostannanes: Bu,SnCH,CH=CH, (3) and Bu,Sn(CH,CH=CH,), (4), Bu₃Sn(C₄H₇) (5) and Bu₂Sn(C₄H₇)₂ (6) (where C₄H₇ stands for** *trans* **-crotyl,** *cis* **-crotyl, or a-methylallyl), and Bu,SnCH==C=CH, (7).** This **striking one-pot procedure successfully Improves the already general routes where Grignard or other conventional organometallic reagents are used.**

Allylstannanes have been shown to be versatile reagents in organic synthesis¹ in (i) allylstannation² of carbonyl compounds, (ii) allylations promoted by $BF_3·Et_2O^3$ or by scrambling reagents⁴ such as Bu₂SnCl₂, Bu₃SnCl, SnCl₄, $BCl₃$, $BBr₃$, $TiCl₄$, and $Cp₂TiCl₂$, and (iii) catalyzed cross-coupling reactions of allyl halides with triorganoallylstannanes.

The various approachea provide convenient methods for **C-C** bond formation via stoichiometric or catalyzed reactions. Even reactions leading to $C-O-C$ formation, by means of a thermal condensation of two molecules of aldehydes with allyltin substrates, have been considered.⁶ Furthermore, it has been demonstrated that allylstannations by means of allyltin halides occur under mild conditions, with very short reaction times and without the use of organic solvents and an inert-gas atmosphere. $2,6$ In fact, allylstannations leading to C-C bond formation can be performed in the presence of water⁷ and even in aqueous acid media.⁸

Synthetic routes to allylstannanes are based on the following procedures: (a) preparation of a conventional organometallic compound (Grignard, RLi, etc.) which will react with an organotin halide or oxide, 9 (b) reactions of

⁽¹⁾ For general reviews, see: Davies, A. G.; Smith, P. J. In *Compre***henaive** Organometallic *Chemistry;* Wilkineon, *G.,* Stone, F. *G.* A., AM, E. W., **Eda;** Pergamon begs: **Oxford,** U.K., **1982.** Pereyre, M.; Quintard, J.-P.; Rahm, A. In *Tin in Organic Synthesis*; Butterworths: London, **1987;** p **185. Yamamoto, Y.** Acc. *Chem. Res.* **1987,20,243.** Wardell, J. L. In Chemistry *of Tin;* Harrison, P. **G.,** Ed.; Blackie: **Glasgow,** Scotland, 1989; **p** 315.
(2) Allylstannation describes the addition of an unsaturated organic

moiety into the tin-carbon allylic bond. Such a reaction has been found to *occur* with **allyltin** halidea. *Sea:* Tagliavini, *G.;* Peruzzo, V.; Plazzogna, *G.;* Marton, D. *Inorg. Chim.* Acta **1977,24, L47.** Tagliavini, *G.;* Marton, D.; Furlani, D. *Tetrahedron* **1989,46,1187.** For a review *we:* Tagliavini, *G.* Silicon, *Germanium, Tin Lead Compd.* **1985,8, 23.**

⁽³⁾ Maruyama, K.; Naruta, Y. J. Org. Chem. 1978, 43, 3796. Naruta, Y.; Maruyama, K. Chem. Lett. 1978, 431. Naruta, Y. J. Am. Chem. Soc. 1980, 102, 3774. Yamamoto, Y.; Yatagai, H.; Maruyama, K.; Naruta, Y.
1980, 102, 3774.

⁽⁴⁾ For TiCl₄ and Cp₂TiCl₂, see: Keck, G. E.; Abbott, D. E.; Boden, E. P.; Enholm, E. J. Tetrahedron Lett. 1984, 25, 3927. Marton, D.; Tagliavini, G.; Zordan, M.; Wardell, J. L. J. Organomet. Chem. 1990, 391, 205. F

⁽⁵⁾ Kosugi, M.; Sasazama, K.; Shimizu, **Y.;** Migita, T. *Chem. Lett.* **1977, 301.** Trost, B. M.; Keinan, E. *Tetrahedron Lett.* **1980,21,2595. Godschalx,** J.; Stille, J. K. *Tetrahedron Lett.* **1980,21, 2599.** Keck, *G.* Gusschutz, J.; Stulie, J. K. 1etrukaron Lett. 1980, 221, 2039. Reffy, F. K.; Stülle, E.; Yates, Y. B. J. Am. Chem. Soc. 1983, 105, 7173. Godschalx, J.; Stülle, J. K. Tetrahedron Lett. 1983, 24, 1905. Migita, T.; Nogai, K.; M.; Sakuray, H. *J. Organomet. Chem.* **1985,285,96.** Stille, J. K.; Sweet, M. P. *Tetrahedron Lett.* **1989,30,3645.** Marshall, J. A.; Luke, *G.* P. *J.* Org. *Chem.* **1991,56,483.** Marshall, J. A.; Wang, **X.** *J.* Org. *Chem.* **1991, 56,3211.** For a review, **see:** Beletakaya, I. P. *J. Organomet. Chem.* **1983, 250, 551.**

⁽⁶⁾ Allyltin dichlorides and trichlorides have shown to be able to add two molecules of aldehydes, forming alkoxides which thermally **collapse** to halotetrahydropyrans, bicyclic compounds, or ethers. See: **Gambaro,** A.; Boaretto, A.; Marton, D.; Tagliavini, *G.* J. *Organomet. Chem.* **1983, 254, 293.** Gambaro, A.; Boaretto, A.; Marton, D.; Tagliavini, **G.** J. Or*ganomet. Chem.* **1984,260, 255.** Boaretto, A.; **Furlani,** D.; Marton, D.; Tagliavini, **G.; Gambaro,** A. J. *Organomet. Chem.* **1986,299,157.** Marton, D.; Furlani, D.; Tagliavini, *G. Gazz. Chim. Ital.* **1987,117,189.** Marton, D.; Furlani, D.; Tagliavini, **G.** *Garr. Chim.* **Ztal. 1988,118, 135.**

⁽⁷⁾ For C-C bond formation using allyl-, allenyl-, and propargyltin substrates in aqueous medium, see: (a) Boaretto, A.; Marton, D.; Tagliavini, G.; Gambaro, A. *J. Organomet. Chem.* 1985, 286, 9. (b) Boaretto, A.; Marton, D.; Tagliavini, *G. J. Organomet. Chem.* **1986,297, 149.** (c) Furlani, D.; Marton, D.; Tagliavini, *G.;* Zordan, M. *J. Organomet. Chem.* **1988,341, 345.**

⁽⁸⁾ Marton, D.; Tagliavini, *G.;* **Vanzan,** N. *J. Organomet. Chem.* **1989, 376, 269.**