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Summary: The reaction of stannylene I with di-tert- 
butylthioketene (2) gave first thiastannirane 3 as air- 
and moisture-sensitive crystals. X-ray analysis showed 
that dcontains an  acute C-Sn-S angle (45.7O) and a short 
C-S bond (1.79 A) responsible for the weakness of the 
Sn-C and Sn-S bonds. The reaction of 1 with thioketones 
5a,b furnished thiastannolanes 8a,b via stannathiocar- 
bony1 ylides 6or thiastannirane 7intermediates. Crystal 
data for 3: space group P212121, Z = 4, a = 12.308 (2)  A, 
b=14.725(2)A,c=18.947(2)A,  V=3433.8A3,R=0.050, 
R ,  = 0.064 based on 2505 reflections with Po2[ 2 3uFo21. 

The addition reactions of main group divalent (R2M)' 
and double-bond (R2M=MR2) (M = Si, Ge, Sn)2 species 
with unsaturated substrates give a variety of three- and 
four-membered ring compound containing one and/or two 
metal atoms. Recently, we demonstrated that germylene 
undergoes cycloaddition reaction with thiocarbonyl com- 
pounds to afford a novel thiagermirane (GeCS) ring 
system.lkJ Herein we describe the corresponding tin 
chemistry, i.e., the reaction of a stannyleneldistannene 
mixture (lI3 with thiocarbonyl compounds to provide the 
first example of a thiastannirane (SnCS) ring compound. 

The treatment of a deep red solution of 1 with 1.0 equiv 
of di-tert-butylthioketene (2) in benzene results in rapid 
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(1) Papers on ring systems from metallylenes (RzM) are as follows. M 
= Si: (a) Ando, W.; Hamada, Y.; Sekiguchi, A.; Ueno, K. Tetrahedron 
Let t .  1982,23,5232. (b) Conlin, R. T.; Gaspar, P. P. J.  Am. Chem. SOC. 
1976,98,3715. (c) Seyferth, D.; Annarelli, D. C.; Vick, S. C. J .  Am. Chem. 
SOC. 1976,98,6382. (d) Schiifer, A.; Weidenbruch, M.; Saak, W.; Pohl, 
S. Angew. Chem., Int. Ed. Engl. 1987,26, 776. (e) Ando, W.; Hamada, 
Y.; Sekiguchi, A.; Ueno, K. Tetrahedron Let t .  1983,24,4033. (0 Ando, 
W.; Fujita, M.; Yoshida, H.; Sekiguchi, A. J. Am.  Chem. SOC. 1988,110, 
3310. (g) Saso, H.; Ando, W.; Ueno, K. Tetrahedron 1989,45, 1929. M 
= Ge: (h) Krebs, A.; Berndt, J. Tetrahedron Let t .  1983, 24, 4083. (i) 
Egorov, M. P.; Kolesnikov, S. P.; Struchkov, Y. T.; Antipin, M. Y.; Sereda, 
S. V.; Nefedov, 0. M. J .  Organomet. Chem. 1985,290, C27. (i) Cowley, 
A. H.; Hall, S. W.; Nunn, C. M.; Power, J. M. J .  Chem. SOC., Chem. 
Commun. 1988, 753. (k) Tsumuraya, T.; Sato, S.; Ando, W. Organo- 
metallics 1989, 8, 161. (1) Ando, W.; Tsumuraya, T. Organometallics 
1989,8,1467. M = Sn: (m) Sita, L. R.; Bickerstaff, R. D. J. Am. Chem. 
SOC. 1988,110, 5208. 

(2) Paperson three- and four-membered ring systems from dimetallenea 
(R*M=MRz) are as follows: M = Si: (a) West, R. Angew. Chem., Int. 
Ed. Engl. 1987,26,1201. (b) West, R.; Gillette, G. R.; Yokelson, H. B.; 
Millevolte, A. J. Phosphorus, Sulfur, Silicon 1989, 41, 3. M = Si: (c) 
Weidenbruch, M.; Flintjer, B.; Pohl, S.; Saak, W. Angew. Chem., Int. Ed.  
Engl. 1989,28,95. M = Si, Ge, and Sn: (d) Tsumuraya, T.; Batcheller, 
S. A.; Masamune, S. Angew. Chem., Int .  Ed.  Engl. 1991, 30,902. M = 
Ge: (e) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988,7,2015. 
(0 Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1990,9,2061. (g) 
Ando, W.; Tsumuraya, T. J. Chem. Soc., Chem. Commun. 1989,770. M 
= Sn: (h) Cowley, A. H.; Hall, S. W.; Nunn, C. M.; Power, J. M. Angew. 
Chem., Int. Ed. Engl. 1988,27,838. (i) Schiifer, A.; Weidenbruch, M.; 
Saak, W.; Pohl, S.; Marsmann, H. Angew. Chem.,Int. Ed.  Engl. 1991,30, 
834. (i) Krebs, A.; Jacobsen-Bauer, A.; Haupt, E.; Veith, M.; Huch, V. 
Angew. Chem., Int. Ed. Engl. 1989,28, 603. (k) Sita, L. R.; Kinoshita, 
I.; Lee, S. P. Organometallics 1990,9,1644. (1) Schiifer, A.; Weidenbruch, 
M.; Saak, W.; Pohl, S.; Marsmann, H. Angew. Chem., Int. Ed. Engl. 1991, 
30,962. (m) Grutzmacher, H.;Pritzkow, H. Angew. Chem.,Int. Ed. Engl. 
1991, 30, 1017. 

(3) (a) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. 
M.; Thorne, A. J.; Fjeldberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. 
Soc., Dalton Trans. 1986,2387. (b) Zilm, K. W.; Lawless, G. A.; Merrill, 
R. M.; Millar, J. M.; Webb, G. G. J. Am.  Chem. SOC. 1987, 109, 7236. 
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decolorization of the solution. Removal of the solvent 
under reduced pressure gave air- and moisture-sensitive 
colorless crystals of 3, which were purified by flash 
chromatography on Florisil under an argon atmosphere 
(67 $4 yield). Crystalssuitable for X-ray structural analysis 
were obtained by slow evaporation of a hexane solution 
of 3 in an argon atmosphere (Scheme I). The thiastan- 
nirane ring system of 3 forms an acute triangle with a 
C-Sn-S bond angle of 45.7 (4)O and three bond lengths of 
2.438 (4) (Sn-S), 1.79 (1) (C-S), and 2.12 (1) A (Sn-C), 
respectively, shown in Figure 1. For comparison, in the 
thiasiliranele and thiagermirane systems,lk, the C-Si-S 
and C-Ge-S bond angles are 56.7 and 52.9O, whereas the 
two sets of bond lengths are 2.09 (Si-S), 1.90 (C-S), 1.90 
A (Si-C) and 2.22 (Ge-S), 1.88 (C-S), 1.97 A (Ge-C). The 
colorless crystals of 3 were redissolved in toluene to yield 
a pale red solution, which reveals that dissociation of 3 to 
1 and 2 takes place. Actually, the 'H and '19Sn NMR 
spectra showed resonances corresponding to three com- 
pounds (1-3). A high-field l19Sn resonance at  -365 ppm 
(relative to MedSn) assigned to 3 fell in the region related 
to other three-membered ring containing tin atoms (values 
in ppm): stannirenelm (SnC=C, -536.8) and distannirane 
(SnzN, -194;2m Sn&, -309;2i SnzSe, -393;21 SnzTe, -5942i). 
The 'H NMR integrations of 2 and 3 at temperature 
intervals between -10 and 90 OC were reproducible to allow 
the determination of dissociation enthalpy the (AH" = 
19.5 kcal mol-') and entropy (AS" = 47 cal K-' 
Because of the large AHo value for dissociation, the 
coalescence of resonances among 1-3 was not well defined 
and the chemical shifts of these resonances were not 

(4) Crystal of 3 suitable for X-ray crystallography were obtained by 
recrystallization from hexane in a glovebox. Data for 3: orthorhombic, 
space group P212121, a = 12.308 ( 2 )  A, b = 14.725 (2 )  A, c = 18.947 (2) A, 
V = 3433.8 As, purled = 1.18 gicm3, p = 9.5 cm-l, and 2 = 4. The structure 
was solved from 2505 collected independent reflections [20 5 50°, p6*1 
> 3ul.Fo211 measured on an Enraf-Nonius CAD4 diffractometer using Mo 
Ka  irradiation and an w-28 scan. The structure was solved by direct 
methods, and all non-hydrogen atoms were refined anisotropically to R 
= 0.050 and R,  = 0.064. 
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Scheme I1 
c33Qc31 

c22 
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Figure 1. Perspective ORTEP drawing of 3 showing 50% 
thermal elli soids for the non-hydrogen atoms. Selected bond 

2.15 (l), Sn-C2 = 2.19 (l), Sn-C3 = 2.12 (l), s-C3 = 1.79 (11, 
C 3 4 4  = 1.34 (2), Cl-Sn-C2 = 116.1 (5); S-Sn-C3 = 45.7 (4), 
Sn-S43 = 57.8 (4), Sn-C3-S = 76.5 (5), Sn-C3-C4 = 149 

distances ( fl ) and angles (deg): Sn-S = 2.438 (4), Sn-C1 = 

(l), S-C3-C4 = 134 (1). 

temperature dependent except for a transient line broad- 
ening.5 

In contrast, on treatment of 1 with 1.0 equiv of 
thioketones 5a,b in benzene followed by Florisil chroma- 
tography, dithiastannolanes 8a,b were isolated (Scheme 
11) in 90% and 30% yield, respectively. The construction 
of both ring systems was established by spectroscopic data6 
and X-ray crystallographic ana ly~is .~  

The most reasonable first step of the pathway by which 
the 8a,b are formed is the formation of a stannathiocar- 

(5) The 'H, I3C, and 'lgSn NMR chemical shifts cited in ref lm and 
the following reference were obtained a t  the slow-exchange limit (ca. -70 
OC) for the thermal equilibrium of stannylene and adducts: Grutzmacher, 
H.; Freitag, S.; Herbst-Irmer, R.; Sheldrick, G. S. Angew. Chem., Int. Ed. 
Engl. 1992,31,437. However, the chemical shifts of 3 are not temperature 
dependent, and variable-temperature 'H and ll9Sn NMR spectra are 
available in the supplementary material. Data for 3: decomp pt 70 OC; 
'H NMR (C&, 6) 0.22 (S, 18 H), 0.28 (8 ,  2 H), 0.29 ( 8 ,  18 HI, 1.36 (8, 9 
H), 1.70 (8,9 H); NMR (C6D6, 6) 3.29 (q), 3.57 (q), 9.85 (d), 31.07 (q), 
33.16 (q), 38.21 (s), 40.91 (a), 137.42 (s), 149.35 (s); ll9Sn NMR (CBDG, 6 )  
-365. Anal. Calcd for Cz4H&Si,Sn: C, 47.43; H, 9.29. Found: C, 46.67; 
H, 9.00. 

(6) Data for 8a: decomp pt 155 "C; 'H NMR (CsDs, 6 )  0.44 (s,2 H), 
0.46 (s, 18 H), 0.54 (8 ,  18 H), 6.80-7.08 (m, 12 H), 7.84-7.97 (m, 4 H); ''C 

124.90 (s), 129.29 (d),  132.20 (d),  152.68 (8). Anal. Calcd for 
CloH%OzS&Sn: C, 55.73; H, 6.31. Found: C, 55.39; H, 6.12. Data for 
8b mp 101-103 OC; 'H NMR (C6D6, 6) 0.14 ( 8 ,  2 H), 0.34 (a, 18 H), 0.37 
(a, 18 H), 1.62 (s, 3 H), 1.95 (8,6 H), 2.23 (8,3 H); NMR (C&, 6 )  3.85 
(q), 3.89 (q), 14.97 (d), 22.88 (q), 30.50 (q), 36.01 (q), 61.08 (a), 131.20 (a), 
136.55 (a); llgSn NMR (CsD6, 6) 99. Anal. Calcd for C21HmS2SiBn: C, 
42.19; H, 8.43. Found: C, 41.83; H, 8.13. 

NMR ( C a s ,  6) 1.75 (d), 5.04 (q), 5.24 (q), 72.79 (s), 116.65 (d), 122.20 (d), 

7 J 

+ s a /  \ J \ 
Dis Dls Dis 

'Sn/ 
s' \s s' \s 

5a R, R son 

8a Bb 

bony1 ylide or a thiastannirane. Assuming these inter- 
mediates, 8a can be seen to arise from [2 + 31 cycloaddition 
of 5a with 6 or insertion of 5a into the Sn-C bond of 7, 
while intramolecular rearrangement from both 6 and 7 
might produce 8b. The isolation of stannathiocarbonyl 
ylide 4 was tried in a 3-methylpentane (3-MP) matrix at 
77 K upon irradiation of 3 with a low-pressure Hg lamp. 
A new band appeared at  600 nm and was assigned to 4 on 
the basis of our experience in sila-s and germathiocarbonyl 
ylideslkJ (485 and 580-690 nm). 

Thus, the course of the reaction is highly dependent 
upon a fine balance between steric and electronic factors 
of thiocarbonyl compounds. Work along these lines is in 
progress. 
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(7) The X-ray analyses of 8a,b were carried out in a fashion eimilar to 
cited in ref 4. The poor crystal qualities caused large standard deviations 
in the cell constants, but the strongly diffracting Sn and S enabled a 
satisfactory solution of the Sn frameworks. Data for Sa: monoclinic, 
space group Pc, a = 11.908 (121) A, b = 24.510 (40) A, c = 21.947 (66) A, 
,3 = 136.39 (70)', V = 4418.2 A3, p d d  = 1.30 g/cmS, p = 8.1 cm-', 5386 
collected reflections, andR = 0.060 (R ,  = 0.062). Data for 8b monoclinic, 
space group R1/n ,  a = 18.303 (14) A, b = 9.031 (4) A, c = 21.137 (17) A, 

= 112.67 (30)O, V = 3223.8 A3, p&d = 1.23 g/cmg, p = 10.7 cm-1, Z = 
4, 1584 collected reflections, and R = 0.084 (R, = 0.105). 

(8) Ando, W.; Hagiwara, K.; Sekiguchi, A. Organometallics 1987, 6, 
2270. 
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