Reactions of Functionalized Metal- η^1 -Propargyl Compounds with Unsaturated Cobalt(0) and Iron(0) Carbonyl Clusters

Ming-Huei Cheng,[†] Hsin-Guo Shu,[†] Gene-Hsiang Lee,[‡] Shie-Ming Peng,^{*,‡} and Rai-Shung Liu^{*,†}

Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Republic of China, and National Taiwan University, Taipei 10764, Republic of China

Received June 16, 1992

The reactions between M—CH₂C=CCH=CH₂ (M = CpW(CO)₃ (1), Mn(CO)₅ (2)) and $Co_2(CO)_8$ in THF at 0 °C afforded $Co(CO)_3[\mu_2-CpW(CO)_3CH_2C=CCH=CH_2]Co(CO)_3$ (3) and $MnCo_2(CO)_{10}(\mu_3-\eta^1:\eta^3:\eta^3-CH_2CCCHCH_2)$ (4), respectively. The dinuclear 2-butyne-1,4-di-yl compounds M—CH₂C==CCH₂—M (M = CpW(CO)₃ (5); Cp*W(CO)₃ (6), Cp* = C_5Me_5) have been prepared. Under flowing CO, the reactions of 5 and 6 with $Fe_2(CO)_9$ afforded the maleoyl compounds M—CH₂C(CO—Fe(CO)₄—(CO)CCH₂—M (M = CpW(CO)₃ (7), Cp*W(CO)₃ (8)) in excellent yields. Under nitrogen, a similar reaction of 5 with $Fe_2(CO)_9$ produced two additional trinuclear clusters $Cp_2W_2Fe(CO)_8(\mu_3-\eta^1:\eta^2:\eta^3-CH_2CCCH_2)$ (9) and $CpWFe_2(CO)_8(\mu_3-\eta^1:\eta^2:\eta^2-\eta^2)$ CH_2CCCH_3) (10) in addition to 7. In contrast, 6 reacted with $Fe_2(CO)_9$ in the absence of CO to give 8 as the only product. The reactions of 5 and 6 with $Co_2(CO)_8$ gave the tetranuclear compounds $\dot{C}_0(CO)_3(\mu-M-CH_2C=CCH_2-M)\dot{C}_0CO)_3$ (M = CpW(CO)₃(11), Cp*W(CO)₃(12)). The molecular structures of 4, 8, 9, and 12 were determined by X-ray diffraction study to have the following parameters: for 4, space group $P\bar{1}$, a = 8.427 (3) Å, b = 9.326 (2) Å, c = 12.534(4) Å, $\alpha = 97.31$ (2)°, $\beta = 87.76$ (3)°, $\gamma = 110.80$ (2)°, Z = 2, R = 0.029 and $R_w = 0.043$; for 8, space group C2/c, a = 47.984 (7) Å, b = 8.478 (2) Å, c = 19.883 (6) Å, $\beta = 107.60$ (2)°, Z = 8, R = 0.053, and $R_w = 0.042$; for 9, space group $P\bar{1}$, a = 7.810 (2) Å, b = 10.889 (4) Å, c = 13.970(5) Å, $\alpha = 110.96$ (3)°, $\beta = 95.20$ (2)°, $\gamma = 93.72$ (2)°, Z = 2, R = 0.032, and $R_w = 0.031$; for 12, space group C_2/c , a = 20.267 (3) Å, b = 24.628 (3) Å, c = 8.816 (4) Å, $\beta = 99.68$ (2)°, Z = 4, R= 0.031, and $R_w = 0.069$.

Introduction

Heteronuclear metal-carbonyl clusters containing organic hydrocarbyl fragments are recognized to be an important and rapidly growing class of compounds.^{1,2} The reactions of metal-propargyl complexes $L_nM-CH_2C=CR$ $(L_nM = CpW(CO)_3, CpM_0(CO)_3, CpR_u(CO)_2; R = Me,$ Ph) with metal carbonyls enable preparations of heteronuclear clusters with various bridging hydrocarbyl ligands such as dinuclear or trinuclear allenyl complexes.^{3,4} Reactions of $CpFe(CO)_2CH_2C = CPh$ with $Fe_2(CO)_9$ produced a binuclear η^4 -allylcarbonyl product.⁵ We⁶ have studied the reactions of metal- η^1 -vinylpropargyl compounds M-CH₂C=CCH=CH₂ (M = CpW(CO)₃ (1), $CpMo(CO)_3$ (2)) with Fe(0), Ru(0), and Os(O) carbonyl clusters which gave heteronuclear maleoyl and trinuclear

Organomet. Chem. 1983, 22, 169.
(3) (a) Wido, T. M.; Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics 1988, 7, 452.
(b) Young, G. H.; Wojcicki, A. J.

G. Organometalitics 1988, 7, 452. (b) Foung, G. H.; Wojcicki, A. J. Organomet. Chem. 1990, 390, 51.
(4) (a) Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G.; Bresciani-Pahor, N. J. J. Am. Chem. Soc. 1989, 111, 6890. (b) Young, G. H.; Raphael, M. L.; Wojcicki, A.; Calligaris, M.; Nardin, G.; Bresciani-Pahor, N. J. Jonganometallics 1991, 10, 1934. (c) Shuchart, C. E.; Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics 1990, 9, 2417. (5) Young, G. H.; Willis, R. F.; Wojcicki, A.; Calligaris, M.; Faleschni, P. Organometallics 1991, 11, 154.

P. Organometallics 1992, 11, 154

(6) Cheng, M. H.; Lee, G. H.; Peng, S. M.; Liu, R. S. Organometallics 1991, 10, 3600.

 μ_3 - η^1 : η^3 : η^3 -divinylcarbene clusters. The fact that cluster formation depends strongly on both the type of metal and the functionality of propargyl ligands prompts us to investigate further the reaction chemistry of 1 and 2 with $Co_2(CO)_8$. Here we report syntheses of functionalized metal propargyl complexes $M-CH_2C=CCH_2-M$ (M = $CpW(CO)_3$ (5) and $Cp*W(CO)_3$ (6), $Cp* = C_5Me_5$) and their reactions with Fe(0) and Co(0) carbonyl clusters.

Results and Discussion

Reaction of 1 and 2 with Co₂(CO)₈. The reaction between 1 and $Co_2(CO)_8$ conducted in THF solution at 0 °C was complete after 2 h. As shown in Scheme I, the product 3 isolated as an orange solid was purified through a silica gel column; the yield was only 10%. The characterization of this new trinuclear cluster was accomplished by appropriate physical methods. IR spectra in the $\nu(CO)$ region exhibited a marked similarity to those

of related compounds $\dot{C}_0(CO)_3(\mu_2 - CpW(CO)_3 - CH_2C \equiv$

CR) $\dot{C}o(CO)_3$ (R = Me, Ph).^{3a} ¹H and ¹³C NMR data are fully consistent with the proposed structure. The $W-CH_2$ protons resonate in ¹H NMR spectra at δ 2.40 ppm, and the free vinyl protons resonate at δ 5.14 (d), 5.20 (d), and 6.90 (dd) ppm. The methylene carbon $M-CH_2$ resonates in ¹³C NMR spectra at δ 10.3 ppm and the two acetylide carbons resonate at δ 118.8 and 130.9 ppm. Elemental analyses and FAB mass data are consistent with the given formula.

A similar reaction between 2 and $Co_2(CO)_8$ was also performed which gave a dark red solid 4 in 82% yield after

National Tsing Hua University.

¹ National Taiwan University.
⁽¹⁾ (a) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, 83, 203.
(b) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135.

⁽²⁾ Roberts, D. A.; Geoffroy, G. L. in Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abels, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Chapter 40. (b) Vahrenkamp, H. Adv.

Figure 1. Perspective view and numbering scheme for complex 4.

work up. The characteristic features in the IR and NMR spectra of 4 differ greatly from those expected for $(\mu_2$ alkyne) $Co_2(CO)_6$.⁷ IR spectra in the $\nu(CO)$ region exhibited a broad absorption at 1845 cm⁻¹, characteristic of a bridging CO group. The methylene protons CH⁴H⁵ resonate in NMR spectra at δ 2.21 and 3.53 ppm, indicative of metalolefin bonding. Single crystals of 4 suitable for X-ray structural analysis were grown from a saturated ether/ hexane solution cooled to -20 °C. An ORTEP drawing of 4 appears in Figure 1, and the related bond distances, angles, and atomic coordinates are presented in Table I and II, respectively. Compound 4 consists of a core of two cobalt atoms, symmetrically bridged by the C(13) atom and C(8)–O(8) carbonyl group (Co(1)–C(13) = 1994 (5) Å vs Co(2)-C(13) = 1.950(5) Å; Co(1)-C(8) = 1.945(6) Å vs Co(2)-C(8) = 2.001 (6) Å). Notably the Mn(CO)₅ subunit migrated to the β -carbon with a normal length Mn–C(14) = 2.117 (5) Å. The Co(1)–Co(2) bond length 2.613 (1) Å is larger than that of a common Co-Co single bond 2.45 Å for structurally related cobalt μ_2 -carbene complexes.⁸ The acyclic hydrocarbyl ligand is W-shaped and nonplanar; it is twisted along C(12)-C(13) and C(13)-C(14) bonds, the dihedral angles between the planes C(11)-C(12)-C(13)and C(12)-C(13)-C(14), C(12)-C(13)-C(14) and C(13)-C(14)-C(15) are 24 (1)° and 27 (1)°. The C-C bond lengths are variable within a broad range, 1.388-1.433 (7) Å. Each cobalt is η^3 -bonded to the ligand with Co–C lengths 1.950– 2.118 (5) Å, comparable to those (2.01-2.05 Å) of other

Table I. Selected Bond Distances (Å) and Angles (deg) for 4

	(deg)	for 4	_
Mn-C(1)	1.863 (7)	Co(1)-C(13)	1.994 (5)
Mn-C(2)	1.839 (6)	Co(2) - C(8)	2.001 (6)
MnC(3)	1.832 (6)	Co(2) - C(9)	1.777 (6)
MnC(4)	1.866 (7)	Co(2)C(10)	1.753 (6)
MnC(5)	1.869 (5)	Co(2)-C(13)	1.950 (5)
<n-c(14)< td=""><td>2.117 (5)</td><td>Co(2)C(14)</td><td>2.118 (5)</td></n-c(14)<>	2.117 (5)	Co(2)C(14)	2.118 (5)
Co(1)-Co(2)	2.6133 (12)	Co(2)-C(15)	2.096 (5)
Co(1) - C(6)	1.760 (6)	C(11)-C(12)	1.395 (8)
Co(1) - C(7)	1.768 (6)	C(12)–C(13)	1.406 (7)
Co(1) - C(8)	1.945 (6)	C(13)–C(14)	1.388 (7)
Co(1)-C(11)	2.112 (5)	C(14)-C(15)	1.433 (7)
Co(1)-C(12)	2.070 (5)	C(14)-C(15)	1.433 (7)
Co(2)-Co(1)-C(6)	109.56 (21)	C(8)-Co(2)-C(14)	122.71 (21)
Co(2)-Co(1)-C(7)	137.97 (18)	C(8)-Co(2)-C(15)	104.83 (23)
Co(2)-Co(1)-C(8)	49.44 (17)	C(9)-Co(2)-C(10)	93.6 (3)
Co(2)-Co(1)-C(11)	90.81 (16)	C(9)-Co(2)-C(13)	99.46 (23)
Co(2)-Co(1)-C(12)	81.41 (15)	C(9)-Co(2)-C(14)	115.99 (22)
Co(2)-Co(1)-C(13)	47.80 (14)	C(9)-Co(2)-C(15)	150.78 (25)
C(6)-Co(1)-C(7)	98.3 (3)	C(10)-Co(2)-C(13)	158.2 (3)
C(6)-Co(1)-C(8)	102.9 (3)	C(10)-Co(2)-C(14)	118.69 (25)
C(6)-Co(1)-C(11)	142.4 (3)	C(10)-Co(2)-C(15)	89.8 (3)
C(6)-Co(1)-C(12)	111.42 (25)	C(13)-Co(2)-C(14)	39.62 (20)
C(6)-Co(1)-C(13)	98.88 (24)	C(13)-Co(2)-C(15)	70.34 (21)
C(7)-Co(1)-C(8)	94.71 (25)	C(14)-Co(2)-C(15)	39.76 (21)
C(7)-Co(1)-C(11)	85.27 (24)	Co(1)-C(8)-Co(2)	82.93 (22)
C(7)-Co(1)-C(12)	117.37 (24)	Co(1)-C(11)-C(12)	68.9 (3)
C(7)-Co(1)-C(13)	156.43 (23)	Co(1)-C(12)-C(11)	72.2 (3)
C(8)-Co(1)-C(11)	114.19 (24)	Co(1)-C(12)-C(13)	66.9 (3)
C(8)-Co(1)-C(12)	127.42 (22)	C(11)-C(12)-C(13)	117.5 (5)
C(8)-Co(1)-C(13)	97.10 (22)	Co(1)-C(13)-Co(2)	82.99 (18)
C(11)-Co(1)-C(12)	38.97 (21)	Co(1)-C(13)-C(12)	72.7 (3)
C(11)-Co(1)-C(13)	71.28 (20)	Co(1)-C(13)-C(14)	134.8 (4)
C(12)-Co(1)-C(13)		Co(2)-C(13)-C(12)	132.6 (4)
Co(1)-Co(2)-C(8)	47.63 (16)	Co(2)-C(13)-C(14)	76.7 (3)
Co(1)-Co(2)-C(9)	104.47 (20)	C(12)-C(13)-C(14)	146.8 (5)
Co(1)-Co(2)-C(10)	142.95 (20)	Mn-C(14)-Co(2)	130.60 (23)
Co(1)-Co(2)-C(13)	49.22 (14)	Mn-C(14)-C(13)	123.4 (4)
Co(1)-Co(2)-C(14)	82.12 (14)	Mn-C(14)-C(15)	124.7 (4)
Co(1)-Co(2)-C(15)	89.59 (16)	$C_0(2) - C(14) - C(13)$	63.7 (3)
C(8) - Co(2) - C(9)	103.5 (3)	Co(2)-C(14)-C(15)	69.3 (3)
C(8)-Co(2)-C(10)	97.1 (3)	C(13)-C(14)-C(15)	111.6 (4)
C(8)-Co(2)-C(13)	96.70 (22)	Co(2)-C(15)-C(14)	71.0 (3)

known Co(I)-allyl complexes.⁹ The η^3 -allyl bonding is also reflected by its ¹H NMR spectra which displays the two anti-proton resonances most upfield (δ 2.2–2.3 ppm), the two syn-proton H¹,H⁵ resonances at δ 3.5–3.6 ppm, and the central H³ proton resonance downfield at δ 5.50 ppm with J₃₅ = 6.3 Hz and J₃₄ = 9.5 Hz characteristic of a cis and trans coupling pattern for a metal-allyl bonding. The C(13)-C(14)-C(15) angle (111.6 (4)°) is smaller than the C(11)-C(12)-C(13) angle (117.5 (5)°) probably due to the steric hindrance of the bulky Mn(CO)₅. In contrast, the angle of the central carbon C(12)-C(13)-C(14) (146.8 (5)°) is rather large, owing to the μ_2 -coordination. The Mn atom lies about 0.17 (2) Å above the plane defining by the C(13), C(14), C(15) atoms.

Monitoring the reactions by IR spectra, we detected no $(\mu_2$ -alkyne)Co₂(CO)₆ intermediate such as 3 before 4 was formed. There is no experimental evidences to support that 4 is derived from decarbonylation of a $(\mu_2$ -al-kyne)Co₂(CO)₆ intermediate. We believe that the mechanism of formation of 4 involves a zwitterionic allene intermediate.^{5,6} An uncommon feature of this mechanism is the 1,2-migration process of the metal fragment as shown in the structure of 4.

⁽⁷⁾ Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8, 149.

⁽⁸⁾ Lindner, E.; Eberle, H. J.; Hoehne, S. Chem. Ber. 1981, 114, 413.

^{(9) (}a) Adams, R. D.; Chodosh, D. F.; Golembski, N. M. J. Organomet. Chem. 1977, 139, C39. (b) Herrmann, W. A.; Schcueizer, I.; Creswick, M.; Bernal, I. J. Organomet. Chem. 1979, 165, C17. (c) Howath, I. T.; Palyi, G.; Marko, L.; Andreetti, G. J. Chem. Soc., Chem. Commun. 1979, 1054.

Table II. Atomic Parameters x, y, and z for 4

	x	y	Z	B iso, Å ²
Mn	0.80322 (10)	0.68168 (9)	0.33467 (6)	3.22 (3)
Col	1.34369 (8)	1.07375 (8)	0.20789 (5)	3.02 (3)
Co2	1.22136 (9)	0.77193 (8)	0.17706 (5)	2.97 (3)
C1	0.7772 (8)	0.8728 (8)	0.3656 (5)	4.8 (3)
C2	0.8708 (7)	0.6943 (8)	0.4744 (5)	4.6 (3)
C3	0.5800 (8)	0.5810 (7)	0.3662 (4)	3.9 (3)
C4	0.8486 (8)	0.4993 (7)	0.3013 (5)	4.3 (3)
C5	0.7632 (6)	0.6797 (6)	0.1888 (4)	3.32 (23)
C6	1.4229 (8)	1.1360 (7)	0.3401 (5)	4.3 (3)
C7	1.4877 (7)	1.2270 (7)	0.1447 (5)	3.8 (3)
C8	1.4523 (7)	0.9262 (7)	0.1552 (5)	3.9 (3)
C9	1.1277 (7)	0.7267 (7)	0.0467 (5)	4.0 (3)
C10	1.2799 (8)	0.6080 (7)	0.1645 (5)	4.2 (3)
C11	1.1611 (7)	1.0845 (7)	0.1015 (4)	3.7 (3)
C12	1.0885 (6)	1.0424 (6)	0.2000 (4)	3.4 (3)
C13	1.1184 (6)	0.9201 (6)	0.2400 (4)	2.77 (21)
C14	1.0628 (6)	0.8036 (6)	0.3063 (4)	2.96 (22)
C15	1.2010 (7)	0.7676 (7)	0.3439 (4)	3.8 (3)
01	0.7651 (8)	0.9897 (6)	0.3861 (5)	7.8 (3)
O2	0.9153 (7)	0.7028 (7)	0.5600 (4)	7.6 (3)
O3	0.4414 (6)	0.5194 (6)	0.3859 (4)	5.75 (24)
O4	0.8786 (8)	0.3906 (6)	0.2816 (4)	6.9 (3)
O5	0.7417 (6)	0.6783 (5)	0.1009 (3)	4.82 (23)
O6	1.4851 (7)	1.1877 (6)	0.4249 (4)	6.7 (3)
07	1.5754 (6)	1.3248 (5)	0.1021 (4)	5.49 (23)
O8	1.5810 (5)	0.9241 (6)	0.1248 (4)	6.2 (3)
09	1.0655 (6)	0.6861 (6)	-0.0372 (4)	6.1 (3)
O10	1.3151 (7)	0.5004 (6)	0.1573 (4)	6.7 (3)

Reaction of Dinuclear Tungsten-n¹-Propargyl Complexes with $Fe_2(CO)_9$. Consistent with our previous results,⁶ functionalized η^1 -propargyl compounds 1 and 2 reacted with Fe(0) and Co(0) carbonyl culsters in a pathway which differs strongly from those of common metal- η^{1} propargyl compounds.³⁻⁵ The effect of a new functionalized ligand on its reaction chemistry is therefore of great interest. For this reason, we examined the reaction of the binuclear propargyl complex M-CH₂C=C-CH₂-M(M = $CpW(CO)_3$ (5), $Cp*W(CO)_3$ (6)) with $Fe_2(CO)_9$. The complexes 5 and 6 were conveniently prepared in good yields from the reaction of CpW(CO)₃Na (or Cp*W- $(CO)_3Na$) with 1,4-ditosylate-2-butyne in the molar ratio 2:1. The iron analogue $F_c-CH_2C=CCH_2-F_c$ (F_c = $CpFe(CO)_2$) has been previously reported.¹⁰ An interesting aspect of use of these complexes for cluster formation is that they may lead to the formation of heteronuclear clusters containing a hydrocarbyl fragment such as cumulene $CH_2 = C = CH_2$. Along this direction, Iyoda et al, have recently reported a tetrairon poly- π -allyl complexes derived from zinc reduction of $ClCH_2C =$ $CC = CCH_2Cl$ in the presence of $Fe_2(CO)_9$.¹² The reaction pathways of 5-6 with Fe₂(CO)₉ are illustrated in Scheme II. Treatment of 5-6 with 2 equimolar quantities of Fe₂(CO)₉ in THF at 23 °C under flowing CO generated the dinuclear maleoyl complexes 7 and 8 in excellent yields after workup. Single crystals of 8 suitable for X-ray structural analyses were grown from a saturated solution in diethyl ether/hexane cooled at -40 °C for 2 days. The selected bond distances, angles and atomic coordinates were given in Tables III and IV, respectively. According to the ORTEP drawing in Figure 2, the alkyne group of 8 has undergone double carbonylation and become sym-

Table III. Selected Bond Distances (Å) and Angles (deg) for 8

	(deg	() for 8	
W(1)-C(1)	1.867 (15)	Fe-C(10)	1.807 (14)
W(1) - C(2)	1.966 (13)	FeC(11)	2.027 (12)
W(1)-C(3)	1.960 (12)	FeC(12)	2.046 (11)
W(1)-C(13)	2.329 (11)	C(11)-C(14)	1.522 (15)
W(2)-C(4)	1.902 (14)	C(11)-O(11)	1.190 (15)
W(2)-C(5)	1.979 (13)	C(12)-C(15)	1.504 (16)
W(2) - C(6)	1.963 (14)	C(12)-O(12)	1.191 (15)
W(2)-C(16)	2.333 (11)	C(13)-C(14)	1.440 (7)
FeC(7)	1.807 (13)	C(14)-C(15)	1.372 (17)
Fe-C(8)	1.818 (15)	C(15)-C(16)	1.476 (15)
FeC(9)	1.846 (14)		
C(1)-W(1)-C(2)	114.2 (6)	C(11)-Fe-C(12)	81.9 (5)
C(1)-W(1)-C(3)	75.9 (6)	W(1)-C(1)-O(1)	174.1 (10)
C(1)-W(1)-C(13)	78.6 (5)	W(1)-C(2)-O(2)	168.7 (14)
C(2)-W(1)-C(3)	76.0 (5)	W(1)-C(3)-O(3)	179.3 (12)
C(2)-W(1)-C(13)	78.9 (5)	W(2)-C(4)-O(4)	176.8 (10)
C(3)-W(1)-C(13)	132.4 (5)	W(2)-C(5)-O(5)	176.8 (11)
C(4)-W(2)-C(5)	80.6 (7)	W(2)C(6)O(6)	173.6 (12)
C(4)-W(2)-C(6)	109.0 (6)	Fe-C(7)-O(7)	176.7 (11)
C(4)-W(2)-C(16)	77.8 (5)	FeC(8)O(8)	175.4 (12)
C(5)-W(2)-C(6)	73.2 (6)	Fe-C(9)-O(9)	177.0 (15)
C(5)-W(2)-C(16)	138.4 (4)	Fe-C(10)-O(10)	176.6 (12)
C(6)-W(2)-C(16)	80.8 (5)	Fe-C(11)-C(14)	114.3 (8)
C(7)-Fe- $C(8)$	95.1 (6)	FeC(11)O(11)	124.9 (9)
C(7)-Fe- $C(9)$	95.2 (6)	C(14)-C(11)-O(11)	120.6 (11)
C(7) - Fe - C(10)	164.9 (6)	Fe-C(12)-C(15)	112.1 (8)
C(7)-Fe-C(11)	85.4 (6)	Fe-C(12)-O(12)	124.4 (8)
C(7) - Fe - C(12)	84.6 (5)	C(15)-C(12)-O(12)	123.3 (10)
C(80-Fe-C(9)	99.5 (7)	W(1)-C(13)-C(14)	117.0 (7)
C(8) - Fe - C(10)	95.1 (7)	C(11)-C(14)-C(13)	120.5 (10)
C(8) - Fe - C(11)	169.7 (5)	C(11)-C(14)-C(15)	112.9 (10)
C(8) - Fe - C(12)	88.0 (5)	C(13)-C(14)-C(15)	126.5 (10)
C(9)-Fe-C(10)	94.0 (6)	C(12)-C(15)-C(14)	116.7 (10)
C(9) - Fe - C(11)	90.6 (6)	C(12)-C(15)-C(16)	117.4 (11)
C(9)-Fe-C(12)	172.5 (6)	C(14)-C(15)-C(16)	125.7 (11)
C(10)-Fe- $C(11)$	82.6 (6)	W(2)C(16)C(15)	120.8 (7)
C(10)-Fe- $C(12)$	84.7 (5)		

metrically linked to the Fe(CO)₄ fragment to generate a five-membered maleoyl ring. The Fe-C(12) (2.046 (11) Å) and Fe-C(11) (2.027 (12) Å) distances are close to the values (2.05 Å) for a normal Fe(II)-C single bond. The C(12)-O(12) (1.191 (15) Å) and C(11)-O(11) (1.190 (15) Å) lengths represent a normal C-O double bond. In contrast, the C(15)-C(14) distance (1.372 (17) Å) exceeds a normal C-C double bond length (1.33 Å). The coordination geometry around Fe(II) atom approximates a distorted octahedron with a relatively small C(12)-Fe-C(11) angle, 81.9 (5)°. On the maleoyl ring, the C(14), C(12), Fe, and the two carbonyl groups nearly form a least-square plane within a mean deviation of 0.08 (1) Å.

The $C_{2\nu}$ point group of 7–8 is reflected by its IR and ¹H and ¹³C NMR spectra which show that the two tungsten fragments across the central symmetry plane are spectrally

^{(10) (}a) Chiang, T.; Kerber, R. C.; Kimball, S. D.; Lauher, J. W. Inorg. Chem. 1979, 18, 1687. (b) Rinze, P. V.; Muller, U. Chem. Ber. 1979, 112, 1973.

⁽¹¹⁾ Bauch, T. A.; Konowitz, H.; Giering, W. P. J. Organomet. Chem. 1976, 114, C15.

⁽¹²⁾ Iyoda, M.; Kuwatani, Y.; Oda M, Tatsumi, K.; Nakamura A. Angew. Chem., Int. Ed. Engl. 1991, 30, 1671.

Metal–ŋ¹-Propargyl Compo	ound	s
--------------------------	------	---

Table IV. Atomic Parameters x, y, and z for 8

	x	у	Z	$B_{iso}, Å^2$
W 1	0.805317 (13)	0.05665 (6)	0.13966 (3)	3.254 (25)
W2	0.938414 (13)	0.23376 (6)	0.33400 (3)	3.446 (24)
Fe	0.88193 (4)	0.43930 (22)	0.05214 (9)	3.02 (10)
C 1	0.8399 (3)	-0.0222 (14)	0.1278 (6)	4.8 (7)
C2	0.7900 (4)	0.2449 (16)	0.0828 (6)	6.1 (10)
C3	0.7936 (3)	-0.0210 (15)	0.0423 (6)	5.4 (8)
C4	0.9049 (3)	0.3568 (15)	0.3308 (6)	4.5 (7)
C5	0.9577 (4)	0.4384 (15)	0.3663 (7)	7.5 (10)
C6	0.9548 (3)	0.3072 (15)	0.2601 (7)	5.7 (8)
C7	0.9019 (3)	0.5702 (15)	0.1218 (6)	4.9 (7)
C8	0.9109 (3)	0.4234 (16)	0.0110 (7)	5.9 (9)
C9	0.8598 (4)	0.5963 (17)	-0.0033 (7)	7.0 (10)
C10	0.8601 (3)	0.2815 (16)	0.0016 (6)	5.8 (8)
C11	0.8529 (3)	0.4221 (13)	0.1077 (6)	3.7 (6)
C12	0.9023 (3)	0.2637 (13)	0.1198 (5)	3.6 (6)
C13	0.8390 (3)	0.2465 (13)	0.1981 (6)	3.5 (6)
C14	0.8604 (3)	0.2958 (12)	0.1647 (5)	3.2 (6)
C15	0.8878 (3)	0.2338 (12)	0.1760 (5)	3.1 (6)
C16	0.9033 (3)	0.1309 (13)	0.2355 (6)	3.7 (6)
C17	0.7733 (3)	0.0902 (14)	0.2053 (7)	5.5 (8)
C18	0.7630 (3)	-0.0239 (14)	0.1538 (6)	4.0 (7)
C19	0.7819 (3)	-0.1535 (14)	0.1703 (6)	4.3 (7)
C20	0.8048 (3)	-0.1230 (15)	0.2302 (7)	5.1 (8)
C21	0.7992 (3)	0.0302 (15)	0.2539 (6)	5.6 (8)
C22	0.7605 (4)	0.2408 (17)	0.2177 (9)	10.0 (14)
C23	0.7328 (4)	-0.0200 (18)	0.1022 (8)	7.7 (11)
C24	0.7762 (4)	-0.3121 (15)	0.1337 (8)	7.0 (10)
C25	0.8285 (4)	-0.2341 (20)	0.2676 (8)	8.7 (11)
C26	0.8183 (5)	0.1002 (20)	0.3224 (7)	10.8 (14)
Č27	0.93743 (24)	-0.0331 (12)	0.3679 (5)	2.9 (5)
C28	0.9359 (3)	0.0631 (14)	0.4253 (6)	4.5 (7)
C29	0.9622 (3)	0.1476 (14)	0.4485 (6)	5.3 (8)
C30	0.9799 (3)	0.1102 (15)	0.4055 (7)	5.7 (8)
C31	0.9655 (3)	-0.0019 (14)	0.3557 (7)	4.6 (7)
C32	0.9150 (4)	-0.1590 (15)	0.3384 (7)	7.6 (12)
C33	0.9133 (5)	0.0645 (18)	0.4627 (8)	9.5 (13)
C34	0.9718 (5)	0.2547 (18)	0.5126 (7)	11.5 (15)
C35	1.0103 (4)	0.1632 (20)	0.4168 (10)	11.2 (12)
C36	0.9746 (4)	-0.0895 (19)	0.3016 (8)	8.5 (12)
01	0.86098 (22)	-0.0858 (11)	0.1174 (5)	6.4 (6)
02	0.7766 (3)	0.3493 (11)	0.0506 (5)	8.4 (7)
03	0.7868 (3)	-0.0658 (13)	-0.0156 (5)	8.4 (7)
04	0.88433 (23)	0.4359 (11)	0.3322 (5)	7.0 (6)
05	0.96939 (24)	0.5529 (10)	0.3978 (5)	7.5 (6)
06	0.9668 (3)	0.3523 (10)		8.5 (7)
07	0.9146 (3)	0.6465 (11)	0.2215 (5) 0.1678 (5)	8.3 (7) 8.1 (7)
08	0.9146 (3)	0.4057 (12)		
09	0.9298 (3)	0.6922 (12)	0.0115 (5) 0.0355 (6)	8.2 (8) 10.3 (9)
O9 O10	0.8454 (3)	0.0922 (12)	-0.0274 (5)	
010	0.8460 (3)	0.5080 (12)	0.1014 (5)	8.8 (7) 6.1 (6)
-	• •	• •	0.1014 (3)	
012	0.92192 (20)	0.1859 (10)	0.1131 (4)	5.0 (5)

equivalent. Only one ¹H NMR signal for both W-CH₂ and Cp groups was observed at δ 2.14 and 5.33 ppm, respectively. Likewise, the three W-CH₂-C-CO carbons in ¹³C NMR spectra exhibit three signals at δ -18.8, 168.2, and 178.2 ppm, respectively; only two Fe-CO signals were observed at δ 201.1 and 203.8 ppm.

In the absence of CO, a similar reaction between 5 and $Fe_2(CO)_9$ in the molar ratio 1:2 under nitrogen produced two additional clusters $Cp_2W_2Fe(CO)_8(\mu_3-\eta^1:\eta^2:\eta^3-CH_2CCCH_2)$ (9, 14%) and $CpWFe_2(CO)_8(\mu_3-\eta^1:\eta^2:\eta^3-CH_2CCMe)$ (10, 8%) in addition to 7 (56%). The yields of 9 and 10 increased to 18% and 12%, respectively, when less $Fe_2(CO)_9$ than 1 equimolar quantity was used, which however decreased the yield of 7 (40%). In contrast with 5, under flowing nitrogen, only 8 was obtained in good yield despite that various ratios of $Fe_2(CO)_9$ to 6 (1/1 and 1/2 molar ratio) were used in the reaction. Separation of 7, 9, and 10 was conducted by a combination of Florisil column chromatography and preparative SiO₂ TLC plate. The spectral data of 10 are identical to those of an authentic compound previously reported.^{3a}

Figure 2. ORTEP drawing of the trinuclear maleoyl complex 8.

Figure 3. ORTEP drawing of the molecular structure of 9.

ization of 9 relies on an X-ray diffraction measurement. The molecular structure and its atomic numbering scheme are given in Figure 3; the selected bond distances, angles, and atomic coordinates are given in Tables V and VI respectively. According to the ORTEP drawing, the acyclic hydrocarbyl moiety is twisted into an S-shape with the C(11) atom asymmetrically bridged to the Fe and W(2)atoms with a long Fe-W single bond (2.946 (2) Å). The Fe-W lengths reported for CpWFe(CO)₅(μ - η^2 : η^3 : $CH_2CCC_6H_4Me$) and $CpWFe_2(CO)_8(\mu_3-\eta^1:\eta^2:\eta^3-CH_2CCPh)$ are 2.767 (1) Å, 2.7418 (5) and 2.8373 (7) Å, respectively.^{4b} The hydrocarbyl ligand is η^2 -coordinate to W and η^3 coordinated to Fe atom in an asymmetric fashion with the bridging Fe-C(11) (1.965 (9) Å) and W(2)-C(11) (2.126 (10) Å) lengths being particularly small relative to analogous bonds Fe-C(9) = 2.113(10) Å, Fe-C(10) = 2.112(9)Å, and W(2)-C(2) = 2.312 (12) Å. Similarly, the C(9)-C(10) length (1.467 (14) Å) of this hydrocarbyl moiety is appreciably greater than those of the other three C-C lengths (1.40-1.41 (1) Å). Neglecting the CpW(1)(CO)₃ fragment, we view the S-shaped hydrocarbyl moiety as a η^2 : η^3 -butadienylidene fragment, which is similar to that found for $Ru_3(CO)_7(\mu_3 - \eta^1: \eta^2: \eta^3 - CH_2CC(i-pr)CH)(\mu - PPh_2)$.¹³ Analogous to 4, the $CpW(CO)_3$ fragment has undergone 1,2-migration and linked to the C(10) carbon with a normal W(1)-C distance 2.282 (10) Å. Owing to the steric

⁽¹³⁾ Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1984, 3, 177.

Table V. Selected Bond Distances (Å) and Angles (deg) for 9

	(ueg)		
W(1)-C(1)	1.965 (11)	Fe-C(6)	1.783 (10)
W(1) - C(2)	2.025 (14)	Fe-C(7)	1.803 (12)
W(1) - C(3)	1.994 (11)	Fe-C(8)	1.803 (11)
W(1)-C(10)	2.282 (10)	Fe-C(9)	2.113 (10)
W(2)-Fe	2.9462 (19)	Fe-C(10)	2.122 (9)
W(2) - C(4)	1.932 (10)	Fe-C(11)	1.965 (9)
W(2) - C(5)	1.927 (11)	C(9)-C(10)	1.467 (14)
W(2)-C(11)	2.126 (10)	C(10)–C(11)	1.405 (13)
W(2) - C(12)	2.312 (110	C(11)–C(12)	1.410 (14)
C(1)-W(1)-C(2)	76.4 (4)	C(6)-Fe-C(11)	94.1 (4)
C(1)-W(1)-C(3)	106.8 (4)	C(7) - Fe - C(8)	95.5 (Š)
C(1)-W(1)-C(10)	71.3 (4)	C(7)-Fe-C(9)	88.6 (5)
C(2)-W(1)-C(3)	76.8 (4)	C(7) - Fe - C(10)	128.9 (4)
C(2)-W(1)-C(10)	129.4 (4)	C(7) - Fe - C(11)	138.9 (4)
C(3) - W(1) - C(10)	76.5 (4)	C(8)-Fe- $C(9)$	95.3 (4)
Fe-W(2)-C(4)	71.9 (3)	C(8) - Fe - C(10)	93.8 (4)
Fe-W(2)-C(5)	110.9 (3)	C(8) - Fe - C(11)	121.2 (5)
Fe-W(2)-C(11)	41.81 (24)	C(9)-Fe-C(10)	40.5 (4)
Fe-W(2)-C(12)	70.77 (25)	C(9)-Fe-C(11)	71.5 (4)
C(4) - W(2) - C(5)	79.5 (4)	C(10)-Fe-C(11)	40.0 (4)
C(4)-W(2)-C(11)	111.0 (4)	Fe-C(9)-C(10)	70.1 (5)
C(4)-W(2)-C(12)	118.9 (4)	W(1)-C(10)-Fe	134.9 (4)
C(5)-W(2)-C(11)	104.1 (4)	W(1)-C(10)-C(9)	121.4 (6)
C(5)-W(2)-C(12)	71.1 (4)	W(1)-C(10)-C(11)	126.2 (7)
C(11)-W(2)-C(12)		Fe-C(10)-C(9)	69.4 (5)
W(2)-Fe-C(6)	83.0 (3)	Fe-C(10)-C(11)	64.0 (5)
W(2)-Fe- $C(7)$	98.9 (3)	C(9)-C(10)-C(11)	112.4 (9)
W(2)-Fe-C(8)	165.5 (3)	W(2)-C(11)-Fe	92.0 (4)
W(2)-Fe-C(9)	86.9 (3)	W(2)-C(11)-C(10)	134.8 (7)
W(2)-Fe-C(10)	78.56 (24)	W(2)-C(11)-C(12)	78.8 (6)
W(2)-Fe-C(11)	46.1 (3)	Fe-C(11)-C(10)	76.0 (5)
C(6)-Fe- $C(7)$	103.0 (5)	Fe-C(11)-C(12)	131.7 (7)
C96)-Fe-C(8)	92.0 (5)	C(10)-C(11)-C(12)	
C(6)-Fe- $C(9)$	165.7 (4)	W(2)-C(12)-C(11)	64.4 (6)
C(6) - Fe - C(10)	126.7 (4)		

Atomic Parameters x, y, and z for 9 Table VI.

	x	y	Z	$B_{iso}, Å^2$
W 1	0.76105 (5)	0.24679 (4)	0.32176 (3)	2.136 (20)
W2	0.81411 (5)	-0.25754 (4)	0.08821 (3)	1.850 (19)
Fe	0.71638 (18)	-0.13762 (15)	0.29808 (11)	2.19 (7)
Cl	0.7790 (12)	0.1951 (11)	0.1734 (8)	2.8 (6)
C2	0.9662 (17)	0.3671 (13)	0.3169 (8)	3.8 (7)
C3	0.9605 (15)	0.1810 (11)	0.3816 (8)	3.0 (6)
C4	0.7916 (13)	-0.3941 (11)	0.1456 (7)	2.6 (5)
C5	1.0485 (15)	-0.3026 (11)	0.0929 (7)	3.1 (6)
C6	0.9059 (14)	-0.2027 (11)	0.3328 (8)	3.1 (6)
C7	0.5454 (14)	0.2612 (11)	0.2908 (8)	3.0 (6)
C8	0.7040 (13)	-0.0353 (11)	0.4307 (8)	2.8 (6)
C9	0.5327 (13)	-0.0448 (11)	0.2346 (8)	2.8 (5)
C10	0.7064 (12)	0.0224 (10)	0.2455 (7)	2.0 (4)
C11	0.8276 (12)	-0.0666 (10)	0.2054 (7)	2.0 (5)
C12	0.9975 (13)	-0.0676 (11)	0.1787 (8)	2.9 (6)
C13	0.4688 (15)	0.2747 (14)	0.3251 (9)	4.1 (7)
C14	0.5250 (15)	0.2471 (12)	0.4147 (8)	3.3 (6)
C15	0.6441 (18)	0.3510 (15)	0.4744 (9)	4.8 (8)
C16	0.6658 (19)	0.4416 (12)	0.4283 (12)	5.3 (8)
C17	0.5591 (20)	0.3976 (15)	0.3363 (10)	5.1 (9)
C18	0.5501 (13)	-0.2919 (12)	-0.0158 (8)	3.3 (6)
C19	0.6450 (16)	0.3976 (12)	-0.0634 (8)	3.5 (6)
C20	0.7839 (17)	-0.3512 (16)	-0.0923 (8)	4.7 (8)
C21	0.7904 (16)	-0.2125 (15)	-0.0634 (9)	4.3 (8)
C22	0.6433 (15)	-0.1727 (12)	-0.0155 (8)	3.4 (6)
01	0.7855 (9)	0.1632 (8)	0.0852 (5)	3.6 (4)
O2	1.0826 (11)	0.4348 (9)	0.3183 (6)	5.0 (5)
O 3	1.0738 (10)	0.1481 (9)	0.4198 (6)	4.9 (5)
04	0.7820 (11)	-0.4885 (8)	0.1682 (6)	4.4 (5)
05	1.1944 (9)	-0.3287 (9)	0.0932 (6)	4.5 (5)
06	1.0249 (11)	-0.2419 (9)	0.3580 (6)	5.0 (5)
07	0.4372 (11)	-0.3382 (9)	0.2851 (6)	4.6 (5)
O 8	0.6975 (10)	0.0282 (8)	0.5135 (5)	4.1 (4)

hindrance of the bulky $CpW(CO)_3$ fragment, the C(9)-C(10)-C(11) angle (112.4 (9)°) is much smaller than the C(10)-C(11)-C(12) angle (140.4 (10)°). The W(1) atom

lies only (+0.02 (5) Å) above the plane defined by the three C(11), C(10), and C(9) atoms (+ sign indicates toward the Fe atom). Consistent with its solid state structure, the ¹H NMR resonances of the CH¹H² and CH³H⁴ groups are inequivalent and split into four sets as two singlets at δ 1.56 (H¹), 2.75 (H²) ppm and two doublets at δ 2.54 (H³) and 2.82 (H⁴) ppm with geminal coupling J = 6.0 H. On the basis of 2-D ¹³C{H}-H NMR spectra, the corresponding carbons in ¹³C NMR spectra resonate at δ 54.0 (CH¹H²) and 12.1 (CH³H⁴) ppm with $J_{^{13}C-H} = 160$ and 138 Hz, respectively. The two central quaternary carbons resonate at δ 188.5 and 199.0 ppm. No ¹⁸³W-¹³C nuclei coupling was observed for the two methylene carbons. We assign the AB pattern in the proton NMR resonances to the $CH^{3}H^{4}$ protons because its geminal coupling constant J = 6.0 Hz is indicative of sp³ hybridization. This character is more consistent with the geometry around the C(9) atom which has a long C(9)-C(10) bond. Moreover the two H(9B) and H(9A) atoms of which the positions were located on the difference Fourier map are distorted from a trigonal plane including C(9) and C(10) atoms. The dihedral angle between the H(9B)-C(12)-C(11) and H(9A)-C(12)-C(11)is 26.7 (15)°. In contrast, the dihedral angle between the H(12B)-C(12)-C(11) and H(12A)-C(12)-C(11) plane is 16.4 (16)°, more characteristic of sp^2 hybridization.

The reaction chemistry of 5 and 6 with $Fe_2(CO)_9$ closely resembles that of metal- η^1 -vinylpropargyl compounds 1 and 2 because their alkyne groups readily undergo double carbonylation to produce maleoyl compounds. It is well documented that maleovl formation from alkyne and metal carbonyls including $Fe_2(CO)_9$ is severely plagued by its low selectivity.^{14,15} Scheme III shows the formation mechanism of 7 and 8 which involves a zwitterionic mechanism (I) generated from electrophilic attack of $Fe(CO)_4$ on the acetylide carbon. This mechanism is similar to that of [3 + 2] cycloaddition of the metal- η^1 propargyl complex with SO₂, (CN)₂C=C(CN)₂.¹⁶ The intermediate I undergoes a further CO insertion to give the allene acyl species II. A subsequent intramolecular cyclization of II, followed by a second CO insertion is

^{(14) (}a) Case, J. R.; Clarkson, R.; Jones, E. R. H.; Whiling, M. C. Prog. Chem. Soc. 1959, 150. (b) Grevels, F. W.; Schultz, D.; Koerner Von Gustori, E.; Bunbary, D. S. P. J. Organomet. Chem. 1975, 91, 345.

^{(15) (}a) Patterson, R. C.; Cihonski, J. L.; Young, F. R.; Leuenson, R. J. Chem. Soc., Chem. Commun. 1975, 370. (b) Victor, R.; Vsieli, V.; Sarel, S. J. Organomet. Chem. 1977, 129, 387.

 ⁽¹⁶⁾ Rosemblum, M. Acc. Chem. Res. 1974, 7, 122.
 (17) Rosemblum, M.; Brawn, N.; King, R. B. Tetrahedron Lett. 1967, 4421.

Figure 4. ORTEP view of the molecular structure of 12.

expected to give the observed products 7 and 8. The formation mechanism may be closely related to that of 4 because of a common 1,2-migration of the metal fragment. We suggest in Scheme III a mechanism based on that given for 4 and other $\mu_3 - \eta^1 : \eta^3 : \eta^3$ -divinylcarbene⁶ compounds, which like the maleoyl complexes 7 and 8 have a common intermediate (I). The rearrangement of negative charge on the $Fe(CO)_4^-$ center is expected to give the μ_2 -carbene intermediate IV, of which one CpW(CO)₃ fragment has migrated to the β -carbon of hydrocarbyl moiety. The loss of two successive CO of (IV) is expected to give 9.

Reaction of 5 and 6 with Co_2(CO)_8. In the reaction of dinuclear complexes 5 and 6 with $Ru_3(CO)_{10}(CH_3CN)_2$, we were unable to isolate new polynuclear compounds. Their reactions with Co₂(CO)₈ in THF at 0 °C afford the

 μ_2 -alkyne compounds $\dot{C}o(CO)_3(\mu-M-CH_2C)$ CCH₂-M) $\dot{C}o$ - $(CO)_3$ 11 (M = CpW(CO)_3) and 12 (M = Cp*W(CO)_3) in 48% and 75% yields, respectively. In contrast with the great stability of 12 in solution, cooling a THF/hexane solution of 11 for 3 days slowly deposited a dark black microcrystalline solid. Its FAB mass spectra and elemental analyses show that the newly formed crystals have a molar mass which corresponds to loss of one CO from 11. We were unable to deduce clearly its structure from NMR and IR spectra. Attempts to grow better crystals for X-ray structural analyses were not successful partly due to its instability during recrystallization. An X-ray structural analysis of 12 has been performed; the ORTEP drawing, selected bond distances, angles, and atomic coordinates are given in Figure 4 and Tables VII and VIII respectively. Similar to F_c —C==C— F_c^{18} ($F_c = CpFe(CO)_2$), the alkyne fragment of 12 is bonded to a $Co_2(CO)_6$ fragment in a pseudotetrahedral structure with the two C(7) and two Co atoms occupying the four vertices. The molecule has a C_2 symmetry axis which is perpendicular to both the C(7)-C(7)' and Co-Co' bonds. The molecular fragments related by this symmetry axis are crystallographically equivalent. The lengths of Co-Co (2.462 (5) Å) and Co-C(7) (1.985 (15) Å) are near the values (2.46-2.50 and 1.92-2.00 Å) of several (μ_2 -alkyne)Co₂(CO)₆ complexes.¹⁸ The C(7)-C(7)' (1.28 (3) Å) bond represents a normal C-C double bond, also indicated by IR spectra that showed the ν (C==C) vibration frequency at 1652 (w) cm⁻¹. The C(8)-

Table VII. Selected Bond Distances (Å) and Angles (deg)

		for 12	
W-C(1) W-C(2) W-C(3) W-C(8) W-C(9) W-C(10) W-C(11) W-C(12) W-C(12) W-C(13) Co-Coa Co-C(4) Co-C(5)	1.973 (18) 1.964 (19) 1.968 (18) 2.364 (16) 2.394 (15) 2.346 (16) 2.208 (17) 2.300 (17) 2.354 (17) 2.462 (5) 1.753 (21) 1.738 (21)	$\begin{array}{c} C_{0}-C(7)\\ C_{0}-C(7)\\ C(7)-C_{0}\\ C(7)-C(7)\\ C(7)-C(8)\\ C(9)-C(1)\\ C(9)-C(1)\\ C(10)-C(0)\\ C(11)-C(0)\\ C(11)-C(0)\\ C(12)-C(0)\\ C(1$) 1.483 (21) 0) 1.42 (3) 3) 1.440 (24) 11) 1.42 (3) 12) 1.417 (24)
$\begin{array}{c} C(1)-W-C\\ C(1)-W-C\\ C(1)-W-C\\ C(2)-W-C\\ C(2)-W-C\\ C(3)-W-C\\ Co-Co-C(4\\ Co-Co-C(5\\ Co-Co-C(5\\ Co-Co-C(7\\ Co-Co-C(7\\ C(4)-Co-C\\ C(4)-Co-C\\ C(4)-Co-C\\ C(4)-Co-C\\ Table \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} C(6) & 96.4 & (10) \\ C(7) & 101.0 & (8) \\ C(7) & 103.6 & (8) \\ C(7) & 136.0 & (8) \\ C(7) & 99.0 & (8) \\ C(7) & 99.0 & (8) \\ C(7) & 37.7 & (6) \\ Co & 76.6 & (5) \\ C(7) & 70.8 & (9) \\ C(8) & 133.6 & (11) \\ C(7) & 71.5 & (9) \\ C(8) & 125.3 & (11) \\)-C(8) & 149.9 & (14) \end{array}$
<u> </u>	x	у	$z \qquad B_{iso}, A^2$
Co 0.96 C1 0.80 C2 0.91 C3 0.75 C4 0.90 C5 0.91 C6 1.10 C7 0.97 C8 0.92 C9 0.84 C10 0.78 C11 0.74 C12 0.75 C13 0.85 C14 0.89 C15 0.75 C16 0.67 C17 0.77 C18 0.90 O1 0.78 O2 0.96	j459 (12) 0.21)87 (8) 0.22)87 (8) 0.21)87 (9) 0.11)97 (9) 0.12)97 (9) 0.11)93 (11) 0.32 ,52 (11) 0.32 ,55 (11) 0.32 ,55 (18) 0.12 ,56 (11) 0.32 ,57 (9) 0.11 ,59 (8) 0.22 ,59 (9) 0.16 ,52 (9) 0.01 ,52 (9) 0.01 ,530 (9) 0.02 ,530 (9) 0.01 ,530 (9) 0.02 ,530 (9) 0.01 ,58 (10) 0.11 ,585 (10) 0.11 ,585 (10) 0.11 ,585 (10) 0.12 ,597 (10) 0.00 ,588 (7) 0.22 ,502 (7) 0.16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C(7)-C(7)' angle (149.9 (14)°) is large to minimize the steric hindrance between the two bulky CpW(CO)₃ fragments.

Experimental Section

All operations were carried out under argon or in a Schlenk apparatus. The solvents Et₂O, hexane, and THF were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over P_2O_5 and distilled. $Fe_2(CO)_9$, $Ru_3(CO)_{12}$, $Os_3(CO)_{12}$, and $Co_2(CO)_8$ (Strem Chemicals) were used without further purification. 2-Butyn-1,4-ditosylate was prepared from 2-butyn-1,2-diol and tosylate chloride according to a standard procedure.¹⁹ CpW(CO)₃Na²⁰ and Cp*W(CO)₃Na²¹ were prepared according to published procedures. The synthesis of 1 and 2 was reported.6

^{(18) (}a) Dellaca, R. J.; Penfold, B. R. Inorg. Chem. 1971, 10, 1269. (b) Seyferth, D.; Spohn, R. J.; Churchill, M. R.; Gold, K.; Scholer, F. R. J. Organomet. Chem. 1970, 23, 237.

⁽¹⁹⁾ Hillis, L. R.; Ronald, R. C. J. Org. Chem. 1981, 46, 3348.
(20) Eisch, J. J., King, R. B., Eds.; Organometallics Synthesis; Academic Press: New York, 1965; Vol. 1.

All ¹H (400, 300 MHz) and ¹³C (100, 75 MHz) NMR spectra were recorded on either a Bruker AM-400 instrument or a Varian Gemini-300 spectrometer; IR spectra were recorded on a Bomem MB-100 spectrophotometer; FAB mass spectra were recorded on a JEOL JMX-HX-110 mass spectrometer. Microanalyses were performed in the Microanalytic Laboratory at National Cheng Kung University, Tainan, Taiwan.

Synthesis of $\dot{C}o(CO)_3(\mu_2-CpW(CO)_3CH_2C=CCHCH_2)\dot{C}o$ -(CO)₃ (3). A THF solution (40 mL) of 1 (0.30 g, 0.75 mmol) and $Co_2(CO)_8$ (0.26 g, 0.76 mmol) was stirred at 0 °C for 2 h. The resulting brown solution was evaporated to dryness. A hexane solution (10 mL) was added to extract the residues. The extract was stripped onto a silica column and eluted with diethyl ether (5%) in hexane. An orange band was developed, collected and evaporated to dryness to give analytically pure orange solid (50 mg, 0.71 mmol) in 10% yield. IR (Nujol, cm⁻¹): ν (CO) 2082 (s), 2056 (s), 2016 (s), 1958 (s), 1952 (s); v(C=C) 1590 (s); ¹H NMR (300 MHz, CDCl₃): δ 2.40 (s, 2 H, H¹), 5.14 (d, 1 H, H⁴), 5.20 (d, 1 H, H³), 5.48 (s, 5 H, C₅H₅), 6.90 (dd, 1 H, H²), $J_{23} = 16.6$ Hz, $J_{24} = 9.5$ Hz, ¹³C NMR (75 MHz, CDCl₃): δ 10.3 (W-CH¹), 92.5 (C5H5), 117.1 (CH3H4), 118.8, 130.9 (CH1-C-C), 138.0 (CH2), 211.2, 213.5 (Co-CO), 228.1, 229.8 (W-CO). Mass (FAB, 184W): m/z 684 (M⁺). Anal. Calcd for $C_{19}H_{10}WCo_2O_9$: C, 33.33; H, 1.46%. Found: C, 33.48; H, 1.56%

Synthesis of $MnCO_2(CO)_{10}(\mu_3 - \eta^1 : \eta^2 : \eta^3 - CH_2CCCHCH_2)$ (4). A THF solution (40 mL) of 2 (0.53 g, 1.60 mmol) and Co₂(CO)₈ (0.26 g, 1.60 mmol) was stirred at 0 °C for 2 h. The resulting brown solution was evaporated to dryness. An aliquot (10 mL) of hexane was added to extract the residue. The extract was chromatographed on a silica column with diethyl ether (20 mL) in hexane. A red band was developed, collected, and evaporated to dryness to give a red solid 4 (0.66 g, 1.32 mmol). Recrystallization from a saturated solution gave dark red block-shaped crystals. IR (Nujol, cm⁻¹): v(CO) 2110 (w), 2055 (vs), 1990 (s), 1960 (s), 1845 (m). ¹H NMR (300 MHz, CDCl₃): δ 2.21 (d, 1 H, H^{4}), 2.33 (S, 1 H, H²), 3.53 (d, 1 H, H⁵), 3.62 (s, 1 H, H¹), 5.50 (dd, 1 H, H³), $J_{34} = 9.5$ Hz, $J_{35} = 6.3$. ¹³C NMR (75 MHz, CDCl₃): 57.5, 70.4 (CH1H2 + CH3H4), 75.0 (CH3), 96.5, 96.9 (C-C), 192.8, 208.8 (Fe-CO + Mn-CO). Mass (FAB): m/z 518 (M⁺). Anal. Calcd for C₁₅H₅MnCo₂O₁₀: C, 34.74; H, 0.96%. Found: C, 34.84; H, 1.05%.

Synthesis of CpW(CO)₃CH₂C=CCH₂CpW(CO)₃ (5). To a THF solution (50 mL) of NaWCp(CO)₃ (5.52 g, 15.6 mmol) was added 1,4-ditosylate-2-butyne (3.00 g, 7.61 mmol) and stirred at 0 °C for 6 h. The solvent was removed under reduced pressure, leaving a yellow residue. The residue was extracted with Et₂O, filtered, and evaporated to dryness. Elution on a silica column with Et₂O/hexane (1:1) gave an orange-yellow fraction, which was collected and brought to dryness to give a yellow solid 5 (3.80 g, 5.30 mmol); the yield is 69%. IR (Nujol, cm⁻¹) ν (C=C) 2280; ν (CO) 2004 (vs), 1914 (vs). ¹H NMR (300 MHz, CDCl₃): δ 2.15 (s, 4 H), 5.47 (s, 5 H). ¹³C NMR (75 MHz, CDCl₃): δ -29.8 (W-CH₂), 89.1 (C=C), 92.6 (C₅H₅), 216.9, 229.3 (W-CO). Mass (FAB, ¹⁸⁴W): m/z 718 (M⁺). Anal. Calcd for C₂₀H₁₄W₂O₆: C, 33.42; H, 1.95%. Found: C, 33.54; H, 2.12%.

Synthesis of Cp*W(CO)₃CH₂C=CCH₂Cp*W(CO)₃ (6). This complex was prepared similarly by the reaction between Cp*W(CO)₃Na (4.68 g, 11.40 mmol) and 1.4-ditosylate-2-butyne (2.20 g, 5.58 mmol) in THF at 0 °C; the yield of 6 (3.52 g, 4.10 mmol) was 73%. IR (Nujol, cm⁻¹): ν (C=C) 2280; ν (CO) 1998 (vs), 1907 (vs). ¹H NMR (300 MHz, CDCl₃): δ 1.69 (s, 4 H, W-CH₂), 2.01 (s, 3 H, C₅Me₅). ¹³C NMR (75 MHz, CDCl₃): δ -22.9 (W-CH₂), 10.1 (s, Me₅), 86.0 (s, C=C), 103.7 (C₅Me₅), 216.9, 229.3 (W-CO). Mass (FAB, ¹⁸⁴W): m/z 858 (M⁺). Anal. Calcd for C₃₀H₃₄W₂O₆: C, 41.96; H, 3.96%. Found: C, 42.02; H, 4.04%.

Synthesis of CpW(CO)₃**CH**₂**C**[**CO-Fe(CO)**₄**-CO**]**CCH**₂-**CpW(CO)**₃ (7). To a THF solution (50 mL) of 5 (0.53 g, 0.74 mmol) was added Fe₂(CO)₉ (0.55 g, 1.50 mmol), and CO was bubbled through the solution for 12 h. The resulting dark orange solution was evaporated to dryness and the residues were chromatographed through a Florisil column with diethyl ether/ hexane (1:9) as the eluant. After an unwanted brown band was eluted off, a diethyl ether/hexane mixed solvent (1:1) was used as eluant. An orange band was developed, collected and brought to dryness to give 7 as an orange solid (0.60 g, 0.64 mmol); the yield was 88%. IR (Nujol, cm⁻¹): ν (CO), 2104 (s), 2015 (s), 1955 (s), 1913 (m), 1685 (w); ν (C=C) 1605 (w). ¹H NMR (400 MHz, CDCl₃): δ 2.14 (s, 4 H, W-CH₂), 5.53 (s, 10 H, Cp). ¹³C NMR (100 MHz, CDCl₃): δ -18.8 (W-CH₂), 91.9 (Cp), 168.2 (s, C=C), 178.2 (CO-C=), 201.1, 203.8 (Fe-CO), 218.5, 228.8 (W-2CO). Mass (FAB, ¹⁸⁴W): m/z 942 (M⁺). Anal. Calcd for C₂₆H₁₄-W₂FeO₁₂: C, 33.12; H, 1.48%. Found: C, 33.29; H, 1.56%.

Synthesis of $Cp^*W(CO)_3CH_2C[CO-Fe(CO)_4-CO]C-CH_2WCp(CO)_3$ (8). This compound was prepared similarly by the reaction between 6 (0.25 g, 0.29 mmol) and Fe₂(CO)₉ (0.21 g, 0.60 mmol) in THF under flowing CO; the yield of 8 (0.29 g, 0.26 mmol) was 90%. IR (Nujol, cm⁻¹): ν (CO) 2100 (s), 2022 (vs), 1905 (vs), 1644 (w) cm⁻¹. ¹H NMR (300, CDCl₃): δ 1.94 (s, 4 H, W-CH₂), 2.02 (s, 30 H, C₅Me₅). ¹³C NMR (75 MHz, CDCl₃): δ -6.9 (W-CH₂), 10.5 (C₅Me₅), 104.2 (C₅Me₅), 160.1 (C=C), 179.3 (CO-C=C), 201.7, 203.9 (Fe-CO), 224.8, 234.4 (W-CO). Mass (FAB, ¹⁸⁴W): m/z 1083 (M⁺ + 1). Anal. Calcd for C₃₆H₃₄-W₂FeO₁₂: C, 39.92; H, 3.14%. Found: C, 40.04; H, 3.30%.

Synthesis of $Cp_2W_2Fe(CO)_8(\mu_3-\eta^1:\eta^2:\eta^3-CH_2CCCH_2)$ (9) and $CpWFe_2(CO)_8(\mu_3-\eta^1:\eta^2:\eta^2-CH_2CCMe)$ (10). To a THF solution (50 mL) of 5 (0.53 g, 0.74 mmol) was added Fe₂(CO)₉ (0.55 g, 1.50 mmol); and the mixture was stirred for 10 h at 23 °C under nitrogen atmosphere. The resulting brown solution was brought to dryness and stripped onto a Florisil column and eluted with diethyl ether/hexane (1:9) eluant to remove an unwanted brown red band. Further elution with diethyl ether/hexane (1:1) produced an orange band which gave 7 as an orange solid (0.39 g, 0.41 mmol). The top immobile part on the column was eluted with diethyl ether/hexane, and a brown band containing a mixture of 9 and 10 was developed, collected, and evaporated to dryness. Further elution of the residues on a preparative SiO_2 plate (20 $cm \times 20 cm \times 1 mm$) with diethyl ether/hexane (1:1) eluant allowed separation of the two compounds: 9 (a brown band, 91 mg, 0.10 mmol) and 10 (a red band, 42 mg 0.060 mmol). The mass (FAB), IR (Nujol), and NMR data of 10 were identical to those of the authentic sample.^{4a} Complex 9, IR (Nujol, cm⁻¹): ν (CO) 2082 (w), 2035 (s), 2013 (s), 1961 (vs), 1936 (s), 1907 (vs), 1847 (m). ¹H NMR (300 MHz, CDCl₃): δ 1.56 (s, 1 H, H¹), 2.54 (d, 1 H, H³), 2.75 (s, 1 H, H²), 282 (d, 1 H, H⁴), 5.12 (s, 5 H, C₅H₅), $J_{34} = 6.0$ Hz. ¹³C NMR (75 MHz, CDCl₃); δ 12.1 (CH³H⁴), 54.0 (CH¹H²), 90.4, 94.1 (2Cp), 185.5, 199.0 (CH¹H²CC), 210.1, 211.0, 214.8, 218.1, 219.4, 223.5, 226.0, 226.5 (W-CO + Fe-CO). Mass (FAB, ¹⁸⁴W): m/z 830 (M⁺). Anal. Calcd for C₂₂H₁₄W₂FeO₈: C, 31.80; H, 1.69%. Found C, 31.92; H, 1.82%.

Synthesis of (CO)₃Co[µ₂-CpW(CO)₃CH₂C=CCH₂-

CpW(CO)₃]Co(CO)₃(11). To a THF solution (20 mL) of 5 (0.34 g, 0.47 mmol) was added $Co_2(CO)_8 (0.16 g, 0.47 \text{ mmol})$, the mixture was evaporated to dryness, and the residues were stripped onto a short silica column with diethyl ether/hexane as extract. The column was first eluted with diethyl ether/hexane (1:19) to remove unwanted compounds. Further elution with ether/hexane (1:8) produced a brown band, which gave 11 as brown solid in 48%yield (0.23 g, 0.23 mmol). IR (Nujol, cm⁻¹). v(CO) 2072 (s), 2034 (vs), 2001 (vs), 1963 (s), 1917 (m), 1892 (s); ν (C=C) 1650 (w). ¹H NMR (300 MHz, C₆D₆): δ 3.55 (br s, 4 H, W-CH₂), 4.47 (br s, 5 H, Cp). A ¹³C NMR spectrum was not obtained because of its broad signal. Mass (FAB, 184W), m/z 1004 (M⁺). Anal. Calcd for $C_{26}H_{14}W_2Co_2O_{12}$: C, 31.08; H, 1.39. Found: C, 30.94; H, 1.43. Attempts to recrystallize this complex in diethyl ether/hexane at -10 °C for 4 days gave dark block crystals of unknown structure. Its spectral data are as follows: IR (Nujol): ν (CO) 2047 (s), 2013 (s), 1995 (s), 1975 (s), 1899 (vs), 1866 (vs), 1821 (vs). ¹H NMR

⁽²¹⁾ Burkhardt, E. R.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 2022.

⁽²²⁾ Foulds, G. A.; Johnson, B. F. G.; Lewis J. J. Organomet. Chem. 1985, 296, 147.

Table IX. Crystal Data for X-ray Structural Studies of 4, 8, 9, and 1	Table IX.	Crystal Data	for X-ray	Structural Studies	of 4,	8, 9, and 12
---	-----------	--------------	-----------	--------------------	-------	--------------

compd	4	8	8	12
empirical formula	$MnCo_2C_{15}H_6O_{10}$	W ₂ FeC ₃₆ H ₃₄ O ₁₂	$W_2FeC_{22}H_{14}O_8$	W ₂ Co ₂ C ₃₆ H ₃₄ O ₁₂
formula mass	518.90	1082.33	830.03	1144.23
cell dimens				
a, Å	8.427 (3)	47.984 (7)	7.810 (2)	20.267 (3)
b, Å	9.326 (2)	8.478 (2)	10.889 (4)	24.628 (3)
c, Å	12.534 (4)	19.883 (6)	13.970 (5)	8.816 (4)
α , deg	97.31 (2)		110.96 (3)	
β , deg	87.76 (3)	107.60 (2)	95.20 (2)	99.68 (2)
γ , deg	110.80 (2)		93.72 (2)	
vol, Å ³	913.3 (4)	7710 (3)	1098.9 (6)	4338 (2)
cryst syst	triclinic	monoclinic	triclinic	monoclinic
space group	P 1	C2/c	PĪ	C2/c
Z	2	8	2	4
$D(\text{calcd}), \text{mg/m}^3$	1.888	1.866	2.509	1.753
μ, cm^{-1}	25.0	65.1	113.7	62.0
cryst dimens, mm	$0.30 \times 0.40 \times 0.50$	$0.15 \times 0.50 \times 0.50$	$0.15 \times 0.30 \times 0.50$	$0.20 \times 0.20 \times 0.20$
collection range	$2\theta_{\max} = 50^\circ, \pm hk \pm l$	$2\theta_{\max} = 50^{\circ}, hk \pm l$	$2\theta_{\max} = 50^\circ, \pm hk \pm l$	$2\theta_{\max} = 50^\circ hk \pm l$
scan mode; scan speed, deg min ⁻¹	$\omega/2\theta$; 1.83–8.24	$\omega/2\theta$; 1.65–8.24	$\omega/2\theta$; 1.65–8.24	$\omega/2\theta$; 1.50–8.24
scan width, deg	$0.60 = 0.35 \tan \theta$	$0.65 = 0.35 \tan \theta$	$0.70 = 0.35 \tan \theta$	$0.65 = 0.35 \tan \theta$
collection T, K	298	298	298	298
decay correction	no (<3%)	yes (7%)	no (<2%)	no (<4%)
absorption	yes (0.90–1.00)	yes (0.30–1.00)	yes (0.41–1.00)	yes (0.83–1.00)
correction (min-max transmission)				
indep refins	3189	6748	3860	3818
obsd refins, m	2721 ($I > 2\sigma(I)$)	$5004 (I > 2\sigma(I))$	$3327 (I > 2\sigma(I))$	2807 ($I > 2\sigma(I)$)
no. of params, p	254	461	315	236
$R_{\rm F}^{a}$ (all refins)	0.030 (0.039)	0.053 (0.075)	0.032 (0.039)	0.031 (0.055)
R_{wF}^{a} (all refins)	0.045 (0.061)	0.042 (0.043)	0.031 (0.031)	0.069 (0.069)
weighting scheme	unit weights	$w^{-1} = \sigma^2(F)$	$w^{-1} = \sigma^2(F)$	$w^{-1} = \sigma^2(F)$
Sa	1.41	3.21	3.35	4.27
residual extremes in final difference map, e/Å ³	-0.720, +0.380	-2.270, +2.250	-1.680, +1.500	-0.500, +1.010

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; R_{w} = [w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}. S = [\sum w(|F_{o}| - |F_{c}|)^{2} / (m-p)]^{1/2}.$

(300 MHz, CDCl₃): δ 0.25 (s, 1 H), 2.01 (s, 1 H), 3.14 (s, 1 H), 4.92 (s, 1 H), 5.14 (s, 5 H, Cp), 5.22 (s, 5 H, Cp). Mass (FAB, ¹⁸⁴W): m/z 976 (M⁺). Anal. Calcd for C₂₅H₁₄W₂Co₂O₁₁: C, 30.73; H, 1.43%. Found: C, 30.82; H, 1.56%.

Synthesis of (CO)₃Co[µ₂-Cp*W(CO)₃CH₂C=CCH₂-

Cp+W(CO)₃**J**Čo(CO)₃ (12). This compound was prepared similarly from the reaction of 6 (0.40 g, 0.47 mmol) and Co₂(CO)₈ (0.16 g, 0.47 mmol) in THF at 0 °C for 2 h. The yield of 12 was 75%. IR (Nujol): ν (CO) 2072 (s), 2069 (vs), 1963 (s), 1917 (m) and 1892 (s) cm⁻¹; ν (C—C) 1652 (w) cm⁻¹. ¹H NMR (300 MHz, C₆D₆): δ 1.95 (s, 3 H, C₅Me₅), 2.84 (s, 4 H, W–CH₂), 113.8 (CC), 202.1, 203.0 (Co–CO), 227.2, 234.6 (W–CO). Mass (FAB, ¹⁸⁴W): *m/z* 116 (M⁺ – CO). Anal. Calcd for C₃₈H₃₄W₂Co₂O₁₂: C, 37.76; H, 2.90%. Found: C, 37.84; H, 3.10%.

X-ray Diffraction Measurement. A single crystal of each of 4, 8, 9, and 12 was sealed in a glass capillary under an inert atmosphere. Data were collected on a Enraf-Nonius CAD-4 diffractometer, using graphite-monochromated Mo K α radiation, and the structures were solved by the heavy-atom methods; all

data reduction and structural refinement were performed with the NRCCSDP package. Crystal data and details of the data collection and structural analysis are summarized in Table IX. For all structures, all non-hydrogen atoms were refined with anisotropic parameters. All hydrogen atoms included in the structure factor calculations were placed in idealized positions except for H(9A) H(9B), H(12A), H(12B) of compound 9 and H(11A), H(11B), H(15A), H(15B) of compound 4 which were located on the difference Fourier map.

Acknowledgment. We wish to thank National Science Council, Republic of China, for financial support of this work.

Supplementary Material Available: Listings of calculated atomic coordinates, anisotropic thermal parameters, and bond distances and angles of compounds 4, 8, 9, and 12 (16 pages). Ordering information is given on any current masthead page.

OM920335U