The Reaction of $[(\eta^5$ -cyclohexadienyl)Fe(CO)₃]BF₄ with **Fluoride Revisited. Formation of** (**q4-5-fluorocyclohexa- 1,3-diene) Fe(C0)3 and the Mechanism of the Decomposition Pathway To Give the Carbon-Carbon Linked Dimer** $(\eta^4$ **-C₆H₇)₂Fe₂(CO)₆**

John **Powell' and** Michael J. Horvath

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S **1 A1**

Received May **19, 199P**

The complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ has been prepared *in situ* in CD₂Cl₂ from the reaction of $[(\eta^5-C_6H_7)\bar{Fe}(CO)_3]BF_4$ with either KF/18-crown-6 or $[(Me_2N)_3S][Me_3SiF_2]$. On standing, $(\eta^4 C_6H_7F_0Fe(CO)_3$ decomposes to give the C-C linked dimer $(\eta^4-C_6H_7)_2Fe_2(CO)_6$ as the major product together with significant amounts of benzene and Fe(II1) species. **A** mechanism is proposed to account for the formation of $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ from $(\eta^4$ -C₆H₇F)Fe(CO)₃ and the mechanism extended to the reaction of $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ with hydroxide. Exposure of $(\eta^4-C_6H_7F)$ -Fe(CO)₃ to H₂O rapidly gives the diiron ether complex $\{(\eta^4 - C_6H_7)_2O\}Fe_2(CO)_6.$

Introduction

While selective fluorination reactions are of considerable interest, very few carbon-fluorine bond forming reactions occurring via the addition of the fluoride ion to cationic organometallic complexes are known. Because of their rather limited number and potential importance, a more in depth study was clearly required into delineating the pathways accessible to the fluoride ion in ita reactions with organometallic substrates. In this regard, we are currently investigating the reactions of the fluoride ion with a range of cationic organometallic complexes, primarily with a view to identifying C-F bond forming reactions.' Known examples are the addition of fluoride to cationic carbyne complexes leading to fluorocarbene complexes (eq **1)2** and the formation of fluoroalkanes from

$$
[(OC)_5Cr = C - NEt_2]^+ + F^- \rightarrow (OC)_5Cr = CF(NEt_2)_{(1)}
$$

$$
[CpRu(CO)(PPh3)(RI)]+ + F- \rightarrow
$$

CpRuI(CO)(PPh₃) + RF (2)

the reaction of fluoride with the cationic iodoalkane complexes $[ChRu(CO)(PPh₃)(RI)]PF₆ (eq 2).^{1,3}$ An early report⁴ that $[(\eta^5$ -cyclohexadienyl)Fe(CO)₃]BF₄(1) reacts with KF/18-crown-6 to give $(\eta^4$ -5-exo-fluorocyclohexa-1,3diene) $Fe(CO)_3$ has since been shown to be incorrect.⁵ Under the reaction conditions of the earlier report the *isolated* product was in fact the diiron ether complex $\{(\eta^4 - \eta^4)\}$ C_6H_7 ₂O}F $e_2(CO)_6$ (2). Under rigorously anhydrous conditions the isolated products from the reaction of **1** with KF/ 18-crown-6 in acetonitrile solution were the starting material **1** (65%) and the carbon-carbon linked dimer $(\eta^4$ -C₆H₇)₂Fe₂(CO₎₆(3)(5%). The second study concluded with the statement that the "...cation $[(\eta^5$ -C₆H₇)Fe(CO)₃]⁺ does not capture fluoride ion".⁵ We here present evidence to show that the cation $[(\eta^5-C_6H_7)Fe(CO)_3]^+$ does capture fluoride to give $(\eta^4$ -5-fluorocyclohexa-1,3-diene)Fe(CO)₃ **(4)** but that this complex readily loses fluoride to give the carbon-carbon linked dimer $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ (3). The formation of the dimer **3** in varying amounts has also been observed previously in the reaction of $[(\eta^5-C_6H_7)Fe-$ (CO)slBF4 **(1)** with alkoxides or hydroxide in aprotic solvent. $6,7$ A mechanism is proposed to account for the formation of **3** when **1** is reacted with strong nucleophiles.

Results and Discussion

The fluoro complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ (4) is readily obtained *in situ* in CD_2Cl_2 when $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ is reacted with either $KF/18$ -crown-6 or $[(Me₂N)₃S]$ - $[Me_3SiF_2]$ under anhydrous conditions (eq 3). The ¹H,

¹³C $\{$ ¹¹H_i, and ¹⁹F NMR data for $(\eta^4$ -C₆H₇F)Fe(CO)₃ are given in Table I. The observed values of $^1J_{19}r_{-18}$ (177 Hz) and $^{2}J_{^{19}F^{-1}H}$ (57 Hz) are typical for fluorocarbon compounds.* It is assumed that the stereochemistry of **4** involves exo F- addition, though an endo configuration

~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~~

^{*} **Abstract published in Advance ACS Abstracts, September 15,1993.**

⁽¹⁾ Powell, J.; Horvath, M. J. Preceding paper in this issue.

(2) (a) Fischer, E. O.; Kleine, W.; Kreiss, F. R. Angew. Chem., Int. Ed.

Engl. 1976, 15, 616. (b) Fischer, E. O.; Kleine, W.; Schambeck, W.; Schubert, U. Z. N

J.; Scherzer, K. *J. Organomet. Chem.* 1983, 253, 231 (3) Kulawiec, R. J.; Faller, J. W.; Crabtree, R. H. Organometallics **1990,9,745.**

⁽⁴⁾ Johnson, B. F. G.; Karlin, K. D.; Lewis, J.; Parker, D. G. *J. Organomet. Chem.* **1978,** *157,* **C67.**

⁽⁵⁾ Miller, P. M.; Widdowson, D. A. *J. Organomet.* **Chem. 1986,303, 411.**

⁽⁶⁾ Reddy,B.R.;McKennis, J. *S.J.* **Organomet.** *Chem.* **l979,182,C61. (7) Reddy, B. R.; Vaughan, V.; McKennis, J. S. Tetrahedron** *Lett.* **1980,21, 3639.**

^a Solution also contains $[(Me₂N)₃S][BF₄]$ and Me₃SiF or 18-crown-**6.** For atom labeling scheme use the following structure

cannot be excluded. The complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ is hydrolytically unstable, rapidly reacting to give the diiron ether complex $\{(\eta^4 - C_6H_7)_2O\}Fe_2(CO)_6$ (2) on exposure to water. The fluoro complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ is also not very stable even under anhydrous conditions and, on standing in CD2C12 **(20** "C) for **22** h, decomposes to give the carbon-carbon linked dimer $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ (3) as the major product *(ca.* 53% based on the amount of $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ consumed) together with a small amount of the starting cation $[(n^5-C_6H_7)Fe(CO)_3]BF_4 (5\%)$ which crystallizes from solution (essentially insoluble in CD_2Cl_2 . ¹³C{¹H} NMR monitoring of the reaction indicates that the formation of the C-C dimer 3 is accompanied by the formation of significant amounts of free benzene and carbon monoxide. The ¹³C{¹H} NMR spectrum becomes broader as the reaction proceeds, suggesting the formation of paramagnetic Fe(I1) or Fe(1II) species. After all the $(\eta^4$ -C₆H₇F)Fe(CO)₃ had been consumed, an aqueous extraction and spectroscopic analysis confirmed the formation of Fe(II1) and Fe(I1) species in **27%** yield (ratio $Fe(III):Fe(II) = 9:1$. The ¹H, ¹⁹F, and ¹³C{¹H} NMR spectral analyses indicate the presence of the C-C dimer benzene $(ca. 15\%)$, and two other products which are thought to be $(\eta^4$ -C₆H₇-C₆H₇)Fe(CO)₃ *(ca.* 17%, complex 5-the product from the partial oxidative loss of an $Fe(CO)_3$ unit from the C-C dimer $3)^9$ and 5-fluorocyclohexa-1,3-diene $(ca. 6\%)$.¹⁰ Yields are based on the amount of $[(\eta^5$ -C₆H₇)Fe(CO)₃]BF₄ that is consumed in the reaction. $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ *(ca.* 53%), $(\eta^4$ -C₆H₈)Fe(CO)₃ *(ca.* 9%),

The above observations can be reasonably rationalized by the mechanistic pathways outlined in Scheme I. The

Powell and Horvath

Scheme I. Reaction Pathways for the Decomposition of $(\eta^4$ -C₆H₇F)Fe(CO)_{3^ª}

 $Fe(O) + 3[(\eta^5 - C_6 H_7) Fe(CO)_3]^+ \rightarrow Fe(H) + 3[(\eta^5 - C_6 H_7) Fe(CO)_3]^+$ $[(\eta^2 C_6 H_7)Fe(CO)_3]^{\cdot \frac{H^2}{1}} \rightarrow (\eta^4 C_6 H_8)Fe(CO)_3$ final product (minor)

^a While the formation of a minor amount of a noncomplexed fluorocarbon is confirmed, its formulation as 5 -fluoro-1,3- cyclohexadiene is tentative (see text).¹⁰

initial product is $(\eta^4$ -C₆H₇F)Fe(CO)₃ which very probably has the exo structure. This reaction is reversible. **A** slower but irreversible process involves elimination of HF which presumably leads to the formation of the kinetically unstable species $(\eta^4$ -C₆H₆)Fe(CO)₃. This can be viewed as functioning as a reducing agent either via direct electron transfer or via decomposition to liberate benzene, carbon monoxide, and Fe(O). Electron transfer from either $(\eta^4$ - C_6H_6)Fe(CO)₃ or Fe(O) to the cation $[(\eta^5-C_6H_7)Fe(CO)_3]^+$ produces the 19 electron organometallic radicals (n^5-) C_6H_7)Fe(CO)₃ which can rapidly dimerize to the C-C dimer $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ or scavange H[•] to give $(\eta^4$ -C₆H₈)- $Fe(CO)₃$. {It is also conceivable that electron transfer occurs from $Fe(O)$ to $(\eta^4$ -C₆H₇F)Fe(CO)₃ followed by loss of fluoride to give the 19 electron radical species $(\eta^5 C_6H_7$)Fe(CO)₃.) The iron(III) is expected to strongly complex fluoride and thereby facilitates the re-formation of $[(\eta^5-C_6H_7)Fe(CO)_3]^+$ from the initially formed product $(\eta^4$ -C₆H₇F)Fe(CO)₃. This increases the concentration of the cation above its solubility limit, and consequently, $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ recrystallizes from solution. The products tentatively identified as $(\eta^4$ -C₆H₇-C₆H₇)Fe(CO)₃

⁽⁸⁾ Pretach, E.; Seibl, J.; Clerc, T.; Simon, W. *Tubles of Spectrul Data for Structure Determination of Organic Compounds;* Springer-Verlag: New York, 1983, pp C240, H355.

^{(9) (}a) The complex $(\eta^4$ -C₆H₇-C₆H₇)Fe(CO)₃ (5) is also observed as an intermediate in the oxidation of $(\eta^4$ -C₆H₇)₂Fe₂(CO)₆ to a meso and racemic mixture of 5,5'-di-1,3-cyclohexadiene using excess M (noncoordinated olefin carbons); 85.6-85.4, 64.6, 64.1, 60.2, 60.1 (coordinated olefin carbons); 42.3, 42.1, 39.9, 39.7 (methine ring junction carbons); 28.6, 28.2, 27.0 (-CH₂ carbons).

⁽¹⁰⁾ The formation of a fluorocarbon compound tentatively identified as 5-fluorocyclohexa-1,3-diene is based on the following observations. (i) The ¹H NMR spectrum of the mixture of reaction products from the decomposition of $(\eta^4$ -C_cH₇F)Fe(CO)₃ contains a weak doublet resonance at δ 4.55 ppm with a separation of 56 Hz, a typical value for α_{Jipp_1H} ,⁸ and (ii) the ¹⁹F NMR contains a multiplet resonance at δ -146.7 ppm which exhibits a $^{2}J_{^{19}\text{F-}^{1}\text{H}}$ of \sim 59 Hz.

Reaction of $[(\eta^5$ -cyclohexadienyl) $Fe(CO)_3$ *JBF₄* with *F*

(5) and **5-fluorocyclohexa-l,3-diene** can be envisioned **as** being the products of Fe(III) oxidation of $(n^4$ -C₆H₇)₂- $Fe₂(CO)₆$ and $(\eta^4$ -C₆H₇F)Fe(CO)₃, respectively (see Scheme I). The combined yields of benzene, C_6H_7F , and half the quoted yield of **(5)** (ca. 30 %-products from the oxidative release of $Fe(CO)$ ₃ units) correlate reasonably well with the amount of Fe(II)/Fe(III) species formed (27%). **An** assumption that all the electrons released on oxidizing Fe(0) to Fe(I1) and Fe(II1) (1:9 ratio) are used in the production of the 19 electron radical species $(\eta^5$ -C₆H₇)- $Fe(CO)₃$ gives a predicted maximum theoretical yield for C-C coupled products $(3) + (5)$ and $(\eta^4$ -C₆H₈)Fe(CO)₃ **(6)** of ca. 75% *(ca.* 79% observed in situ yield). Synthetically, we have obtained isolated yields of the C-C dimer **3** as high as 68 % based on the starting cation from the reaction of $[(n^5-C_6H_7)Fe(CO)_3]BF_4$ with hydroxide (see below). Previously reported observations provide support for the proposed mechanism: (i) Wrighton et $al.^{11}$ have obtained quantitative yields of the $C-C$ linked dimers $(n^4 C_6H_7$)₂Fe₂(CO)₄L₂ (L = CO, PPh₃) by either thermal or photochemical homolysis of the Fe-Fe dimer $(\eta^5$ -C₆H₇)₂- $Fe₂(CO)₄$ (7) in the presence of the ligand L. Initial homolytic cleavage of 7 gives the 17 electron species $(\eta^5 C_6H_7$) $Fe(CO)_2$ which, in the presence of CO, reacts to give the 19 electron species $(\eta^5$ -C₆H₇)Fe(CO)₃, the precursor to the C-C linked dimer. (ii) Davis *et* a1.12 have shown that the reducing agent Cr²⁺(aq) reacts with $[(\eta^5-C_6H_7)Fe$ - $(CO)₃$]BF₄ in aqueous solution to give the C-C dimer, although isolated yields were low. It should be noted that the cycloheptadienyl C-C dimer $(\eta^4$ -C₇H₉)₂Fe₂(CO)₆ (the analogue of **3)** is obtained in reasonable yield from the reduction of $[(\eta^5-C_7H_9)Fe(CO)_3]BF_4$ with zinc dust.¹⁴ (iii) McKennis et al.^{6,7} found that the C-C dimer 3 (12% yield) together with $(\eta^4$ -C₆H₈)Fe(CO)₃ (33% yield) could be produced simply by heating CH₃CN solutions of $[(n^5 C_6H_7$)Fe(CO)₃]BF₄ in the absence of oxygen. If however oxygen was bubbled through the solution, no C-C dimer was observed. Based on our mechanistic proposals (Scheme I) any decomposition process that produces Fe(0) will result in formation of the C-C dimer. However in the presence of oxygen it is probable that reduction of *02* is kinetically competitive with electron transfer to the cation $[(\eta^5-C_6H_7)Fe(CO)_3]^+$, thereby suppressing C-C dimer formation.

Besides the high yield of **3** obtained from the decomposition of the fluoro complex **4** in CDzClz (Scheme I) we have also found that significant amounts of **3** can be obtained from the reaction of **1** with excess hydroxide. Addition of a CH₃CN solution containing $[(\eta^5$ -C₆H₇)Fe- $(CO)₃1BF₄$ to a heterogeneous mixture consisting of a 7-fold excess of $[Me_4N]OH·5H_2O$ in CH_3CN gave the C-C linked dimer **(3)** and the Fe-Fe dimer $(\eta^5$ -C₆H₇)₂Fe₂(CO)₄ **(7)** in yields of 34 and 26%, respectively, as determined by IR spectroscopy. The remaining 40% of the Fe was unaccounted for. Under similar conditions, accompanied by the addition of carbon monoxide to the reaction mixture,

Scheme I1

C-C linked dimer 3 (95%) and $(\eta^4$ -C₆H₈)Fe(CO₎₃ (5%) were obtained in a combined 68% overall yield. Significantly, with the addition of CO, no Fe-Fe dimer was observed, consistent with the photochemical studies of Wrighton et al.¹¹ Furthermore the formation of the C-C dimer occurs more rapidly with hydroxide than with fluoride. In contrast, using only a 30% excess of $[M_{4}N]OH-5H_{2}O$ together with CO resulted in the formation of both the C-C linked dimer **3** and the diiron ether complex 2 (70:30 ratio based on the ¹³C $\{^1H\}$ NMR spectrum) in an isolated combined yield of 70%. Formation of C-C dimer when **1** is reacted with hydroxide can be rationalized along similar lines to Scheme I but with fluoride replaced by hydroxide (see Scheme 11). Deprotonation of the initially formed 5-hydroxycyclohexa-1,3-diene complex facilitates H+ abstraction from carbon no. 6 to give the intermediate species $(\eta^4$ -C₆H₆)Fe(CO)₃ which can then react further as outlined in Scheme I to give the C-C dimer. An alternative route that probably leads to both C-C and Fe-Fe dimers involves addition of hydroxide to a carbonyl ligand of $[(\eta^5-C_6H_7)Fe(CO)_3]^+$ with subsequent loss of $CO₂$ to give the anionic species $[(\eta^5-C_6H_7)Fe({\rm CO})_2]^{-13}$ Electron transfer from this anion to the cation $[(\eta^5-C_6H_7)Fe(CO)_3]^+$ would give the 17 electron species $(\eta^5$ -C₆H₇)Fe(CO)₂ (precursor to the Fe-Fe dimer) and the 19 electron species $(\eta^5$ -C₆H₇)Fe(CO)₃ (precursor to the C-C dimer). The probability of the intially formed 5-hydroxycyclohexadiene complex reacting with the starting cation to give the diiron ether complex $\{(\eta^4 - C_6H_7)_2O\}Fe_2(CO)_6$ (2) will be most favored by low hydroxide concentrations.

Experimental Section

General Data. All **operations unless otherwise specified were** carried out under an atmosphere of dry N_2 or argon, using dry

⁽¹¹⁾ Chaofeng, 2.; Ahmed, K. J.; Wrighton, M. S. *J. Am. Chem.* **SOC. 1989,111, 1133.**

⁽¹²⁾ Armstead, J. A.; Cox, D. J.; Davis, R. *J. Organomet. Chem.* **1982,** *236,* **213.**

⁽¹³⁾ (a)TheproposedmechanismfortheformationoftheFeFebonded dimer $(\eta^5$ -C₆H₇)₂Fe₂(CO)₄ via hydroxide attack on a coordinated CO is similar to the mechanism recently proposed to account for the formation
of the Mn–Mn bonded dimer (7⁶-C₈Me₆)₂Mn₂(CO)₄ from the reaction of
[(7⁶-C₆Me₆)Mn(CO)₃]+ with hydroxide.^{13b} (b) Morken, A. M.; Ey

P.; Wolff, M. A.; Schauer, S. J. *Organometallics* **1993,12, 726. (14) Hashmi, M. A.; Munro, J. D.; Pauson, P. L.; Williamson, J. M.** *J. Chem.* **SOC.** *A* **1967,240.**

solvents that were degassed with N_2 or argon prior to use. Deuterated solvents were dried over 4-A molecular sieves and freeze-thaw degassed. ¹H and ¹³C $\{$ ¹H} NMR spectra were referenced to tetramethylsilane and recorded at either 200 or 400 MHz. ¹⁹F NMR spectra were referenced to CFCl₃ and recorded at 300 MHz. **UV/vis** spectra were recorded on a Hewlett Packard 8451A diode array spectrophotometer.

Starting Materials. "Spray dried" KF, $[(Me_2N)_3S][Me_3SiF_2]$, 18-crown-6, and [Ph₃C]BF₄ were purchased from Aldrich Chemical Co. The complex $(\eta^4$ -cyclohexa-1,3-diene)Fe(CO)₃ was purchased from Strem Chemical Inc. The complex $[(\eta^5$ cyclohexadienyl)Fe(CO)₃]BF₄ was prepared according to the literature method.¹⁴

In Situ Preparation of $(\eta^4$ -C₆H₇F)Fe(CO)₃ (4) and Its **Subsequent Decomposition.** In an argon drybox a dry CD₂Cl₂ **solutioncontaining0.185g** (0.671 mmol) of [(MezN)sS] [MesSiFzl was added to 0.181 g (0.592 mmol) of $[(\eta^5\text{-}C_6H_7)Fe(\text{CO})_3]BF_4$. The resultant pale yellow solution was filtered into an NMR tube which was then sealed and the ^{19}F , ^{13}C ^{[1}H], and ¹H NMR spectra were recorded (Table I). The instability of the fluoro complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ has precluded further characterization by microanalyses or mass spectroscopy.

In a separate experiment, 4 mL of dry CD₂Cl₂ was added to a solid mixture consisting of 1.281 g (4.19 mmol) of $[(\eta^5 - C_6H_7)Fe$ $(CO)_3$]BF₄ and 1.25 g (4.54 mmol) of $[(Me_2N)_3S][Me_3SiF_2]$, and the resultant mixture was stirred rapidly for *5* min. The pale vellow solution was decanted away from unreacted, CD_2Cl_2 insoluble, $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ (0.171 g) and filtered into a tared volumetric flask. The original reaction vessel was washed with fresh CD_2Cl_2 (1 mL), and the filtered washings were combined with the original filtrate to give 8.488 g of solution. An aliquot of reaction solution (3.212 g), the 'benzene analysis" portion, was transferred to **a** 10-mm NMR tube for the purpose of monitering by ¹³C{¹H} NMR spectroscopy the decomposition of the fluoro complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ and determining the yield of benzene produced using an internal standard of hexamethylbenzene (0.0936 9). The remainder of the reaction solution, the "Fe analysis" portion (5.113 g), was left to stand overnight in the sealed volumetric flask. After all the fluoro complex (η^4) $C_6H_7F)Fe(CO)_3$ had been consumed (22 h), the reaction solution in the volumetric flask was separated from a small amount (29.4 mg) of crystalline $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ and extracted with water (200 mL). The aqueous extracts were separated from the CH_2Cl_2 layer, combined, and made up to 1 L in a volumetric flask. The total amount of water soluble Fe (i.e. $Fe^{II} + Fe^{III}$) was determined spectrophotometrically as the complex $\mathrm{Fe}(\mathit{o}\textrm{-}\mathrm{phen})_{3}^{\mathrm{2+15}}$ and found to be 27 mg. Similarly, the ratio of $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$ was

found to be $9:1.^{15}$ The organic layer (diluted with fresh $CH₂Cl₂$) was dried over MgSO4, filtered, and concentrated to dryness to afford a golden yellow oil. The oil was taken up in pentane, and the resultant solution was filtered and concentrated to dryness to afford a yellow oily solid (0.283 g). H , ${}^{13}C{^1H}$, and ${}^{19}F$ NMR spectra recorded for this solid in CDCl₃ showed it to be comprised of C-C dimer 3 (0.16 g, 40%), $(\eta^4$ -C₆H₈)Fe(CO)₃(6) (0.01 g, 3%),¹⁶ diiron ether complex 2 (0.08 g),¹⁷ and the products tentatively identified as $(n^4$ -C₆H₇-C₆H₇)Fe(CO)₃ (5) (0.03 **g**, 13%)⁹ and 5-fluorocyclohexa-1,3-diene (3 mg, 2%).¹⁰ From the relative integration in the 13C('H} NMR of the reaction solution prior to workup the in *situ* product distribution was found to be C-C dimer 3 *(ca.* 53%), $(\eta^4$ -C₆H₇-C₆H₇)Fe(CO)₃ (5) *(ca.* 17%), $(\eta^4$ - C_6H_8)Fe(CO)₃ (6) *(ca.* 9%), benzene *(ca.* 15%), and 5-fluorocyclohexa-1,3-diene (ca 6%). Yields are based on the amount of $[(\eta^5-C_6H_7)Fe(CO)_3]BF_4$ consumed.

Preparation of $(\eta^4$ **-C₆H₇)₂Fe₂(CO)₆ (3). To a mixture** containing [Me₄N]OH-5H₂O (2.0 g, 11.04 mmol) in CH₃CN (15 mL) that had been purged with CO for *5* min was added over a period of 5 min a solution of $[(\eta^5$ -C₈H₇)Fe(CO)₃]BF₄ (0.449 g, 1.47 mmol) in $CH₃CN$ (10 mL) while purging vigorously with CO. After the resultant deep orange mixture was purged with CO for another 20 min, the solvent was removed in vacuo (no heat). Diethyl ether (75 mL) and water **(50** mL) were added to the residue, the two-phase system was transferred to a separating funnel, and the ether layer was separated. The aqueous solution was extracted with an additional 2 **X** 50 mL of diethyl ether. The combined ether layers were washed with 2 **X** 40 mL of aqueous NaCl solution, dried over MgSO₄, and concentrated to dryness to afford a pale yellow solid. The pale yellow solid was taken up in pentane, and the resultant solution was filtered and concentrated to dryness to afford a pale yellow solid (0.22 g, 68 % yield). The ¹H and ¹³C{¹H} NMR data showed this to be composed of the C-C dimer 3^{11} ($\sim 95\%$) and $(\eta^4$ -C₆H₈)Fe(CO)₃ ($\sim 5\%$).¹⁶

Acknowledgment. We thank the Natural Science and Engineering Research Council of Canada for financial support of this research.

OM9303358

(17) A small quantity of the diiron ether complex 2 is formed via trace H_2O hydrolysis of the fluoro complex $(\eta^4$ -C₆H₇F)Fe(CO)₃ **(4).** Yield **calculations for the decomposition of 4 to the C-C dimer 3 exclude the diiron ether complex.**

^{(15) (}a) Skoog, D. A,; West, D. M. Fundamentals *of* **Analytical Chemistry; Sanders College Publishing: New York, 1982; p 78. (b) Vogel, A.** I. **Vogel's Textbook** *of* **Quantitative Inorganic Anulysrs, 4th ed.; Longman: New York, 1978; p 742. (16) Pearson, A. J. Aut.** *J.* **Chem. 1976,29, 1679.**