

Subscriber access provided by American Chemical Society

Synthesis, characterization, and reactivity of a platinum(0) dimer: Pt2(.mu.-CO)(CO)2(.mu.-dppm)2

Serge Schreiner, and Thomas N. Gallaher

Organometallics, **1993**, 12 (10), 4201-4203• DOI: 10.1021/om00034a066 • Publication Date (Web): 01 May 2002

Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink<http://dx.doi.org/10.1021/om00034a066>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Synthesis, Characterization, and Reactivity of a Platinum(0) Dimer: $Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2$

Serge Schreiner^{*,1a} and Thomas N. Gallaher^{1b}

Departments of Chemistry, Randolph-Macon College, Ashland, Virginia 23005, and James Madison University, Harrisonburg, Virginia 22807

Received April 12, 1993

Summary: The zerovalent platinum dimer $\int P t_2(\mu - \mu) d\mu$ $CO(CO)_{2}(\mu$ -*dppm*)₂*]* (*1*) (*dppm* = $Ph_{2}PCH_{2}PPh_{2}$) has *been prepared from* $[Pt_2Cl_2(\mu-dppm)_2]$ *(2) via sodium borohydride reduction under carbon monoxide and from* $[Pt_2(\mu-dppm)_3]$ (3) by substitution of a dppm ligand with *CO. This latter reaction is readily reversible and can undergo several cycles of carbonylation-decarbonylation. Complex 1 undergoes typical oxidative addition reactions; it is readily protonated to yield* $[Pt_2(H)(CO)(\mu\n-dppm)_2]$ - $(p\text{-}CH_3C_6H_4SO_3)\text{-}C_6H_6$ (4). With I_2 , 1 reacts to yield $[Pt_2I_2(\mu\n-dppm)_2]$ (5), and reaction with CH₃I produces $[Pt_2(\mu\text{-}I)(CH_3)_2(\mu\text{-}dppm)_2]$ (6).

Platinum(0) phosphine complexes² and platinum dimers³ have recently received much attention because of their interesting reaction chemistry and their potential **as** homogeneous catalysts. $[Pt_2(\mu\text{-dppm})_3]$,⁴ for example, has been found to catalyze the reduction of nitric oxide and molecular oxygen by carbon monoxide under mild conditions.⁵ This compound has been used to catalyze the reduction of carbon dioxide in the presence of dimethylamine with molecular hydrogen to form N N -dimethylformamide? and it has also been employed for the production of hydrogen from water-DMF solutions.' Until now, only a few platinum(0) dimers have been isolated and characterized.8 In this note, we wish to report the synthesis and reactions of a new zerovalent platinum dimer, $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ **(1).**

Experimental Section

General Comments. The complexes $[Pt_2Cl_2(\mu\textrm{-dppm})_2]^9$ and $[Pt_2(\mu\text{-}dppm)_3]^4$ were prepared by standard procedures. The ligand, **1,2-bis(diphenylphosphino)methane,** was purchased from Strem Chemicals. All manipulations were performed under a N_2 atmosphere using Schlenk techniques. ¹H NMR, ¹³C{¹H} NMR, ³¹P^{{1}H}</sub> NMR, and ¹⁹⁵Pt^{{1}H} NMR were recorded on a Bruker AC/E-200 FT-NMR between 25 and -87 °C. ¹H NMR, 13C{¹H} NMR, 31P{¹H} NMR, and ¹⁹⁵Pt{¹H} NMR chemical shifts were referenced to TMS, 85% H₃PO₄, and H₂PtCl₆, respectively. When possible, coupling constants and chemical shifts are reported **as** measured directly from the experimental spectra. In all other cases, the values listed are those determined using spectral simulations. IR spectra were recorded on a Mattaon 4020 FT-IR spectrometer. Microanalyses were carried out by Atlantic Microlab, Inc., Norcross, GA.

1. Synthesis of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]^{10}$ (1) from $[Pt_2\text{-}CO](CO)_2$ $Cl_2(\mu\text{-dppm})_2$] (2). $[Pt_2Cl_2(\mu\text{-dppm})_2]$ (0.303 g, 0.247 mmol) was added to 30 mL of anhydrous methanol, yielding a yellow suspension. Carbon monoxide was then bubbled through the suspension. Within 5-10 min, the suspension became a transparent yellow solution. The solution was filtered to remove any undissolved material, and $NaBH₄ (0.133 g, 3.52 mmol)$, dissolved in 15 mL of absolute ethanol, was added to the filtrate over a period of 15 min withvigorous CO bubbling. A yellow suspension resulted. The yellow solid (1) was filtered under N₂, washed with 10 mL of CO purged methanol, and dried *in uacuo.* Yield 0.267 g (87%). Anal. Calc for C₅₃H₄₄O₃P₄Pt₂: C, 51.16; H, 3.54. Found: C, 50.99; H, 3.51. Mp: 123 °C dec. IR (KBr): 1969, 1954 $(v_{CO}$, terminal) and 1785 cm⁻¹ $(v_{CO}$, bridging). ¹H NMR (CD₂Cl₂, -43 °C): δ 2.08 (m, CH₂), ³J_{Pt-H} = 29.6 Hz, ²J_{P-H} = 6.1 Hz, δ 4.40 (m, CH₂), ³J_{Pt-H} = 62.8 Hz, ²J_{P-H} = 6.0 Hz, δ 6.71-7.61 (m, C₆H₅). ¹³C{¹H} NMR (CD₂Cl₂, ¹³CO enriched, -87 °C): δ 184.4 (q, terminal (q, bridging CO), ${}^{1}J_{\text{Pt-C}} = 939 \text{ Hz}, {}^{2}J_{\text{P-C}} = 17.8 \text{ Hz}.$ ${}^{31}P_{1}{}^{1}H_{1}^{1}NMR$ CO), $^{1}J_{\text{Pt-C}}$ = 2083 Hz, $^{2}J_{\text{Pt-C}}$ = 143 Hz, $^{2}J_{\text{P-C}}$ = 6.6 Hz, δ 204.3 $(CD_2Cl_2, -43 \text{ }^{\circ}\text{C})$: δ -0.15 (s), $^1J_{\text{Pt-P}} = 2957 \text{ Hz}, ^2J_{\text{Pt-P}} = -9.1 \text{ Hz},$ $^{2}J_{\rm P-P}=58.0~\rm{Hz},$ $^{3}J_{\rm P-P}=227.5~\rm{Hz},$ $^{3}J_{\rm P-P}=10.7~\rm{Hz},$ $^{1}J_{\rm Pt-Pt}=1545.7$ Hz. 1g6Pt{1H) NMR (CDzC12, -53 OC): **6** -4670.5 (t).

2. Synthesis of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ (1) from $[Pt_2\text{-}$ $(\mu$ -dppm $)_{3}$] (3). To 10 mL of degassed benzene was added 0.085 g (0.054 mmol) of 3. The solution was stirred, and a deep red solution resulted. CO was then bubbled through the solution. Over a period of 2 min, the solution color changed from red to yellow-orange. Slow addition of 50mL of nitrogen purged hexanes afforded a yellow-orange precipitate which **was** filtered under nitrogen. The solid was washed with methanol (10 mL) and diethyl ether (10 mL). Yield: 0.043 g (62%). The analytical data obtained for compound 1 by this procedure were identical to the one described above.

3. Reaction of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ (1) with dppm. To 10 mL of degassed benzene was added 0.150 g (0.121 mmol) of **1.** The resulting orange suspension was stirred, and 0.0464 g (0.121 mmol) of dppm was added. Over a period of 20 min, the orange suspension changed to a deep red solution. Degassed hexanes (35 mL) were added to this solution producing a red suspension. The red solid was filtered (0.110 g, 60%) under nitrogen and dried *in* vacuo. The product was found by lH and

(10) Wier, P. J. Senior Thesis, Clarkson College of Technology, **1980.**

⁽¹⁾ (a) Randolph-Macon College. (b) James Madison University. **(2)** (a) Bennett, M. A.; Yoshida, T. J. *Am. Chem. Soc.* **1978,100,1750.** (b) Cook, C. D.; Jauhal, G. S. J. *Am. Chem.* **SOC. 1968,** *90,* **1464.** (c) Davies, J. A.; Eagle, C. T.; Otis,D. E.; Venkatamaran, U. *Organometallics* 1986, 5, 1264. (d) Scott, J. D.; Puddephatt, R. J. Organometallics 1986, 5, 1253. (e) Caspar, J. V. J. Am. Chem. Soc. 1985, 107, 6718.

(3) (a) Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R.

J. Chem. **SOC.,** *Dalton Trans.* **1976,961. (b)** Minghetti, G.; Bandini, A. L.; Banditelli, G.; Bonati, F.; **Szostak,** R.; Strouee, C. E.; Knobler, C. B.; Kaesz,H. D.Znorg. *Chem.* **1983,22,2332.** (c) Muralidharan, **S.;** Espenson, J. H.; **Ross,** 5. A. Inorg. *Chem.* **1986,!?5,2557.** (d) Afzal, D.; Lukehart, C. M. *Organometallics* **1987,6, 546.**

^{(4) (}a) Grossel, M. C.; Brown, M. P.; Nelson, C. D.; Yavari, A.; Kallas, E.; Moulding, R. P.; Seddon, K. R. J. Organomet. Chem. 1982, 232, C13. (b) Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Chem. Commun.
1982, 1155.

⁽⁶⁾ Chin, C. S.; Sennett, M. S.; Wier, P. J.; Vaska, L.Znorg. *Chim. Acta* **1978, 31, 443.**

⁽⁶⁾ (a) Schreiner, S.; Yu, J. Y.; Vaska, L. Znorg. *Chim. Acta* **1988,147, 139.** (b) Schreiner, **S.;** Yu, J. Y.; Vaska, L. J. *Chem. Soc., Chem. Commun.* **1998,602.**

⁽⁷⁾ Yu, J. Y.; Schreiner, S.; Vaska, L. *Inorg. Chim. Acta* 1990, 170, 145.

(8) (a) Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J. A.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 2063. (b) Ling, S. S. M.; Jobe, I. R.; Mc

^{29, 880.}

⁽⁹⁾ (a) Grossel, M. C.; Batson, J. R.; Moulding, R. P.; Seddon, **K.** R. J. Organomet. *Chem.* **1986,304,391.** (b) Brown, M. P.; Puddephatt, R.

J.; Rashidi, M.; Seddon, **K.** R. J. *Chem. SOC., Dalton Trans.* **1977,951.**

Figure 1. Proposed structure of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$.

 $31P{^1H}$ NMR spectroscopy to be the previously characterized $[Pt_2(\mu\text{-dppm})_3]^4$ (3).

4. Reaction of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ (1) with **pCHaCsH,SOsH*H20.** To 35 mL of CO purged benzene was added 0.116 g (0.0933 mmol) of **1.** The resulting orange solution was stirred, and 0.018 g (0.0946 mmol) of $p\text{-CH}_3\text{C}_6\text{H}_4\text{SO}_3\text{H}\cdot\text{H}_2\text{O}$ was added. Within a few minutes, a yellow precipitate **(4)** started to form. The suspension was filtered (0.126 **g,** 93%), washed with benzene and hexanes, and dried *in* vacuo. Anal. Calc for $C_{64}H_{68}O_4P_4P_{2}S$: C, 53.44; H, 4.04. Found: C, 53.33; H, 4.10. Mp: 145 °C dec. IR (KBr): 2031 cm^{-1} (terminal CO). ¹H NMR $(CD_2Cl_2, 24 \text{ °C})$: δ -6.82 (m, PtH), $^1J_{\text{Pt-H}}$ = 987 Hz, $^2J_{\text{Pt-H}}$ = 50.9 $\text{Hz, }^2\text{J}_{\text{P-H}} = 17.5 \text{ Hz, }^3\text{J}_{\text{P-H}} = 8.1 \text{ Hz, } \delta \text{ } 2.22 \text{ (s, } CH_3), \delta \text{ } 5.17 \text{ (m, }$ CH₂), ${}^3J_{\text{Pt-H}}$ = 74.9 Hz, ${}^2J_{\text{P-H}}$ = 3.6 Hz, δ 6.9-7.7 (m, C₆H₅ and C_6H_4). ¹³C(¹H} NMR (CD₂Cl₂, ¹³CO enriched, 24 °C): δ 188.6 (q, terminal CO), ${}^{1}J_{\text{Pt-C}} = 1116 \text{ Hz}, {}^{2}J_{\text{Pt-C}} = 194 \text{ Hz}, {}^{2}J_{\text{P-C}} = 4.4 \text{ Hz}.$ ${}^{31}P{^1H}$ NMR (CD₂Cl₂, 24 °C): $\delta(P_A)$ 7.8, ${}^{1}J_{P_{t-P}}$ = 3346 Hz, ${}^{2}J_{P_{t-P}}$ $= 10.6$ Hz, ${}^2J_{\text{P-P}} = 58.9$ Hz, ${}^3J_{\text{P-P}} = 26.2$ Hz, $\delta(\text{P}_\text{B})$ 11.2, ${}^1J_{\text{Pt-P}} = 26.2$ 2802 Hz, $^{2}J_{\text{Pt-P}} = 81.6$ Hz. $^{195}\text{Pt}^{\{1\}}$ H} NMR (CD₂Cl₂, 24 °C): δ - (Pt_A) –4435, $^1J_{Pt-P}$ = 3346 Hz, $^2J_{Pt-P}$ = 9.6 Hz, $\delta(Pt_B)$ –4732, $^1J_{Pt-P}$ $= 2799$ Hz, $^{2}J_{\text{Pt-P}} = 84.3$ Hz, $^{1}J_{\text{Pt-Pt}} = 2440$ Hz.

5. Reaction of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ **(1) with** I_2 **.** To 15 mL of CO purged benzene was added 0.100 g (0.0804 mmol) of **1.** The resulting yellow-orange solution was stirred, and 0.0212 g (0.0805 mmol) I_2 was added. Within a few minutes, a yellow precipitate **(5)** started to form. The suspension was filtered (0.098 g, 86%), washed with benzene and hexanes, and dried *in* vacuo. The product was found by ¹H and ³¹P{¹H} NMR spectroscopy to be the previously characterized $[Pt_2I_2(\mu\text{-dppm})_2]$.⁹

6. Reaction of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ (1) with CH₃I. To 15 mL of CO purged benzene **was** added 0.100 g (0.0804 mmol) of **1.** The resulting yellow-orange solution was stirred, and 1 mL (16.1 mmol) CH31 was added. After 2 h, a yellow precipitate **(6)** had formed. The suspension was filtered (0.083 g, 70%), washed with benzene and hexanes, and dried in vacuo. Anal. Calc for $C_{52}H_{50}I_2P_4Pt_2$: C, 43.27; H, 3.47. Found: C, 43.55; H, 3.32. ¹H NMR (CD₂Cl₂, 24 °C): δ 0.55 (t, CH₃), ²J_{Pt-H} = 85.1 Hz, ³J_{P-H} = 6.6 Hz, δ 4.49 (m, CH_aH_b), ${}^{3}J_{\rm Pt-H} = \sim 0$ Hz, ${}^{2}J_{\rm P-H} = 6.2$ Hz, δ 5.04 $(m, CH_aH_b), \frac{3J_{Pt-H}}{3} = 53.4 \text{ Hz}, \frac{2J_{P-H}}{3} = 3.2 \text{ Hz}, \frac{2J_{H-H}}{3} = 14.1 \text{ Hz},$ $^{1}J_{\text{Pt-P}}$ = 2944 Hz, $^{2}J_{\text{Pt-P}}$ = 35.7 Hz, $^{3}J_{\text{P-P}}$ = 32.8 Hz, $^{3}J_{\text{P-P}}$ = 4.1 Hz, ${}^{1}J_{\text{Pt-Pt}} = 408 \text{ Hz}.$ ${}^{196}\text{Pt} {}^{11}\text{H} {}^{1} \text{ NMR}$ (CD₂Cl₂, 24 °C): -4794 (t). δ 6.9–8.1 (m, C₆H₆). ³¹P{¹H} NMR (CD₂Cl₂, 24 °C): δ 11.1 (s),

Results and Discussion

Reaction of $[Pt_2Cl_2(\mu\text{-dppm})_2]$ with CO in methanol yields the known complex $[Pt_2(CO)(Cl)(\mu\text{-}dppm)_2]Cl¹¹$ Reduction of this solution with NaBH4 under CO affords a novel yellow-orange compound formulated as $[Pt_2(\mu CO(CO)₂(\mu$ -dppm)₂, in which two metal atoms are bridged by two diphosphine ligands and one carbon monoxide molecule (Figure 1). This platinum dimer is formulated as a complex with both platinum atoms in a zero oxidation state with a platinum-platinum bond, each metal having an 18-electron valence shell. The ³¹P{¹H} NMR spectrum of 1 is described as an AA'A''A"'XX' spin system (Figure 2). The presence of a platinum-platinum

Figure 2. ³¹P^{{1}H} NMR spectrum (upper trace) and computer simulation (lower trace) of $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ at -43 "C.

bond in the complex is confirmed by the magnitudes of the ${}^{3}J_{\text{P-P}}$ (10.7 Hz) and the ${}^{2}J_{\text{Pt-P}}$ (-9.1 Hz) coupling constants. The reported values are consistent with coupling constants obtained for triply bridged platinum dimers with a platinum-platinum bond.¹² The two bond Pt-P coupling constant and the two bond P-P coupling constant also appear to give some geometric information. Small negative two bond Pt-P coupling constants are found for complexes in which the two dppm ligands adopt the so-called W-frame structure,¹³ while two bond P-P coupling constants fall in the range 50-120 Hz for complexes with PPtP angles of 90-120°.4c The relevant coupling constants for 1 seem to imply that this complex has the two diphosphine ligands cis to each other.

An alternate method for the preparation of complex **1,** albeit in lower yields, involves the substitution of one dppm ligand with **3** molar equiv of CO (eq 1).

$$
[\text{Pt}_2(\mu\text{-dppm})_3] + 3\text{CO} \rightleftharpoons
$$

$$
[\text{Pt}_2(\mu\text{-CO})(\text{CO})_2(\mu\text{-dppm})_2] + \text{dppm} \quad (1)
$$

The IR spectrum of complex **1** exhibits absorption bands attributable to coordinated carbon monoxide (terminal and bridging) as well as to diphosphine ligands. In the solid state, the compound is diamagnetic and thermally stable (mp $180 °C$ in vacuo), but sensitive to air. Solutions of 1 are very reactive toward oxygen. Exposure to air in the solid state results in a darkening of the color of the complex, a decrease of the intensities of the carbonyl bands, and the appearance of a new absorption in the IR at **837** cm-l, which is indicative of the stretching vibration of a platinum peroxo complex, similar to the one reported for $Pt(O_2)(PPh_3)_2$.¹⁴ 1 is most soluble in DMF and DMSO, moderately soluble in benzene and toluene, and insoluble in polar solvents. In chlorinated hydrocarbons, $[Pt_2(\mu-$ CO)(CO)₂(μ -dppm)₂] is slowly oxidized to yield [Pt₃(μ -

⁽¹¹⁾ Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Manojlovic-Muir, **L.;** Muir, K. W.; **Solomun,** T.; Seddon, K. **R.** *Inorg. Chim. Acta* **1977,23, L33.**

⁽¹²⁾ Brown, M. P.; Fisher, J. R.; Franklin, S. J.; Puddephatt, **R.** J. J. *Organomet. Chem.* **1978,161, C46.**

⁽¹³⁾ Hunt, **C.** T.; Mataon, **G.** B.; Balch, A. **L.** *Inorg. Chem.* **1981,20, 2270.**

⁽¹⁴⁾ Nakamura, A.; Tatauno, **Y.; Yamamoto,** M.; Otsuka, S. J. *Am. Chem. SOC.* **1971, 93,6052.**

 CO)(μ -dppm)₃]Cl₂ as the main oxidation product.¹⁵ A similar oxidation in a halocarbon solvent¹⁶ has also been reported for the isoelectronic nickel complex, $[Ni_2(\mu CO$ $(CO)_{2}(\mu$ -dppm $)_{2}$].¹⁷

 $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ does not react at room temperature with additional CO; the analogous nickel dimer, on the other hand, is known to react further with CO to form $[Ni_2(CO)_4(\mu\text{-dppm})_2]^{18}$ and $Ni(CO)_3(\eta^1$ dppm).18

With dppm, **1** undergoes a fast reaction to yield a red solution from which $[Pt_2(\mu\text{-dppm})_3]$ (3) can be precipitated (eq 2). IR analysis of this product shows that the bridging as well as the terminal carbonyl bands have disappeared.

$$
[Pt2(\mu\text{-CO})(CO)2(\mu\text{-}dppm)2] + dppm \rightleftharpoons
$$

$$
[Pt2(\mu\text{-}dppm)3] + 3CO (2)
$$

This reaction is readily reversible by reintroducing CO into the solution. The **decarbonylation-carbonylation** cycle, which is accompanied by color changes (yellow \rightleftharpoons red) and monitored by NMR, can be repeated several times on the same reaction mixture.

 $[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2]$ readily undergoes oxidative addition reactions. Complex 1 can be protonated with p-toluenesulfonic acid to yield a lemon yellow solid, $[Pt_2(H)(CO)(\mu\text{-}dpom)_2](p\text{-}CH_3C_6H_4SO_3)\text{-}C_6H_6(4)$ (eq 3).

$$
[Pt_2(\mu\text{-}CO)(CO)_2(\mu\text{-}dppm)_2] + p\text{-}CH_3C_6H_4SO_3H \rightarrow [Pt_2(H)(CO)(\mu\text{-}dppm)_2](p\text{-}CH_3C_6H_4SO_3) + 2CO (3)
$$

The infrared spectrum shows a single terminal carbonyl band at 2031 cm-l, while the terminal hydride is revealed in the 1 H NMR spectrum (-6.82 ppm). Further evidence for the presence of nonequivalent ligands on the two

~~ ~ ~

J. *Organometallics* **1992, 11, 3440.**

platinum atoms is furnished by a rather complex ${}^{31}P{}_{1}{}^{1}H$ NMR spectrum. This spectrum is best described as an AA'BB' spectrum superimposed with spectra due to AA'BB'X and AA'BB'Y. The benzene molecule of crystallization is confirmed by ¹H NMR. The IR, ${}^{31}P{}_{1}{}^{1}H$ NMR, and 'H NMR data for complex **4** are similar to the data obtained for the previously reported complex, $[Pt_2(H)(CO)(\mu\text{-}dppm)_2]PF_6.^{19}$

With I_2 , 1 reacts to yield quantitatively $[Pt_2I_2(\mu$ dppm)₂¹⁹ (5) (eq 4). Reaction with CH₃I yields $[Pt_2(\mu I$)(CH₃)₂(μ -dppm)₂]I (eq 5). The ³¹P{¹H} and ¹H NMR

data obtained for this complex are similar to the data
\n
$$
[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2] + I_2 \rightarrow [Pt_2I_2(\mu\text{-dppm})_2] + 3CO \quad (4)
$$

$$
[Pt_2(\mu\text{-CO})(CO)_2(\mu\text{-dppm})_2] + 2CH_3I \rightarrow [Pt_2(\mu\text{-I})(CH_3)_2(\mu\text{-dppm})_2]I + 3CO (5)
$$

obtained for $[Pt_2(\mu-I)(CH_3)_2(\mu-dppm)_2]PF_6^{20}$ In addition, 'H and 31P{1H) NMR data suggest that in this latter reaction $[Pt_2(CO)(CH_3)(\mu\text{-}dppm)_2]$ I is formed first followed by formation of **6.** Similar oxidative addition reactions have also been reported for other zerovalent dimers of platinum, $Pt_2(\mu$ -dppm)₃,²⁰ and palladium, $Pd_2(\mu$ $dppm)$ ₃.²¹

Acknowledgment. This work was supported in part by the Alan Chenery Foundation of Randolph-Macon College, the NSF REU Program (Grant CHE-9000748), and the NSF ILI Program (Grant USE-9152585). We thank Dr. Ren6 P. F. Kanters for assistance with NMR simulations.

OM930238E

1988,110,2117. (b) Trumpy, **V.** A.; Oriskovich,T. A.; Schreiner, S. *Inorg.*

Chim. Acta 1993, 205 (2), 149.

(19) Brown, M. P.; Fisher, J. R.; Mills, A. J.; Puddephatt, R. J.;
Thomson, M. *Inorg. Chim. Acta* 1980, 44, L271.

(20) Azam, K. A.; Brown, M. P.; Hill, R. H.; Puddephatt, R. J.; Yavari,

A. *Organometallics* **1984, 3 (5), 697. (21)** Balch, **A.** L.; Hunt, C. T.; Lee, C.-L.; Olmstead, M. M.; Farr, J. P. J. *Am. Chem. SOC.* **1981,103, 3764.**

⁽¹⁵⁾ The complex decomposes in the NMR tube at room temperature over several days. The main decomposition product has the following spectroscopic data: IR (KBr) **1757** cm-1 (bridging **CO);** 'H NMR (CD2C12) *⁸***5.5-6.0** (m, CHz), **7.0-8.5** (m, **CeH,);** 31P(1H) NMR (CD2C12, **24 "C) ⁶** ${}^2J_{\text{Pr-P}} = -8.6$ Hz. These data are consistent with the coordinatively unsaturated trinuclear, triangular cluster $[Pt_3(\mu_3\text{-CO})(\mu\text{-dppm})_3]^{2+}$: Ferwon, G.; Lloyd, B. R.; Puddephatt, R. J. *Organometallics* **1986,5,344. (16)** Manojlovic-Muir, L.; Muir, K. W.; Mirza, H. A.; Puddephatt, R. **-11.6 (s),** $^{1}J_{\text{Pt-P}}$ **= 3713 Hz,** $^{2}J_{\text{Pt-P}}$ **= -8.6 Hz,** $^{3}J_{\text{Pt-P}}$ **= 169.9 Hz,** $^{1}J_{\text{Pt-P}}$ **= 610 Hz;** $^{18}P_{\text{t}}P_{\text{t}}P_{\text{t}}$ **NMR (CD₂Cl₂, 24 °C)** δ **-4300 (t),** $^{1}J_{\text{Pt-P}}$ **= 3712 Hz,**

⁽¹⁷⁾ (a) Holah, D. G.; Hughes, A. N.; Mirza, H. A.; Thompson, J. D. Inorg. Chim. Acta 1987, 126, L7. (b) Zhang, Z. Z.; Wang, H. K.; Wang,
H. G.; Wang, R. J.; Zhao, W. J.; Yang, L. M. J. Organomet. Chem. 1988,
347, 269. (c) Gong, J. K.; Kubiak, C. P. Inorg. Chim. Acta 1989, 162, 19. **(18)** (a) Osborn, **J.** A.; Stanley, G. G.; Bird, P. H. J. *Am. Chem. SOC.*