From Mononuclear $(C_5H_5CH_2C_5H_4)M$ to Unsymmetrical Dinuclear $M(C_5H_4CH_2C_5H_4)M$ and Heterodinuclear $M(C_5H_4CH_2C_5H_4)M'$ Transition-Metal Complexes¹

Dirk Schneider and Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received June 2, 1993*

The reaction of $[CH_2(C_5H_4)_2]Na_2$ (1), generated in situ from $CH_2(C_5H_5)_2$ and $NaNH_2$ in THF at -70 °C, with $[RhH(C=CR)Cl(py)(PiPr_3)_2]$ (2: R = Me; 3: R = Ph) leads to a mixture of the mono- and dinuclear complexes [$(C_5H_5CH_2C_5H_4)Rh(=C=CHR)(PiPr_3)$] (4,7) and { $[CH_2(C_5H_4)_2]$ - $[Rh(=C=CHR)(PiPr_3)]_2$ (5, 8) which are separated by column chromatography. Traces of the square-planar compounds trans- $[RhCl(-C-CHR)(PiPr_3)_2]$ (6, 9) are also obtained. Electrophilic addition of sulfur, tosyl azide, and CF₃CO₂H to the Rh=C bond of the vinylidene complexes 4, 5, 7, and 8 affords thioketene-, ketenimine-, and vinyl-rhodium derivatives (13, 14, 17-20). Upon treatment of 5 or 8 with CuCl, the mixed-metal Rh-Cu and (Rh-Cu)₂ complexes 15 and 16 have been isolated. The mononuclear compounds $[(C_5H_5CH_2C_5H_4)MLL']$ [23, MLL' = Rh- $(PhC = CPh)(PiPr_3); 25, MLL' = Rh(\eta^2 - CH_2 - C - CHMe)(PiPr_3); 27, MLL' = Ir(C_8H_{14})_2; 30,$ $MLL' = Ir(C_8H_{14})(PiPr_3)$] are prepared from $(C_5H_5CH_2C_5H_4)Na$ (10) and the corresponding rhodium(I) and iridium(I) precursors; in these reactions small amounts of dinuclear [CH2- $(C_5H_4)_2$]M₂ complexes (M = Rh, Ir) are also obtained. The synthesis of the mixed-metal compounds ${[CH_2(C_5H_4)_2][Rh(=C=CHMe)(PiPr_3)][Ir(C_8H_{14})(PiPr_3)]}$ (34), ${[CH_2(C_5H_4)_2]-CHMe}(PiPr_3)$ $[M(CO)_2][Ir(C_8H_{14})_2]$ (37, M = Co; 38, M = Rh), and $\{[CH_2(C_5H_4)_2][Rh(PhC=CPh) (PiPr_3)$ [$Ir(C_6H_4CH=CPh)(PiPr_3)$] (42) has been achieved from either the cyclopentadiene derivative (e.g. 30) or the lithiated compoundes $[(LiC_5H_4CH_2C_5H_4)MLL']$ (35, 36). Related unsymmetrical dirhodium complexes { $[CH_2(C_5H_4)_2]$ [RhLL'][Rh(PhC=CPh)(PiPr₃)]} [33, $RhLL' = Rh(=CHPh)(PiPr_3);$ 39 $RhLL' = Rh(CO)_2;$ 40, $RhLL' = Rh(\eta^2-CH_2=CHMe)$ -

 $(PiPr_3)$] are prepared on a similar route.

Following our research on compounds of the general composition $\{[CH_2(C_5H_4)_2][ML_n]_2\}$, where M is Co,² Rh,³ and Ir,^{3b,4} we became interested in learning whether complexes of this type but with either different metal centers or different coordination spheres can be prepared. The general aim of this work is to study the chemistry of dinuclear molecules in which the two metal atoms are held in close proximity by one or two bridging ligands and according to this possibility show a cooperative behavior. The considerable potential of this objective as far as bridging units such as $[CH_2(C_5H_4)_2]^{2-}$, $[Me_2Si(C_5H_4)_2]^{2-}$, $[C_2H_4(C_5Me_4)_2]^{2-}$, etc. are concerned has recently been demonstrated by Watts,⁵ Katz,⁶ Müller-Westerhoff,⁷ Bitterwolf,⁸ Bergman,⁹ Schrock,¹⁰ and Heck et al.¹¹

For the synthesis of the unsymmetrical complexes $\{[CH_2(C_5H_4)_2][ML_n][M'L'_n]\},\$ which were the target of this work, the main difficulty certainly is to find a preparative route that avoids-at least to a larger extent-the formation of the symmetrical analogues $\{[CH_2(C_5H_4)_2][ML_n]_2\}$ and $\{[CH_2(C_5H_4)_2][M'L'_n]_2\}$. Two general strategies have recently been developed. Härter and co-workers used a cyclopentadienyl metal compound

Part 6: Werner, H. Inorg. Chim. Acta 1992, 198-200, 715-721.

 (2) (a) Werner, H.; Lippert, F.; Bohley, T. J. Organomet. Chem. 1989, 369, C27-C32. (b) Lippert, F. Dissertation, University of Würzburg, 1989. (3) (a) Werner, H.; Scholz, H. J.; Zolk, R. Chem. Ber. 1985, 118, 4531-4542. (b) Werner, H.; Treiber, M.; Nessel, A.; Lippert, F.; Betz, P.; Krüger, Chem. Ber. 1992, 125, 337-346. (c) Treiber, M. Dissertation, University

of Würzburg, 1989. (4) Nessel, A.; Nürnberg, O.; Wolf, J.; Werner, H. Angew. Chem. 1991. 103, 999-1000; Angew. Chem., Int. Ed. Engl. 1991, 30, 1006-1008.

such as $[C_5H_5Mn(CO)_3]$ which can be lithiated at the fivemembered ring and then treated the metalated derivative with (dimethylamino)fulvene to generate a manganese complex with a π -bonded C₅H₄CH₂C₅H₅ ligand.¹² With this as a starting material, heterometallic compounds such as $\{[CH_2(C_5H_4)_2][Mn(CO)_3][C_5H_5TiCl_2]\}$ were obtained. We preferred a more simple procedure which started with $CH_2(C_5H_5)_2$, converted this substrate with *n*BuLi or $NaNH_2$ to $(C_5H_5CH_2C_5H_4)Li$ and $(C_5H_5CH_2C_5H_4)Na$, respectively, and prepared from these intermediates the mononuclear dicarbonylmetal compounds [(C5H5- $CH_2C_5H_4)M(CO)_2$] (M = Co, Rh, Ir).¹³ These molecules behave similarly to $[(C_5H_5CH_2C_5H_4)Mn(CO)_3]^{12}$ and, after lithiation, react with carbonylmetal halides to form the mixed-metal complexes $\{[CH_2(C_5H_4)_2][C_0(CO)_2][M(CO)_2]\}$ $(M = Rh, Ir), etc.^{13}$

In this paper we describe an extension of this work with the particular emphasis on the preparation of mono- and dinuclear complexes containing a rhodium-vinylidene, rhodium-alkyne, or rhodium-allene unit. Some preliminary results have already been communicated.¹⁴

[•] Abstract published in Advance ACS Abstracts, October 1, 1993. (1) Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes. 7.

^{(5) (}a) Watts, W. E. J. Am. Chem. Soc. 1966, 88, 855-856. (b) Watts, W. E. J. Organomet. Chem. 1967, 10, 191-192.

^{(6) (}a) Katz, T. J.; Acton, N.; Martin, G. J. Am. Chem. Soc. 1969, 91, 2804-2805. (b) Katz, T. J.; Acton, N.; Martin, G. J. Am. Chem. Soc. 1973, 94, 2934-2939.

^{(7) (}a) Mueller-Westerhoff, U. T.; Nazzal, A.; Tanner, M. J. Organomet. Chem. 1982, 236, C41–C44. (b) Mueller-Westerhoff, U. T. Angew. Chem. (3) (a) Bitterwolf, T. E. J. Organomet. Chem. 1986, 312, 197–206. (b)

Bitterwolf, T. E.; Rheingold, A. L. Organometallics 1987, 6, 2138-2140. (c) Bitterwolf, T. E.; Spink, W. C.; Rausch, M. D. J. Organomet. Chem. 1989, 363, 189-195. (d) Bitterwolf, T. E.; Gambaro, A.; Gottardi, F.; Valle, G. Organometallics 1991, 10, 1416-1420.

$$[RhH(C \equiv C\underline{t}Bu)CI(py)(P\underline{i}Pr_3)_2] \xrightarrow{10} [(C_5H_5CH_2C_5H_4)Rh(=C \approx CH\underline{t}Bu)(P\underline{i}Pr_3)]$$
11
12

Results

Preparation of the Vinylidene Complexes [(C₅H₅- $CH_2C_5H_4)Rh(=C=CHR)(PiPr_3)$ and $[CH_2(C_5H_4)_2]$ - $[Rh(=C=CHR)(PiPr_3)]_2$. In contrast to most of the earlier work²⁻⁹ on the synthesis of the binuclear complexes $\{[CH_2(C_5H_4)_2][ML_n]_2\}$, where the dilithium derivative $[CH_2(C_5H_4)_2]Li_2$ was used as the source of the bridging unit, we have found that the related disodium compound $[CH_2(C_5H_4)_2]Na_2$ (1) equally is suitable. 1 is formed quantitatively on treatment of a suspension of NaNH2 at -70 °C with a solution of CH₂(C₅H₅)₂ in THF, followed by warming to room temperature and irradiation of the reaction mixture in an ultrasonic bath. 1 reacts with [RhH- $(C = CMe)Cl(py)(PiPr_3)_2$ (2), which is the preferred starting material for $[C_5H_5Rh(=C=CHMe)(PiPr_3)]$,¹⁵ to give not only ${[CH_2(C_5H_4)_2][Rh(=C=CHMe)(PiPr_3)]_2}$ (5) but also in an approximate ratio of 1:1 a mixture of $[(C_5H_5CH_2C_5H_4)Rh(=C=CHMe)(PiPr_3)]$ (4) and 5. The reaction of 1 with $[RhH(C=CPh)Cl(py)(PiPr_3)_2]$ (3)

- (9) (a) Bryndza, H. E.; Bergman, R. G. J. Am. Chem. Soc. 1979, 101, 4766–4768.
 (b) Schore, N. E.; Ilenda, C. S.; White, M. A.; Bryndza, H. E.; Matturro, M. G.; Bergman, R. G. J. Am. Chem. Soc. 1984, 106, 7451–7461.
- (10) (a) Okuda, J.; Murray, R. C.; Dewan, J. C.; Schrock, R. R. Organometallics 1986, 5, 1681–1690. (b) Buzinkai, J. F.; Schrock, R. R. Organometallics 1987, 6, 1447–1452. (c) Buzinkai, J. F.; Schrock, R. R. Inorg. Chem. 1989, 28, 2837–2846.

(11) (a) Heck, J.; Kriebisch, K.-A.; Mellinghoff, H. Chem. Ber. 1988, 121, 1753-1757.
 (b) Abriel, W.; Baum, G.; Heck, J.; Kriebisch, K.-A. Chem. Ber. 1990, 123, 1767-1778.

(12) Härter, P.; Boguth, G.; Herdtweck, E.; Riede, J. Angew. Chem.
1989, 101, 1058-1059; Angew. Chem., Int. Ed. Engl. 1989, 28, 1008-1009.
(13) Werner, H.; Schneider, D.; Schulz, M. Chem. Ber. 1992, 125, 1017-1022.

(14) Schneider, D.; Werner, H. J. Organomet. Chem. 1990, 384, C33-C37.

(15) Werner, H.; Wolf, J.; Garcia Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397-411.

proceeds similarly (Scheme I) and also gives $[(C_5H_5-CH_2C_5H_4)Rh(-C-CHPh)(PiPr_3)]$ (7) and $\{[CH_2(C_5H_4)_2]-[Rh(-C-CHPh)(PiPr_3)]_2\}$ (8), respectively. In both cases, the ring-free square-planar vinylidene complexes trans- $[RhCl(-C-CHMe)(PiPr_3)_2]$ (6) and trans- $[RhCl(-C-CHMe)(PiPr_3)_2]$ (6) and trans- $[RhCl-(-C-CHPh)(PiPr_3)_2]$ (9)¹⁶ are formed as byproducts in ca. 5–7% yield. The three compounds (4–6 and 7–9) can be separated by chromatographic techniques using hexane and hexane/ether mixtures as eluants.

A more convenient procedure for the preparation of the mononuclear complexes 4, 7, and $[(C_5H_5CH_2C_5H_4)Rh-(=C=CHtBu)(PiPr_3)]$ (12) consists in the reaction of 2, 3, or $[RhH(C=CtBu)Cl(py)(PiPr_3)_2]$ (11) with $[C_5H_5-CH_2C_5H_4]Na$ (10) in THF. After the displaced triisopropylphosphine is trapped by addition of CH_3I , the products are isolated in 70-80% yield. Compounds 4, 7, and 12 as well as the dinuclear complexes 5 and 8 are yellow oils which readily dissolve in all common organic solvents and spontaneously decompose in the presence of air. They have been characterized by elemental analysis and (with the exception of 8) also by mass spectrometry.

The structural proposal depicted in Scheme I for the mono- and the dinuclear species is strongly supported by the ¹H and the ¹³C NMR spectroscopic data. For the symmetrical molecules 5 and 8, two proton resonances for the ring hydrogens H(2,5) and H(3,4) are observed which in some cases show virtual coupling. In contrast to the NMR spectra of 4 and 7 which display only one set of signals, the spectra of the *tert*-butylvinylidene complex are indicative of the presence of two isomers formed in a 1:1 ratio. We assume that the uncoordinated C₅H₅ ring in 12 is linked either at C(2) or at C(3) to the [CH₂C₅H₄-

⁽¹⁶⁾ Werner, H.; Garcia Alonso, F. J.; Otto, H.; Wolf, J. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1988, 43, 722-726.

 $Rh(=C=CHtBu)(PiPr_3)$ moiety, and thus a similar situation as that found for the dicarbonyl compounds $[(C_5H_5CH_2C_5H_4)M(CO)_2]$ (M = Co, Rh, Ir) would exist.¹³ The assignment for the ¹³C resonances of the C₅H₄ ring carbon atoms follows the rule proposed by Coville that C(1) (*ipso-C*) is less shielded than C(2) and C(5) and these are less so than C(3) and C(4).¹⁷ The chemical shift of the bridging CH₂ carbons of the C₅H₅CH₂C₅H₄ and CH₂(C₅H₄)₂ ligands corresponds to that of CH₂Ph₂, which is in full agreement with the increment tables for disubstituted methane derivatives.¹⁸

Both the mononuclear and the dinuclear vinylidenerhodium complexes behave in a similar way toward electrophiles as the cyclopentadienyl derivatives [C5H5- $Rh(=C=CHR)(PiPr_3)$]. Compounds 4 and 5 react with stoichiometric amounts of sulfur (Scheme II) to give the corresponding thicketene-rhodium complexes $[(C_5H_5 CH_2C_5H_4)Rh(\eta^2-S=C=CHMe)(PiPr_3)$] (13) and {[CH₂- $(C_5H_4)_2$ [Rh(η^2 -S=C=CHMe)(PiPr_3)]_2 (14), respectively. Whereas 13 is a red oil at room temperature, 14 is a red solid which for a short period of time can be handled in air. Since only one set of signals is observed in the NMR spectra of 13 and 14, we assume that the addition of sulfur leads stereoselectively to one diastereomer. If the kinetically preferred product is formed, the attack of the electrophile presumably occurs at that side of the Rh=C bond which is less shielded and, therefore, the Zisomer should be obtained. In the case of the cyclopentadienyl complexes $[C_5H_5Rh(\eta^2-S=C=CHR)(PiPr_3)]$, the NMR data have also been interpreted as being in support of this mechanistic proposal.¹⁹

The reaction of 7 and 8 with anhydrous CuCl in THF affords the heterometallic complexes 15 and 16 (Scheme III) in which the α -carbon atom of the vinylidene unit bridges the two different metal centers. The composition of the red crystalline solids has been substantiated by elemental analysis and in the case of 15 also by mass spectrometry. In contrast to $[C_5H_5(PiPr_3)Rh(\mu-C=CH_2)-$ CuCl²⁰ and the related osmium compounds [C₆H₆(PR₃)- $Os(\mu-C=CHPh)CuCl]$,²¹ there is no indication that for 15 and 16 an oligomer or polymeric form exists besides the monomeric one formulated here.

The nucleophilicity of the Rh=C bond in 7 is also illustrated in the reaction with tosyl azide (Scheme IV).

In analogy to previous work²² it is conceivable that in the initial step a [2 + 3] cycloaddition between the Rh=C unit and TosN₃ occurs to give an intermediate with a fivemembered ring RhC(-CHPh)NNNTos which subsequently loses N₂ and forms a η^2 -N,C-bonded keteniminerhodium complex. As the attempts to purify the crude reaction product by column chromatography failed, the oily substance was dissolved in ether and treated with an equimolar amount of HBF4. An orange solid was isolated which, owing to conductivity measurements, is a 1:1 electrolyte and analyzes as $[(C_5H_5CH_2C_5H_4)(PiPr_3) RhC(CH_2Ph)NTos]BF_4$ (17). The NMR data for the cationic compound leave no doubt that the proton attacks not the nitrogen but the β -C atom of the ketenimine ligand. In the ¹H NMR spectrum, the benzylic CH₂ protons (AB system) give rise to two well separated doublets at δ 5.38 and 5.12 with a H-H coupling of 16.4 Hz.

A clean reaction occurs between 5 and tosyl azide to give the crystalline dinuclear ketenimine complex 18 in ca. 70% yield. Also in this case, the NMR spectra indicate that only one diastereomer is formed with the tosyl groups probably pointing away from the rhodium centers. We note that the formally "bisected" relative of 18, $[C_5H_5 Rh(\eta^2$ -TosN=C=CHPh)(PiPr₃)], has already been described and characterized by an X-ray structural analysis.²²

Finally, as far as the reactivity of the vinylidene compounds $[(C_5H_5CH_2C_5H_4)Rh(=C=CHR)(PiPr_3)]$ and

⁽¹⁷⁾ Carlton, L.; Johnston, P.; Coville, N. J. J. Organomet. Chem. 1988, 339. 339-343.

⁽¹⁸⁾ Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy; VCH Verlag: Weinheim, 1987. (19) Wolf, J.; Zolk, R.; Schubert, U.; Werner, H. J. Organomet. Chem.

^{1988. 340. 161-178.}

⁽²⁰⁾ Werner, H.; Wolf, J.; Müller, G.; Krüger, C. J. Organomet. Chem. 1988. 342. 381-398

⁽²¹⁾ Werner, H.; Weinand, R.; Knaup, W.; Peters, K.; von Schnering, H. G. Organometallics 1991, 10, 3967-3977

⁽²²⁾ Werner, H.; Brekau, U.; Dziallas, M. J. Organomet. Chem. 1991, 406, 237-260.

 ${[CH_2(C_5H_4)_2][Rh(=C=CHR)(PiPr_3)]_2}$ is concerned, it should be mentioned that the tendency to add electrophiles at the Rh=C bond is also confirmed by the reaction of 7 and 8 with CF₃CO₂H (Scheme V). Under mild conditions (25 °C, 15 min) the mono- and dinuclear vinyl trifluoroacetates 19 and 20 are formed and isolated as brown airsensitive solids. Owing to the extreme lability of 20 in solution, no reliable NMR data could be obtained and thus the compound has been characterized by elemental analysis and the IR data. The proposed structure for 19 with the Z configuration of the RhCH=CHPh unit is mainly supported by the ¹H NMR spectrum in which the signals of the vinylic protons show a relatively small H-H coupling of 5.9 Hz.

Mono- and Dinuclear Alkyne, Allene, and Olefin Complexes with $[C_5H_5CH_2C_5H_4]^-$ and $[CH_2(C_5H_4)_2]^{2-}$ as Ligands. Following the synthesis of the mono- and dinuclear vinylidenerhodium complexes 4, 5, 7, and 8, we tried to find out whether related alkyne compounds with PhC=CPh and MeC=CMe as ligands can be prepared on a similar route. The reaction of trans-[RhCl- $(PhC = CPh)(PiPr_3)_2]^{23}$ with 10 proceeds smoothly and gives the mononuclear complex $[(C_5H_5CH_2C_5H_4)Rh-$ (PhC=CPh)(PiPr₃)] (23) (Scheme VI) as a yellow airsensitive oil in 80% yield. Due to the fact that during the preparation of 10 small amounts of the disodium salt 1 are also formed, the dinuclear compound $\{[CH_2(C_5H_4)_2][Rh (PhC = CPh)(PiPr_3)_2$ (24) is obtained as a byproduct in 4% yield. 23 and 24 are separated by column chromatography and characterized by spectroscopic means. In particular, the NMR data for 23 leave no doubt that as in the case of 12 two isomeric species with a different linkage of the $RhC_5H_4CH_2$ unit to the cyclopentadiene ring are present. The assignment (for details see Experimental Section) of the ¹H and ¹³C NMR signals is supported both by DEPT, H,H-COSY, and H,C-COSY measurements and also by spectral simulation.²⁴ It is interesting to note that the formation of two isomers is indicated not only by doubling of the resonances for the C_5H_5 , the bridging CH_2 , and $ipso-C_5H_4$ carbon atoms but also by the appearance of two sets of signals for the acetylene carbons of the PhC=CPh ligand, the ³¹P phosphorus of the coordinated phosphine, and even for the CH₃ protons of the P-bound isopropyl groups.

The reaction of trans-[RhCl(MeC=CMe)($PiPr_3$)₂] with 10 probably takes the expected course and initially leads to the alkyne complex $[(C_5H_5CH_2C_5H_4)Rh(MeC=CMe) (PiPr_3)$] (¹H NMR, in C₆D₆: δ 2.38 with the intensity of 6H). However, this compound rearranges quantitatively during chromatographic workup on Al₂O₃ to give the isomeric allene rhodium(I) compound [(C₅H₅CH₂C₅H₄)- $Rh(\eta^2-CH_2=C=CHCH_3)(PiPr_3)$] (25). There is some precedent for such an arrangement insofar as we have found that trans-[IrCl(MeC=CMe)(PiPr₃)₂] isomerizes to trans-[IrCl(η^2 -CH₂=C=CHMe)(PiPr_3)₂]²⁵ and that the reaction of $[C_5H_5Rh(MeC=CMe)(PiPr_3)]$ with acids HX leads to the methallylmetal cation $[C_5H_5Rh(n^3-CH_2 CHCHMe)(PiPr_3)]^+$ via the hydrido(methylallene) derivative $[C_5H_5RhH(\eta^2-CH_2=C=CHMe)(PiPr_3)]^+$ as an intermediate.²⁶ Furthermore, Richards et al.²⁷ have reported the formation of $[ReCl(\eta^2 - CH_2 - C - CHPh) - C - CHPh]$ $(diphos)_2$ from $[ReCl(N_2)(diphos)_2]$ $(diphos = Ph_2PCH_2-$ CH₂PPh₂) and MeC=CPh, while we recently observed that trans- $[RhCl(C_2H_4)(AsiPr_3)_2]$ reacts with HC=CMe, MeC=CMe, and MeC=CtBu to yield the corresponding allene complexes trans-[RhCl(η^2 -CH₂—C—CHR)(AsiPr₃)₂] (R = H, Me, tBu), respectively.²⁸ Compound 25 is an oily air-sensitive substance which has been characterized by NMR spectroscopy. The trans disposition of Rh and CH_3 at the uncoordinated C=C bond of the allene ligand is supported by comparison of the ¹H NMR data with those of $[C_5H_5Rh(\eta^2-CH_2=C=CHMe)(PiPr_3)]$ where the configuration of the Rh(CH2=C=CHMe) unit has been confirmed by deuteration studies.²⁶

The synthesis of the (cyclooctene)iridium(I) complexes 27 and 30 with $[C_5H_5CH_2C_5H_4]^-$ as the ring ligand is outlined in Scheme VII. The preparative procedure is similar to that for $[C_5H_5Ir(C_8H_{14})_2]$ and $[C_5H_5Ir(C_8H_{14})-(PiPr_3)]$.²⁹ As has been mentioned in the case of 24, the formation of traces of 1 during the preparation of 10 explains why minor amounts of { $[CH_2(C_5H_4)_2][Ir(C_8H_{14})_2]_2$ } (28)^{3b} have also been isolated. Both 27 and 30 are oily materials which are moderately air-stable and readily soluble in all common organic solvents.

Unsymmetrical Dirhodium and Dinuclear Mixed-Metal Complexes. After we had observed that the dicarbonyl derivatives $[(C_5H_5CH_2C_5H_4)M(CO)_2]$ (M = Rh, Ir) after lithiation react with $[Co(CO)_4I]$ and $[Rh(CO)_2Cl]_2$ to give the heterodinuclear compounds $\{[CH_2(C_5H_4)_2] [M(CO)_2][M'(CO)_2]$ in reasonable yields,¹³ we tried to prepare a dirhodium complex containing two different vinylidene ligands in the same molecule on a similar route. Unfortunately, the reactions of both 4 with trans-[Rh- $(C = CPh)(py)(PiPr_3)_2$ (31) and 7 with trans-[Rh- $(C = CMe)(py)(PiPr_3)_2$ (32) lead to the formation of a mixture of products from which an analytically pure sample of $\{[CH_2(C_5H_4)_2][Rh(=C=CHMe)(PiPr_3)][Rh (=C=CHPh)(PiPr_3)$] could not be isolated.³⁰ We succeeded, however, in the synthesis of $\{[CH_2(C_5H_4)_2][Rh (=C=CHPh)(PiPr_3)$ [Rh(PhC=CPh)(PiPr_3)] (33) and ${[CH_2(C_5H_4)_2][Rh(=C=CHMe)(PiPr_3)][Ir(C_8H_{14})-$

(25) (a) Werner, H.; Höhn, A. J. Organomet. Chem. 1984, 272, 105–
113. (b) Höhn, A. Dissertation, University of Würzburg, 1986.
(26) Wolf, J.; Werner, H. Organometallics 1987, 6, 1164–1169.

(26) Wolf, J.; Werner, H. Organometallics 1987, 6, 1164–1169.
 (27) Hughes, D. L.; Pombeiro, A. J. L.; Pickett, C. J.; Richards, R. L.
 J. Chem. Soc., Chem. Commun. 1984, 992–993.

J. Chem. Soc., Chem. Commun. 1984, 992–993. (28) Werner, H.; Schwab, P.; Mahr, N.; Wolf, J. Chem. Ber. 1992, 125, 2641–2650.

⁽²³⁾ Werner, H.; Wolf, J.; Schubert, U.; Ackermann, K. J. Organomet. Chem. 1986, 317, 327-356.

⁽²⁴⁾ Schneider, D. Dissertation, University of Würzburg, 1992.

⁽²⁹⁾ Dziallas, M.; Höhn, A.; Werner, H. J. Organomet. Chem. 1987, 330, 207-219.

⁽³⁰⁾ For the discussion of the spectroscopic data see ref 24.

 $(PiPr_3)$] (34) (see Scheme VIII) from 23 and 30 using again the square-planar alkynylrhodium complexes 31 and 32 as substrates. Although the yield is rather low in these reactions (10–15%), correct elemental analyses have been obtained for both compounds 33 and 34. The ¹H and ³¹P NMR data for 33 and 34 prove that indeed the unsymmetrical molecules and not 1:1 mixtures of the symmetrical analogues, e.g. {[CH₂(C₅H₄)₂][Rh(=C=CHPh)(PiPr₃)]₂} (8) and {[CH₂(C₅H₄)₂][Ir(C₈H₁₄)(PiPr₃)]₂}, are present. Although solutions of 33 and 34 are not indefinitely stable, there is no evidence that a conproportionation to give the symmetrical counterparts occurs.

As far as the mechanism of formation of 33 and 34 is concerned, we assume that in the initial step a proton transfer from the substituted cyclopentadiene moiety of 23 or 30 to the metal center of 31 and 32 takes place. The generation of a L_nRhH(C=CMe) intermediate in the reaction of 30 and trans-[Rh(C=CMe)(py)(PiPr₃)₂] (32) is shown in the ¹H NMR spectrum by a hydride resonance in the high-field region at δ -13.3 (dd, J(RhH) = 22, J(PH) = 32 Hz) which after stirring the solution for 2 h at room temperature disappears and gives rise to the signals of 34. In agreement with previous studies¹⁵ we note that the alkynyl(hydrido)rhodium intermediate is relatively labile and this may explain why the yield of the final product (33 and 34) is rather low.

A second method to prepare unsymmetrical or mixedmetal dinuclear complexes with $[CH_2(C_5H_4)_2]^{2-}$ as a bridging ligand is based on the metalation of precursors such as 23 or 27 with *n*BuLi followed by treatment of the lithium derivatives with a mononuclear carbonyl or (alkyne)metal compound. On this route, complexes 37-40 (see Scheme IX) are obtained. For $[(LiC_5H_4CH_2C_5H_4)-$ Rh(PhC=CPh)(PiPr₃)] (36), which can be isolated as an extremely air- and moisture-sensitive solid, the conversion of an uncoordinated C_5H_5 to a metalated C_5H_4 ring fragment is clearly confirmed by the NMR data. The ¹³C NMR spectrum (in THF- d_8) displays one doublet for the *ipso*-C (J(RhC) = 2.9 Hz) and two singlets for the C(2,5) and C(3,4) carbon atoms of the lithiated unit instead of

the resonances for the ring CH_2 and CH carbon atoms of 23. Another characteristic feature is that, in contrast to 23, the spectrum of 36 shows only one set of signals for the bridging CH_2 , the *ipso*-C of C₅H₄Rh, and the Rh-(PhC=CPh) carbon atoms.

For the dinuclear complexes 37–39, which are isolated in 40–65% yields, the structural proposal is not only supported by elemental analyses and mass spectra but, in particular, by the IR data. In all cases, two CO stretching vibrations at 2024, 1964 cm⁻¹ (37) and ca. 2040, 1980 cm⁻¹ (38, 39) are observed which have almost the same frequencies as those of the parent $C_5H_5M(CO)_2$ molecules. In contrast to 39, where both C_5H_4 rings are bonded to rhodium, an unambiguous assignment of the ring carbon resonances in the ¹³C NMR spectrum is possible for the mixed-metal compound 38 because those signals which belong to the C_5H_4Rh unit are split into a doublet due to Rh–C coupling.

It has already been mentioned that the reaction of 10 with 22 leads to the allene complex 25, and thus the formation of the unsymmetrical dinuclear compound ${[CH_2(C_5H_4)_2][Rh(\eta^2-CH_2=C=CHMe)(PiPr_3)][Rh-$ (PhC=CPh)(PiPr₃)]} (40) from 22 and 36 deserves no further comment. With regard to the ¹³C NMR data for 40, we note two interesting features, namely (1) the appearance of two doublets-of-doublets-of-doublets for the ipso-C atoms of the two five-membered rings which therefore show coupling with both rhodium nuclei and (2) the observation of two signals for the $PhC \equiv CPh$ carbons and of five signals for the eight CH carbons of the two C_5H_4 units which could be explained by an unsymmetrical coordination of the alkyne to rhodium. The latter may also be due to an unsymmetrical arrangement of the [Rh- $(PhC = CPh)(PiPr_3)$ fragment to one of the rings possibly caused by steric strain.

Finally, the synthesis of the rhodium-iridium complex $[CH_2(C_5H_4)_2]$ [Rh(PhC=CPh)(PiPr₃)] [Ir(C₆H₄CH=CPh)-

 $(PiPr_3)$] (42) (Scheme X) from trans-[IrCl(PhC=CPh)-($PiPr_3$)₂] (41) and 36 illustrates once more that in mixedmetal compounds the conversion of a particular ligand is strongly influenced by the respective metal center. Even after prolonged stirring, a second metalation at one of the phenyl groups of the Rh(PhC=CPh) unit in 42 does not occur and also in the symmetrical molecule 24 (see Scheme VI) no analogous rearrangement takes place. We note that the mononuclear cyclopentadienyl complexes [C₅H₅-Rh(PhC=CPh)(PiPr₃)] and [C₅H₅Ir(PhC=CPh)(PiPr₃)] can also be converted to the isomeric metallacycles [C₅H₅ $M(C_6H_4CH=CPh)(PiPr_3)$],^{23,25} but in both cases the presence of a strong acid such as CF₃CO₂H or HBF₄ is necessary.

Concluding Remarks

The results described in this article reveal that the recently found preparative route which consists in the stepwise coordination of two metal-ligand fragments to the ring units of the $[CH_2(C_5H_4)_2]^{2-}$ dianion can be used for the synthesis of both unsymmetrical homo- and heterodinuclear complexes. Alkynes, vinylidenes, olefins, and allenes are among the ligands which are tolerated at least at one of the metal centers in the $[CH_2(C_5H_4)_2]^{2-}$ bridged compounds. The crucial intermediates in the

preparation of the dinuclear complexes are the mononuclear compounds $[(C_5H_5CH_2C_5H_4)MLL']$ (M = Rh, Ir) which react either by direct means or via the lithium derivatives $[(LiC_5H_4CH_2C_5H_4)MLL']$ to give the final products. However, to attain cooperative behavior between the two metal centers, it is probably necessary to introduce a second bridging unit which could be either a dialkyl phosphide, a diphosphine, or a hydride ligand.^{2,3} The serendipitous finding that the reaction of the polymeric precursor ${[CH_2(C_5H_4)_2][IrBr_2]_2}_n$ with Na₂CO₃/ EtOH in the presence of CH_2 =CHtBu affords the doubly vinyl-bridged dinuclear iridium complex $\{[CH_2(C_5H_4)_2] [Ir_2(\mu-CH=CHtBu)_2]^4$ by activation of a terminal olefin C-H bond could be considered as an indication that, equally, compounds such as 33, 34, or 37-40 in which an unsaturated hydrocarbon ligand is already coordinated to one or both metal atoms may be useful in achieving the final goal.

Experimental Section

General Data. All reactions were carried out under an atmosphere of argon by Schlenk tube techniques. The starting materials $CH_2(C_5H_5)_2$,³¹ ($C_5H_5CH_2C_5H_4$)Na (10),¹³ trans-[RhCl-(RC=CR)(PiPr_3)_2] (21,22),²³ [IrCl(C_8H_{14})_2] (26),³³ [IrCl(C_8H_{14})-(PiPr_3)]_2 (29),²⁹ trans-[Rh(C=CR)(py)(PiPr_3)_2] (31, 32),¹⁵ [Co-(CO)₄I],³⁴ [Rh(CO)₂CI]₂,³⁵ and trans-[IrCl(PhC=CPh)(PiPr_3)_2] (41)^{25a} were prepared as described previously. IR spectra were recorded on a Perkin-Elmer 1420 infrared spectrometer and NMR spectra on a Varian EM 360 L, a JEOL FX 90 Q, and Bruker AC 200 and WM 400 instruments. Mass spectra were measured with a Varian MAT CH7 spectrometer.

Preparation of [CH₂(C₅H₄)₂]Na₂ (1). A suspension of NaNH₂ (43 mg, 1.1 mmol) in 6 mL of tetrahydrofuran (THF) was treated under stirring at -78 °C with a solution of CH₂(C₅H₅)₂ (75 mg, 0.52 mmol) in 2 mL of THF. After warming to room temperature, the suspension was put into an ultrasonic bath and irradiated as long as a precipitate was present. The solution was again cooled to -78 °C and left in a modest vacuum (ca. 50–100 Torr) until all of the ammonia had disappeared. The suspension containing a finely divided light-yellow precipitate of 1 was used without further purification. Yield: quantitative.

Reaction of 1 with [RhH(C=CMe)Cl(py)(PiPr₃)₂] (2). A suspension of 1 (85 mg, 0.45 mmol) in 6 mL of THF was treated at -20 °C with a solution of 2 (375 mg, 0.65 mmol) in 5 mL of THF, and the resulting solution was stirred for 3 h at room temperature. The solvent was removed and the residue extracted three times with 8 mL of pentane. To remove free triisopropylphosphine, the combined extracts were treated with 1 mL of methyl iodide and the mixture was stirred for 30 min. The precipitate was filtered off, the solvent was removed, and the yellow oily residue was dissolved in a small quantity (ca. 1 mL) of hexane. The solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 15 cm). With hexane, a yellow fraction was eluted which contained the mononuclear compound 4, yield 78 mg (27%). (For an improved preparation of 4, see below). With hexane/ether (10:1) a second yellow fraction was obtained which was brought to dryness in vacuum to give yellow air-sensitive oil 5, yield 80 mg (33%). By increasing the amount of ether, a third fraction was eluted which according to the ¹H and ³¹P NMR spectra contained the vinylidene complex 6,¹⁶ yield ca. 5%. Anal. Calcd for $C_{35}H_{60}P_2Rh_2$ (5) (mol weight 748.63) C, 56.15; H, 8.08. Found (mol weight 748 (MS)): C, 56.54; H, 8.40. IR (hexane): ν (C=C) 1666 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ

5.49 (m, 4H, H(2) and H(5) of $C_{5}H_{4}$), 4.85 (vt, N = 4.2 Hz, 4H, H(3) and H(4) of $C_{5}H_{4}$), 4.03 (s, br, 2H, CH₂), 3.25 (ddq, J(RhH) = 1.5, J(PH) = 4.4, J(HH) = 7.4 Hz, 2H, \longrightarrow CHCH₃), 1.98 (m, 6H, PCHCH₃), 1.90 (ddd, J(RhH) = 0.5, J(PH) = 1.6, J(HH) = 7.4 Hz, 6H, \implies CHCH₃), 1.09 (dd, J(PH) = 13.5, J(HH) = 7.3 Hz, 36H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 312.57 (dd, J(RhC) = 65.9, J(PC) = 28.3 Hz, Rh \implies C \implies CHCH₃), 107.94 (dd, J(RhC) = J(PC) = 4.7 Hz, *ipso*-carbons of C₅H₄), 102.96 (dd, J(RhC) = 15.5, J(PC) = 4.2 Hz, Rh \implies C \implies CHCH₃), 86.40 (s, br, C(2,5) of C₅H₄), 83.80 (s, br, C(3,4) of C₅H₄), 29.37 (s, CH₂), 26.48 (d, J(PC) = 21.6 Hz, PCHCH₃), 19.99 (s, PCHCH₃), 5.54 (d, J(RhC) = 2.6 Hz, \implies CHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 73.68 (d, J(RhP) = 208.1 Hz, PiPr₃).

Reaction of 1 with [RhH(C=CPh)Cl(py)(PiPr₃)₂] (3). A suspension of 1 (131 mg, 0.7 mmol) in 8 mL of THF was treated at -20 °C with a solution of 3 (700 mg, 1.1 mmol) in 10 mL of THF, and the mixture was stirred for 3 h at room temperature. The reaction mixture was worked up as described above for 4-6. The yield was 140 mg (25%) for 7, 200 mg (42%) for 8, and ca. 7% for the known vinylidene complex 9.¹⁶ (For an improved preparation of 7, see below). Compound 8, which was isolated as an oil, can be converted into a yellow low-melting solid by storing a highly concentrated solution in pentane at -78 °C, but this procedure is accompanied by a significant decrease in the yield. Anal. Calcd for C45H64P2Rh2 (8): C, 61.93; H, 7.39. Found: C, 62.03; H, 7.50. ¹H NMR (C₆D₆, 90 MHz): δ 6.95 (m, 10H, C₆H₅), 5.22 (m, 4H, H(2) and H(5) of C₅H₄), 4.59 (vt, N =4.2 Hz, H(3) and H(4) of C_5H_4 , 4.19 (dd, J(RhH) = 1.5, J(PH)= 4.6 Hz, 2H, $=CHC_6H_5$), 3.80 (s, br, 2H, CH₂), 1.58 (m, 6H, $PCHCH_3$, 0.74 (dd, J(PH) = 13.8, J(HH) = 6.9 Hz, 36H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 317.59 (dd, J(RhC) = 68.0, J(PC) = 27.9 Hz, Rh=C=CHPh), 132.85 (d, J(RhC) =3.0 Hz, ipso-carbon of C₆H₅), 128.34 and 125.11 (both s, orthoand meta-carbons of C_6H_5), 124.34 (s, para-carbon of C_6H_5), 115.78 (dd, J(RhC) = 14.7, J(PC) = 4.0 Hz, Rh=C=CHPh), 108.19 $(dd, J(RhC) = J(PC) = 4.3 \text{ Hz}, ipso-carbons of C_5H_4), 86.61 (s, 100)$ br, C(2,5) of C₅H₄), 84.40 (s, br, C(3,4) of C₅H₄), 29.28 (s, CH₂), 26.77 (d, J(PC) = 22.9 Hz, $PCHCH_3$), 19.93 (s, $PCHCH_3$). ³¹P NMR (C₆D₆, 36.2 MHz): δ 72.18 (d, J(RhP) = 205.1 Hz, $PiPr_{3}$).

Alternative Procedure for the Preparation of 8. A solution of 7 (50 mg, 0.1 mmol) in 5 mL of hexane was treated dropwise at -78 °C with 0.4 mL (0.1 mmol) of a 0.25 M solution of *n*BuLi in hexane. An orange, extremely air-sensitive solid precipitated which after 10 min was filtered off, washed twice with 3 mL of pentane and dried in vacuum. The solid was then treated with a solution of 3 (64 mg, 0.1 mmol) in 5 mL of THF, and the mixture was stirred for 2 h at room temperature. The solvent was removed, and the oily residue was extracted three times with 5 mL of pentane/ether (3:1). The combined extracts were brought to dryness in vacuum, and the residue was dissolved in ca. 0.5 mL of hexane and chromatographed on Al₂O₃ (neutral, activity grade V, height of column 10 cm). With hexane/ether (7:1) two yellow fractions were eluted of which the first contained 7 (ca. 10 mg) and the second 8, yield 23 mg (26%).

Preparation of [(C₅H₅CH₂C₅H₄)Rh(=C=CHCH₃)(PiPr₃)] (4). A suspension of 10, prepared from CH₂(C₅H₅)₂ (288 mg, 2.0 mmol) and NaNH₂ (47 mg, 1.2 mmol) in 10 mL of THF, was treated at -78 °C with a solution of 2 (340 mg, 0.60 mmol) in 10 mL of THF. After warming to room temperature, the reaction mixture was stirred for 3 h, and then the solvent was removed. The residue was extracted three times with 10 mL of pentane. and the combined extracts were treated with 1 mL of methyl iodide to remove excess PiPr₃. After 30 min the solution was filtered, the filtrate was brought to dryness in vacuum, and the oily yellow residue was dissolved in 1 mL of hexane. The solution was chromatographed on Al₂O₃ (neutral, activity grade III, height of column 15 cm). With hexane a yellow fraction was eluted which after evaporation of the solvent gave a yellow air-sensitive oil, yield 214 mg (80%). Anal. Calcd for C₂₃H₃₈PRh (mol weight 446.43): C, 61.88; H, 8.13. Found (mol weight 446 (MS)): C, 62.19; H, 8.22. ¹H NMR (C₆D₆, 90 MHz): δ 6.42 (m, 3H, olefin protons of C₅H₅), 5.52 (m, 2H, H(2) and H(5) of C₅H₄), 4.77 (m,

⁽³¹⁾ Schaltegger, H.; Neuenschwander, M.; Meuche, D. Helv. Chim. Acta 1965, 48, 955–961.

⁽³²⁾ Werner, H.; Brekau, U. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1989, 44, 1438-1446.

⁽³³⁾ van der Ent, A.; Onderdelinden, A. L. Inorg. Synth. 1973, 14, 92-95.

 ⁽³⁴⁾ Conway, B. G.; Rausch, M. D. Organometallics 1985, 4, 688–693.
 (35) McCleverty, J. A.; Wilkinson, G. Inorg. Synth. 1966, 8, 211–214.

2H, H(3) and H(4) of C_5H_4), 3.71 (s, br, 2H, $C_5H_5CH_2C_5H_4$), 3.21 (m, 1H, —CHCH₃), 2.99 and 2.76 (both m, 1H each, CH₂ of C_5H_5), 2.10 (m, 3H, PCHCH₃), 1.85 (d, J(HH) = 6.8 Hz, 3H, —CHCH₃), 1.05 (dd, J(PH) = 13.4, J(HH) = 7.1 Hz, 18H, PCHCH₃). ³¹P NMR (C_6D_6 , 36.2 MHz): δ 73.60 (d, J(RhP) = 208.1 Hz, PiPr₃).

Preparation of $[(C_5H_5CH_2C_5H_4)Rh(=C=CHPh)(PiPr_3)]$ (7) was analogous to that described for 4, using 10 (prepared from CH₂(C₅H₅)₂ and NaNH₂, see above) and 3 (382 mg, 0.60 mmol) as starting materials, yielding a yellow air-sensitive oil, 231 mg (76%). Anal. Calcd for C₂₂H₃₈PRh (mol weight 508.49): C, 66.13; H, 7.53. Found (mol weight 508 (MS)): C, 66.06; H, 7.73. ¹H NMR (C₆D₆, 90 MHz): δ 6.89 (m, 5H, C₆H₅), 6.24 (m, 3H, olefin protons of C₅H₅), 5.09 (m, 2H, H(2) and H(5) of C₅H₄), 4.53 (m, 2H, H(3) and H(4) of C₅H₄), 4.06 (d, J(PH) = 5.1 Hz, 1H, =CHPh), 3.49 (s, br, 2H, C₅H₅CH₂C₅H₄), 2.63 and 2.49 (both m, 1H each, CH₂ of C₅H₅), 1.70 (m, 3H, PCHCH₃), 0.73 (dd, J(PH) = 13.9, J(HH) = 7.1 Hz, 18H, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 72.35 (d, J(RhP) = 205.1 Hz, PiPr₃).

Preparation of $[(C_5H_5CH_2C_5H_4)Rh(=C=CHtBu)(PiPr_3)]$ (12) was analogous to that described for 4, using 10 (prepared from CH₂(C₅H₅)₂ and NaNH₂, see above) and 11 (372 mg, 0.60 mmol) as starting materials, yielding a yellow air-sensitive oil, 193 mg (66%). Anal. Calcd for C₂₆H₄₂PRh (mol weight 488.51): C, 63.93; H, 8.67. Found (mol weight 488 (MS)): C, 64.27; H, 8.84. The spectroscopic data indicate that the two isomers 12a and 12b (see results) are formed in a ca. 50:50 ratio. ¹H NMR (C6D6, 200 MHz): 8 6.76, 6.45, 6.33, 6.22, and 6.11 (all m, 3H, olefin protons of C₅H₅), 5.38 and 5.33 (both s, br, 2H, H(2) and H(5) of C5H4), 4.79 (m, 2H, H(3) and H(4) of C5H4), 3.78 and 3.75 (both s, br, 2H, $C_5H_5CH_2C_5H_4$), 3.13 (dd, J(RhH) = 1.8, J(PH)= 4.5 Hz, 1H, -CHtBu), 2.95 and 2.78 both m, 2H, CH₂ of C₅H₅), 2.07 (m, 3H, PCHCH₃), 1.22 (s, 9H, C(CH₃)₃), 1.09 (dd, J(PH) = 13.5, J(HH) = 7.1 Hz, 18H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 313.07 and 313.00 (both dd, J(RhC) = 66.5, J(PC) =27.3 Hz, Rh=C=CHtBu), 149.68 and 147.17 (both s, ipso-carbon of C₅H₅), 135.58, 133.31, 132.64, 131.05, 127.73, and 127.03 (all s, sp²-carbons of C_5H_5), 122.39 (dd, J(RhC) = 14.1, J(PC) = 2.1Hz, Rh=C=CHtBu), 105.64 and 104.79 (both dd, J(RhC) = 7.1, $J(PC) = 3.8 \text{ Hz}, ipso-carbon of C_5H_4$, 86.68 (s, br, C(2,5) of C₅H₄), 84.04 (s, br, C(3,4) of C₅H₄), 43.68 and 41.27 (both s, CH₂ of C₅H₅), 32.47 and 30.94 (both s, C(CH₃)₃), 30.11 and 28.06 (both s, $C_5H_5CH_2C_5H_4$), 26.73 (d, J(PC) = 21.9 Hz, $PCHCH_3$), 20.06 (s, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 72.83 and 72.79 (both d, J(RhP) = 208.4 Hz, $PiPr_3$).

Preparation of $[(C_5H_5CH_2C_5H_4)Rh(\eta^2-S=C=CHMe)-$ (PiPr₃)] (13). A solution of 4 (60 mg, 0.13 mmol) in 5 mL of benzene was treated with sulfur (4.5 mg, 0.14 mmol), and the mixture was stirred for 30 min at room temperature. After removal of the solvent, the oily residue was extracted three times with 4 mL of CH_2Cl_2 . The combined extracts were brought to dryness in vacuum, the residue was dissolved in a small amount (ca. 0.5 mL) of hexane/ether (5:1), and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 8 cm) with hexane/ether (5:1). A red fraction was eluted which after evaporation of the solvent gave a red air-sensitive oil, yield 30 mg (48%). Anal. Calcd for C23H36PRhS: C, 57.73; H, 7.58. Found: C, 58.17; H, 7.81. ¹H NMR (C₆D₆, 90 MHz): δ 6.30 (m, 3H, olefin protons of C_5H_5), 5.65 (dq, J(PH) = 1.2, J(HH)= 6.6 Hz, 1H, = $CHCH_3$), 5.36 (m, 2H, H(2) and H(5) of C_5H_4), 4.95 (m, 2H, H(3) and H(4) of C₅H₄), 3.29 (s, br, 2H, $C_5H_5CH_2C_5H_4$, 2.75 (m, 2H, CH₂ of C_5H_5), 2.17 (d, J(HH) = 6.6Hz, 3H, =-CHCH₃), 1.85 (m, 3H, PCHCH₃), 1.03 and 0.93 (both dd, J(PH) = 13.5, J(HH) = 7.0 Hz, 18H, $PCHCH_3$).

Preparation of {[CH₂(C₅H₄)₂][Rh(η^2 -S=C=CHMe)-(PiPr₃)]₂} (14). A solution of 5 (140 mg, 0.17 mmol) in 5 mL of benzene was treated with sulfur (11 mg, 0.34 mmol), and the mixture was stirred for 45 min at room temperature. After removal of the solvent the residue was extracted three times with 6 mL of ether. The further workup was the same as described for 13. Red, moderately air-stable crystals were obtained, yield 67 mg (47%); mp 98 °C dec. ¹H NMR (C₆D₆, 90 MHz): δ 5.55 (dq, J(PH) = 1.2, J(HH) = 6.4 Hz, 2H, =CHCH₃), 5.09 (m, 4H, H(2) and H(5) of C₅H₄), 4.81 (vt, N = 4.6 Hz, 4H, H(3) and H(4) of C₅H₄), 3.73 (s, br, 2H, CH₂), 2.28 (d, J(HH) = 6.4 Hz, 6H, =-CHCH₃), 1.90 (m, 6H, PCHCH₃), 1.05 and 0.95 (both dd, J(PH) = 13.3, J(HH) = 6.9 Hz, 36H, PCHCH₃).

Preparation of [(C₅H₅CH₂C₅H₄)(PiPr₃)Rh(µ-C=CHPh)-CuCl] (15). A solution of 7 (110 mg, 0.22 mmol) in 10 mL of THF was treated with CuCl (22 mg, 0.22 mmol, vacuum dried), and the resulting solution was stirred for 30 min at room temperature. The solvent was removed, the residue was extracted with 4 mL of CH₂Cl₂, and the combined extracts were concentrated to ca. 0.5 mL in vacuum. To complete the precipitation, 2 mL of pentane was added and the solution cooled to -78 °C. After 12 h the mother liquor was removed, and the remaining red solid was repeatedly washed with pentane (0 °C) and dried, yield 72 mg (53%); mp 79 °C dec. Anal. Calcd for C₂₈H₃₈ClCuPRh (mol weight 607.52): C, 55.35; H, 6.30. Found (mol weight 607 (MS)): C, 55.31; H, 6.53. IR (KBr): v(C=C) 1587 cm⁻¹. ¹H NMR (CDCl₃, 90 MHz): δ7.39 (m, 5H, C₆H₅), 6.34 (m, 3H, olefin protons of C₅H₅), 6.04 (m, 1H, =-CHPh), 5.71 and 5.38 (both s, br, 2H, H(2) and H(5) of C_5H_4), 5.23 (vt, N = 4.2 Hz, 2H, H(3) and H(4) of C₅H₄), 3.58 (m, 2H, C₅H₅CH₂C₅H₄), 2.95 (m, 2H, CH₂ of C₅H₅), 2.19 (m, 3H, PCHCH₃), 1.32 and 1.19 (both dd, J(PH) = 13.8, J(HH) = 7.0 Hz, 18H, PCHCH₃). ³¹P NMR (CDCl₃, 36.2 MHz): δ 58.10 (d, J(RhP) = 181.1 Hz, $PiPr_3$).

Preparation of {[CH₂(C₅H₄)₂][(PiPr₃)Rh(\mu-C=CHPh)-CuCl]₂} (16). A solution of 8 (110 mg, 0.13 mmol) in 10 mL of THF was treated with CuCl (25 mg, 0.26 mmol, vacuum dried), and the resulting solution was stirred for 45 min at room temperature. The further workup was as described for 15. Red, moderately air-stable crystals were obtained, yield 79 mg (57%); mp 96 °C dec. Anal. Calcd for C₄₅H₆₄Cl₂Cu₂P₂Rh₂: C, 50.47; H, 6.02; Cu, 11.87; Rh, 19.22. Found: C, 50.97; H 6.20; Cu, 11.32; Rh, 18.78. IR (CH₂Cl₂): \nu(C=C) 1585 cm⁻¹. ¹H NMR (CDCl₃, 60 MHz): δ 7.31 (m, 10H, C₆H₆), 5.79 (m, 4H, H(2) and H(5) of C₅H₄), 5.43 (m, 2H, =CHPh), 5.03 (m, 4H, H(3) and H(4) of C₅H₄), 3.75 (s, br, 2H, CH₂), 1.97 (m, 6H, PCHCH₃), 1.11 and 0.97 (both dd, J(PH) = 13.7, J(HH) = 7.1 Hz, 36H, PCHCH₃). ⁸¹P NMR (CDCl₃, 36.2 MHz): δ 66.85 (d, J(RhP) = 180.1 Hz, PiPr₃).

Preparation of $[(C_5H_5CH_2C_5H_4)(PiPr_3)Rh(C(CH_2Ph)-$ NTos)]BF4 (17). A solution of 7 (125 mg, 0.25 mmol) in 8 mL of pentane was treated dropwise at -78 °C with a solution of tosyl azide (49 mg, 0.25 mmol) in 2 mL of pentane, and the mixture was stirred for 10 min at the same temperature. After warming to 25 °C, the solvent was removed, the oily residue was dissolved in 3 mL of ether, and the solution was treated with 0.5 mL of 50% HBF₄ in ether. An orange solid spontaneously precipitated which was filtered off, repeatedly washed with ether and pentane, and dried, yield 97 mg (51%). Anal. Calcd for C35H46BF4NO2PRhS: C, 54.92; H, 6.06; N, 1.83; Rh, 13.44. Found: C, 54.80; H, 6.03; N, 1.95; Rh, 13.21. Conductivity (in CH₃NO₂): $\Lambda = 78.2 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. IR (KBr): ν (S==O) 1300 and 1145 cm⁻¹. ¹H NMR (CD₃NO₂, 90 MHz): δ 7.61 (m, 9H, C₆H₄-CH₃ and C₆H₅), 6.05 (m, 3H, olefin protons of C₅H₅), 5.38 and 5.12 (both d, J(HH) = 16.4 Hz, 2H, CH_2Ph), 4.91 and 4.77 (both s, br, 2H, H(2) and H(5) of C₅H₄), 4.32 (m, 2H, H(3) and H(4) of C₅H₄), 3.36 (m, 2H, C₅H₅CH₂C₅H₄), 2.92 (m, 2H, CH₂ of C₅H₅), 2.48 (s, 3H, C₆H₄CH₃), 2.20 (m, 3H, PCHCH₃), 1.43 and 1.27 (both dd, J(PH) = 14.0, J(HH) = 7.2 Hz, 18H, PCHCH₃). ³¹P NMR (CD₃NO₂, 36.2 MHz): δ 58.69 and 57.00 (both d, J(RhP) = 140.6 Hz, $PiPr_3$).

Preparation of {[CH₂(C₅H₄)₂][Rh(\eta^2-TosN=C=CHMe)-(PiPr₃)]₂} (18). A solution of 5 (172 mg, 0.23 mmol) in 8 mL of pentane was treated dropwise at -78 °C with a solution of tosyl azide (94 mg, 0.48 mmol) in 2 mL of pentane, and the mixture was stirred for 15 min at the same temperature. After warming to 25 °C, the orange precipitate was filtered off, repeatedly washed with pentane (0 °C), and dried, yield 167 mg (67%); mp 75 °C dec. Anal. Calcd for C₄₉H₇₄N₂O₂P₂Rh₂S₂: C, 54.14; H, 6.86; N, 2.58; Rh, 18.93. Found: C, 54.16; H, 6.99; N, 2.62; Rh, 19.28. IR (KBr): \nu(S=O) 1298 and 1146 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): \delta 7.89 and 6.93 (both m, 8H, C₆H₄), 5.13 (m, 4H, H(2) and H(5) of C₅H₄), 4.91 (ddq, J(RhH) = 0.5, J(PH) = 1.2, J(HH) = 6.6 Hz, 2H, =-CHCH₃), 4.66 (vt, N = 4.4 Hz, 4H, H(3) and H(4) of C₅H₄), 1.93 (s, 6H, C₆H₄CH₃), 1.85 (m, 6H, PCHCH₃), 1.77 (dd, J(PH) = 0.7, J(HH) = 6.6 Hz, 6H, =-CHCH₃), 1.03 and 0.95 (both dd, J(PH) = 13.5, J(HH) = 7.0 Hz, 36H, PCHCH₃); signal of CH₂-(C₅H₄)₂ not observed. ³¹P NMR: (C₆D₆, 36.2 MHz): δ 63.67 (d, J(RhP) = 172.8 Hz, PiPr₃).

Preparation of $[(C_5H_5CH_2C_5H_4)Rh((Z)-CH=CHPh)-$ (OCOCF₃)(PiPr₃)] (19). A solution of 7 (140 mg, 0.27 mmol) in 5 mL of ether was treated with an equimolar amount of CF₃-CO₂H: the mixture was stirred for 15 min at room temperature and then filtered. The filtrate was concentrated to ca. 1 mL in vacuum, and 2 mL of pentane was added. To complete the precipitation, the solution was stored for 12 h at -78 °C. A lightbrown, air-sensitive solid was obtained which was washed twice with pentane (0 °C) and dried in vacuum, yield 97 mg (58%). Anal. Calcd for C₃₀H₃₉F₃O₂PRh: C, 57.88; H, 6.31. Found: C, 57.63; H, 5.98. IR (CH₂Cl₂): ν (C=O) 1689 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 8.35 (dd, J(PH) = 4.0, J(HH) = 5.9 Hz, 1H, CH=CHPh), 7.30 (m, 5H, C₆H₅), 6.20 (m, 3H, olefin protons of C₅H₅), 5.22 (s, br, 2H, H(2) and H(5) of C₅H₄), 4.96 (s, br, 2H, H(3) and H(4) of C₅H₄), 3.29 (s, br, 2H, C₅H₅CH₂C₅H₄), 2.62 (m, 2H, CH₂ of C₅H₅), 2.20 (m, 3H, PCHCH₃), 0.98 and 0.86 ((both dd, J(PH) = 13.2, J(HH) = 7.2 Hz, 18H, PCHCH₃); signal of CH=CHPh not exactly located.

Preparation of $\{[CH_2(C_5H_4)_2][Rh((Z)-CH=CHPh)-(OCOCF_3)(PiPr_3)]_2\}$ (20). A solution of 8 (134 mg, 0.15 mmol) in 5 mL of ether was treated with 30 μ L of CF₃CO₂H and stirred for 15 min at room temperature. After the solvent was removed, the residue was recrystallized from THF/pentane (25 to -78 °C). A brown, very air-sensitive solid was formed which was filtered off, washed three times with pentane (0 °C), and dried in vacuum, yield 100 mg (61%); mp 57 °C dec. Anal. Calcd for C₄₉H₆₆F₆O₄P₂Rh₂: C, 53.46; H, 6.04; Rh, 18.70. Found: C, 53.74; H, 6.43; Rh, 18.29. IR (CH₂Cl₂): ν (C=O) 1692 cm⁻¹. As the compound is not stable in solution, no reliable NMR spectra could be obtained.

Preparation of [(C₅H₅CH₂C₅H₄)Rh(PhC=CPh)(PiPr₃)] (23) and $\{[CH_2(C_5H_4)_2][Rh(PhC=CPh)(PiPr_3)]_2\}$ (24). A suspension of 10 (83 mg, 0.50 mmol) in 8 mL of THF was treated at -78 °C with a solution of 21 (159 mg, 0.25 mmol) in 7 mL of THF. After warming to room temperature, the reaction mixture was stirred for 3 h, and then the solvent was removed. The residue was extracted three times with 8 mL of pentane, the combined extracts were treated with 1 mL of methyl iodide (to remove excess $PiPr_3$, and after 30 min the solution was filtered. The filtrate was brought to dryness in vacuum, the residue was dissolved in ca. 2 mL of hexane, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 10 cm). With hexane, first an intense yellow fraction was eluted which after evaporation of the solvent gave 23 as a yellow airsensitive oil, yield 117 mg (80%). With more hexane, a second yellow fraction was obtained, which contained 24 also as a yellow oil, yield 20 mg (4%).

Anal. Calcd for C₃₄H₄₂PRh (23) (mol weight 584.59): C, 69.86; H, 7.24. Found (mol weight 584 (MS)): C, 70.01; H, 7.50. IR (hexane): ν (C==C) 1823 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): (isomer A (see Figure 1)) δ 6.31 (ddt, J(H(2)/H(3)) = 5.2, J(H(1)/H(3))= J(H(3)/H(4)) = 1.5 Hz, 1H, H(3) of C₅H₅), 6.16 (ddt, J(H(2)/H(3) = 5.2, J(H(1)/H(2)) = J(H(2)/H(4)) = 1.7 Hz, 1H, H(2) of C_5H_5 , 5.73 (ddtt, J(H(1)/H(2)) = J(H1)/H(4)) = 1.7, J(H(1)/H(4)) = 1.7 $H(3) = 1.5, J(H(1)/H(5)) = 0.7 Hz, 1H, H(1) \text{ of } C_5H_5), 3.24 \text{ (m,}$ 2H, H(5)), 2.60 (dddt, J(H(1)/H(4)) = J(H(2)/H(4)) = 1.7, J(H(3)/H(4)) = 1.7, J(H(3) $H(4) = J(H(4)/H(5)) = 1.5 Hz, 2H, H(4) \text{ of } C_5H_5);$ (isomer B (see Figure 1)) $\delta 6.28 (ddt, J(H(3)/H(4)) = 5.4, J(H(1)/H(3)) = J(H(2)/H(3)) = J(H(2$ $H(3) = 1.8 Hz, 1H, H(3) \text{ of } C_5H_5), 6.04 (ddt, J(H(3)/H(4)) = 5.4,$ J(H(1)/H(4)) = J(H(2)/H(4)) = 1.4 Hz, 1H, H(4) of C₅H₅), 5.98 (ddtt, J(H(1)/H(2)) = J(H(1)/H(3)) = 1.8, J(H(1)/H(4)) = 1.4,J(H(1)/H(5)) = 0.7 Hz, 1H, H(1) of C₅H₅), 3.00 (m, 2H, H(5)), 2.52 (ddd, J(H(1)/H(2)) = J(H(2)/H(3)) = 1.8, J(H(2)/H(4)) =1.4 Hz, 2H, H(2) of C_5H_5 ; (the other signals cannot be definitely assigned to one of the isomers) δ 8.09 (m, 4H, C₆H₅), 7.27 (m, 6H, C₆H₅), 5.60 and 5.54 (both m, 2H, H(2') and H(5') of C₅H₄), 5.27

Figure 1. Numbering scheme for the protons and corresponding carbon atoms of isomers A and B of 23.

(vt. N = 4.1 Hz. 2H. H(3') and H(4)' of C₅H₄), 1.60 (m. 3H. $PCHCH_3$, 0.89 and 0.88 (both dd, J(PH) = 13.0, J(HH) = 7.2Hz, 18H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): (isomer A (see Figure 1)) δ 135.16 (s, C(3) of C₅H₅), 133.26 (s, C(2) of C₅H₆), 126.82 (s, C(1) of C₅H₅), 41.18 (s, C(4) of C₅H₅), 28.97 (d, J(RhC) = 1.6 Hz, C(5)); (isomer B (see Figure 1)) δ 132.52 (s, C(3) of C₅H₅), 130.87 (s, C(4) of C₅H₅), 127.44 (s, C(1) of C₅H₅), 43.29 (s, C(2) of C_5H_5), 29.83 (d, J(RhC) = 1.6 Hz, C(5)); (the other signals cannot be definitely assigned to one of the isomers) δ 149.02 and 146.42 (both d, J(RhC) = 2.6 Hz, *ipso*-carbon of C₅H₅), 133.64 (s, ipso-carbon of C_6H_5), 131.50 and 128.18 (both s, ortho- and meta-carbons of C_6H_5), 125.86 (s, para-carbon of C_6H_5), 105.82 and 105.14 (both dd, J(RhC) = 11.6, J(PC) = 2.3 Hz, ipso-carbon of C_5H_4), 96.24 and 96.20 (both dd, J(RhC) = 16.8, J(PC) = 4.8Hz, PhC==CPh), 87.70 and 87.64 (both dd, J(RhC) = J(PC) =2.7 Hz, C(2') and C(5') of C₅H₄), 82.54 (d, J(RhC) = 3.9 Hz, C(3') and C(4') of C₅H₄), 26.54 (d, J(PC) = 20.7 Hz, PCHCH₃), 20.01 (s, PCHCH₃); signal of $C_5H_5CH_2C_5H_4$ not observed; assignment of the carbon atoms of C_5H_5 confirmed by DEPT measurements. ³¹P NMR (C₆D₆, 36.2 MHz): δ 71.85 and 71.78 (both d, J(RhP) $= 199.5 \text{ Hz}, \text{PiPr}_3$).

24: IR (hexane) ν (C==O) 1834 cm⁻¹; ¹H NMR (C₆D₆, 200 MHz): δ 8.01 (m, 8H, C₆H₅), 7.26 (m, 12H, C₆H₅), 5.33 (m, 4H, H(2) and H(5) of C₅H₄), 5.14 (vt, N = 3.6 Hz, 4H, H(3) and H(4) of C₅H₄), 2.91 (s, br, 2H, CH₂), 1.54 (m, 6H, PCHCH₃), 0.84 (dd, J(PH) = 13.0, J(HH) = 7.1 Hz, 36H, PCHCH₃).

Preparation of [(C₅H₅CH₂C₅H₄)Rh(\eta^2-CH₂—C—CHCH₃)-(PiPr₃)] (25). A suspension of 10 (84 mg, 0.50 mmol) in 8 mL of THF was treated at -78 °C with a solution of 22 (128 mg, 0.25 mmol). After warming to room temperature, the reaction mixture was worked up as described for 23. A yellow air-sensitive oil was obtained, yield 74 mg (63%). ¹H NMR (C₆D₆, 90 MHz): \delta 6.31 (m, 3H, olefin protons of C₅H₅), 5.63 (m, 1H, —CHCH₃), 5.13 (m, 4H, C₅H₄), 3.27 (m, 2H, C₅H₅CH₂C₅H₄), 2.77 (m, 2H, CH₂ of C₅H₅), 2.17 (dt, J(HH) = 6.5 and 1.7 Hz, 3H, —CHCH₃), 2.04 (m, 1H, —CH₂; the signal of the second —CH₂ proton could not be localized), 1.53 (m, 3H, PCHCH₃), 1.01 (dd, J(PH) = 13.0, J(HH) = 6.6 Hz, 18H, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): \delta 68.85 and 68.77 (both d, J(RhP) = 194.9 Hz, PiPr₃).

Preparation of [(C₅H₅CH₂C₅H₄)Ir(C₅H₁₄)₂](27) and {[CH₂-(C₅H₄)₂][Ir(C₅H₁₄)₂]₂}(28). A suspension of 10, freshly prepared from CH₂(C₅H₅) (288 mg, 2.0 mmol) and NaNH₂ (55 mg, 1.4 mmol), in 15 mL of THF was treated at -78 °C with 26 (365 mg, 0.41 mmol). After warming to room temperature, the reaction mixture was stirred for 3h. The solvent was removed, and the residue was extracted four times with 8 mL of pentane. The combined extracts were brought to dryness in vacuum, the residue was dissolved in 1 mL of hexane, and the solution was chromatographed on Al₂O₃ (neutral, activity grade III, height of column 15 cm). With hexane a pale yellow fraction was eluted which after evaporation of the solvent gave 27 as an almost colorless, only moderately air-sensitive oil, yield 406 mg (89%). With hexane/benzene (10:1) a second fraction was eluted from which after removal of the solvent and recrystallization from pentane (25 to -78 °C) a colorless solid was isolated; yield of 28 12 mg (3%). The compound was characterized by ¹H and ³¹P NMR spectroscopic data (for comparison, see ref 3b). 27: MS $(70 \text{ eV}) m/z (I_r) 556 (4.1; M^+), 446 (21.4; M^+ - C_8H_{14}), 336 (18.1;$ $M^+ - 2 C_8 H_{14}$; ¹H NMR (C₆D₆, 200 MHz) δ 6.61, 6.43, 6.34, 6.23, 6.18, and 5.97 (all m, 3H, olefin protons of C₅H₅, two isomers in approximately equimolar ratios), 4.85 and 4.84 (both vt, N = 3.8Hz, 2H, H(2) and H(5) of C_5H_4 , 4.38 and 4.33 (both vt, N = 3.8Hz, 2H, H(3) and H(4) of C₅H₄), 3.45 and 3.41 (both m, 2H, C₅H₅CH₂C₅H₄), 2.85 and 2.79 (both m, 2H, CH₂ of C₅H₅), 2.20 (m, 4H, =CH of C₈H₁₄), 1.64 and 1.35 (both m, 24H, CH₂ of C₈H₁₄); ¹³C NMR (C₆D₆, 50.3 MHz) & 148.60 and 146.43 (both s, ipso-carbon of C₅H₅), 134.98, 133.72, 132.64, 131.30, and 127.24 (all s, sp^2 -carbons of C_5H_5 , one signal covered by the signal of C₆H₆), 102.22 and 101.50 (both s, ipso-carbon of C₅H₄), 86.87, 86.71, 86.61, and 86.49 (all s, C(2-5) of C₅H₄), 46.18 and 46.11 (both s, ==CH of C_8H_{14}), 43.37 and 41.33 (both s, CH₂ of C_5H_5), 33.62, 33.31 and 26.88 (all s, CH2 of C8H14), 26.04 and 23.06 (both s, C₅H₅CH₂C₅H₄).

Preparation of $[(C_5H_5CH_2C_5H_4)Ir(C_8H_{14})(PiPr_3)]$ (30). A solution of 29, freshly prepared from 26 (168 mg, 0.19 mmol) and $PiPr_3$ (61 mg, 0.38 mmol), in 10 mL of hexane was treated at -20 °C with a suspension of 10 (83 mg, 0.50 mmol) in 7 mL of THF. After warming to 45 °C, the reaction mixture was stirred for 90 min and then the solvent was removed. The residue was extracted four times with 6 mL of pentane/benzene (1:1), and the combined extracts were brought to dryness in vacuum. The oily residue was dissolved in 1 mL of benzene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade I, height of column 8 cm). With hexane/benzene (7:1) a red fraction was eluted from which after evaporation of the solvent a red airsensitive oil was isolated, yield 85 mg (38%). ¹H NMR (C₆D₆, 60 MHz): δ 6.11 (m, 3H, olefin protons of C₅H₅), 4.97 (vt, N = 3.9 Hz, 2H, H(2) and H(5) of C₅H₄), 4.52 (m, 2H, H(3) and H(4) of C₅H₄), 3.59 (s, br, 2H, C₅H₅CH₂C₅H₄), 2.81 (m, 2H, CH₂ of C_5H_5 , 2.34 (m, 2H, =-CH of C_8H_{14}), 1.65 (m, 12H, CH₂ of C_8H_{14}), 1.01 (dd, J(PH) = 12.3, J(HH) = 6.2 Hz, 18H, PCHCH₃), signal of PCHCH₃ covered by other signals. ⁸¹P NMR (C₆D₆, 36.2 MHz): δ 25.20 and 25.12 (both s, PiPr₃).

Preparation of $\{[CH_2(C_5H_4)_2][Rh(=C=CHPh)(PiPr_3)]$ -[Rh(PhC=CPh)(PiPr3)]} (33). A solid sample of 31 (110 mg, 0.18 mmol) was treated at -10 °C with a solution of 23 (97 mg, 0.18 mmol) in 10 mL of THF. After warming to room temperature, the reaction mixture was stirred for 2 h, and then the solvent was removed. The oily residue was extracted three times with 5 mL of pentane, and the combined extracts were treated with 0.5 mL of methyl iodide. After 30 min, the solution was filtered and the solvent was evaporated in vacuum. The residue was dissolved in 1 mL of hexane and the solution was chromatographed on Al₂O₃ (neutral, activity grade IV, height of column 12 cm). With hexane a yellow fraction was eluted which contained nonreacted 23. With hexane/ether (10:1) an orange fraction was obtained which after repeated chromatography and removal of the solvent gave an orange air-sensitive oil, yield 19 mg (11%). Anal. Calcd for C51H68P2Rh: C, 64.56; H, 7.22. Found: C, 65.73; H, 7.53. IR (hexane): ν (C=C) 1834 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 8.08 and 7.08 (both m, 15H, C₆H₅), 5.22 and 5.17 (both m, 4H, H(2) and H(5) of C5H4), 4.83 and 4.67 (both m, 4H, H(3) and H(4) of C₅H₄), 3.41 (m, 1H, =CHPh), 2.92 (s, br, 2H, CH₂), 1.59 (m, 6H, PCHCH₃), 0.88 and 0.67 (both dd, $J(PH) = 12.8, J(HH) = 7.0 Hz, 36H, PCHCH_3).$

Preparation of ${[CH_2(C_5H_4)_2][Rh(=C=CHMe)(PiPr_3)]-$ [Ir(C₃H₁₄)(PiPr₃)]}(34). A solid sample of 32 (85 mg, 0.14 mmol) was treated with a solution of 30 (85 mg, 0.14 mmol) and stirred for 2 h at room temperature. The reaction mixture was worked up as described for 33. After separation of nonreacted 30 by chromatography, with hexane/ether a second yellow fraction was eluted which after removal of the solvent gave a yellow airsensitive oil, yield 16 mg (13%). Anal. Calcd for $C_{40}H_{70}IrP_2Rh$: C, 52.91; H, 7.77. Found: C, 54.17; H, 7.58. ¹H NMR (C_6D_6 , 200 MHz): δ 5.45 and 5.04 (both m, 4H, H(2) and H(5) of C_5H_4), 4.83 and 4.75 (both m, 4H, H(3) and H(4) of C_6H_4), 3.93 (s, br, 2H, CH₂), 3.28 (m, 1H, =CHCH₃), 2.46 (m, 2H, =CH of C_8H_{14}), 1.80 (d, J(HH) = 7.0 Hz, 3H, =CHCH₃), 1.62 (m, 12H, CH₂ of C_8H_{14}), 1.09 and 1.03 (both dd, J(PH) = 13.0, J(HH) = 7.0 Hz, 36H, PCHCH₃), signal of PCHCH₃ obscured by signal of C_8H_{14} protons. ³¹P NMR (C_6D_6 , 36.2 MHz): δ 73.68 (d, J(RhP) = 208.2 Hz, PiPr₃ at Rh), 25.20 (s, PiPr₃ at Ir).

Preparation of $[(\text{LiC}_5\text{H}_4\text{CH}_2\text{C}_5\text{H}_4)\text{Ir}(\text{C}_8\text{H}_{14})_2]$ (35). A solution of 27 (165 mg, 0.30 mmol) in 15 mL of ether was treated at -78 °C under stirring dropwise with a 2 M solution of *n*BuLi (0.2 mL, 0.4 mmol) in hexane. After warming to room temperature, the solvent was removed and the residue repeatedly washed with pentane until the mother liquor remained colorless. A white, extremely air-sensitive solid was obtained which was directly used for the preparation of 37 and 38, yield 163 mg (97%).

Preparation of [(LiC₅H₄CH₂C₅H₄)Rh(PhC=CPh)(PiPr₃)] (36) was analogous to that described for 35, using 23 (176 mg, 0.30 mmol) as starting material. A yellow, very air-sensitive solid was obtained, yield 168 mg (95%). ¹H NMR (THF-d₈, 200 MHz): δ 7.93 (m, 4H, C₆H₅), 7.19 (m, 6H, C₆H₅), 5.48 (s, br, 2H, C_5H_4), 5.42 (vt, N = 5.1 Hz, 2H, C_5H_4), 5.35 (m, 2H, C_5H_4), 5.26 (m, 2H, C₅H₄), 3.02 (s, br, 2H, CH₂), 1.87 (m, 3H, PCHCH₃), 1.05 $(dd, J(PH) = 12.9 Hz, J(HH) = 7.1 Hz, 18H, PCHCH_3)$. ¹³C NMR (THF-d₈, 50.3 MHz): 134.75 (s, ipso-carbon of C₆H₅), 131.93 and 128.28 (both s. ortho- and meta-carbons of CeH₅), 125.72 (s. para-carbon of C_6H_5), 120.18 (d, J(RhC) = 2.9 Hz, ipso-carbon of C₅H₄Li), 112.28 (dd, J(RhC) = 9.7, J(PC) = 2.6 Hz, ipsocarbon of C₅H₄Rh), 103.07 and 102.09 (both s, C(2-5) of C₅H₄Li), 97.46 (dd, J(RhC) = 17.1, J(PC) = 4.9 Hz, PhC = CPh), 87.47 (s, CPh) = 17.1, J(PC) =br, C(2) and C(5) of C_5H_4Rh), 81.92 (d, J(RhC) = 3.8 Hz, C(3) and C(4) of C₅H₄Rh), 29.98 (s, br, CH₂), 26.80 (d, J(PC) = 20.2Hz, PCHCH₃), 20.38 (s, PCHCH₃).

Reaction of 36 with MeOH. A solution of **36** (68 mg, 0.12 mmol) in 5 mL of THF was treated under stirring dropwise with 0.5 mL of methanol. After warming to room temperature, the same workup procedure was used as described for **23**. The ¹H NMR spectrum showed that again both isomers are present in a 1:1 ratio.

Preparation of $\{[CH_2(C_5H_4)_2][Co(CO)_2][Ir(C_8H_{14})_2]\}$ (37). A solid sample of 35 (191 mg, 0.34 mmol) was treated at -78 °C with a solution of freshly prepared [Co(CO)₄I] (92 mg, 0.34 mmol) in 10 mL of ether. After warming to room temperature, the reaction mixture was stirred for 2 h, and then the solvent was removed. The brown residue was suspended in 5 mL of toluene, and the solution was filtered through Al₂O₃ (neutral, activity grade IV). The filtrate was brought to dryness in vacuum, the residue was dissolved in 1 mL of toluene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade IV, height of column 12 cm). With hexane/toluene (12:1) a brown fraction was eluted which after evaporation of the solvent gave a brown air-sensitive oil, yield 87 mg (38%). Anal. Calcd for C₂₉H₃₈-CoIrO₂ (mol weight 669.75): C, 52.01; H, 5.72. Found (mol weight 670 (MS)): C, 52.84; H, 6.32. IR (hexane): ν (CO) 2024, 1964 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 4.85 (vt, N = 3.8 Hz, 2H, C_5H_4), 4.70 (vt, N = 4.3 Hz, 2H, C_5H_4), 4.41 (vt, N = 4.3 Hz, 2H, C_5H_4 , 4.36 (vt, N = 3.8 Hz, 2H, C_5H_4), 3.15 (s, 2H, $C_5H_4CH_2C_5H_4$), 2.16 (m, 4H, =-CH of C₈H₁₄), 1.65 and 1.34 (both m, 24H, CH₂ of C₈H₁₄). ¹³C NMR (C₆D₆, 50.3 MHz): δ 107.07 (s, ipso-carbon of C5H4Co), 100.40 (s, ipso-carbon of C5H4Ir), 87.33, 86.41, 85.38, and 83.09 (all s, C(2-5) of C₅H₄), 46.49 (s, =CH of C₈H₁₄), 33.67, 33.26, and 26.90 (all s, CH2 of C8H14), 26.11 (s, C5H4CH2C5H4), signal of CoCO not exactly located.

Preparation of {[CH₂(C_5H_4)₂][Rh(CO)₂][Ir(C_5H_{14})₂]; (38) was analogous to that described for 37, using 35 (186 mg, 0.33 mmol) and a solution of [Rh(CO)₂Cl]₂ (74 mg, 0.19 mmol) in 7 mL of THF as starting materials. During chromatography with

Figure 2. Assignment of the carbon atoms of the $Ir(C_6H_4-CH=CPh)$ unit (confirmed by DEPT measurements).

hexane/toluene (12:1), an orange fraction was eluted which after evaporation of the solvent gave an orange oil. This was recrystallized from 2 mL of pentane (25 to -78 °C) to give an orange, moderately air-sensitive solid, yield 129 mg (53%); mp 85 °C dec. Anal. Calcd for C₂₉H₃₈IrO₂Rh (mol weight 713.73): C, 48.80; H, 5.37. Found (mol weight 714 (MS)): C, 49.09; H, 5.36. IR (hexane): v(CO) 2043, 1980 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): $\delta 5.12$ (vt, N = 4.3 Hz, 2H, C₅H₄), 4.85 (m, 4H, C₅H₄), 4.36 4H, =-CH of C₈H₁₄), 1.51 and 1.30 (both m, 24H, CH₂ of C₈H₁₄). ¹³C NMR (C₆D₆, 50.3 MHz): δ 192.78 (d, J(RhC) = 83.8, CO), 112.61 (d, J(RhC) = 4.2 Hz, *ipso*-carbon of C₅H₄Rh), 101.22 (s, *ipso*-carbon of C_5H_4Ir), 88.62 (d, J(RhC) = 3.0 Hz, C(2) and C(5) of C5H4Rh), 87.23 (s, C(2) and C(5) of C5H4Ir), 86.34 (s, C(3) and C(4) of C₅H₄Ir), 86.14 (d, J(RhC) = 3.8 Hz, C(3) and C(4) of C_5H_4Rh), 46.39 (s, =CH of C_8H_{14}), 33.64, 33.24, and 26.81 (all s, CH₂ of C₈H₁₄), 27.00 (s, C₅H₄CH₂C₅H₄).

Preparation of {[CH2(C3H4)2][Rh(CO)2][Rh(PhC=CPh)-(PiPr₃)] (39). A solid sample of 36 (201 mg, 0.34 mmol) was treated at -78 °C under stirring with a solution of [Rh(CO)₂Cl]₂ (78 mg, 0.20 mmol) in 15 mL of THF. After warming to 45 °C, the reaction mixture was stirred for 2 h, and after cooling to room temperature, the solvent was removed. The residue was repeatedly extracted with pentane, and the combined extracts were brought to dryness in vacuum. The oily residue was dissolved in 1 mL of hexane, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V, height of column 15 cm). With hexane, an orange fraction was eluted which after removal of the solvent gave an orange oil. This was dissolved in 2 mL of warmed hexane (50 °C), and then the solution was cooled slowly to -78 °C and stored for 12 h. An orange, moderatley air-sensitive solid was obtained, yield 161 mg (64%); mp 81 °C dec. Anal. Calcd for C₃₈H₄₁O₂PRh: C, 58.23; H, 5.57. Found: C, 58.51; H, 5.46. IR (hexane): v(CO) 2041, 1978, v(C=C) 1824 cm⁻¹. ¹H NMR (C6D6, 200 MHz): 88.18 (m, 4H, C6H5), 7.17 (m, 6H, C6H5), 5.58 $(m, 2H, C_5H_4), 5.26 (vt, N = 4.1 Hz, 2H, C_5H_4), 4.86 (vt, N = 3.8)$ Hz, 2H, C_5H_4), 4.67 (vt, N = 4.3 Hz, 2H, C_5H_4), 2.80 (m, 2H, CH₂), $1.57 (m, 3H, PCHCH_3), 0.87 (dd, J(PH) = 13.0 Hz, J(HH) = 7.1$ Hz, 18H, PCHCH₃). ¹³C NMR (C₆D₆, 50.3 MHz): δ 192.99 (d, $J(RhC) = 84.0 \text{ Hz}, CO), 133.60 \text{ (s. ipso-carbon of } C_6H_5), 131.44$ and 128.30 (both s, ortho- and meta-carbons of C_6H_5), 126.06 (s, para-carbon of C_6H_5), 112.98 (dd, ${}^{1}J(RhC) = {}^{3}J(RhC) = 3.8$ Hz. ipso-carbon of C₅H₄Rh(CO)₂), 104.93 (dd, J(RhC) = 12.2, J(PC) = 3.4 Hz, *ipso*-carbon of $C_5H_4Rh(PiPr_3)L$), 95.73 (dd, J(RhC) = 17.6, J(PC) = 5.3 Hz, PhC=CPh), 88.61 (d, J(RhC) = 2.8 Hz, two carbons of C_5H_4), 87.58 (s, br, two carbons of C_5H_4), 85.69 $(d, J(RhC) = 3.8 Hz, two carbons of C_5H_4), 82.84 (d, J(RhC) =$ 4.0 Hz, two carbons of C_5H_4), 27.38 (s, CH₂), 26.15 (d, J(PC) =21.0 Hz, PCHCH₈), 19.94 (s, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 71.81 (d, J(RhP) = 199.5 Hz, $PiPr_3$).

Preparation of {[CH₂(C₅H₄)₂][Rh(\eta^2-CH₂-C=CHCH₃)-(PiPr₃)][Rh(PhC=CPh)(PiPr₃)]} (40) was analogous to that described for 39, using 36 (200 mg, 0.34 mmol) and 22 (205 mg, 0.40 mmol) as starting materials. During chromatography with hexane, a yellow fraction was eluted which after removal of the solvent and recrystallization of the oily residue from hexane (60 to -78 °C) gave a yellow solid, yield 156 mg (51%); mp 77 °C dec. Anal. Calcd for C₄₇H₈₈P₂Rh: C, 62.67; H, 7.61. Found: C, 62.84; H, 7.67. IR (KBr) ν (C=C) 1824 cm⁻¹. ¹H NMR (C_aD_a, 90 MHz): δ 8.12 (m, 4H, C₆H₅), 7.22 (m, 6H, C₆H₅), 5.63 (m, 2H, C₅H₄), 5.42 $(m, 1H, =CHCH_3), 5.28 (vt, N = 4.0 Hz, 2H, C_5H_4), 4.99 (m, 4H,$ C_5H_4), 2.96 (s, br, 2H, $C_5H_4CH_2C_5H_4$), 2.10 (dt, ${}^3J(HH) = 6.3$, ${}^{5}J(HH) = 1.5 Hz, 3H, = CHCH_{3}, 2.00 (m, 1H, one proton of$ CH₂, the signal of the second proton could not be localized), 1.53 (m, 6H, PCHCH₃), 0.96 and 0.91 (both dd, J(PH) = 12.6 Hz, J(HH) = 7.0 Hz, 36H, PCHCH₃). ¹³C NMR (C₆D₆, 22.5 MHz): δ 161.10 (dd, J(RhC) = 23.4, J(PC) = 6.6 Hz, CH₂=C=CHCH₃), 134.02 (s, ipso-carbon of C₆H₅), 131.54 and 128.16 (both s, orthoand meta-carbons of C6H5), 125.76 (8, para-carbon of C6H5), 109.66 $(dd, J(RhC) = J(PC) = 1.8 Hz, CH_2 - C - CHCH_3), 106.44 (ddd, ddd)$ ${}^{1}J(\text{RhC}) = 10.5, {}^{8}J(\text{RhC}) = J(\text{PC}) = 2.2 \text{ Hz}, ipso-carbon of C_{5}H_{4}$ $Rh(PhC=CPh)(PiPr_3), 105.66 (ddd, {}^{1}J(RhC) = 6.6, {}^{3}J(RhC) =$ J(PC) = 3.3 Hz, *ipso*-carbon of $C_5H_4Rh(\eta^2-CH_2-C-CHCH_3)$ - $(PiPr_3)$), 96.33 (dd, J(RhC) = 16.7, J(PC) = 5.1 Hz, one carbon of PhC=CPh), 96.23 (dd, J(RhC) = 16.9, J(PC) = 5.1 Hz, one carbon of PhC=CPh), 87.80 (m, C₅H₄), 86.33 (d, J(RhC) = 2.9 Hz, C_5H_4), 85.72 (d, J(RhC) = 3.7 Hz, C_5H_4), 84.56 (d, J(RhC)= 3.6 Hz, C_5H_4), 82.42 (d, J(RhC) = 2.9 Hz, C_5H_4), 26.69 (s, $C_5H_4CH_2C_5H_4$), 26.23 (d, J(PC) = 20.5 Hz, PCHCH₃), 25.88 (d, J(PC) = 19.1 Hz, PCHCH₃), 22.23 (s, br, =-CHCH₃), 19.99 (s, PCHCH₃ of both phosphine ligands), 1.21 (dd, J(RhC) = 12.1. J(PC) = 2.6 Hz, CH_2 =C=CHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 71.82 (d, J(RhP) = 199.3 Hz, $PiPr_3$), 68.69 (d, J(RhP) $= 194.9 \text{ Hz}, \text{PiPr}_3$).

Preparation of $\{[CH_2(C_5H_4)_2][Rh(PhC=CPh).$

(PiPr₃)][Ir(C₄H₄CH=CPh)(PiPr₃)]}(42) was analogous to that described for 39, using 36 (200 mg, 0.34 mmol) and 41 (290 mg, 0.40 mmol) as starting materials. The workup procedure was the same as for 40. A yellow, moderately air-sensitive solid was obtained, yield 216 mg (57%); mp 85 °C dec. Anal. Calcd for C57H72IrP2Rh: C, 61.44; H, 6.51. Found: C, 61.80; H, 6.66. IR (hexane) v(C=C) 1811, v(C=C) 1582 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 7.98 and 7.14 (both m, 19H, C₆H₅ and C₆H₄), 5.14 (m, 6H, C5H4), 4.93 (m, 1H, C5H4), 4.73 (s, br, 1H, C5H4), 2.60 (s, 2H, CH_2), 2.04 and 1.57 (both m, 6H, PCHCH₃), 0.85 (dd, J(PH) =12.9, J(HH) = 7.1 Hz, 18H, PCHCH₃ from PiPr₃ on Rh), 0.67 and $0.60 \text{ (both dd, } J(PH) = 13.0 \text{ Hz}, J(HH) = 7.1 \text{ Hz}, 18H, PCHCH_8$ from PiPr₃ on Ir), signal of ==CH proton not exactly located. ¹³C NMR (C₆D₆, 50.3 MHz): δ 161.52 and 151.77 (both s, C(1) and C(9), 152.58 and 146.10 (both d, J(PC) = 9.7 and 11.7 Hz, C(2)and C(8)), 142.53, 138.92, 128.75, 128.22, 127.52, 125.23, 122.75, 122.54 (all s, C(3-6) and C(10-12)), 134.03 (d, J(RhC) = 4.6 Hz, ipso-carbon of C₆H₅ groups on C=C), 131.51 and 128.14 (both s, ortho- and meta-carbons of C_6H_5 groups on C=C), 125.72 (s, para-carbon of C_6H_5 groups on C=C), 104.67 (ddd, J(RhC) = $9.7, {}^{2}J(PC) = {}^{4}J(PC) = 2.5 \text{ Hz}, ipso-carbon of C_{5}H_{4}Rh), 100.80$ $(dd, J(RhC) = 2.0, J(PC) = 10.4 \text{ Hz}, ipso-carbon of C_5H_4Ir),$ 95.93 and 95.79 (both dd, J(RhC) = 17.1, J(PC) = 5.1 Hz, PhC==CPh), 89.87 (d, J(RhC) = 4.2 Hz, one carbon of C₅H₄Rh), 87.48 (d, J(RhC) = 3.0 Hz, one carbon of C₅H₄Rh), 87.42 (d, J(RhC) = 2.6 Hz, one carbon of C₅H₄Rh), 85.84 (s, one carbon of C_5H_4Ir), 84.41 (s, one carbon of C_5H_4Ir), 82.58 (d, J(RhC) =3.6 Hz, one carbon of C₅H₄Rh), 77.45 (s, two carbons of C₅H₄Ir), 25.79 (d, J(PC) = 20.7 Hz, $PCHCH_3$ from $PiPr_3$ on Rh), 25.28 $(s, CH_2), 24.97 (d, J(PC) = 29.0 Hz, PCHCH_3 \text{ from } PiPr_3 \text{ on } Ir),$ 20.20 and 19.73 (both s, PCHCH₃ from PiPr₃ on Ir), 19.94 (s, PCHCH₃ from PiPr₃ on Rh); for assignment of C(1-12), see Figure 2. ³¹P NMR (C₆D₆, 36.2 MHz): δ 71.68 (d, J(RhP) = 200.8 Hz, PiPr₃ on Rh), 12.88 (s, PiPr₃ on Ir).

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and in particular DE-GUSSA AG for various gifts of chemicals. We also gratefully acknowledge support by Mrs. M. L. Schäfer (NMR spectra), Mrs. A. Burger, Mrs. R. Schedl, and C. P. Kneis (elemental analyses and DTA), and Dr. G. Lange and F. Dadrich (mass spectra).

OM930453V