Synthesis of a Thiastannirane by the Reaction of a Stannylene with a Thiocarbonyl Compound

Toshiyuki Ohtaki, Yoshio Kabe, and Wataru Ando'

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki *305,* Japan

Received July *9, 1992*

Summary: The reaction of stannylene *I* with di-tertbutylthioketene *(2)* gave first thiastannirane **3** as airand moisture-sensitive crystals. X-ray analysis showed that dcontains an acute C-Sn-S angle *(45.7O)* and a short C-S bond *(1.79* **A)** responsible for the weakness of the Sn-C and Sn-S bonds. The reaction of *1* with thioketones *5a,b* furnished thiastannolanes *8a,b* via stannathiocarbony1 ylides *6or* thiastannirane 7intermediates. Crystal data for 3: space group *P212121, Z* = *4,* a = *12.308 (2)* **A,** *b=14.725(2)A,c=18.947(2)A, V=3433.8A3,R=0.050,* $R_w = 0.064$ based on 2505 reflections with $|F_o^2| \geq 3\sigma |F_o^2|$.

The addition reactions of main group divalent $(R_2M)^1$ and double-bond $(R_2M=MR_2)$ $(M = Si, Ge, Sn)^2$ species with unsaturated substrates give a variety of three- and four-membered ring compound containing one and/or two metal atoms. Recently, we demonstrated that germylene undergoes cycloaddition reaction with thiocarbonyl compounds to afford a novel thiagermirane (GeCS) ring system.^{1k,1} Herein we describe the corresponding tin chemistry, i.e., the reaction of a stannylene/distannene mixture $(1)^3$ with thiocarbonyl compounds to provide the first example of a thiastannirane (SnCS) ring compound.

The treatment of a deep red solution of 1 with **1.0** equiv of di-tert-butylthioketene (2) in benzene results in rapid

decolorization of the solution. Removal of the solvent under reduced pressure gave air- and moisture-sensitive colorless crystals of **3,** which were purified by flash chromatography on Florisil under an argon atmosphere (67% yield). Crystals suitable for X-ray structural analysis were obtained by slow evaporation of a hexane solution of 3 in an argon atmosphere (Scheme I). The thiastannirane ring system of 3 forms an acute triangle with a C-Sn-S bond angle of 45.7 (4)° and three bond lengths of **2.438 (4)** (Sn-S), **1.79 (1)** (C-S), and **2.12 (1) A** (Sn-C), respectively, shown in Figure **1.** For comparison, in the thiasilirane^{1e} and thiagermirane systems,^{1k}, the C-Si-S and C-Ge-S bond angles are 56.7 and 52.9°, whereas the two sets of bond lengths are **2.09** (Si-S), **1.90** (C-S), **1.90 A** (Si-C) and **2.22** (Ge-S), **1.88** (C-S), **1.97 A** (Ge-C). The colorless crystals of 3 were redissolved in toluene to yield a pale red solution, which reveals that dissociation of **3** to 1 and 2 takes place. Actually, the **'H** and '19Sn NMR spectra showed resonances corresponding to three compounds **(1-3). A** high-field l19Sn resonance at **-365** ppm $(relative to Me₄Sn)$ assigned to 3 fell in the region related to other three-membered ring containing tin atoms (values in ppm): stannirenelm (SnC=C, **-536.8)** and distannirane $(S_{n_2}N, -194; ^{2m}Sn_2S, -309; ^{2i}Sn_2Se, -393; ^{2l}Sn_2Te, -594^{2i}).$ The **'H NMR** integrations of 2 and **3** at temperature intervals between -10 and 90 °C were reproducible to allow the determination of dissociation enthalpy the $(\Delta H^{\circ}$ = 19.5 kcal mol⁻¹) and entropy $(\Delta S^{\circ} = 47 \text{ cal } K^{-1} \text{ mol}^{-1}).^5$ Because of the large ΔH° value for dissociation, the coalescence of resonances among **1-3** was not well defined and the chemical shifts of these resonances were not

⁽¹⁾ Papers on ring systems from metallylenes (R_2M) are as follows. M
= Si: (a) Ando, W.; Hamada, Y.; Sekiguchi, A.; Ueno, K. *Tetrahedron*
Lett. 1982, 23, 5232. (b) Conlin, R. T.; Gaspar, P. P. J. Am. Chem. Soc. **1976,98,3715.** (c) Seyferth, D.; Annarelli, D. C.; Vick, S. C. *J. Am. Chem. SOC.* **1976,98,6382.** (d) Schiifer, A.; Weidenbruch, M.; Saak, W.; Pohl, S. *Angew. Chem., Int. Ed. Engl.* **1987,26, 776.** (e) Ando, W.; Hamada, Y.; Sekiguchi, A.; Ueno, K. *Tetrahedron Lett.* **1983,24,4033.** *(0* Ando, W.; Fujita, M.; Yoshida, H.; Sekiguchi, A. J. *Am. Chem. SOC.* **1988,110,** 3310. (g) Saso, H.; Ando, W.; Ueno, K. Tetrahedron 1989, 45, 1929. M

= Ge: (h) Krebs, A.; Berndt, J. Tetrahedron Lett. 1983, 24, 4083. (i)

Egorov, M. P.; Kolesnikov, S. P.; Struchkov, Y. T.; Antipin, M. Y.; Sereda,

Egor *metallics* **1989,** *8,* **161.** (1) Ando, W.; Tsumuraya, T. *Organometallics* **1989,8,1467.** M = Sn: (m) Sita, L. R.; Bickerstaff, R. D. *J. Am. Chem.* SOC. **1988,110, 5208.**

⁽²⁾ Paperson three- and four-membered ring systems from dimetallenea $(R_2M=MR_2)$ are as follows: $M = Si$: (a) West, R. *Angew. Chem., Int. Ed. Engl.* **1987,26,1201.** (b) West, R.; Gillette, G. R.; Yokelson, H. B.; Millevolte, A. J. Phosphorus, *Sulfur, Silicon* **1989,** *41,* **3.** M = Si: (c) Weidenbruch, M.; Flintjer, B.; Pohl, S.; Saak, W. *Angew. Chem., Int. Ed.* Engl. 1989, 28, 95. $M = Si$, Ge, and Sn: (d) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1991, 30, 902. $M =$ Ge: (e) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988, 7, 2015.
(f) Tsumur Saak, W.; Pohl, S.; Marsmann, H. *Angew. Chem.,Int. Ed. Engl.* **1991,30,** Saak, w.; Font, S.; warsmann, F. Angew. Chem., Int. Ed. Eng. 1991, O., O., Heber, A.; Heber, A.; Heber, N.; Heber, N.; Heber, N.; Heber, N.; Angew. Chem., Int. Ed. Engl. 1999, 28, 603. (k) Sita, L. R.; Kinoshita, I.; Lee, M.; Saak, W.; Pohl, S.; Marsmann, H. *Angew. Chem., Int. Ed. Engl.* **1991, 30,962.** (m) Grutzmacher, H.;Pritzkow, H. *Angew. Chem.,Int. Ed. Engl.*

^{1991, 30, 1017.&}lt;br>(3) (a) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K.
M.; Thorne, A. J.; Fjeldberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem.
Soc., Dalton Trans. 1986, 2387. (b) Zilm, K. W.; Lawless, G. R. M.; Millar, J. M.; Webb, G. G. *J. Am. Chem. SOC.* **1987, 109, 7236.**

⁽⁴⁾ Crystal of **3** suitable for X-ray crystallography were obtained by recrystallization from hexane in a glovebox. Data for 3: orthorhombic, space group $P2_12_12_1$, $a = 12.308$ (2) Å, $b = 14.725$ (2) Å, $c = 18.947$ (2) Å, $V = 3433.8$ Å³, $\rho_{\text{caled}} = 1.18$ g/cm³, $\mu = 9.5$ cm⁻¹, and $Z = 4$. The structure was solved from 2505 collected independent reflec $> 3\sigma |F_0|^2$] measured on an Enraf-Nonius CAD4 diffractometer using Mo $K\alpha$ irradiation and an ω -2 θ scan. The structure was solved by direct methods, and all non-hydrogen atoms were refined anisotropically to \hat{R} = 0.050 and R_w = 0.064.

Figure 1. Perspective ORTEP drawing of 3 showing 50% thermal ellipsoids for the non-hydrogen atoms. Selected bond 2.15 (1), Sn-C2 = 2.19 (1), Sn-C3 = 2.12 (1), S-C3 = 1.79 (1), $C3-C4 = 1.34$ (2), $Cl-Sn-C2 = 116.1$ (5); $S-Sn-C3 = 45.7$ (4), $Sn-S-C3 = 57.8(4), Sn-C3-S = 76.5(5), Sn-C3-C4 = 149$ distances (Å) and angles (deg): $Sn-S = 2.438$ (4), $Sn-Cl =$ $(1), S-C3-C4 = 134 (1).$

temperature dependent except for a transient line broadening.⁵

In contrast, on treatment of 1 with 1.0 equiv of thioketones **5a,b** in benzene followed by Florisil chromatography, dithiastannolanes **8a,b** were isolated (Scheme 11) in 90% and 30% yield, respectively. The construction of both ring systems was established by spectroscopic data⁶ and X-ray crystallographic analysis. $⁷$ </sup>

The most reasonable first step of the pathway by which the **8a,b** are formed is the formation of a stannathiocar-

(6) Data for **8a:** decomp pt **155** "C; 'H NMR (CsDs, *6)* **0.44 (s,2** H), **0.46 (s, 18** H), **0.54** *(8,* **¹⁸H), 6.80-7.08** (m, **12** H), **7.84-7.97** (m, **4** H); 'C **124.90 (s), 129.29** (d), **132.20** (d), **152.68 (8).** Anal. Calcd for $C_{40}H_{56}O_2S_2Si_4Sn$: C, 55.73; H, 6.31. Found: C, 55.39; H, 6.12. Data for **8b:** mp 101-103 °C; ¹H NMR (C₆D₆, *δ*) 0.14 (s, 2 H), 0.34 (s, 18 H), 0.37 **(a, 18** H), **1.62 (s, 3** H), **1.95 (8,6** H), **2.23 (8,3** H); NMR (C&, *6)* **3.85** (q), **3.89** (q), **14.97** (d), **22.88** (q), **30.50 (q), 36.01** (q), **61.08 (a), 131.20 (a), 136.55 (s); ¹¹⁹Sn NMR (C₆D₆,** *š***) 99. Anal. Calcd for C₂₁H₅₀S₂Si₄Sn: C, 42.19;** H, **8.43.** Found: C, **41.83;** H, **8.13.** NMR (Cas, **6) 1.75** (d), **5.04 (q), 5.24** (q), **72.79 (s), 116.65** (d), **122.20** (d),

bony1 ylide or a thiastannirane. Assuming these intermediates, $8a$ can be seen to arise from $[2 + 3]$ cycloaddition of **5a** with **6** or insertion of **5a** into the Sn-C bond of **7,** while intramolecular rearrangement from both **6** and **7** might produce 8b. The isolation of stannathiocarbonyl ylide **4** was tried in a 3-methylpentane (3-MP) matrix at 77 K upon irradiation of 3 with a low-pressure **Hg** lamp. A new band appeared at 600 nm and was assigned to **4** on the basis of our experience in sila-8 and germathiocarbonyl ylides^{1k,1} (485 and 580-690 nm).

Thus, the course of the reaction is highly dependent upon a fine balance between steric and electronic factors of thiocarbonyl compounds. Work along these lines is in progress.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Supplementary Material Available: Text describing crystallographic procedures, tables of crystallographic data, atomic coordinates and thermal parameters, and bond lengths and angles for 3 and **8a,b,** figures showing **ORTEP** structures, and figures showing variable-temperature ¹H and ¹¹⁹Sn NMR spectra of 3 (43 pages). Ordering information **is** given on any current masthead page.

OM9204144

(8) Ando, W.; Hagiwara, K.; Sekiguchi, A. Organometallics **1987,** 6, **2270.**

⁽⁵⁾ The 'H, I3C, and 'lgSn NMR chemical shifts cited in ref **lm** and the following reference were obtained at the slow-exchange limit (ca. **-70** OC) for the thermal equilibrium of stannylene and adducts: Grutzmacher, H.; Freitag, S.; Herbst-Irmer, R.; Sheldrick, G. S. Angew. Chem., *Int.* Ed. *Engl.* **1992,31,437.** However, the chemical shifts of 3 are not temperature dependent, and variable-temperature ¹H and ¹¹⁹Sn NMR spectra are available in the supplementary material. Data for 3: decomp pt 70 °C; !H NMR (C₆D₆, δ) 0.22 (s, 18 H), 0.28 (s, 2 H), 0.29 (s, 18 H), 1.36 (s, 9
H), 1.70 (s, 9 H); ¹³C NMR (C₆D₆, δ) 3.29 (q), 3.57 (q), 9.85 (d), 31.07 (q), 33.16 (q), 38.21 (s), 40.91 (s), 137.42 (s), 149.35 (s); ¹¹⁹Sn NMR (C₆D₆, δ)
-365. Anal. Calcd for C₂₄H₅₆SSi₄Sn: C, 47.43; H, 9.29. Found: C, 46.67; H, **9.00.**

⁽⁷⁾ The X-ray analyses of **8a,b** were carried out in a fashion eimilar **to** cited in ref **4.** The poor crystal qualities caused large standard deviations in the cell constants, but the strongly diffracting Sn and S enabled **a** satisfactory solution of the Sn frameworks. Data for **Sa:** monoclinic, space group Pc, $a = 11.908 (121)$ Å, $b = 24.510 (40)$ Å, $c = 21.947 (66)$ Å, $\beta = 136.39 (70)^\circ$, $V = 4418.2$ Å³, $\rho_{\text{caled}} = 1.30$ g/cm³, $\mu = 8.1 \text{ cm}^{-1}$, 5386 collected reflections, and $R = 0.060 (R_w = 0.062)$. Data for space group $P2_1/n$, $a = 18.303$ (14) Å, $b = 9.031$ (4) Å, $c = 21.137$ (17) Å, $\beta = 112.67$ (30)°, $V = 3223.8$ Å³, $\rho_{\text{calcd}} = 1.23$ g/cm³, $\mu = 10.7$ cm⁻¹, $Z = 4$, 1584 collected reflections, and $R = 0.084$ ($R_w = 0$