Synthesis and Characterization of Tantalum(V) Dicarboliide Complexes

Roger Uhhmmer, Donna J. Crowther, Jeffrey D. Olson, Dale C. Swenson, and Richard F. Jordan'

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received March 23, 1992

Reaction of TaCl₅ with $Li_2C_2B_9H_{11}$ in toluene yields $(C_2B_9H_{11})TaCl_3$ (1). Molecular weight measurements for **1** indicate a monomeric structure in benzene solution. X-ray diffraction reveals a distorted-odahedral/three-legged piano-stool structure for 1. Data for 1: $a = 6.84$ (1) Å, $b = 9.614$ (2) Å, $c = 19.073$ (3) Å, $\beta = 92.37$ (3)^o, $V = 1252$ (2) Å³, $Z = 4$ in space group $P2_1/c$. Reaction of 1 with TlCp' (Cp' = C₅H in CH_2Cl_2 yields the bent metallocene $Cp'(C_2B_9H_{11})$ $TaCl_2$ (2). X -ray diffraction reveals a distorted-tetrahedral structure for **2**, isostructural with group 4 metallocenes. Data for 2: $a = 9.519$ (4) \AA , $b = 12.752$ (6) \AA , $c = 7.016$ (2) \mathbf{A} , $\alpha = 97.16$ (3)^o, $\beta = 109.76$ (3)^o, $\gamma = 94.15$ (4)^o, $V = 789$ (1) \mathbf{A}^3 , $Z = 2$ in space group *P*1. Reaction of CpTaC4 with **Li&&Hll** yields Cp(C2BgHIl)TaCl2 (3, Cp = C&J. Alkylation of **1** with MeMgBr yields (C2B&1)Tah4e3 **(4).** Alkylation of **2** with MeMgBr yields Cp'(C2&Hl1)TaMe2 **(5).**

Introduction

The nido-carborane dianion $C_2B_9H_{11}^2$ ("dicarbollide") binds to metals via the open B_3C_2 face in an η^5 fashion and is sterically and electronically comparable to $Cp^{*-1,2}$ An extensive main-group, d-block, and f-block element dicarbollide chemistry has been developed, primarily by Hawthorne and co-workers.^{1,3,4} The use of $C_2B_9H_{11}^2$ in place of Cp- ligands provides interesting opportunities for the design of complexes with new metal/charge combinations and increased metal unsaturation. For example, the $(C_2B_9H_{11})M^{n+}$ fragment $(A,$ Scheme I) is isostructural with the analogous Cp fragment $CpM^{(n+1)+}$ (B) but carries **an** overall charge which is one unit lower. Also, a $(C₂B₄H₁₁)MX_n$ species (C) is electronically and coordinatively unsaturated relative to the analogous $CDMX_{n+1}$ species **(D)** of the same overall charge but isoelectronic with a CpM'X, **(E)** species where M' is one group **to** the left of M in the periodic table.

For several years we have studied the synthesis and chemistry of cationic, d⁰ metal alkyl complexes $Cp_2Zr(R)L^+$ **(L** = labile ligand or weakly coordinating anion), which are closely related to the $Cp_2Zr(R)^+$ active species in Cp_2ZrX_2 -based Ziegler-Natta olefin polymerization catalysts.⁵ To explore the effect of charge on reactivity, we

(1) Hawthorne, M. **F.** *Acc. Chem. Res.* **1968,** *I,* **281.**

recently prepared the series of neutral dicarbollide complexes $[Cp^*(C_2B_9H_{11})MCH_3]_x$ (M = Hf, Zr), which are structurally and electronically very *similar* **to** the cationic $Cp_2Zr(R)^+$ systems.^{6,7} We observed high insertion and σ -bond methathesis reactivity for the neutral [Cp*- $(C_2B_9H_{11})MCH_3]$, species and crystallographically characterized two bent-metallocene derivatives of this type, $Cp^*(C_2B_9H_{11})Zr[C(Me)=CMe_2]$ and $[Cp^*(C_2B_9H_{11})Zr]_{2^-}$ $(\mu$ -CH₂). Several other early-metal and f-element bentmetallocene complexes incorporating η^5 -dicarbollide lig**ands** have been reported.8 These results have led **UB** to pursue the synthesis of other high-valent, early-metal alkyl systems containing the dicarbollide ligand.

In this paper we present the preparation and characterization of group 5 dicarbollide complexes $(C_2B_9H_{11})$ -

⁽²⁾ (a) Hanu, **T.** P. *Polyhedron* **1982,** *I,* **M3.** (b) **Mingw, D.** M. P. J. *Chem.* **SOC.,** *Dalton* **Trans. 1977,602.** (c) **Mingw, D.** M. P.; **Forsyth,** M. I.; Welch, A. J. J. *Chem. SOC., Dalton* **Trans. 1978, 1363.**

⁽³⁾ Selected references: (a) Hawthorne, M. F.; **Young,** D. C.; Wegner, (3) Selection Teremotes: (a) Hawkinstein, M. F.; Toung, D. C.; Wegner, A. J. Am. Chem. Soc. 1965, 87, 1818. (b) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warre **932.** *(0* Kang, H. C.; **Knobler,** C. B.; Hawthome, **M.** F. *Znorg. Chem.* **1987, 26,3409.** (B) **Manning, M.** J.; Knobler, C. B.; Hawthorne, M. F.; **Do,** *Y. Znorg. Chem.* **1991 30,3689. (h) Lee, S. S.;** Knobler, C. B.; Hawthorne, M. **F.** *Organometallics* **1991,** *10,* **1064.**

^{(4) (}a) Brew, S. A.; Devore, D. D.; Jenkins, P. D.; Pilotti, M. U.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1992, 393. (b) Brew, S. A.; Jenkins, P. D.; Jerrery, J. C.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1992,
401. (c) Hamilton, E. J. M.; Welch, A. J. Polyhedron 1990, 9, 2407. (d)
Colquhoun, H. M.; Greenhough, T. J.; Wallbridge, M. G. H. J. Chem. *Soc., Dalton* **Trans. 1986, 761. (e)** Calhorda, M. J.; Mingw, D. M. P.; Welch, A. J. J. *Organomet. Chem.* **1982,228,309.**

⁽⁵⁾ For a review with extensive referencea *BBB:* (a) Jordan, R. F. *Adu. Organomet. Chem.* **1991,32,325.** (b) **Alelyunas, Y.** W.; Jordan, R. **F.; Echola, 5. F.; Borbky, S.** L.; Bradley, **P. K.** *Organometallics* **1991,10, 1406. (c) Guram, A. 5.;** Jordan, **R F.** *Organometallics* **1991,10,3470.** (d) 1406. (c) Guram, A. S.; Jordan, R. F. Organometallics 1991, 10, 3470. (d)
Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1991, 113,
1833. (e) Borkowsky, S. L.; Jordan, R. F.; Hinch, G. D. Organometallics 1991, 9, 1268. (f) Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; La-
Pointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289. (g) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 109, 7410.
(6) Crowt

^{1991,113,1455.}

^{(7) (}a) For Ti dicarbollide complexes see: Salentine, C. G.; Hawthorne, M. F. Inorg. Chem. 1976, 15, 2872. (b) For use of $C_2B_9H_{12}^-$ as a weakly coordinating anion for $(C_5Me_4R)_2Zr(Me)^+$ cations $(R = Me, Et)$ see: **Hlntky, G.** G.; Tumer, **H.** W.; Eckman, R. R. *J. Am. Chem. SOC.* **1989, I1 1,2728.**

^{(8) (}a) Fronczek, F. R.; Halstead, G. W.; Raymond, K. N. J. Am. *Chem. SOC.* **1977,99,1769.** (b) Manning, M. J.; Knobler, C. B.; Khattar, R.; Hawthorne, M. F. *Znorg. Chem.* **1991,** *30,* **2009. (c) Marsh, R.** E.; Schaefer, W. P.; **Bazan, G.** C.; Bercaw, J. E. *Acta Crystallogr.,* in press.

TaCl₃ (1), an analogue of $CpMCl_3$ (M = group 4 metal) derivatives, and $(C_5H_4R)(C_2B_9H_{11})^TRCl₂ (2, R = Me; 3, R = H)$, new d^o metallocenes which are isoelectronic and isostructural with group 4 Cp₂MX₂ derivatives. Complexes **1-3 are intended to serve as precursors to Ta-alkyl complexes, which in turn may provide access to cationic, do** Ta-alkyl complexes, e.g. $\overline{Cp}(C_2B_9H_{11})Ta(R)(L)^+$. Some **simple alkylation chemistry of 1 and 2 is also discussed.**

Experimental Section

General Procedures. *AU* manipulations were performed on a high-vacuum line or in a glovebox under a purified **N2** atmosphere. Solvents were distilled from Na/benzophenone ketyl, except for CH_2Cl_2 and CD_2Cl_2 , which were distilled from CaH_2 or P_2O_6 . TaCl₅ was sublimed before use. o-Carborane $(1,2 C_2B_{10}H_{12}$, Dexsil) was used without further purification. TlCp' was prepared by Erker's method⁹ and sublimed before use. CpTaCl, was prepared by Clark's method.¹⁰

NMR spectra were recorded on a Bruker AC **300, WM 360,** or AMX 360 spectrometer in flame-sealed or Teflon-valved tubes. ¹H and ¹³C chemical shifts are reported versus Me₄Si and were determined by reference to the residual ¹H and ¹³C solvent peaks.
¹¹B^{[1}H] NMR spectra were referenced to external BF₃·Et₂O (δ 0, C_6D_6). Elemental analyses were performed by $E + R$ Microanalytical Laboratory, Inc.

Cryoscopic molecular weight determinations 11 were performed **using** a locally constructed apparatus. **A** benzene solution of the compound of interest was prepared in the glovebox in a tube containing a triangular magnetic stirbar and a small amount of sand **(to** catalyze crystallization) and sealed with an Ace Thread adaptor thru which a Yellow Springs Instrument **46004** thermistor was inserted. The tube was insulated with an airspace by means of an outer **glees** sleeve and then placed an ice bath, and stirring was **maintained.** Freezing **curves** (voltage **vs** time) were measured. Freezing-point voltages were determined by extrapolation of the voltage **vs** time curve to the onset of freezing and referenced to that of neat solvent. Concentrations were determined from a calibration curve (freezing-point voltage **vs** molality) using solutions of Cp₂Zr(CH₂SiMe₃)₂, Cp'Cp^{*}ZrCl₂, and Cp₂Fe as standards. The reported results **are** the average of at least five experiments in the concentration range 0.02-0.06 *m.*

C₂B₂H₁₃. The following is a modification of the literature ~rocedure.~ A**mixture** of 0-carborane (12.0 **g,** 83.3 mmol), KOH (10.1 **g,** 180 mmol), and MeOH (200 **mL,** handled in **air)** was refluxed under N₂ for 2 days. The MeOH was removed under reduced pressure, leaving a white semisolid material. Benzene (200 mL) was added, and an azeotropic distillation was performed to remove H₂O and MeOH. The remaining white solid was dried under vacuum overnight, taken into the glovebox, pulverized, and then dried under high vacuum for 2 days at 40 °C. The solid was slurried in benzene (150 mL) under N_2 , H_3PO_4 (51 mL, 85%) was added, and the two-phase mixture was stirred vigorously for 15 h. The benzene layer was quickly decanted from the lower layer
to minimize exposure to air. The H₃PO₄ layer was extracted with benzene $(2 \times 100 \text{ mL})$; the benzene extracts were combined, dried over MgSO₄, and distilled to dryness under reduced pressure. Sublimation (40-45 °C, <0.001 mm) of the solid residue yielded c-13 (7.85 g, 70%) **as** a white **solid.** The "B *NMR* spectrum of this material was identical with the previously reported ~pectrum.'~ 'H *NMR* (300 **MHz,** Cad: **6** 4.0-1.0 (br m, B-H), 2.56 (br s, 2 C-H), -2.1 (v br s, 2 B-H). ¹¹B{¹H} *NMR* (115 MHz, C_aD_a): δ 4.0 (2 B), -4.4 (2 B), -16.4 (1 B), -17.0 (1 B), -27.4 (3 \overline{B}

 $\text{Li}_2\text{C}_2\text{B}_9\text{H}_{11}$. A hexane solution of "BuLi (9.4 mL, 2.5 M, 23.5) mmol) was added over several minutes to a stirred solution of $C_2B_2H_{13}$ (1.50 g, 11.2 mmol) in benzene (100 mL). An exothermic reaction occurred. The slurry was stirred for 8 h, briefly refluxed, and then filtered. The white solid was washed with pentane and dried under high vacuum for 2 days (yield 1.66 **g,** 100%). The solid is stable for months when stored under N_2 in the freezer. ¹H NMR (360 MHz, THF-d₈): δ + 2.2 to -0.5 (br m), 0.95 **(s)**. No resonances were observed between $\delta - 2$ and -4 , indicating deprotonation was complete.¹⁴ ¹¹B^{{1}H} NMR (115 MHz, THF-d₉): -16.0 (br s,3 B), -17.0 (br **s,** 3 B), -21.9 **(e,** 2 B), -39.1 *(8,* 1 B).16

added in portions to an orange solution of TaCl₅ (1.65 g, 4.61) mmol) in toluene (200 mL). The mixture was stirred for 1 day, the volatiles were removed under vacuum, and the green residue was extracted with 60 mL of a toluene/pentane mixture $(1/2$ by volume). The fitrate was evaporated under vacuum and the resulting solid recrystallized from pentane/toluene at -32 "C. A brown solid was isolated by fitration and sublimed at 100-110 OC (<0.001 Torr), yielding **1 as** a bright yellow solid (0.72 **g,** 37%). Alternatively, the product *may* be isolated directly from the crude green reaidue **by slow** sublimation at 75 "C. 'H *NMR* **(360** *MHz,* Cad: **6** 3.30 (C-H), B-H **reaonancea** appear **as** a broad, complex multiplet from 4.7 to 2.0. ¹H NMR (CD_2Cl_2) : δ 4.46 $(C-H)$, B-H resonances appear from 4.5 to 2.2. ${}^{13}C_1{}^{1}H$ *NMR* (90 *MHz*, C_6D_6): δ 66.8 (m). ¹¹B^{[1}H} NMR (115 MHz, C₆D₆): δ 15.8 (1 B), 7.3 (2 B), 2.6 (2 B), -3.2 (2 B), -5.7 (br, 2 B). $[$ ¹¹B-¹¹B] COSY¹⁶ (115 *MHz,* **w6,** numbering scheme based on X-ray *structure* in *Figure* and B2). corralations **observed** and relative intensities *(8* = *strong,* m = medium, w = weak): B8-(B7, B9), s; B8-(B4, B5), m; (B4, B5)-(B7, B9), **s;** (B4, B5)-(B3, B6), m; (B4, B5)-(B1 or B2), w; (B7, B9)-(B3, B6), **w;** (B3, B6)-(B1 or B2), m. Anal. Calcd for 2.92; C1, 25.13. Cryoscopic molecular weight determination (benzene): 407 (20). Formula weight for $C_2H_{11}B_9Cl_3Ta$: 420. 1): 6 15.8 @8), 7.3 **(B4,** B5), 2.6 (B7, B9), -3.2 (B3, B6), -5.7 (Bl $C_2H_{11}B_9Cl_3Ta$: C, 5.72; H, 2.64; Cl, 25.34. Found: C, 5.80; H,

Cp'(C₂B₂H₁₁)TaCl₂ (2). Solid TlCp' (460 mg, 1.62 mmol) was added to a solution of 1 (682 mg, 1.62 mmol) in CH₂Cl₂ (20 mL). A white precipitate formed immediately. The **mixture** was **stirred** for 10 min and fiitered through a frit covered with Celite. The Celite was washed with CH_2Cl_2 (5 mL) and toluene (2 \times 5 mL). The combined fitrate and washes were concentrated to a slurry (-5 mL) under vacuum, pentane (20 mL) was added, and $2 (622$ mg, 83%) was isolated **as** a yellow solid by filtration. 'H NMR $(360 \text{ MHz}, \text{C}_6\text{D}_6): \delta 6.07 \text{ (t, } J = 3 \text{ Hz}, 2 \text{ H}, \text{C}_5H_4\text{Me})$, 5.49 (t, J = 3 Hz, 2 H, C₃H₄Me), 5.02 (br s, 2 H, C₂H₂B₉H₉), 1.98 (s, 3 H, C_5H_4Me , the B-H resonances appear from 4.4 to 0.6. ${}^{13}C(^{1}H)$ **NMR** (90 **MHz,** C_6D_6): δ 135.5 (ipso C_5H_4Me), 120.9 (C_5H_4Me), 116.3 (C_5H_4Me), 74.2 (br, $C_2B_9H_{11}$), 15.5 (C_5H_4Me). ¹¹B(¹H) **NMR** -9.9 (2 B), -16.6 (1 B). Anal. Calcd for $C_8H_{18}B_9Cl_2Ta$: C, 20.74; H, 3.92; Cl, 15.30. Found: C, 20.63; H, 4.09; Cl, 15.54. (115 **MHz,** C&): **6** 7.9 (1 B), -0.5 (2 **B),** -5.8 (2 **B),** -8.1 (1 B),

 $(Cp)(C_2B_2H_{11})\text{TaCl}_2$ (3). Solid Li₂C₂B₂H₁₁ (47 *mg,* 0.32 mmol) was added to a slurry of CpTaCl₄ (124 *mg,* 0.32 mmol) in toluene (15 mL). The mixture was stirred overnight and filtered through a frit covered with Celite. The solution was concentrated to \sim 2 **mL** under vacuum, and pentane (10 mL) was added. A yellow solid (3,70 *mg)* was isolated by filtration and waahed with pentane. The volatiles were removed from the mother liquor, and the residue was washed with pentane to yield another 14 mg of 3 **as** a yellow solid (59% **total** yield). 'H NMR (360 MHz, CeDe): **⁶** 5.82 **(e,** 5 H), 5.03 (br **s,** 2 H), B-H resonances appear from 4.7 to 0.6. ¹³C^{{1}H}</sub> NMR (90 MHz, C_6D_6): δ 119.1, 75.1 (br). ¹¹B^{{1}H} $(1 B)$, -5.4 $(2 B)$, -12.1 $(1 B)$. Anal. Calcd for $C_7H_{16}B_9Cl_2Ta$: C, **NMR** (115 MHz, C_βD_β): δ 11.9 (1 B), 3.8 (2 B), -1.6 (2 B), -3.5

~~~ ~~

**<sup>(9)</sup> Erker, G.; Sarter, C.; Albrecht, M.; Dehnicke, S.; her, C.;** Ranbe, **E.; Schhmd, R.; Benn, R.; Rufinaka, A.; Mynott, R** *J. Orgunomet. Chem.*  **1990,382,89.** 

<sup>(10)</sup> Cardoso, A. M.; Clark, R. J. H.; Moorhous, S. J. Chem. Soc.,<br>Dalton Trans. 1980, 1156.<br>(11) Shoemaker, D. P.; Garland, C. W.; Steinfeld, J. I.; Nibler, J. W.<br>Experiments in Physical Chemistry, 4th ed.; McGraw-Hill: Ne

**<sup>1981;</sup> pp 168-179. (12) (a) Wiesboeck, R. A.; Hawthome, M. F.** *J.* **Am.** *Chem. SOC.* **1964,**  86, 1642. **(b) Plesek, J.; Hermanek, S.; Stibr, B.** *Inorg. Synth.* **1983, 22, 231.** 

**<sup>(13)</sup> Side, A. R.; Bodner, G. M.; Todd, L. J.** *J. Organomet. Chem.*  **1971, 33, 137.** 

<sup>(14)</sup> For NMR data for C<sub>2</sub>B<sub>2</sub>H<sub>12</sub><sup>-</sup> see: Buchanan, J.; Hamilton, E. J. M.; Reed, D.; Welch, A. J. *J. Chem. Soc., Dalton Trans.* **1990**, 677.

**<sup>(15)</sup> For spectra of related** salta **see: (a) Jutzi, P.; Galow, P.; Abu-**Orabi, S.; Arif, A. M.; Cowley, A. H.; Norman, N. C. Organometallics<br>1987, 6, 1024. (b) Hawthorne reported a 6:1:1:1 pattern for the <sup>11</sup>B NMR<br>resonances of Na<sub>2</sub>C<sub>2</sub>B<sub>9</sub>H<sub>11</sub> in THF.<sup>85</sup><br>(16) Venable, T. L.; Hutton, W. C

**<sup>1984,106,29.</sup>** 

18.71; **H**, 3.59. Found: C, 18.79; **H**, 3.56.

 $(C_2B_9H_{11})\text{TaMe}_3$  (4). A solution of 1 (0.75 g, 1.79 mmol) in toluene  $(25 \text{ mL})$  was cooled to 0 °C, and MeMgBr  $(1.97 \text{ mL}, 3.0 \text{ M})$  in ether, 5.9 mmol) was added by syringe. The mixture was warmed to room temperature with stirring. After 0.5 h, the reaction **mixture was** filtered and the volatilea **were** removed under vacuum. The residue was washed with hexane several times and then dissolved in toluene **(40** mL), and the solution was stirred for **4** h. The solution was filtered through a medium frit covered with Celite and evaporated under vacuum, yielding an off-white solid **(4),** which was dried under high vacuum for **12** h **(0.57** g, 89%). <sup>1</sup>H NMR (360 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  2.41 (s, 2 H, C<sub>2</sub>H<sub>2</sub>B<sub>9</sub>H<sub>9</sub>), 1.14 *(8,* 9 H TaMe), B-H resonances appear from **4.5** to **2.2.** 13C('H) NMR (90 MHz,  $C_6D_6$ ):  $\delta$  86.2 (TaMe), 54.7 (br m,  $C_2B_9H_{11}$ ). <sup>18</sup>C gated decoupled NMR (90 MHz,  $C_6D_6$ ):  $\delta$  86.2  $(q, \tilde{J} = 122$  Hz),  $54.7$  (d of m,  $J = 176$  Hz). <sup>11</sup>B(<sup>1</sup>H) **NMR** (115 **MHz**,  $C_6D_6$ ):  $\delta$  11.6 Calcd for C<sub>5</sub>H<sub>20</sub>B<sub>9</sub>Ta: C, 16.75; H, 5.62. Found: C, 16.61; H, 5.42. **(1** B), **2.9 (2** B), **-1.9 (2** B), **-8.6 (2** B), **-9.4 (1** B), **-10.3 (1** B). *AnaL* 

 $Cp'(C_2B_2H_{11})TaMe_2$  (5). A solution of 2 (300 *mg, 0.65* mmol) in toluene (20 mL) was cooled to 0 °C, and MeMgBr (0.56 mL, 3.0 M in ether, 1.7 mmol) was added. The reaction mixture was  $\frac{1}{2}$  attirred for 1 h and filtered, and the volatiles were removed under vacuum. The residue was dissolved in benzene **(20 mL),** and the solution was stirred for **6** h and filtered through a fine frit covered with Celite. The solvent was removed under vacuum, yielding a yellow solid **(S),** which was washed with pentane and dried **(241**   $5.45$  (s, 2 H,  $C_5H_4$ Me), 3.93 (br s, 2 H,  $C_2H_2B_9H_9$ ), 1.61 (s, 3 H,  $C_5H<sub>a</sub>Me$ ),  $-0.05$  (s, 6 H, TaMe), B-H resonances appear from  $4.3$ to **0.2.** lsC{lH) NMR **(90** MHz, C,\$e): **6 115.7** (C5H4Me), **113.2**   $(C_5H_4Me)$ , 64.2 (br m,  $C_2B_9H_{11}$ ), 62.7 **(TaMe)**, 14.7 **(C<sub>5</sub>H**<sub>4</sub>Me); Cp<sup>'</sup> ipso resonance was obscured by the solvent peak.  $^{13}C(^{1}H)$  NMR (90 MHz, CD2C12): **S 129.4** (Cp' ipso), **116.6, 113.8, 64.9** (br m), **63.4,15.6.** "B('H) NMR **(115** *MHz,* c&6): **6 5.4 (1** B), **0.6 (2** B), **-2.3 (2** B), **-7.6 (1** B), **-10.9 (2** B), **-12.5 (1** B). Anal. Calcd for CIJIuBgTa: C, **28.43;** H, **5.72.** Found: C, **28.11;** H, **5.80.**  *mg,* **71%).** 'H NMR **(360 MHz,** C&): **6 5.69 (8,2** H, Ca4Me),

**X-ray Diffraction Studies of 1 and 2.** Sie *crystals* suitable for X-ray diffraction were **grown** by cooling a pentane/toluene solution (for **1)** and by diffusing pentane into a concentrated toluene solution (for 2). Both were sealed in glass capillaries under N2 Diffraction **data** were obtained with an Enraf-Nonius **CAD4**  diffractomer, and **all** calculations were made using the SDP package provided with this system.<sup>17</sup> Crystallographic data, data acquisition details and refinement parameters are summarized in Table I.

### **Rasults**

Synthesis of  $(C_2B_9H_{11})TaCl_3$  (1). Deprotonation of  $C_2B_9H_{13}$  with 2 equiv of "BuLi in benzene yields  $Li_2C_2$ - $B_9H_{11}$ , which is a convenient, isolable, base-free dicarbollide reagent.<sup>18</sup> Reaction of TaCl<sub>6</sub> with  $Li_2C_2B_9H_{11}$  in toluene produces  $(C_2B_9H_{11})TaCl_3$  (1) as a bright yellow, air-sensitive solid in 37% **isolated** yield **(eq 1).** This reaction **also** 



produces small amounts of  $(C_2B_9H_{11})_2$ TaCl, which will be discussed in detail elsewhere.<sup>19</sup> Attempts to prepare 1

Table I. Summary of Crystallographic Data for  $(C_2B_9H_{11})TaCl_3$  $(1)$  and  $Cp'(C_2B_2H_{11})TaCl_2$  (2)

|                                       | 1                                 | $\overline{2}$                          |
|---------------------------------------|-----------------------------------|-----------------------------------------|
| empirical formula                     | $C_2H_{11}B_9Cl_3Ta$              | $C_aH_{1a}B_aCl_2Ta$                    |
| fw                                    | 419.71                            | 463.39                                  |
| cryst size, mm                        | $0.44 \times 0.13 \times 0.21$    | $0.30 \times 0.251 \times 0.13$         |
| cryst color                           | yellow                            | yellow                                  |
| T, K                                  | 295                               | 295                                     |
| space group                           | $P2_1/c$                          | PĪ                                      |
| a, A                                  | 6.84(1)                           | 9.519(4)                                |
| b, A                                  | 9.614(2)                          | 12.752(6)                               |
| c, A                                  | 19.073 (3)                        | 7.016 (2)                               |
| $\alpha$ , deg                        | 90                                | 97.16(3)                                |
| $\beta$ , deg                         | 92.37(3)                          | 109.76 (3)                              |
| $\gamma$ , deg                        | 90                                | 94.15 (4)                               |
| $V, \Lambda^3$                        | 1252 (2)                          | 789.0 (1)                               |
| z                                     | 4                                 | 2                                       |
| $d$ (calcd), $g/cm^3$                 | 2.23                              | 1.95                                    |
| cell dimens determn                   | $25$ rflns, $13-24$ ° $(2\theta)$ | 49 rflns, $18-38^{\circ}$ (2 $\theta$ ) |
| radiation                             | Mo Kα ( $\lambda$ = 0.7107 Å)     | Mo K $\alpha$ ( $\lambda$ = 0.7107 Å)   |
| scan ratio $\theta/\omega$            | 1                                 | ı                                       |
| scan limit, deg                       | $2-25$ ( $\theta$ )               | 2–30 ( $\theta$ )                       |
| scan speed, deg/min                   | $0.7 - 5.5$                       | $1.5 - 5.0$                             |
| scan range                            | $0.8 + \tan \theta$               | $0.8 + \tan \theta$                     |
| data collected hkl                    | $-8, 8; -11, 11; -22, 22$         | $-12, 13, \pm 17, -13, 7$               |
| no. of rflns collected                | 4675                              | 6869                                    |
| no. of unique rflns                   | 2345                              | 4551                                    |
| decay $(F^2)$ , %                     | 0.9                               | ≺2                                      |
| $\mu$ , cm <sup>-1</sup>              | 92.7                              | 77.1                                    |
| structure soln                        | Patterson/Fourier                 | Patterson/Fourier                       |
| refinement <sup>a</sup>               | all non-H<br>anisotropic, H fixed | all non-H anisotropic,<br>H isotropic   |
| total no. of paramrs                  | 136                               | 253                                     |
| R                                     | 0.051                             | 0.020                                   |
| R.,                                   | 0.059                             | 0.029                                   |
| weight <sup>e</sup>                   | $P = 0.06, Q = 0.0$               | $P = 0.04$ , $Q = 0.0$                  |
| <b>SDOUW</b>                          | 0.958                             | 1.096                                   |
| max param shift/esd                   | 0.04                              | 0.19                                    |
| max resid e density,<br>$e/\lambda^3$ | 1.07                              | 1.20                                    |

 $^a w = [\sigma_F^2 + (PF)^2 + Q]^{-1}$ . **bStandard deviation of unit weight.** 

using  $\text{Na}_2[\text{C}_2\text{B}_9\text{H}_{11}]$ -2THF or  $\text{Tl}_2\text{C}_2\text{B}_9\text{H}_{11}$  were unsuc*ceasfuL* The mono(dicarbollide) complex **1** is **isolated** from the crude product by initial extraction with and crystallization from toluene/pentane followed by sublimation at 110  $\degree$ C, or by slow sublimation of the crude product at lower temperatures  $(\leq 75 \text{ °C})$ . 1 is soluble in  $\text{CH}_2\text{Cl}_2$  and benzene and moderately soluble in pentane but rapidly polymerizes THF.20 Cryoscopic molecular weight determinations for **1** in benzene indicate a monomeric structure in solution.

The <sup>11</sup>B<sup>{1</sup>H} NMR spectrum of 1 consists of five signals in a 1:2:2:2:2 intensity ratio in the range  $\delta + 15.8$  to -5.7. In principle, a 1:1:1:2:2:2 pattern is consistent with  $C_s$ symmetry **(as** observed for **2-5).** For **1,** however, the resonance at  $\delta$  -5.5 is significantly broader  $(\nu_{1/2} = 114 \text{ Hz})$ than the rest **(60-69** Hz), probably due to partial overlap of two single boron resonances. Assignment of the  $^{11}B$ *NMR* resonances was determined from a [<sup>11</sup>B-<sup>11</sup>B] COSY experiment. Qualitatively, the patterns of the shift **as-** 

<sup>(17)</sup> Frenz, B. A. The Enraf-Nonius CAD4 SDP System. In Com**puting** *in* **Crystallography; Delft University Press: Delft, Holland, 1978; P** *64.* 

<sup>(18)</sup> Li<sub>2</sub>C<sub>2</sub>B<sub>9</sub>H<sub>11</sub> has also been generated in situ from **[HNMe<sub>3</sub>][C<sub>2</sub>B<sub>9</sub>H<sub>12</sub>]: (a) Schubert, D. M.; Rees, W. S.; Knobler, C. B.; Hawthorne, M. F. Organometallics 1990, 9, 2938. (b) Li, J.; Logan, C. F.; Jones, M., Jr.** *Znorg.* **Chem. 1991,30, 4866.** 

<sup>(19)</sup> The bis(dicarbollide) complex  $(C_2B_2H_{11})_2$ TaCl was isolated as a yellow solid in 15% yield by sublimation (140–160 °C, <0.001 Torr), from the reaction of  $Li_2C_2B_3H_{11}$  (435 mg, 2.98 mmol) with TaCl<sub>5</sub> (490 mg, 1.37<br>mmol) in refluxing toluene (30 mL, 24 h). Data for (C<sub>2</sub>B<sub>B</sub>H<sub>11</sub>)<sup>2</sup>TaCl: <sup>1</sup>H<br>NMR (300 MHz, toluene-d<sub>8</sub>)  $\delta$  4.43 (s, C<sub>2</sub>H<sub>2</sub>B<sub>P</sub>H<sub>9</sub>);  $(2 B)$ ,  $-1.4$   $(2 B)$ ,  $-6.7$   $(3 B)$ ,  $-11.2$   $(1 B)$ . Anal. Calcd for  $C_4H_{22}B_{18}CITa$ :

C, 9.98; H, 4.61; Cl, 7.37. Found: C, 9.80; H, 4.35; Cl, 7.70. The structure and reactivity of  $(C_2B_2H_{11})_2$ TaCl are currently being investigated.<br>(20) A THF solution (3 mL) of 1 (30 mg) had completely solidified after acid-mediated THF ring-opening reactions, see: (a) Penczek, S.; Kubissa, P.; Matyjaszewski, K. Adv. Polym. Sci. 1980, 37, 1. (b) DeShong, P.; Sidler, D. R. J. Org. Chem. 1988, 53, 4892. (c) Evans, W. J.; Ulibarri, T. **A.; Chamberlain, L. R.; Ziller, J. W.; Alvarez, D., Jr. Organometallics 1990, 9, 2124.** 

**Table 11. Selected Bond Dirtonc88 (A) and Angles (deg) for**   $(C_2B_2H_{11})\text{TaCl}_3(1)$ 

|                       |           | \-&-&-1}}---- |           |  |
|-----------------------|-----------|---------------|-----------|--|
| <b>Bond Distances</b> |           |               |           |  |
| $Ta-C11$              | 2.259 (5) | $Ta-Cl2$      | 2.233(5)  |  |
| $Ta-C13$              | 2.205 (5) | $Ta-C1$       | 2.42(1)   |  |
| $Ta-C2$               | 2.40(1)   | $Ta-B7$       | 2.42(2)   |  |
| Ta-B8                 | 2.43(2)   | Ta-B9         | 2.37(1)   |  |
| $Ta-BO^a$             | 1.928     | $C1-C2$       | 1.60(2)   |  |
| C1–B2                 | 1.74(2)   | C1–B3         | 1.69(2)   |  |
| $C1-B7$               | 1.68(2)   | $C2-B2$       | 1.75(2)   |  |
| C2–B6                 | 1.68(2)   | $C2 - B9$     | 1.68(2)   |  |
| $B1-B2$               | 1.74(2)   | $B1 - B3$     | 1.78(2)   |  |
| <b>B1-B4</b>          | 1.78(2)   | B1–B5         | 1.78(2)   |  |
| B1–B6                 | 1.79(2)   | B2–B3         | 1.76(2)   |  |
| <b>B2-B6</b>          | 1.78(2)   | B3-B4         | 1.77(2)   |  |
| <b>B3–B7</b>          | 1.78(2)   | B4–B5         | 1.78(2)   |  |
| B4–B7                 | 1.74(2)   | B4–B8         | 1.78(2)   |  |
| B5–B6                 | 1.76(2)   | B5–B8         | 1.79(2)   |  |
| B5–B9                 | 1.74(2)   | B6-B9         | 1.74(2)   |  |
| <b>B7-B8</b>          | 1.80(2)   | B8–B9         | 1.76(2)   |  |
| <b>Bond Angles</b>    |           |               |           |  |
| $Cl1-Ta-Cl2$          | 97.4 (2)  | $Cl1-Ta-Cl3$  | 98.0(2)   |  |
| Cl1-Ta-B0             | 116.2(1)  | $Cl2-Ta-Cl3$  | 100.1(2)  |  |
| Cl2-Ta-B0             | 116.4 (2) | $Cl3-Ta-B0$   | 124.0 (2) |  |
|                       |           |               |           |  |

**<sup>a</sup>**BO denotes the centroid of the dicarbollide ligand.



**Figure 1.** Structure of  $(C_2B_9H_{11})TaCl_3$  (1).

signments for 1 are similar to those of  $(C_5R_5)M(C_2B_9H_{11})$  $(\mathbf{M} = \mathbf{Co}, \mathbf{Rh}, \mathbf{Ir})$  and  $(\mathbf{C}_6\mathbf{Me}_6)\mathbf{Ru}(\mathbf{C}_2\mathbf{B}_9\mathbf{H}_{11})$ ,<sup>21</sup> with the major difference being the relatively high field shift of the unique boron directly opposite Ta in the  $TaC_2B_9$  icosahedron (Bl).

The 'H NMR spectrum for **1** consists of a broad resonance at  $\delta$  3.30 for the two C-H hydrogens and of a complex envelope of resonances between  $\delta$  4.7 and 2.0 for the nine terminal B-H hydrogens. The 'H NMR resonances for 1 are shifted  $\sim$ 2 ppm downfield from those of Li<sub>2</sub>C<sub>2</sub>- $B_9H_{11}$ , consistent with formation of a neutral dicarbollide complex from the dianion in eq 1.

**Structure of 1.** To confirm the  $\eta^5$  bonding mode for the dicarbollide ligand and to establish metrical parameters for new group 5 dicarbollide complexes, an X-ray crystal structure determination was carried out on **1.** Metrical parameters and atomic coordinates are listed in Tables II and 111. *As* Figure 1 illustrates, **1** adopts a monomeric, threelegged piano-stool structure in which the dicarbollide ligand is bound in a nearly symmetric *q5* fashion (Ta-B and Ta-C distances 2.37-2.43 **A).** The two **carbons** in the

**Table HI. Positional Parameters and** *B* **Values for**   $(C_2B_2H_{11})TaCl_3(1)$ 

|                |              | - -        |              |                      |
|----------------|--------------|------------|--------------|----------------------|
| atom           | x            | У          | z            | $B$ , $\mathbf{A}^2$ |
| Ta             | 0.19812(8)   | 0.22712(6) | 0.07369(3)   | 2.978(9)             |
| Cl1            | 0.347(1)     | 0.0213(5)  | 0.0967(3)    | 9.2(1)               |
| C12            | $-0.1053(7)$ | 0.1452(7)  | 0.0552(3)    | 12.9(1)              |
| C13            | 0.286(1)     | 0.2517(6)  | $-0.0356(2)$ | 9.2(2)               |
| C1             | 0.074(1)     | 0.317(1)   | 0.1820(6)    | 3.1(2)               |
| C <sub>2</sub> | 0.296(2)     | 0.268(1)   | 0.1945(6)    | 3.0(2)               |
| B1             | 0.277(2)     | 0.540(2)   | 0.2372(8)    | 3.8(3)               |
| B2             | 0.197(2)     | 0.374(2)   | 0.2584(7)    | 3.4(3)               |
| B3             | 0.040(2)     | 0.483(2)   | 0.208(1)     | 3.9(3)               |
| B4             | 0.184(2)     | 0.580(2)   | 0.1512(9)    | 3.8(3)               |
| B5             | 0.432(2)     | 0.530(2)   | 0.1652(8)    | 3.3(3)               |
| B6             | 0.439(2)     | 0.396(2)   | 0.2283(8)    | 3.3(3)               |
| B7             | 0.053(2)     | 0.437(2)   | 0.1183(8)    | 3.4(3)               |
| B8             | 0.296(2)     | 0.469(2)   | 0.0894(7)    | 3.6(3)               |
| B9             | 0.442(2)     | 0.352(2)   | 0.1397(8)    | 3.2(3)               |
| H1             | $0.2985*$    | $0.6170*$  | $0.2766*$    | $4.2**$              |
| H2             | $0.1677*$    | $0.3407*$  | $0.3100*$    | $3.7**$              |
| H3             | $-0.0915*$   | $0.5243*$  | $0.2273*$    | $4.4***$             |
| Η4             | $0.1531*$    | $0.6844*$  | $0.1368*$    | $4.1***$             |
| H5             | $0.5511*$    | $0.5992*$  | $0.1592*$    | $3.5***$             |
| H <sub>6</sub> | $0.5582*$    | $0.3841*$  | $0.2652*$    | $3.6***$             |
| H7             | $-0.0712*$   | $0.4500*$  | $0.0838*$    | $3.7***$             |
| H8             | $0.3259*$    | $0.4980*$  | $0.0373*$    | $4.0***$             |
| H9             | $0.5724*$    | $0.3122*$  | $0.1189*$    | $3.6***$             |
| H10            | $-0.0308*$   | $0.2532*$  | $0.1866*$    | $3.5***$             |
| H11            | $0.3231*$    | $0.1749*$  | $0.2088*$    | $3.3***$             |
|                |              |            |              |                      |

"Starred values denote atoms with fixed positions and doublestarred values those fixed isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as  $({}^4/3){a^2B_{11}} + b^2B_{22} + c^2B_{33} + ab(\cos \theta)$  $\gamma$ ) $B_{12}$  +  $ac(\cos \beta)B_{13}$  +  $bc(\cos \alpha)B_{23}$ .



**Figure 2.** Structure **of 1** viewed along the Ta-centroid **axis.** 

dicarbollide ligand were identified by the bond distance trend  $B-B > B-C > C-C$ .

As shown in Figure 2, Cl3 eclipses B8 of the  $C_2B_9H_{11}^2$ ligand while C11 and C12 eclipse the C-B bonds. **As** a result of this arrangement and the longer B-H distances (vs C-H distances), steric interactions involving the  $C_2B_9H_{11}^2$  ligand are more severe for Cl3 than for the other Cl atoms, and Cl3 is bent further away from the  $C_2B_9H_{11}^2$ ligand (centroid-Ta-C13 angle 124.0') than are C11 and Cl2 (centroid-Ta-Cl angles 116.2, 116.4°). Refinement on the H atoms was not successful. However, with the H atoms in idealized positions (see discussions of the structure of **2), all** three C1 ligands lie just at the van der **Waals**  radii of dicarbollide facial H atoms. The Ta-Cl3 distance (2.205 **(5) A)** is slightly shorter than the other Ta-C1 distances (Ta-Cll = 2.259 (5) **A,** Ta-C12 = 2.233 (5) **A),**  possibly because C13 is trans to the two carbons of the dicarbolide ligand, which are weaker electron donor atoms (more electronegative, lower frontier orbital coefficients)

<sup>(21)</sup> Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Nestor, K.; Thornton-Pett, M.; Hermanek, S.; Jelinek, T.; Stibr, B. J. Chem. Soc., *Dalton Trans.* **1990, 681.** 

**Table IV. Selected Bond Distances (A) and Angler (deg)**  for  $Cp'(C,B,H_{11})TaCl$ , (2)

| $101 \nabla p \left( \nabla p \mathbf{u}_{11} \right) + \mathbf{u} \nabla \mathbf{u}_{2} \left( \mathbf{u}_{1} \right)$ |           |               |          |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------|---------------|----------|--|
| <b>Bond Distances</b>                                                                                                   |           |               |          |  |
| Ta–Cl1                                                                                                                  | 2.369(1)  | $Ta-C12$      | 2.365(1) |  |
| $Ta-C1$                                                                                                                 | 2.491(3)  | $Ta-C2$       | 2.445(3) |  |
| $Ta-C3$                                                                                                                 | 2.426(3)  | $Ta-C4$       | 2.382(3) |  |
| $Ta- C5$                                                                                                                | 2.391(3)  | $Ta-B1$       | 2.465(4) |  |
| $Ta-B2$                                                                                                                 | 2.502(4)  | $Ta-B3$       | 2.448(4) |  |
| Ta–CB4                                                                                                                  | 2.471 (3) | $Ta$ – $CB5$  | 2.487(3) |  |
| $Ta-C0°$                                                                                                                | 2.109     | $Ta - B0b$    | 2.011    |  |
| $C1-C2$                                                                                                                 | 1.414(5)  | $C1-C5$       | 1.409(5) |  |
| $C2-C3$                                                                                                                 | 1.420(5)  | C3-C4         | 1.389(6) |  |
| C4–C5                                                                                                                   | 1.433(5)  | $C1-C6$       | 1.497(5) |  |
| B1–B2                                                                                                                   | 1.771(5)  | $B1 - CB5$    | 1.687(6) |  |
| B1-B8                                                                                                                   | 1.809(6)  | B1–B9         | 1.814(5) |  |
| B2–B3                                                                                                                   | 1.765(6)  | <b>B2–B7</b>  | 1.792(5) |  |
| B2–B8                                                                                                                   | 1.793(4)  | <b>B3–CB4</b> | 1.684(5) |  |
| B3-B6                                                                                                                   | 1.785(5)  | <b>B3–B7</b>  | 1.780(6) |  |
| $CB4$ -CB5                                                                                                              | 1.578(5)  | $CB4-B6$      | 1.709(6) |  |
| <b>CB4-B10</b>                                                                                                          | 1.728(5)  | CB5–B9        | 1.690(6) |  |
| CB5-B10                                                                                                                 | 1.722(6)  | <b>B6-B7</b>  | 1.759(7) |  |
| <b>B6-B10</b>                                                                                                           | 1.780(8)  | B6–B11        | 1.777(7) |  |
| B7-B8                                                                                                                   | 1.778(6)  | B7-B11        | 1.771(5) |  |
| <b>B8–B9</b>                                                                                                            | 1.769(6)  | B8–B11        | 1.771(6) |  |
| <b>B9-B10</b>                                                                                                           | 1.762(9)  | <b>B9-B11</b> | 1.795(7) |  |
| B10-B11                                                                                                                 | 1.764(8)  |               |          |  |
| <b>Bond Angles</b>                                                                                                      |           |               |          |  |
| Cl1-Ta-Cl2                                                                                                              | 92.05 (3) | $Cl1-Ta-C0$   | 102.38   |  |
| Cl1-Ta-B0                                                                                                               | 108.54    | $Cl2-Ta-C0$   | 103.23   |  |
| Cl2-Ta-B0                                                                                                               | 109.37    | С0-Та-В0      | 133.48   |  |

 $^{\circ}$  CO denotes the centroid of the Cp' ligand.  $^{\circ}$ BO denotes the centroid of the dicarbollide ligand.

relative to B.22 The structure of **1 is** analogous to that of isoelectronic CpTiCl<sub>3</sub>, although in this case the centroid-Ti-Cl angles are nearly equal (114.3-117.2°).<sup>23</sup>

**Synthesis of**  $(C_5H_4R)(C_2B_9H_{11})\text{TaCl}_2$  (2, R = Me; 3,  $R = H$ ). Two routes to  $(C_2B_9H_{11})$ Ta analogues of group **4** CpzMX2 bent-metallocene complexes were developed. Reaction of 1 with TlCp'  $(Cp' = C_5H_4Me)$  in  $CH_2Cl_2$  solution produces  $Cp'(C_2B_9H_{11})TaCl_2$  (2) in 83% isolated yield **(eq 2).** Complex **2** is a sublimable yellow solid which is air-stable in the solid **state** and in solution. The NMR data for 2 are consistent with the presence of  $\eta^5$ -Cp' and  $\eta^5$ -C<sub>2</sub>B<sub>a</sub>H<sub>11</sub> ligands and with a bent-metallocene structure of effective  $C_s$  symmetry. Assignment of the  $^{11}B$  NMR resonances by  $[$ <sup>11</sup>B-<sup>11</sup>B]COSY experiments was inconclusive. The analogous  $C_5H_5$  complex  $C_2C_2B_9H_{11}$ )TaCl<sub>2</sub> (3) was prepared by reaction of  $CpTaCl_4$  with  $Li_2C_2B_9H_{11}$  (eq 3).



<sup>(22) (</sup>a) For a similar effect in a Mn carborane complex see: Cowie, J.; Hamilton, E. J. M.; Laurie, J. C. V.; Welch, A. J. J. Organomet. Chem.<br>1990, 394, 1. (b) For MO analyses of  $C_2B_9H_{11}^2$  see refs 2b,c and 4c,d, a

**Table V. Positional Parameters and** *B* **Values for** Cn<sup>'</sup>(C<sub>b</sub>**H**<sub>1</sub>, )T<sub>a</sub>Cl<sub>2</sub> (2)

| $\mathbf{v}$ y (vzwym $_{11}$ ) raviz (a) |            |            |            |                           |
|-------------------------------------------|------------|------------|------------|---------------------------|
| atom                                      | x          | у          | z          | $B,^{\sigma} \tilde{A}^2$ |
| Ta                                        | 0.95179(1) | 0.73440(1) | 0.73973(1) | 2.300(2)                  |
| C <sub>11</sub>                           | 0.89851(9) | 0.86345(7) | 0.9711(1)  | 3.95(2)                   |
| C12                                       | 0.85990(9) | 0.59248(7) | 0.8697(1)  | 4.20(2)                   |
| C <sub>1</sub>                            | 0.7588(4)  | 0.8294(3)  | 0.5126(5)  | 3.51(6)                   |
| C <sub>2</sub>                            | 0.6853(3)  | 0.7363(3)  | 0.5444(5)  | 3.49(6)                   |
| C <sub>3</sub>                            | 0.7337(4)  | 0.6471(3)  | 0.4526(6)  | 4.09 (7)                  |
| C <sub>4</sub>                            | 0.8430(4)  | 0.6826(3)  | 0.3774(5)  | 4.13(7)                   |
| C <sub>5</sub>                            | 0.8606(4)  | 0.7967(3)  | 0.4175(4)  | 3.69(6)                   |
| C6                                        | 0.7259(5)  | 0.9411(3)  | 0.5556(7)  | 5.5(1)                    |
| B1                                        | 1.1826(4)  | 0.8520(3)  | 0.7892(6)  | 3.60(6)                   |
| B <sub>2</sub>                            | 1.1626(4)  | 0.7394(3)  | 0.6025(5)  | 3.20(6)                   |
| B <sub>3</sub>                            | 1.1535(4)  | 0.6282(3)  | 0.7264(6)  | 3.27(6)                   |
| CB4                                       | 1.1820(3)  | 0.6773(3)  | 0.9725(5)  | 3.67(6)                   |
| CB5                                       | 1.2005(4)  | 0.8030(3)  | 1.0076(5)  | 3.92(7)                   |
| B6                                        | 1.3308(5)  | 0.6280(4)  | 0.9237(7)  | 4.79 (9)                  |
| В7                                        | 1.3245(4)  | 0.6710(3)  | 0.6925(6)  | 3.62(7)                   |
| B8                                        | 1.3454(4)  | 0.8125(3)  | 0.7344(6)  | 3.88(7)                   |
| <b>B9</b>                                 | 1.3631(5)  | 0.8564(4)  | 0.9917(7)  | 4.85(9)                   |
| <b>B10</b>                                | 1.3596(5)  | 0.7430(6)  | 1.1109(7)  | 5.4(1)                    |
| <b>B11</b>                                | 1.4496 (4) | 0.7431(4)  | 0.9285(7)  | 4.6(1)                    |
| H <sub>2</sub>                            | 0.618(4)   | 0.732(3)   | 0.614(6)   | $4.3(9)*$                 |
| H3                                        | 0.682(5)   | 0.576(3)   | 0.445(6)   | $5(1)^*$                  |
| H <sub>4</sub>                            | 0.897(5)   | 0.642(3)   | 0.310(6)   | $5(1)^*$                  |
| H5                                        | 0.917(6)   | 0.838(4)   | 0.387(7)   | $8(1)$ *                  |
| H <sub>6</sub> A                          | 0.658(6)   | 0.967(4)   | 0.411(8)   | $7(1)$ *                  |
| H6B                                       | 0.822(7)   | 0.992(4)   | 0.601(9)   | $10(2)$ *                 |
| HB1                                       | 1.138(4)   | 0.927(3)   | 0.772(6)   | $4.2(9)*$                 |
| HB2                                       | 1.132(4)   | 0.740(3)   | 0.437(5)   | $3.5(8)*$                 |
| HB3                                       | 1.103(5)   | 0.550(3)   | 0.682(7)   | $6(1)$ *                  |
| HB <sub>4</sub>                           | 1.147(5)   | 0.641(3)   | 1.047(6)   | $5(1)$ *                  |
| HB <sub>5</sub>                           | 1.176 (4)  | 0.846(3)   | 1.117(6)   | $4.0(8)*$                 |
| HB <sub>6</sub>                           | 1.355(7)   | 0.553(5)   | 0.975(8)   | $10(2)$ *                 |
| HB7                                       | 1.366(4)   | 0.626(2)   | 0.580(5)   | $3.0(7)*$                 |
| HB <sub>8</sub>                           | 1.388(5)   | 0.856(3)   | 0.650(6)   | $5(1)^*$                  |
| HB9                                       | 1.425(6)   | 0.918(4)   | 1.100(8)   | $7(1)^*$                  |
| <b>HB10</b>                               | 1.387(5)   | 0.743(3)   | 1.261(6)   | $4.2(9)*$                 |
| <b>HB11</b>                               | 1.579(4)   | 0.744(3)   | 0.968(6)   | $4.9(9)*$                 |

**a** Starred values denote atoms refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as:  $^{4}/_{3}[a^{2}B_{11} + b^{2}B_{22} + c^{2}B_{33}]$ +  $ab(\cos \gamma)B_{12}$  +  $ac(\cos \beta)B_{13}$  +  $bc(\cos \alpha)B_{23}$ .



**Figure 3.** Structure of  $Cp'(C_2B_9H_{11})TaCl_2$  (2).

**Structure of 2.** The solid-state structure of **2 has** been determined by X-ray crystallography. Metrical parameters and atomic **coordinates** are **listed** in Tables **IV** and **V.** *As*  Figure **3** illustrates, **2** adopts a monomeric bentmetallocene structure with  $\eta^5$ -Cp' and  $\eta^5$ -C<sub>2</sub>B<sub>9</sub>H<sub>11</sub> ligands. The (dicarbollide centroid)-Ta-(Cp' centroid) angle (133.5°) and Cl-Ta-Cl angle  $(92.1^{\circ})$  are in the range normally observed for  $d^0$  Cp<sub>2</sub>MX<sub>2</sub> complexes.<sup>24</sup> The normally observed for  $d^0$  Cp<sub>2</sub>MX<sub>2</sub> complexes.<sup>24</sup>

<sup>(23) (</sup>a) Structure of CpTiCl<sub>3</sub>: Engelhardt, L. M.; Papasergio, R. I.; Raston, C. L.; White, A. H. *Organometallics* 1984, 3, 18. (b) Structure of  $(\eta^5$ -C<sub>5</sub>Me<sub>4</sub>Et)TiCl<sub>3</sub>: Alcock, N. W.; Toogood, G. E.; Wallbridge, M. H. Acta Crystallogr. **1984,** *C40,* 598.

<sup>(24)</sup> **F'rout, K.;** Cameron, T. **S.;** Forder, R. A.; Critchley, S. R.; Denton, B.; Rees, *G.* **V.** Acta Crystallogr. **1974,** B30, 2290.

methyl group roughly **eclipses** C11, destroying the **C, sym**metry in the solid state; presumably Cp' ring rotation is rapid in solution. The Ta-dicarbollide distances are slightly *(ca.* **0.06** A) longer than thoee in **1,** with Ta-B and Ta-C distances ranging from 2.502 (Ta-B2) to 2.448 **A**  (Ta-B3). The carbons in the dicarbollide ligand were distinguished from the borons by their longer bond distances. The C-B bond lengths on the  $\eta^5$  face (1.684, 1.687) A) are slightly shorter than the other C-B bonds (1.690-1.728 A), and the B-B distances **are** fairly **uniform**   $(1.780(16)$ Å).

*All* hydrogen atoms were located and refined isotropically. Except for the hydrogen on 82, the B-H and C-H hydrogens on the  $\eta^5$  dicarbollide face are bent toward Ta with (centroid)-B/C-H angles of  $158-154^{\circ}$ , which are nearly ideal for icosahedral geometry. The angle at B2, however, is flattened out to 170°, probably due to crowding involving the Cp' ligand. This is consistent with the longer Ta-B2 distance noted above. A nonbonding contact of 2.31 **A** is estimated between the B2 hydrogen and the C4 hydrogen of the Cp' ring.

The Ta-(dicarbollide centroid) distance (2.011 **A)** is significantly shorter than the Ta-(Cp' centroid) distance (2.109 **A),** consistent with the expected stronger donor ability of  $C_2B_9H_{11}^2$ <sup>-</sup> vs  $Cp'^{-1,2}$  Cone angles of 133 and 152° for Cp' and dicarbollide, respectively, are estimated from the metrical **data** for 2. The larger dicarbollide cone angle is due to the shorter Ta-dicarbollide distance, the larger size of the  $B_3C_2$  ring, and the bending of the  $\eta^5$  face hydrogens toward Ta, which contributes about  $8^{\circ}$  to the cone angle. The larger dicarbollide cone angle is reflected in the  $(Cp'$  centroid)-Ta-Cl  $(103°)$  and  $(dicarbollide$  centroid) $-Ta-C1(109°)$  angles. The dicarbollide cone angle in 2 is slightly smaller than that in  $1$   $(158^{\circ})$  due to the slightly longer Ta-dicarbollide distances for 2 and is consistent with greater electronic unaaturation and decreased steric demand in **I.** 

Synthesis of  $(C_2B_9H_{11})Ta$  Alkyl Complexes. Alkylation of l with 3 equivalents of MeMgBr in toluene produces  $(C_2B_9H_{11})TaMe_3$  (4) as a white solid in 89% isolated yield (eq 4). Complex 4 was **also** prepared by



reaction of TaMe<sub>3</sub>Cl<sub>2</sub> with Li<sub>2</sub>C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>. The <sup>11</sup>B(<sup>1</sup>H)<sup>*NMR*</sup> spectrum of 4 consists of six resonances in a 1:1:1:2:2:2 ratio, **shifted** to higher field than **1** by an average of 5 ppm, and consistent with an  $\eta^5$ -bonded dicarbollide ligand. The 'H and '9C{lH) *NMR* spectra of **4** include singlets **(6** 1.14, 86.0) for the Ta-CH, groups. Reaction of **1** with MeMgBr in ether solution yielded the monoetherate  $4-Et<sub>2</sub>O$ , from which the  $Et_2O$  could not be removed under high vacuum  $(72 \text{ °C}, 3 \text{ h}).$ 

Alkylation of 2 with MeMgBr in toluene solution produces  $Cp'(C_2B_9H_{11})TaMe_2$  (5) in 71% isolated yield (eq. 5). The **'H** NMR and 13C NMR spectra of **5** contain singlets for the Ta-Me groups at  $\delta$  -0.05 and 62.4. The llB NMR resonances of **5** are **shifted** upfield from those of 2 by an average of 4 ppm. The reaction of 2 with  $LiCH<sub>2</sub>$ <sup>t</sup>Bu did not give identifiable Ta(V) alkyl products under a variety of conditions; most of the products were



insoluble in toluene. Reaction of 2 with LiCH<sub>2</sub>SiMe<sub>3</sub> did yield  $Cp'(C_2B_9H_{11})Ta(CH_2SiMe_3)_2$  as the major product in an NMR-tube reaction.<sup>26</sup>

### **Discussion**

Simple halide metathesis routes to the prototypical Ta(V) dicarbollide complexes  $(\eta^5$ -C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)TaCl<sub>3</sub> (1) and  $(C_6H_4R)(\eta^6-C_2B_9H_{11})TaCl_2$  (2, R = Me; 3, R = H) have been developed. Alkylation of **1** and 2 with MeMgBr yields the corresponding methyl derivatives **4** and **5.** The complexes presented here are analogous to group 4 metal  $\text{CpMX}_3$  and  $\text{Cp}_2\text{MX}_2$  complexes and are one ligand more unsaturated than corresponding group *5* metal CpMx, and Cp<sub>2</sub>MX<sub>3</sub> systems. Like group 4 CpMX<sub>3</sub> complexes,<sup>27</sup> 1 and 4 are both potent **Lewis** acids; **1** rapidly polymerizes THF', and 4 strongly coordinates  $Et<sub>2</sub>O$ . The bent-metallocene complexes 2,3, and **5** are stable 16-electron species analogous to the well-studied group 4  $Cp_2MX_2$  systems.<sup>28</sup>

The  $(\eta^5$ -C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)Ta fragment in compounds 1-5 is closely comparable to a  $(\eta^5$ -Cp<sup>\*</sup>)Ti fragment. The electronic and steric properties of the  $C_2\bar{B}_9H_{11}^2$ - ligand are similar to those of anionic  $Cp^{*-1,2}$  and the effective ionic radii of  $Ti(IV)$  and  $Ta(V)$  in comparable coordination spheres are essentially equal (0.74 **A,** eight-coordinate geometry).<sup>29</sup> The effective ionic radii of  $Hf(IV)$  and  $Zr(IV)$ more appropriate. The mono(dicarbollide) Ta complex **1**  is sublimable, soluble, and monomeric, as is Cp\*TiCl<sub>3</sub>. In contrast,  $Cp^*ZrCl_3$  is ologiomeric in solution, and  $CpZrCl_3$ is polymeric in the solid state, **as** a result of the larger Zr(IV) radius.<sup>23a,30</sup> The structure of 2 is is almost identical with that of the mixed-ring complex  $CpCp^*Ticl_2$  (6).<sup>31</sup> The Cl-Ti-Cl (94.8°) and (centroid)-Ti-(centroid) angles  $(130^{\circ})$  of 6 are within 3° of the corresponding angles in 2, and the M-Cl distances in both complexes are identical (6, 2.334, 2.323 Å; 2, 2.369, 2.365 Å). Also, an out-of-plane, sterically induced, bending distortion of a Cp\* methyl is present which is similar to the bending of  $B(2)-H$  in 2.32 are 0.1 Å larger, which makes a comparison with  $Ti(IV)$ 

We are currently studying the chemistry of alkyl complexes 4 and **5** to determine the extent to which the structural similarity of  $(C_2B_9H_{11})Ta$  and  $Cp*Ti$  systems is reflected in their chemical reactivity. It is anticipated that reactive  $(C_2B_9H_{11})$ Ta alkyl complexes analogous to

**<sup>(25)</sup> lH NMR (toluene-da): 6 3.46 (br e, 4 H), 2.50 (br e,2 H), 1.25 (br a, 9 H), 0.91 (br a, 6 H).** 

 $(26)$  <sup>1</sup>H NMR data for Cp'(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)Ta(CH<sub>2</sub>SiM<sub>98</sub>)<sub>2</sub> (300 MHz, C<sub>8</sub>D<sub>9</sub>):  $\delta$  5.95 (m, 2 H, C<sub>o</sub>H<sub>4</sub>Me), 5.86 (m, 2 H, C<sub>o</sub>H<sub>4</sub>Me), 4.15 (br s, 2 H, C<sub>o</sub>H<sub>4</sub>B<sub>9</sub>H<sub>9</sub>), 2.15 (s, C<sub>o</sub>H<sub>4</sub>Me), 0.92 (d, J = 9.6 Hz, 2 H, CHHSiMe<sub>3</sub>), 0.36 (d, J = 9.6 Hz, CHHSiMe<sub>3</sub>), 0.01 (s, 18 H, SiMe<sub>3</sub>).

<sup>(27)</sup> For a recent review of mono-Cp metal-halide chemistry of d- and **f-block elements., nee: Poli, R. Chem. Reo. 1991,91,609.** 

**<sup>(28)</sup>** card^, **D. J.; Lappert, M. F.; Raeton, C. L. Chembtry of** *Or***gano-Zirconium and -Hafnrum Compounde, Wiley New York, 1986.** 

**<sup>(29)</sup> Shannon, R. D. Acta** *Cryutaliogr.* **1976, A32,751. (30) Solution molecular weight atudiee establbh that (Cp\*ZrCla), is oligomeric in benzene solution (z** = **2.4): Uhrhammer, R.; Jordan, R. F. Unpublbhed observations.** Ale0 **see: Wolczaneki, P. T.; Bercaw, J. E. Organometallic8 1982,** *1,* **793.** 

**<sup>(31)</sup> Khotaynnova, T. L.; Kuzneteov, S. I.** *J.* **Organomet. Chem. 1973, 57, 166.** 

<sup>(32)</sup> Permethylated  $Cp^*{}_2TiCl_2$  (8) is also structurally similar to 2. The Cl-Ti-Cl angle of 8 (92.9°) is in close agreement with that of 2; however, greater steric interactions between the  $\text{Cp}^*$  ligands result in larger methyl<br>group bending distortions, a longer (Cp<sup>\*</sup> centroid)-Ti distance, and a<br>larger (centroid)-Ti-(centroid) angle (137.4°) than observed for 2 **102, 457.** 

group 4 metal  $Cp^*M(R)_2(L)_n^+$  and  $Cp_2M(R)L^+$  deriva $tives<sup>5,33</sup>$  can be prepared and studied.

**Acknowledgment.** This work was supported by NSF grant **CHE-9022700.** R.F.J. gratefully acknowledges a Sloan Foundation Research Fellowship **(1989-1991)** and Union Carbide Research Innovation Awards **(1989,1990).** 

**(33)** Crowther, D. J.; Jordan, R. F.; Baenziger, N. C. *Organometallics*  **1990,9,2574.** 

Valuable discussions with G. Hlatky concerning the preparation of  $C_2B_9H_{13}$  and with P. T. Wolczanski concerning solution molecular weight measurements are appreciated.

**Supplementary Material Available:** Complete listings of bond **distances,** bond **angles,** H atom positional parameters, **and**  anisotropic thermal parameters for **1** and **2 (13** pages). Ordering information is given on **any** current masthead page.

**OM920160M** 

# Reactivity of Cp<sup>\*</sup> W(O)<sub>2</sub>(CH<sub>2</sub>SiMe<sub>3</sub>) toward p-Tolyl Isocyanate: **Cycloaddition Reactions of Tungsten-Oxo and -I mido**  Linkages<sup>1,2</sup>

Peter Legzdins,<sup>\*</sup> Everett C. Phillips, Steven J. Rettig, James Trotter,<sup>\*</sup> John E. Veltheer, and **Vhrien C. Yee** 

*Department of Chemisby, The University of BMsh cdumbla, Vancouver, BMsh Wumb&, Canada V6T 121* 

*Received March* **23,** *1992* 

Treatment of  $\mathbf{Cp*W(O)}_2(\mathbf{CH}_2\mathbf{SiMe}_3)$  with p-tolyl isocyanate under appropriate experimental conditions leads to the formation of  $\text{CP*W}(0)(\text{NC}_6H_4-p.\text{Me})$   $(\text{CH}_2\text{SiMe}_3)$   $(1), \text{CP*W}(\text{NC}_6H_4-p.\text{Me})_2(\text{CH}_2\text{SiMe}_3)$   $(2),$ <br> $\text{CF*W}(1, 3)$   $\text{CF*W}(2, 3)$   $\text{CF*W}(2, 3)$   $\text{CF*W}(3, 3)$   $\text{CF*W}(3, 3)$   $\text{CF*W}(4, 3)$ 

or  $\text{Cp*W}(\text{NC}_6\text{H}_4\text{-}p\text{-Me})[\text{N}(\text{C}_6\text{H}_4\text{-}p\text{-Me})\text{C}(0)\text{N}(\text{C}_6\text{H}_4\text{-}p\text{-Me})](\text{CH}_2\text{SiM}\text{e}_3)$  (3). Each of the complexes 1-3 is derived in a sequential manner from its precursor by incorporation of an fragment or molecule. The spectroscopic properties of these organometallic imido complexes are consistent with their possessing three-legged **(1** and **2)** and four-legged **(3)** piano-stool molecular structures. These conclusions have been **confiied** by single-crystal X-ray crystallographic **anal-** of **2** and 3. Crystal data for 2: triclinic,  $a = 15.095$  (3) Å,  $b = 18.583$  (4) Å,  $c = 10.828$  (2) Å,  $\alpha = 95.01$  (2)°,  $\beta = 107.01$  (2)°,  $\gamma = 89.02$  (2)°,  $Z = 4$ , space group  $P1$ ,  $R_F = 0.033$ ,  $R_{WF} = 0.031$  for 5463 reflections with  $I \ge 3\sigma(I)$ . for **3:** monoclinic,  $a = 14.5279 (11)$  **Å**,  $b = 10.447 (7)$  **Å**,  $c = 11.6482 (13)$  **Å**,  $\beta = 105.170 (6)^{\circ}, Z = 2$ , space group  $P2_1$ ,  $R_F = 0.058$ ,  $R_{wF} = 0.081$  for 2479 reflections with  $I \geq 3\sigma(I)$ . The formation of complex 3 involves the net  $[2 + 2]$  cycloaddition of the N=C bond of p-tolyl isocyanate across one of the tungsten-imido links of complex 2,  $\text{Cp*W}(\text{NC}_6\text{H}_4\text{-}p\text{-Me})_2(\text{CH}_2\text{SiMe}_3)$ .

## **Introduction**

The study of transition-metal imido complexes and other compounds having metal-ligand multiple bonds is currently in a period of rapid growth.<sup>3-5</sup> Imido complexes are of particular interest both as new reagents<sup>6</sup> and as heterogeneous or homogeneous catalysts for various organic

**(1)** Organometallic Oxo Chemistry. **4. Part** 3: Reference **10.** 

(2) Taken in part from: (a) Phillips, E. C. Ph.D. Dissertation, The University of British Columbia, 1989. (b) Yee, V. C. Ph.D. Dissertation,

of the described. For example, see: Chong, A. O.; Oshima, K.;<br>Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 3420 and references therein.

conversions. For instance, metal-imido species have been invoked **as** intermediates during the ammoxidation of propylene.<sup>7-9</sup> Such species also appear to be involved in the catalytic cycles of a variety of metalloenzymes. $3,4$  In light of the versatile reactivity exhibited by transitionmetal-imido complexes, determination of their characteristic properties in various chemical environments is warranted.

We have previously described the synthesis, characterization, and some reactivity of metal-dioxo and metalalkylidene-oxo complexes of the types A and  $B^{10}$  It was, therefore, of interest to us to determine whether the analogous metal-imido complexes (type **C)** could **also** be  $prepared.<sup>11,12</sup>$ 

University of British Columbia, 1989. (b) Yee, V. C. Ph.D. Dissertation,<br>The University of British Columbia, 1990.<br>(3) Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123.<br>(4) Nugent, W. A.; Mayer, J. M. Metal-Li

<sup>(5)</sup> For recent examples of the synthesis and chemistry of imido complexes see: (a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729. (b) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. D. J. J. T.; Schrock, R. R. J. Am. Chem. Soc. 1990, 112, 6728. (f) Luan, L.;<br>White, P. S.; Brookhart, M.; Templeton, J. L. J. Am. Chem. Soc. 1990, 112, 8190. (g) Michelman, R. I.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc F. J.; Bergman, R. G. J. *Am. Chem. Soc.* 1991, 113, 2041.<br>
(6) The synthetic utility of imido complexes as stoichiometric reagents

**<sup>(7)</sup>** Keulks, G. W.; Krenzke, L. D.; Notermann, T. M. *Adu. Catal.* **1978, 27,183.** 

**<sup>(8)</sup>** Burrington, J. D.; Kartisek, C. **T.;** Grasselli, R. K. J. *Catal.* **1984,**   $87, 363.$ 

**<sup>(9)</sup>** Chan, D. **M.-T.; Ntz,** W. C.; Nugent, W. A.; Roe, D. C.; Tulip, **T. (10) Legzdins, P.; Phillips,** E. C.; Sbchez, L. *Organometallics* **1989,**  H. J. *Am. Chem.* **SOC. 1986,107, 251.** 

**<sup>8,940</sup>** and-references therein.

<sup>(11)</sup> We have previously synthesized one such imido oxo complex, namely CpW(O)(N-o-tolyl)(o-tolyl), by exposure of its diaryl nitrosyl precursor CpW(NO)(o-tolyl)<sub>2</sub> as a solid to deaerated water vapor.<sup>12</sup> To date, this conversion remains unique.