Bis(ethylene) Complexes of Molybdenum and Tungsten and Their Reactivity toward CO₂. New Examples of Acrylate Formation by Coupling of Ethylene and Carbon Dioxide

Agustín Galindo,* Antonio Pastor, Pedro J. Pérez, and Ernesto Carmona*

Departamento de Química Inorgánica-Instituto de Ciencia de Materiales, Facultad de Química, Universidad de Sevilla-CSIC, Apartado 553, 41071 Sevilla, Spain

Received May 21, 1993*

The compounds trans- $M(C_2H_4)_2(P-P)(PMe_3)_2$ (M = Mo, P-P = Me_2PCH_2CH_2PMe_2 (dmpe: 1a). $Et_2PCH_2CH_2PEt_2$ (depe; 2a), $Me_2PCH_2PMe_2$ (dmpm; 3); M = W, P-P = dmpe (1b), depe (2b)) have been prepared by straightforward substitution reactions employing the trans- $M(C_2H_4)_2$ -(PMe₃)₄ complexes and the corresponding phosphine. Further reaction with the chelating phosphine has been investigated for 1a and 2a and affords the fully substituted trans-Mo- $(C_2H_4)_2(P-P)_2$ (P-P = dmpe (6), depe (7)), while reactions with CO lead to various substituted trans- $M(C_2H_4)_2(CO)(PMe_3)(P-P)$ products. Compounds 6 and 7 can also be synthesized by the direct reduction of MoCl₄(THF)₂ with Na-Hg under C₂H₄, in the presence of the appropriate diphosphine. The analogous reduction of MoCl₃(THF)₃ (Na-Hg, C₂H₄, PMe₂Ph) furnishes $trans-Mo(C_2H_4)_2(PMe_2Ph)_4$ (8). Application of Lever's additive ligand approach to complexes of this type shows an interdependence between the electron density at the metal center in this and other bis(ethylene) complexes of Mo and W and the ¹³C chemical shift of the coordinated C_2H_4 ligand. The reaction of CO_2 with some of the above ethylene complexes has been investigated. The majority of the complexes studied have proved unreactive, but compounds 2b and 8 provide isolable acrylate derivatives of composition $WH(OOCCH=CH_2)(C_2H_4)(PMe_3)$ -(depe) (13) and $[MoH(OOCCH=CH_2)(C_2H_4)(PMe_2Ph)_2]_2$ (14), respectively.

Introduction

Research on olefin complexes of the transition metals has received great impetus in the last few decades due largely to the industrial importance of these compounds as intermediates and catalysts in a wide range of reactions.¹ Both theoretical and experimental facets of M-olefin compounds continue to attract the attention of many researchers. The well known Dewar, Chatt, and Duncanson model still constitutes the best pictorial description of the M-olefin bonding interaction.² A number of recent studies have been concerned with the structural and conformational preferences and rotational barriers found in these complexes,^{3,4} especially in those having more than one olefin ligand. On the reactivity side, attack of the coordinated olefin by nucleophiles is a general feature of

1951, 105, 1550. (g) Weller, B. H., Gran, E. R. J. Am. Chem. Soc. 1561, 109, 1252. (h) Sharp, P. R. Organometallics 1984, 3, 1217. (i) Lai, C.-H.; Cheng, C.-H.; Chou, W.-C.; Wang, S.-L. Organometallics 1993, 12, 1105. (4) (a) Curnow, O. J.; Hughes, R. P.; Rheingold, A. L. J. Am. Chem. Soc. 1992, 114, 3153. (b) Wickenheiser, E. B.; Cullen, W. R. Inorg. Chem. 1990, 29, 4671. (c) Daniel, C.; Veillard, A. Inorg. Chem. 1989, 28, 1170. (d) Albright, T. A.; Hoffmann, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. Soc. 1979, 101, 3801. (e) Bachmann, C.; Demuyck, J.; Veillard, V. J. Am. Chem. Soc. 1978, 100, 2366. (f) Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871.

many transition-metal compounds containing olefin ligands.⁵

In recent years we have been attracted by the observation of a coupling reaction between ethylene and carbon dioxide in the coordination sphere of Mo and W complexes⁶ (eq 1). This reaction constitutes an unusual example of C-C

trans-M(C₂H₄)₂(PMe₃)₄ + CO₂
$$\rightarrow$$

¹/₂[MH(OOCCH=CH₂)(C₂H₄)(PMe₃)₂]₂ +
2PMe₃ (1)

M = Mo, W

bond formation, involving in addition C–H bond cleavage. C–C couplings involving CO_2 and unsaturated hydrocarbons have been extensively studied,^{7,8} and activation reactions of other heterocumulenes by these *trans*- $M(C_2H_4)_2(PMe_3)_4$ complexes⁹ have also been observed.¹⁰

In view of the potential usefulness of this transformation, we have attempted its extension to other related systems. A number of $M(C_2H_4)_2$ complexes of Mo and W containing

0 © 1993 American Chemical Society

[•] Abstract published in Advance ACS Abstracts, October 1, 1993.

 ^{(1) (}a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.;
 Wiley: New York, 1992. (b) Schrauzer, G. N., Ed. Transition Metals in Homogeneous Catalysis; Marcel Dekker: New York, 1971.

⁽²⁾ Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C79. Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2339.

^{(3) (}a) Chacon, S. T.; Chisholm, M. H.; Eisenstein, O.; Huffman, J. C. J. Am. Chem. Soc. 1992, 114, 8497. (b) Lundquist, E. G.; Folting, K.; Streib, W. E.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1990, 112, 855. (c) Grevels, F.-W.; Jacke, J.; Betz, P.; Krüger, C.; Tsay, Y.-H. Organometallics 1989, 8, 293. (d) Angermund, H.; Grevels, F.-W.; Moser, R.; Benn, R.; Krüger, C.; Romão, M. Organometallics 1988, 7, 1994. (e) Kiel, G.-Y.; Takats, J.; Grevels, F.-W. J. Am. Chem. Soc. 1987, 109, 2227. (f) Grevels, F.-W.; Jacke, J.; Özkar, S. J. Am. Chem. Soc. 1987, 109, 7536. (g) Weiller, B. H.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 1252. (h) Sharp, P. R. Organometallics 1984, 3, 1217. (i) Lai, C.-H.; Cheng, C.-H.; Chou, W.-C.; Wang, S.-L. Organometallics 1993, 12, 1105.

^{(5) (}a) Eisenstein, O.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 6148.
(b) Eisenstein, O.; Hoffmann, R. J. J. Am. Chem. Soc. 1981, 103, 4308.
(c) Braterman, P. S., Ed. Reactions of Coordinated Ligands; Plenum Press: New York, 1986.

^{(6) (}a) Alvarez, R.; Carmona, E.; Galindo, A.; Gutiérrez, E.; Marín, J. M.; Monge, A.; Poveda, M. L.; Ruiz, C.; Savariault, J. M. Organometallics 1989, 8, 2430. (b) Alvarez, R.; Carmona, E.; Cole-Hamilton, D. J.; Galindo, A.; Gutiérrez-Puebla, E.; Monge, A.; Poveda, M. L.; Ruiz, C. J. Am. Chem. Soc. 1985, 107, 5529.

⁽⁷⁾ For recent reviews on CO₂ chemistry see: (a) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661. (b) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (c) Walther, D. Coord. Chem. Rev. 1987, 79, 135. (d) Walther, D.; Bräunlich, G.; Ritter, U.; Fischer, R.; Schönecker, B. In Organic Synthesis via Organometallics; Dötz, K. H., Hoffmann, R. W., Eds.; Vieweg: Braunschweig, Germany, 1991.

different phosphines, and in some cases CO and CNBu^t ligands, have been prepared and their spectroscopic properties examined. An interesting correlation between the electron density at the metal center, estimated with the aid of Lever's parameters,¹¹ and NMR data for the coordinated C_2H_4 groups has been found. The chemical reactivity of these species toward CO₂ has also been investigated, and as a consequence two new cases of CO₂- C_2H_4 coupling have been observed, leading respectively to the dimer $[M_0H(OOCCH=CH_2)(C_2H_4)(PMe_2Ph)_2]_2$ (14) and to the monomeric WH(OOCCH= CH_2)(C_2H_4)-(PMe₃)(depe) (13). The reactions that afford the new complexes described in this work are summarized in Schemes I and II.

Results

trans- $M(C_2H_4)_2(P-P)(PMe_3)_2$ (M = Mo, W). Addition of equimolar amounts of the bidentate phosphines dmpe, depe, and dmpm (dmpe = $Me_2PCH_2CH_2PMe_2$, depe = $Et_2PCH_2PEt_2$, dmpm = Me_2PCH_2PMe_2) to petroleum ether solutions of trans- $M(C_2H_4)_2(PMe_3)_4$ (M = Mo, W) effects, under very mild conditions, the substitution of two PMe₃ groups by the corresponding chelating phosphine (eq 2). Monitoring these reactions by ${}^{31}P{}^{1}H$ NMR

 $trans-M(C_2H_4)_2(PMe_3)_4 + P-P \rightarrow$ $trans-M(C_2H_4)_2(P-P)(PMe_3)_2 + 2PMe_3$ (2) 1-3

M = Mo, P-P = dmpe (1a), depe (2a), dmpm (3);M = W, P-P = dmpe (1b), depe (2b)

spectroscopy shows the disappearance of the single resonance characteristic of the starting materials and the emergence of an AA'XX' spin system for complexes 1-3. Yields are quantitative by NMR; isolated yields are also close to 100%. These complexes are obtained as pale yellow or off-white crystalline solids after crystallization from petroleum ether solutions. They are soluble in common organic solvents, and their solutions decompose rapidly in contact with air. In a crystalline form, they are stable enough to be handled in open air for a few minutes.

The IR spectra recorded for complexes 1-3 are not very informative, although they show characteristic absorptions due to the coordinated ethylene and phosphine ligands (see Experimental Section). However, NMR data lead to an unambiguous assignment of the structure of these complexes. As mentioned above, their ³¹P{¹H} NMR spectra show an AA'XX' spin system, indicating the existence of four phosphorus nuclei in the equatorial plane of the molecule. Moreover, both ethylene ligands appear to be equivalent in the ${}^{13}C{}^{1}H$ NMR spectra, as the result of the existence of a C_2 symmetry axis located on the equatorial plane. Two resonances in the range 24-29 ppm (Mo) or 16-18 ppm (W) (50 MHz, 20 °C, see Experimental Section) are observed for the two distinct carbon nuclei of each C_2H_4 ligand. These ¹³C{¹H} chemical shift values are similar to those encountered in the parent complexes trans- $M(C_2H_4)_2(PMe_3)_4$ (M = Mo,^{9a} W^{9b}). From all these data, structure I can be proposed for these complexes.

The parent trans- $M(C_2H_4)_2(PMe_3)_4$ complexes readily undergo exchange of one of the PMe₃ groups by N₂ with

^{(8) (}a) Hoberg, H.; Jenni, K.; Angermund, K.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1987, 26, 153. (b) Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. 1987, 26, 771. (c) Hoberg, H.; Peres, Y.; Milchereit, A.; Gross, S. J. Organomet. Chem. 1988, 345, C17. (d) La Monica, G.; Angaroni, M. A.; Ardizzoia, G. A. J. Organomet. Chem. 1988 348, 279. (e) Dérien, S.; Dufiach, E.; Périchon, J. J. Organomet. Chem. 1990, 385, C43. (f) Alt, H. G.; Denner, C. E. J. Organomet. Chem. 1990, 390, 53. (g) Tsuda, T.; Hasegawa, N.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1990, 945. (h) Dérien, S.; Clinet, J.-C.; Duñach, E.; Périchon, J. J. Chem. Soc., Chem. Commun. 1991, 549. (i) Dérien, S.; Duñach, E.; Périchon, J. J. Am. Chem. Soc. 1991, 113, 8447.

^{(9) (}a) Carmona, E.; Marín, J. M.; Poveda, M. L.; Atwood, J. L.; Rogers, R. D. J. Am. Chem. Soc. 1983, 105, 3014. (b) Carmona, E.; Galindo, A.; Poveda, M. L.; Rogers, R. D. Inorg. Chem. 1985, 24, 4033. (c) Carmona, E.; Galindo, A.; Marín, J. M.; Gutiérrez, E.; Monge, A.; Ruiz, C. Polyhedron 1988, 7, 1831.

⁽¹⁰⁾ Carmona, E.; Galindo, A.; Monge, A.; Muñoz, M. A.; Poveda, M. L.; Ruiz, C. Inorg. Chem. 1990, 29, 5074.
(11) (a) Lever, A. B. P. Inorg. Chem. 1990, 29, 1271. (b) Lever, A. B. P. Inorg. Chem. 1991, 30, 1980.

Scheme II

trans-Mo(C₂H₄)₂(PMe₃)₄ + 2P-P
$$\rightarrow$$

trans-Mo(C₂H₄)₂(P-P)₂ + 4PMe₃ (4)
6, 7

trans-Mo(C₂H₄)₂(P-P)(PMe₃)₂ + P-P
$$\rightarrow$$

trans-Mo(C₂H₄)₂(P-P)₂ + 2PMe₃ (5)
6, 7

$$P-P = dmpe(6), depe(7)$$

in this way. Complexes 6 and 7 can be prepared in one step by the direct reduction of $MoCl_4(THF)_2$ with sodium amalgam under an ethylene atmosphere and in the presence of the bidentate phosphine (eq 6). Crystallization from petroleum ether or acetone solutions affords complexes 6 and 7 as pale yellow crystals, soluble in the common organic solvents.

$$MoCl_4(THF)_2 + Na(Hg) + 2P-P + C_2H_4 \rightarrow trans-Mo(C_2H_4)_2(P-P)_2$$
(6)

P-P = dmpe(6), depe(7)

The existence of a high degree of symmetry in the molecules of these compounds is manifested by the observation of a unique resonance for all four phosphorus nuclei in the ³¹P{¹H} NMR spectra as well as a unique resonance for all the ethylenic carbon nuclei. The latter appears as a pseudoquintet centered at 25.4 ppm for 6 (50 MHz, 20 °C, 2 C_2H_4 , ² $J_{CP} = 5$ Hz) and at 22.9 ppm for 7 (50 MHz, 20 °C, 2 C_2H_4 , ² $J_{CP} = 8$ Hz). These data are in

formation of the dinitrogen derivatives trans,mer-M- $(C_2H_4)_2(N_2)(PMe_3)_3$. In contrast with this behavior, compounds 1-3 do not show any appreciable tendency to undergo such a ligand exchange and their solutions remain unaltered after prolonged exposures to an atmosphere of N₂. However, if these solutions are pressurized with carbon monoxide (2-3 atm, room temperature), substitution of one of the PMe₃ groups by CO is observed with formation of complexes 4 and 5, as shown in eq 3. They are isolated

I

trans-M(C₂H₄)₂(P-P)(PMe₃)₂ + CO
$$\rightarrow$$

trans-M(C₂H₄)₂(P-P)(CO)(PMe₃) + PMe₃ (3)
4, 5

$$M = Mo, P-P = depe (4a), dmpe (5);$$
$$M = W, P-P = depe (4b)$$

as off-white crystalline materials whose spectroscopic data are in support of structure II.

Synthesis and Chemical Properties of trans-Mo(C_2H_4)₂(PMe₂Ph)₄ (8). Following a procedure commonly used for the synthesis of M-N₂ complexes¹² and later applied to the preparation of the M-C₂H₄ analogs, we have obtained the complex trans-Mo(C₂H₄)₂(PMe₂Ph)₄ (8) by reduction of MoCl₃(PMe₂Ph)₃ with sodium amalgam under an ethylene atmosphere and in the presence of free PMe₂Ph (eq 7). Complex 8 separates from the THF

$$MoCl_{3}(PMe_{2}Ph)_{3} + Na(Hg) + PMe_{2}Ph + C_{2}H_{4} \rightarrow trans - Mo(C_{2}H_{4})_{2}(PMe_{2}Ph)_{4} \quad (7)$$
8

solution during the reaction as an orange-brown microcrystalline solid, which redissolves upon admission of N_2 to give an orange solution that exhibits an IR absorption at *ca*. 2080 cm⁻¹. This band is absent in the IR spectrum of a solid sample of 8. By similarity with the behavior previously found for the analogous PMe₃ complexes,⁹ the formation of the mono(dinitrogen) complex *trans,mer*-Mo(C₂H₄)₂(N₂)(PMe₂Ph)₃ can be proposed, as indicated in eq 8. This process is reversible, so that the replacement

trans-Mo(C₂H₄)₂(PMe₂Ph)₄ + N₂
$$\rightarrow$$

trans,mer-Mo(C₂H₄)₂(N₂)(PMe₂Ph)₃ + PMe₂Ph (8)

of the N₂ atmosphere by C₂H₄ regenerates complex 8. NMR studies are in accord with this proposal and confirm that solutions of 8 contain an equimolar mixture of *trans,mer*-Mo(C₂H₄)₂(N₂)(PMe₂Ph)₃ and PMe₂Ph. Thus, in addition to the resonance due to free PMe₂Ph, the ³¹P{¹H} NMR spectrum of 8 contains signals corresponding to an AX₂ spin system (δ_A 23.8, δ_X 20.1 ppm; ²J_{AX} = 18 Hz). From these and other data, structures IV and V can be proposed for these two complexes.

The chemical reactivity of 8 is governed by the facility with which PMe₂Ph substitution takes place. Several reactions with CO, CNBu^t, and depe have been carried out and shown to result in the formation of the new compounds *trans*-Mo(C₂H₄)₂(CO)₂(PMe₂Ph)₂ (10), *trans*- $Mo(C_2H_4)_2(CNBu^{\dagger})_2(PMe_2Ph)_2$ (11), and *trans*-Mo-($C_2H_4)_2(depe)(PMe_2Ph)_2$ (12). When the CO reaction is effected at -80 °C (1 atm), the monocarbonyl $Mo(C_2H_4)_2$ -(CO)(PMe_2Ph)_3 (9) is obtained. The spectroscopic properties of these complexes are similar to those found for the analogous PMe_3 derivatives⁹ and need no further comment. They are in support of structures VI-VIII.

 $CO_2-C_2H_4$ Coupling: Formation of the Acrylate Derivatives WH(OOCCH=CH₂)(C₂H₄)(PMe₃)(depe) (13) and [MoH(OOCCH=CH₂)(C₂H₄)(PMe₂Ph)₂]₂ (14). As indicated in the Introduction, one of the main objectives of this work was the extension of the $CO_2-C_2H_4$ coupling reaction, already investigated for the complexes *trans*-M(C₂H₄)₂(PMe₃)₄,⁶ to other related systems. Accordingly, the reactivity toward CO₂ of some of the above complexes, namely 1a,b, 2a,b, 3, and 8, has been investigated. Of these compounds only 2a,b and 8 have been found to react with CO₂ under the experimental conditions used (see the Experimental Section). For the remaining compounds, as well as for the previously reported^{9c} trans-M(C₂H₄)₂-(L)_n(PMe₃)_{4-n} (n = 1, 2; L = CO, CNBu^t), no reactivity toward CO₂ has been observed.

The molybdenum compound 2a reacts with CO_2 (3 atm) at room temperature, but despite our efforts, no pure product has been isolated from the resulting reaction mixtures. A more favorable situation is found in the cases of complexes 2b and 8. Treatment of their solutions with CO_2 (20 °C; 3 atm for 2b, 1 atm in the case of 8) affords crystalline samples of the acrylate derivatives $WH(OOCCH=CH_2)(C_2H_4)(PMe_3)(depe)$ (13) and [MoH- $(OOCCH=CH_2)(C_2H_4)(PMe_2Ph)_2]_2(14)$, respectively. As will become apparent from the following pieces of information, spectroscopic data for these species are similar to those already reported for the analogous PMe₃ derivatives⁶ $[MH(OOCCH=CH_2)(C_2H_4)(PMe_3)_2]_2$. The observation of a medium-intensity absorption near 1800 cm^{-1} in the IR spectra of 13 and 14 suggests the existence of a hydride ligand which is confirmed by the presence of a characteristic high-field resonance in the ¹H NMR spectra of these derivatives (e.g. δ -5.2 ppm, br t, $^{2}J_{PH}$ = 98 Hz, data for 14). On the other hand, evidence for the coupling of CO_2 and C_2H_4 , with formation of a carboxylate group, can be inferred from the appearance of distinct IR bands and ¹³C resonances. The IR spectrum of 14 presents a strong absorption at ca. 1540 cm⁻¹, which can be attributed¹³ to a bridging carboxylate ligand (this band appears at ca.

⁽¹²⁾ Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589.

 1510 cm^{-1} in the IR spectra of [MH(OOCCH=CH₂)(C₂H₄)- $(PMe_3)_2]_2^6$). A somewhat different situation is found for the tungsten complex 13, for which a monomeric formulation is proposed. Supporting evidence for this structure includes the following: (i) the presence of a strong IR band centered at $ca. 1630 \, \mathrm{cm}^{-1}$, suggestive of monodentate carboxylate coordination,^{13c} (ii) the observation of a broad ¹³C singlet at 179.9 ppm corresponding to the carboxylate ¹³C nuclei, and (iii) the existence of three phosphine functionalities in the molecules of this compound, a chelating depe and a PMe₃ ligand, clearly evidenced by ³¹P{¹H} NMR studies (AMX spin system: δ_A -2.7, δ_M 12.9, $\delta_X 51$ ppm; ${}^2J_{AM} = 51$, ${}^2J_{AX} = 123$, ${}^2J_{MX} = 14$ Hz). This is in contrast with the binuclear species [MH- $(OOCCH=CH_2)(C_2H_4)(PR_3)_2]_2$, which display AX spin systems. The similarity of these and other data collected in the Experimental Section (including 2D-NMR studies) with those previously found for the closely related $[MH(OOCCH=CH_2)(C_2H_4)(PMe_3)_2]_2^6$ is in accord with structures IX and X for compounds 13 and 14, respectively.

Discussion

The activation of CO_2 by transition-metal compounds arouses considerable interest because of the possibility of using this molecule as a useful C1 synthetic unit.^{7,8,14} We have recently shown that the bis(ethylene) derivatives trans-M(C₂H₄)₂(PMe₃)₄ (M = Mo, W) induce the coupling of CO₂ and C₂H₄, under very mild conditions, with formation of an acrylate ligand.⁶ The metal center in these complexes is highly basic,¹¹ this electron richness facilitating the activation of CO₂. Moreover, a vacant coordination site can be readily made available by facile dissociation of one of the PMe₃ ligands. These two features make the above compounds ideal candidates for simultaneous CO₂ and C₂H₄ activation.

In order to acquire a better understanding of the importance of the electronic and steric effects in this unusual transformation, we have studied the reactivity of CO_2 toward a number of $M(C_2H_4)_2$ complexes of Mo and W containing different phosphine ligands and in some

cases CO and CNBu^t groups. Compounds of composition $M(C_2H_4)_2(L)_n(PMe_3)_{4-n}^9$ (n = 1, 2; L = CO, CNBu^t), $M(C_2H_4)_2(P-P)(PMe_3)_2$ (M = Mo, W; P-P = dmpe, depe), and $Mo(C_2H_4)_2(PMe_2Ph)_4$ have been chosen for this investigation. As already mentioned, and will now be discussed, only in two cases have the expected acrylate complexes been isolated.

Trimethylphosphine substitution in $trans-M(C_2H_4)_2$ -(PMe₃)₄ by CO or CNBu^t makes the resulting metal center more inert toward carbon dioxide; in fact, no reaction between CO_2 and $M(C_2H_4)_2(L)(PMe_3)_3$ or $M(C_2H_4)_2(L)_2$ - $(PMe_3)_2$ complexes (L = CO, CNBu^t) has been observed under a variety of experimental conditions. This could, in principle, be attributed to the decrease in metal basicity¹⁵ expected upon substitution of one of the strongly basic PMe₃ groups by the π -acids CO and CNBu^t. It should be borne in mind, however, that both CO and CNBu^t have smaller cone angles¹⁶ than PMe₃ (PMe₃, 118 °; CO, \sim 95°; CNBu^t,¹⁷ 102°) and hence that the steric pressure in the substituted $M(C_2H_4)_2(L)_n(PMe_3)_{4-n}$ (n = 1, 2) species should be inferior to that in the parent $M(C_2H_4)_2(PMe_3)_4$. Indeed, the substituted complexes show no tendency toward PMe₃ (or other coligand) dissociation and this seems to determine their lack of reactivity toward CO₂.

The substitution of two PMe₃ ligands in trans- $M(C_2H_4)_2(PMe_3)_4$ by one molecule of the chelating phosphine dmpe is not expected to alter significantly the electronic properties of the metal center (see also Table I and discussion below). Nevertheless, since the cone angle for dmpe is only 107° (value corresponding to each of the halves of the diphosphine¹⁶), the complexes $M(C_2H_4)_2$ -(dmpe)(PMe₃)₂ can be surmised to be sterically relieved as compared to the parent $M(C_2H_4)_2(PMe_3)_4$ derivatives. Again, no evidence for PMe₃ dissociation, occurring either in the laboratory or on the NMR time scale, can be traced and, accordingly, these derivatives exhibit no detectable reactivity toward CO_2 under the conditions used. These qualitative arguments suggest that the tendency of $M(C_2H_4)_2(PMe_3)_4$ complexes to undergo PMe₃ dissociation has steric (rather than electronic) origin, and in good agreement with this line of reasoning, the analogous $M(C_2H_4)_2(depe)(PMe_3)_2$ species, containing the bulkier depe ligand ($\theta = 115^{\circ}$), do react with CO₂. No clean product has been isolated from mixtures of the Mo complex $M(C_2H_4)_2(depe)(PMe_3)_2$ and CO_2 , but the tungsten analog provides the monomeric acrylate $WH(O_2CCH=CH_2)$ - $(C_2H_4)(PMe_3)(depe)$ (13). Furthermore, the trans-Mo- $(C_2H_4)_2(PMe_2Ph)_4$ complex (8), which accommodates the less basic ($\nu = 2065.3 \text{ cm}^{-1}$, as compared with 2064.1 cm⁻¹ for PMe₃¹⁶) but more sterically demanding PMe₂Ph ligand $(\theta = 122^{\circ})$, readily dissociates PMe₂Ph in solution and reacts rapidly with CO_2 to produce the corresponding acrylate $[MoH(OOCCH=CH_2)(C_2H_4)(PMe_2Ph)_2]_2$ (14). All these pieces of information strongly suggest that, while a high electron density on the metal may be needed in order for the desired transformation to occur, the reaction indispensably requires the availability of a vacant coordination site. Once this requisite is fulfilled, CO₂ incorporation¹⁸ may be followed by the oxidative coupling⁸ of this molecule with C_2H_4 , as depicted in Scheme III.

^{(13) (}a) Mehrotra, R. C.; Bohra, R. Metal Carboxylates; Academic Press: London, 1983. (b) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986. (c) Koelle, U.; Kang, B.-S.; Thewalt, U. Organometallics 1992, 11, 2893.

⁽¹⁴⁾ Darensbourg, D. J.; Kuradoski, R. D. Adv. Organomet. Chem. 1983, 22, 129.

 ^{(15) (}a) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231. (b) Kotz, J. C.;
 Pedrotty, D. G. Organomet. Chem. Rev. A 1969, 489. (c) Sowa, J. R.;
 Zanotti, V.; Angelici, R. J. Inorg. Chem. 1993, 32, 848.
 (16) Tolwan, C. A. Chem. Rev. 1977, 77, 219.

⁽¹⁶⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313. (17) de Lange, P. P. M.; Frühauf, H.-W.; Kraakman, M. J. A.; van Wijnkoop, M.; Kranenburg, M.; Groot, A. H. J. P.; Vrieze, K.; Fraanje, J.; Wang, Y.; Numan, M. Organometallics 1993, 12, 417.

Scheme III

Subsequent β -H elimination (and dimerization where appropriate) would afford the finally observed product.⁶

The spectroscopic characterization of the new trans- $M(C_2H_4)_2$ complex of Mo and W described in this work allows the accumulation of a sufficient body of information on ¹³C NMR data for the coordinated C₂H₄ ligand and, hence, the study of the effect (if any) of the electron density at the metal on the value of $\delta(C_2H_4)$. This can be done by indirectly estimating the metal basicity by means of theoretically calculated electrochemical data,¹⁹ specifically the oxidation potential $E_{1/2}(M(I)/M(0))$ determined with the aid of Lever's equation and parameters $E_{\rm L}$.¹¹ Recently. Morris has shown the utility of this additive ligand approach for predicting the chemistry²⁰ of dihydrogen complexes of the transition metals of composition $M(\eta^2$ - H_2)L₅. In the present case Lever's approximation will be applied to series of complexes of composition trans- $M_0(C_2H_4)_2(L)_4$ (and to the tungsten analogs), and therefore, all that is needed is a calculation of the sum of the $E_{\rm L}$ parameters corresponding to the four ligands, that is, $\Sigma^4 E_{\rm L}$. The theoretical $E_{1/2}({\rm Mo}(0)/{\rm Mo}({\rm I}))$ data ($E_{1/2}$ = $0.74\Sigma E_{\rm L} - 2.25^{11}$) or, in our case, $\Sigma E_{\rm L}$ for the four ligands are expected to be related to the HOMO energy and, accordingly, to be a good measure of the electron richness of the compound under consideration. Table I shows the ¹³C ^{1}H NMR data for the C₂H₄ ligands of some bis(ethylene) complexes of Mo(0) and the values of $\sum E_L$ for the coligands bonded to the $Mo(C_2H_4)_2$ core. Figure 1 displays the plot of $\delta(C_2H_4)$ (average values) versus $\sum E_L$. As can be seen, two reasonably good correlations, one for complexes containing coordinated CO (Δ , R = 0.97) and the other for those having no carbonyl ligands (\Box , R = 0.88), can be discerned. An interdependence between the $M(d\pi)$ \rightarrow olefin(π^*) back-donation and the coordination shift ($\Delta\delta$ = δ (free olefin) - δ (coordinated olefin)) was previously foreseen by Grevels et al.,^{3c,d} but no data were reported. The representation in Figure 1 corresponds to an analogous

Table I.	Ethylene ¹³ C Chemical Shift Data for Mo(C ₂ H ₄) ₂
	Complexes as a Function of $\sum E_{\rm L}$

		$\Sigma^4 E_{\rm L}$	
complex ^a	δ _C , ppm	_ v_′	ref
trans-Mo(C ₂ H ₄) ₂ (depe) ₂ (7)	22.9	1.08	
$trans-Mo(C_2H_4)_2(dmpe)_2$ (6)	25.4	1.12	
trans-Mo(C_2H_4) ₂ (depe)(PMe ₃) ₂ (2a)	25.6, 26.8	1.20	
trans-Mo(C_2H_4) ₂ (dmpe)(PMe ₃) ₂ (1a)	24.4, 25.3	1.22	
trans-Mo(C_2H_4) ₂ (depe)(PMe ₂ Ph) ₂ (12)	26.4, 27.5	1.22	
trans-Mo(C_2H_4) ₂ (CNCy) ₂ (PMe ₃) ₂	30.2	1.30	9ç
trans- $Mo(C_2H_4)_2(PMe_3)_4$	27.6	1.32	
trans-Mo(C ₂ H ₄) ₂ (CNCy)(CNBu ^t)(PMe ₃) ₂	30.2	1.34	9c
trans-Mo(C ₂ H ₄) ₂ (CNBu ^t)(PMe ₃) ₃	27.5, 30.1	1.35	9c
trans-Mo(C ₂ H ₄) ₂ (CNPr ⁱ)(PMe ₃) ₃	27.8, 30.9	1.35	9c
trans-Mo(C_2H_4) ₂ (PMe ₂ Ph) ₄ (8)	31.7, 35.8	1.36	
trans-Mo(C ₂ H ₄) ₂ (CNBu ^t) ₂ (PMe ₃) ₂	30.3	1.38	9c
trans-Mo(C ₂ H ₄) ₂ (CNPr ⁱ) ₂ (PMe ₃) ₂	30.4	1.38	9¢
trans-Mo(C2H4)2(CNBu ^t)2(PMe2Ph)2 (11)	31.5	1.40	
trans-Mo(C ₂ H ₄) ₂ (depe)(\dot{CO})(PMe ₃) (4a)	28.1, 30.5, 36.5	1.86	
trans-Mo(C ₂ H ₄) ₂ (dmpe)(CO)(PMe ₃) (5)	27.0, 27.8, 30.4, 34.6	1.88	
trans-Mo(C_2H_4) ₂ (CNCy)(CO)(PMe ₃) ₂	31.5	1.97	9c
trans-Mo(C_2H_4) ₂ (CO)(PMe ₂ Ph) ₃ (9)	30.0	2.01	
trans-Mo(C ₂ H ₄) ₂ (CNBu ^t)(CO)(PMe ₃) ₂	31.5	2.01	9c
trans-Mo(C ₂ H ₄) ₂ (CNPr ⁱ)(CO)(PMe ₃) ₂	32.0	2.01	9c
$trans-Mo(C_2H_4)_2(CNCH_2Ph)(CO)(PMe_3)_2$	31.8	2.21	9c
trans-Mo(C_2H_4) ₂ (CO) ₂ (PMe ₃) ₂	33.1	2.64	9b
trans-Mo(C ₂ H ₄) ₂ (CO) ₂ (PMe ₂ Ph) ₂ (10)	34.8	2.66	
trans-Mo(C ₂ H ₄) ₂ (CO) ₄ ^b	41.9	3.96	3f

^a Recorded in C₆D₆ at 293 K. ^b In toluene-d₈.

relationship, although expressed in terms of $\delta_{\rm C}$ vs $\Sigma^4 E_{\rm L}$ for *trans*-M(C₂H₄)₂(L)₄ complexes.

The trends in Figure 1 can be qualitatively explained in terms of the Dewar, Chatt, and Duncanson model.² Thus, an increase in the value of $\Sigma^4 E_L$, which would in fact indicate a decrease in the electronic density on the metal, is accompanied by a low-field shift of the ¹³C{¹H} NMR resonances of the C₂H₄ ligands. Diminished $M(d\pi) \rightarrow$ C₂H₄(π^*) back-bonding would imply greater sp² character for the bound carbon atoms and consequently higher δ values. The presence of coordinated CO ligands in these $M(C_2H_4)_2(L)_4$ complexes should produce quite different electronic situations on the metal, back-bonding now being shared between CO and C₂H₄. For this reason the particular δ_C vs $\Sigma^4 E_L$ correlation shows a different slope. Similar trends are found for the $W(C_2H_4)_2(L)_4$ analogs (Table II, Figure 2), although the smaller number of

⁽¹⁸⁾ Branchadell, V.; Dedieu, A. Inorg. Chem. 1987, 26, 3966.

⁽¹⁹⁾ Preliminary results show a reversible electrochemical behavior for some *trans*-bis(ethylene) complexes of Mo and W(0) in accordance with the applicability conditions¹¹ for Lever's E_L parameters: Galindo, A.: Pickett. C. Unpublished results.

⁽²⁰⁾ Morris, R. H. Inorg. Chem. 1992, 31, 1471,

Figure 1. Plot of $\Sigma^4 E_L$ against ethylene ¹³C chemical shift average for Mo(C₂H₄)₂ complexes: (bottom, squares) complexes without carbonyl coligand; (top, triangles) compounds containing some CO coligand.

Table II. Ethylene ¹³C Chemical Shift Data for W(C₂H₄)₂ Complexes as a Function of $\Sigma^4 E_L$

-			
complex ^a	δ _C , ppm	$\Sigma^{4}E_{L}, V$	ref
$\overline{trans-W(C_2H_4)_2(depe)(PMe_3)_2(2b)}$	16.8, 18.1	1.20	
trans-W(C ₂ H ₄) ₂ (dmpe)(PMe ₃) ₂ (1b)	16.8, 17.5	1.22	
trans-W(C ₂ H ₄) ₂ (CNCy) ₂ (PMe ₃) ₂	20.8, 21.8	1.30	9c
trans- $W(C_2H_4)_2(PMe_3)_4$	19.3	1.32	
trans- $W(C_2H_4)_2(CNPr^i)_2(PMe_3)_2$	20.7, 22.0	1.38	9c
$trans-W(C_2H_4)_2(depe)(CO)(PMe_3)$ (4b)	18.8, 21.2, 26.2	1.86	
trans-W(C ₂ H ₄) ₂ (CNCy)(CO)(PMe ₃) ₂	19.7, 27.2	1.97	9c
trans-W(C ₂ H ₄) ₂ (CO)(PMe ₃) ₃	18.5, 22.0, 27.1	1.98	9Ъ
trans-W(C ₂ H ₄) ₂ (CNPr ⁱ)(CO)(PMe ₃) ₂	22.0	2.01	9c
trans-W(C ₂ H ₄) ₂ (CO) ₄ ^b	31.3	3.96	3f

^a Recorded in C₆D₆ at 293 K. ^b In toluene-d₈.

Figure 2. Plot of $\Sigma^4 E_L$ against ethylene ¹³C chemical shift average for W(C₂H₄)₂ compounds: (bottom, squares) complexes without carbonyl coligand, correlation coefficient 0.88; (top, triangles) compounds containing some CO coligand, correlation coefficient 0.98.

compounds of this type available limits the validity of this relationship. Extension to other metals (for example, $Pt(C_2H_4)_2(L)$ cores²¹) is also possible. From all this, it seems evident that, despite its limitations, this additive ligand approach can be qualitatively employed as an approximate probe for the electron density at the metal center and even as a rough prediction of the ¹³C chemical shifts of the coordinated C_2H_4 ligands in unknown complexes of this type.

Experimental Section

Microanalyses were performed by Pascher Microanalytical Laboratory, Remagen, Germany, and by the Microanalytical Service of the University of Sevilla. Infrared spectra were recorded on Perkin-Elmer Models 684 and 883 spectrophotometers. ¹H, ¹³C, and ³¹P NMR spectra were run on Varian XL-200, Bruker AMX-300, and Bruker AMX-500 spectrometers. ³¹P shifts were measured with respect to external 85% H₃PO₄. ¹³C NMR spectra were referenced using the ¹³C resonance of the solvent as an internal standard but are reported with respect to SiMe₄. All preparations and other operations were carried out under oxygen-free nitrogen by following conventional Schlenk techniques. Solvents were dried and degassed before use. The petroleum ether used had bp 40-60 °C. The compounds MoCl₄(THF)₂, MoCl₃(PMe₂Ph)₃, and trans-M(C₂H₄)₂(PMe₃)₄ and the PMe₃, dmpm, dmpe, and depe ligands were prepared according to the literature procedures.

Synthesis of trans- $M(C_2H_4)_2(P-P)(PMe_3)_2$ (M = Mo, P-P = dmpe (1a), depe (2a), dmpm (3); M = W, P-P = dmpe (1b), depe (2b)) Complexes. To a solution of trans- $[Mo(C_2H_4)_2-(PMe_3)_4]$ (0.49g, 1.1 mmol) in petroleum ether (30 mL) was added dmpe (0.22 mL, 1.1 mmol) via syringe. The resulting mixture was stirred at room temperature for 1 h, and the volatiles were removed under vacuum. The residue was dissolved in petroleum ether and cooled at -30 °C to give complex 1a as pale yellow crystals in 95% yield. By a similar procedure, complexes 1b, 2a,b, and 3 were obtained in 71%, 80%, 65%, and 88% yields, respectively. Compounds 1-3 all exhibit similar IR absorptions (cm⁻¹) for the coordinated ethylene and phosphine ligands: 3040– 3020 w, 1150–1130 s (C_2H_4); 950–900 br (phosphine).

trans-Mo(C₂H₄)₂(dmpe)(PMe₃)₂ (1a). ¹H NMR (200 MHz, C₆D₆): δ 0.7 (d, 2 P(CH₃)(CH₃) of dmpe, ²J_{HP} = 5 Hz), 1.1 (filledin d, 2 P(CH₃)₃ cis, J_{HP(app)} = 6 Hz), 1.2 (d, 2 P(CH₃)(CH₃) of dmpe, ²J_{HP} = 6 Hz). The C₂H₄ ligands and the -CH₂CH₂fragment of dmpe resonate between 2 and 0 ppm, the signals due to the C₂H₄ groups being obscured by the phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 41.4, δ_X 3.4 (J_{AA'} = 21, J_{XX'} = 3, J_{AX(cis)} = 21, J_{AX'(trans)} = 115 Hz, absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 7.0 (br s, 2 P(CH₃)(CH₃) of dmpe, 17.7 (d, 2 P(CH₃)(CH₃) of dmpe, ¹J_{CP} = 21 Hz), 18.7 (filled-in d, 2 P(CH₃)₃ cis, J_{CP(app)} = 15 Hz), 24.4 (br d, 2 H₂C==CH₂ trans, J_{CP(app)} = 10 Hz), 25.3 (br d, 2 H₂C==CH₂ trans, J_{CP(app)} = 10 Hz), 29.7 (m, 2-CH₂P of dmpe). Anal. Calcd for C₁₆H₄₂P₄Mo: C, 42.3; H, 9.3. Found: C, 42.5; H, 9.3.

trans-W(C₂H₄)₂(dmpe)(PMe₃)₂ (1b). ¹H NMR (200 MHz, C₆D₆): δ 0.6 (d, 2 P(CH₃)(CH₃) of dmpe, ²J_{HP} = 5 Hz), 1.1 (d, 2 P(CH₃)₃ cis, J_{HP(app}) = 6 Hz), 1.2 (d, 2 P(CH₃)(CH₃) of dmpe, ²J_{HP} = 6 Hz). The C₂H₄ ligands and the -CH₂CH₂- fragment of dmpe resonate between 2 and 0 ppm, the signals due to the C₂H₄ groups being obscured by the phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 11.3 (¹J_{PW} = 339 Hz), δ_X -33.9 (¹J_{PW} = 357 Hz) (J_{AA'} = 15, J_{XX'} = 3, J_{AX(cis}) = 18, J_{AX'(trans)} = 118 Hz, absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 6.0 (filled-in d, 2 P(CH₃)(CH₃) of dmpe, J_{CP(app}) = 9 Hz), 16.8 (m, 2 H₂C=CH₂ trans), 17.5 (m, 2 H₂C=CH₂ trans), 19.0 (d, 2 P(CH₃)(CH₃) of dmpe, ¹J_{CP} = 27 Hz), 19.9 (filled-in d, 2 P(CH₃)₃ cis, J_{CP(app}) = 20 Hz), 32.7 (m, 2 -CH₂P of dmpe). Anal. Calcd for C₁₆H₄₂P₄W: C, 35.4; H, 7.8. Found: C, 35.3; H, 7.8.

trans-Mo(C₂H₄)₂(depe)(PMe₃)₂ (2a). ¹H NMR (300 MHz, C₆D₆): $\delta 0.86$ (t, 3 H, P(CH₂CH₃)(CH₂CH₃) of depe, ³J_{HH} = 7 Hz), 0.89 (t, 3 H, P(CH₂CH₃)(CH₂CH₃), ³J_{HH} = 7 Hz), 0.93 (t, 3 H, P(CH₂CH₃)(CH₂CH₃), ³J_{HH} = 7 Hz), 0.97 (t, 3 H, P(CH₂CH₃), (CH₂CH₃), ³J_{HH} = 7 Hz), 1.06 (d, 2 P(CH₃)₃ cis, J_{HP}(app) = 5 Hz), 1.16 (q, 4 H, P(CH₂CH₃)(CH₂CH₃) and P(CH₂CH₃), (CH₂CH₃), ³J_{HH} = 7 Hz), 1.54 (ddc, 2 H, P(CHHCH₃)(CHHCH₃), ²J_{HH} = 14, ³J_{HH} = 7, ²J_{HP} = 3 Hz), 1.79 (ddq, 2 H, P(CHHCH₃), (CHHCH₃), ²J_{HH} = 14, ³J_{HH} = 7, ²J_{HP} = 3 Hz). The C₂H₄ ligands and the -CH₂CH₂- fragment of depe resonate between 1.5 and 0 ppm, the signals due to the C₂H₄ groups being obscured by the

⁽²¹⁾ Galindo, A. Unpublished results.

phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 50.1, δ_X 4.6 ($J_{AA'} = 21$, $J_{XX'} = 7$, $J_{AX(cis)} = 18.5$, $J_{AX'(trans)} = 109$ Hz, absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 9.2 (d, 2 P(CH₂CH₃)(CH₂CH₃) of depe, ² $J_{CP} = 4$ Hz), 9.5 (d, 2 P(CH₂CH₃)(CH₂CH₃), ² $J_{CP} = 5$ Hz), 11.2 (s, 2 P(CH₂CH₃)(CH₂CH₃)), 20.6 (filled-in d, 2 P(CH₃)₃ cis, $J_{CP(app)} =$ 14 Hz), 21.2 (d, 2 P(CH₂CH₃)(CH₂CH₃), ¹ $J_{CP} = 16$ Hz), 22.2 (pt, PCH₂CH₂P, $J_{CP(app)} = 7$ Hz), 25.6 (br d, 2 H₂C=CH₂ trans, $J_{CP(app)} =$ 12 Hz), 26.8 (br d, 2 H₂C=CH₂ trans, $J_{CP(app)} = 13$ Hz). Anal. Calcd for C₂₀H₅₀P₄Mo: C, 47.1; H, 9.9. Found: C, 47.1; H, 9.8.

trans-W(C₂H₄)₂(depe)(PMe₃)₂ (2b). ¹H NMR (200 MHz, C_6D_6): δ 0.8-1.0 (m, 12 H, 2 P(CH₂CH₃)₂ of depe), 1.19 (d, 2 $P(CH_3)_3 cis, J_{HP(app)} = 5 Hz$, 1.2–1.3 (m, 4 H, P(CH₂CH₃)(CH₂CH₃) and P(CH₂CH₃)(CH₂CH₃)), 1.61 (ddq, 2 H, P(CHHCH₃)- $(CHHCH_3)$, ${}^{2}J_{HH} = 14$, ${}^{3}J_{HH} = 7$, ${}^{2}J_{HP} = 3$ Hz), 1.89 (ddq, 2 H, $P(CHHCH_3)(CHHCH_3)$, ${}^{2}J_{HH} = 14$, ${}^{3}J_{HH} = 7$, ${}^{2}J_{HP} = 3$ Hz). The C₂H₄ ligands and the -CH₂CH₂- fragment of dmpe resonate between 1.5 and 0 ppm, the signals due to the C_2H_4 groups being obscured by the phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 19.3 (¹J_{PW} = 320 Hz), δ_X -34.6 $({}^{1}J_{PW} = 356 \text{ Hz}) (J_{AA'} = 0, J_{XX'} = 15.5, J_{AX(cis)} = 22, J_{AX'(trans)} =$ 118 Hz, absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 9.2 (d, 2 P(CH₂CH₃)(CH₂CH₃) of depe, ${}^{2}J_{CP} = 4$ Hz), 9.3 (d, 2 $P(CH_2CH_3)(CH_2CH_3)$ of depe, ${}^{1}J_{CP} = 6$ Hz), 9.9 (d, 2) $P(CH_2CH_3)(CH_2CH_3)$ of depe, ${}^1J_{CP} = 5$ Hz), 16.8 (m, 2 H₂C==CH₂ trans), 18.1 (m, H₂C=CH₂ trans), 20.7 (filled-in d, 2 P(CH₃)₃ cis, $J_{CP(app)} = 19 \text{ Hz}$, 21.6 (d, 2 P(CH₂CH₃)(CH₂CH₃) of depe, ¹ J_{CP} = 23 Hz), 24.1 (filled-in d, PCH_2CH_2P , $J_{CP(app)}$ = 35 Hz). Anal. Calcd for C₂₀H₅₀P₄W: C, 40.1; H, 8.4. Found: C, 40.2; H, 8.5.

trans-Mo(C₂H₄)₂(dmpm)(PMe₃)₂ (3). ¹H NMR (200 MHz, C₆D₆): δ 0.69 (d, 2 P(CH₃)(CH₃) of dmpm, ²J_{HP} = 4 Hz), 0.94 (filled-in d, 2 P(CH₃)₃ cis, J_{HP}(app) = 5 Hz), 1.12 (d, 2 P(CH₃)(CH₃) of dmpm, ²J_{HP} = 6 Hz), 3.26 (t, PCH₂P, ²J_{HP} = 8 Hz). The C₂H₄ ligands resonate between 2 and 0 ppm, but the signals are obscured by the phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 12.2, δ_X -9.2 ($J_{AA'}$ = 16, $J_{XX'}$ = 10, $J_{AX(cis)}$ = 27, $J_{AX'(trans)}$ = 114 Hz, absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 8.6 (d, 2 P(CH₃)(CH₃) of dmpm, ¹ J_{CP} = 6 Hz), 18.7 (pt, 2 P(CH₃)(CH₃) of dmpm, $J_{CP(app)}$ = 10 Hz), 19.5 (d, 2 P(CH₃)₃ cis, $J_{CP(app)}$ = 15 Hz), 25.6 (br d, 2 H₂C—CH₂ trans, $J_{CP(app)}$ = 13 Hz), 28.4 (br d, 2 H₂C—CH₂ trans, $J_{CP(app)}$ = 12 Hz), 59.1 (t, PCH₂P, ¹ J_{CP} = 15 Hz). Anal. Calcd for C₁₅H₄₀P₄Mo: C, 40.9; H, 9.2. Found: C, 40.7; H, 9.2.

Synthesis of trans-M(C₂H₄)₂(CO)(PMe₅)(P-P) (M = Mo, P-P = depe (4a), dmpe (5); M = W, P-P = depe (4b)) Complexes. Complex 1a was generated in situ by addition of 1 equiv of depe to a solution of trans-Mo(C₂H₄)₂(PMe₃)₄ (0.33 g, 0.72 mmol) in petroleum ether (40 mL). After 1 h of stirring, the solvent was removed under reduced pressure. The resulting solid was dissolved in 30 mL of THF and pressurized with CO (2 atm) in a pressure bottle. The mixture was stirred for 2 h, the volatiles were removed under vacuum, and the residue was extracted with petroleum ether. White crystals of 4a were obtained after cooling at-30 °C overnight. Yield: 0.23 g (69%). By similar procedures complexes 4b and 5 were obtained in 54% and 65% yields, respectively.

trans-Mo(C₂H₄)₂(CO)(PMe₃)(depe) (4a). All ¹H nuclei in complexes 4 and 5 resonate in a short range (3–1 ppm); their complete assignment has not been attempted. ³¹P{¹H} NMR (81 MHz, C₆D₆): AMX spin system, δ_A 48.5 (dd, $J_{AM} = 6$, $J_{AX} = 104$ Hz), δ_M 30.6 (dd, $J_{MX} = 23$ Hz), δ_X 7.1 (dd). ¹³C{¹H} NMR (75.5 MHz, C₈D₆): δ 7.5 (br, P(CH₂CH₃) of depe), 8.2 (br, P(CH₂CH₃)), 8.7 (br, P(CH₂CH₃)), 9.5 (br, P(CH₂CH₃)), 18.1 (d, 2 P(CH₃)₃ cis, $J_{CP(app)} = 18$ Hz), 18.8 (br, P(CH₂CH₃)), 21.8 (dd, PCH₂CH₂P, ¹ $J_{CP} = 17$, ² $J_{CP} = 15$ Hz), 23.5 (ddd, PCH₂CH₂P, ¹ $J_{CP} = 19$, ² J_{CP} = 17, ³ $J_{CP} = 4$ Hz), 28.1 (br C₂H₄), 30.4 (br, C₂H₄), 36.5 (br, C₂H₄), 228.6 (dt, CO, ² $J_{CP(trans)} = 37$, ² $J_{CP(cis)} = 10$ Hz). Anal. Calcd for C₁₈H₄₁P₃OMo: C, 46.8; H, 8.9. Found: C, 46.4; H, 9.5.

trans-W(C₂H₄)₂(CO)(PMe₃)(depe) (4b). ³¹P{¹H} NMR (81 MHz, C₆D₆): AMX spin systems, δ_A 29.6 (d, $J_{AM} = 0, J_{AX} = 94$, ¹ $J_{PW} = 230$ Hz), $\delta_M = 14.3$ (d, $J_{MX} = 17.5$, ¹ $J_{PW} = 173$ Hz), δ_X 7.1

(dd, ${}^{1}J_{PW} = 246$ Hz). ${}^{13}C{}^{1}H{}$ NMR (50 MHz, $C_{6}D_{6}$): δ 6.4 (d, P(CH₂CH₃) of depe, ${}^{2}J_{CP} = 11$ Hz), 7.0 (d, P(CH₂CH₃), ${}^{2}J_{CP} = 6$ Hz), 7.1 (d, P(CH₂CH₃), ${}^{2}J_{CP} = 6$ Hz), 7.5 (d, P(CH₂CH₃), ${}^{2}J_{CP} = 7$ Hz), 8.3 (d, P(CH₂CH₃), ${}^{1}J_{CP} = 22$ Hz), 17.4 (d, 2 P(CH₃), ${}^{2}J_{CP} = 7$ Hz), 8.3 (d, P(CH₂CH₃), ${}^{1}J_{CP} = 22$ Hz), 17.4 (d, 2 P(CH₃), ${}^{2}J_{CP} = 21$ Hz), 18.4 (d, P(CH₂CH₃), ${}^{1}J_{CP} = 21$ Hz), 18.8 (m, $C_{2}H_{4}$), 21.2 (br m, $C_{2}H_{4}$), 22.6 (dd, PCH₂CH₂P, ${}^{1}J_{CP} = 20$, ${}^{2}J_{CP} = 13$ Hz), 24.7 (ddd, PCH₂CH₂P, ${}^{1}J_{CP} = 22$, ${}^{2}J_{CP} = 14$, ${}^{3}J_{CP} = 4$ Hz), 26.2 (br s, $C_{2}H_{4}$), 219.3 (dt, CO, ${}^{2}J_{CP(trans)} = 36$, ${}^{2}J_{CP(cis)} = 6$ Hz). Anal. Calcd for $C_{18}H_{41}P_{3}OW$: C, 39.3; H, 7.5. Found: C, 38.5; H, 7.4.

trans-Mo(C₂H₄)₂(CO)(PMe₃)(dmpe) (5). ³¹P{¹H} NMR (81 MHz, C₆D₆): AMX spin system, δ_A 56.7 (dd, $J_{AM} = 6$, $J_{AX} = 99.5$ Hz), δ_M 37.0 (dd, $J_{MX} = 23.5$ Hz), δ_X 0.7 (dd). ¹³C{¹H} NMR (75.5 MHz, C₆D₆): δ 6.1 (d, P(CH₃) of dmpe, ¹ $J_{CP} = 7$ Hz), 7.0 (d, P(CH₃) of dmpe, ¹ $J_{CP} = 7$ Hz), 16.6 (d, P(CH₃) of dmpe, ¹ $J_{CP} =$ 19 Hz), 16.9 (d, P(CH₃) of dmpe, ¹ $J_{CP} = 29$ Hz), 17.5 (d, 2 P(CH₃)₃ *cis*, $J_{CP(app)} = 16$ Hz), 26.9 (m, C_2 H₄), 27.7 (m, C_2 H₄), 28.6 (dd, PCH₂CH₂P, ¹ $J_{CP} = 20$, ² $J_{CP} = 15$ Hz), 29.3 (ddd, PCH₂CH₂P, ¹ $J_{CP} =$ 21, ² $J_{CP} = 18$, ³ $J_{CP} = 4$ Hz), 30.3 (m, br, C_2 H₄), 34.5 (br s, C_2 H₄), 227.7 (dt, CO, ² $J_{CP(trans)} = 39$, ² $J_{CP(cis)} = 9$ Hz). Anal. Calcd for C₁₄H₃₃P₃OMo: C, 41.4; H, 8.2. Found: C, 41.4; H, 8.3.

Synthesis of trans-Mo(C₂H₄)₂(P-P)₂ (P-P = dmpe (6), depe (7)) Complexes. One equivalent of dmpe was added to a suspension of MoCl₄(THF)₂ (1.8 g, 4.7 mmol) in THF (40 mL) and stirred for 1 h. The resulting solution was transferred into a flask containing a suspension of Na(Hg) (1%, ca. 0.7 g of Na) in THF (100 mL), under an ethylene atmosphere. The mixture was stirred for 20-30 min, and then a second equivalent of dmpe was added via syringe. The reaction mixture was stirred for a further 4-5 h, the resulting suspension centrifuged, and the solution evaporated to dryness. The residue was extracted with petroleum ether and concentrated. Addition of MeOH induced the precipitation of a yellow solid, which was filtered off, washed with cold MeOH, and dried under vacuum. Yield: 25%.

Compound 7 was synthesized using a similar procedure, but crystallization was achieved from acetone solutions cooled to -30 °C. Yield: 40%.

Two alternative routes to complex 7 have been developed. The reaction of trans- $Mo(C_2H_4)_2(depe)(PMe_3)_2$ (2a) with 1 equivalent of depe carried out at 60 °C for 3 h allows the isolation of 7 in 58% yield. On the other hand, formation of complex 7 was also achieved by heating a THF solution of trans- $Mo(C_2H_4)_2(PMe_3)_4$ with 2 equiv of the diphosphine for 3.5 h. Yield: 50%.

trans-Mo(C₂H₄)₂(dmpe)₂ (6). ³¹P{¹H} NMR (81 MHz, C₆D₆): δ 44.7 (s). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 8.1 (s, 4 P(CH₃)(CH₃) of dmpe), 19.7 (pt, 4 P(CH₃)(CH₃) of dmpe, ¹J_{CP(app)} = 6 Hz), 25.4 (pseudoquintet, 2 C₂H₄, ²J_{CP} = 5 Hz), 30.3 (pt, 4 -CH₂P of dmpe, J_{CP(app)} = 9 Hz).

trans-Mo(C₂H₄)₂(depe)₂ (7). ³¹P{¹H} NMR (81 MHz, C₆D₆): δ 55.9 (s). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 8.8 (s, 4 P(CH₂CH₃)-(CH₂CH₃) of depe), 9.3 (s, 4 P(CH₂CH₃)(CH₂CH₃) of depe), 9.8 (s, 4 P(CH₂CH₃)(CH₂CH₃) of depe), 21.7 (pt, 4 P(CH₂CH₃)-(CH₂CH₃) of depe, ¹J_{CP(app)} = 5 Hz), 22.9 (pseudoquintet, 2 C₂H₄, ²J_{CP} = 8 Hz), 26.3 (pt, 4 -CH₂P of depe, J_{CP(app)} = 6 Hz). Anal. Calcd for C₂₄H₅₆P₄Mo: C, 51.1; H, 10.0. Found: C, 49.8; H, 9.3.

trans-Bis(ethylene)tetrakis(dimethylphenylphosphine)molybdenum(0), trans-[Mo(C₂H₄)₂(PMe₂Ph)₄] (8). MoCl₃(PMe₂Ph)₃ (3.1 g, 5 mmol) and 1 equiv of PMe₂Ph were successively added to a suspension of Na(Hg) (1%, ca. 1 g of Na) in THF (225 mL) under an ethylene atmosphere. The mixture was stirred for 3-4h, the resulting suspension centrifuged, and the solvent evaporated under vacuum. The orange solid obtained was washed with petroleum ether and dried in vacuo. Yield: 60%. Complex 8 exists in solution, under a N₂ atmosphere, as a 1:1 mixture of trans,mer-[Mo(C₂H₄)₂(N₂)(PMe₂Ph)₃] and PMe₂Ph according to the following spectroscopic data. IR (THF): 2080 cm⁻¹ (ν (N==N)). ³IP{¹H} NMR (81 MHz, CeDe): AX₂ spin system for the complex, δ_A 23.8 (t, ²J_{PP} = 18 Hz), δ_X 20.1, and δ -45.8 (s) for the free PMe₂Ph. Other selected data for trans,mer-[Mo(C₂H₄)₂(N₂)(PMe₂Ph)₃]: ¹H NMR (200 MHz, C_6D_6) δ 7.2 (m, PMe₂Ph), 2-1.5 (br m, C_2H_4), 1.05 (m, PMe₂Ph); ¹³C{¹H} NMR (50 MHz, C_6D_6) δ 35.8 (br s, C_2H_4), 31.7 (br s, C_2H_4), 14.5 (br s, 2 PMe₂Ph trans), 11.2 (br s, 1 PMe₂Ph).

Reaction of 8 with CO: trans,mer- $[Mo(C_2H_4)_2(CO)-(PMe_2Ph)_3]$ (9) and trans,trans,trans- $[Mo(C_2H_4)_2-(CO)_2(PMe_2Ph)_2]$ (10). Carbon monoxide was bubbled at -80 °C for 5 min through a solution of 8 (0.3 g, 0.42 mmol) in THF (30 mL). The solvent was stripped off, the residue extracted with a 1:1 petroleum ether-Et₂O mixture (20 mL), and the extract then centrifuged. The resulting solution was concentrated and cooled to -30 °C to afford yellow crystals of 9 in 60% yield.

Complex 10 was obtained as white crystals by following the same procedure but carrying out the reaction at room temperature. The crystallization solvent was a 4:1 petroleum ether-Et₂O mixture, and a yield of 75% was obtained.

trans,mer-Mo(C₂H₄)₂(CO)(PMe₂Ph)₃ (9). IR (Nujol): 1850 cm⁻¹ (ν(CO)). ¹H NMR (200 MHz, C₆D₆): δ 7.00 (m, PMe₂Ph), 1.87 (br s, C₂H₄), 1.20 (br s, 2 PMe₂Ph trans), 0.96 (d, PMe₂Ph) cis). ³¹P{¹H} NMR (81 MHz, C₆D₆): AX₂ spin system, δ_A -1.64 (t, ²J_{PP} = 22 Hz), δ_X 13.6 (d). Selected ¹³C{¹H} NMR data (50 MHz, C₆D₆): δ 14.6 (d, PMe₂Ph, ¹J_{CP} = 14 Hz), 15.8 (t, 2 PMe₂Ph, J_{CP(app)} = 20 Hz), 30.0 (br s, C₂H₄). Anal. Calcd for C₂₉H₄₁OP₃Mo: C, 58.6; H, 7.0. Found: C, 58.9; H, 7.0.

trans, trans, trans-Mo(C₂H₄)₂(CO)₂(PMe₂Ph)₂ (10). IR (Nujol): 1850 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, C₆D₆): δ 1.2 (t, 2 PMe₂Ph, J_{HP(app)} = 3 Hz), 1.76 (t, 2 C₂H₄, ³J_{HP} = 5 Hz), 7.0 (m, 2 PMe₂Ph). ³¹P⁽¹H} NMR (81 MHz, C₆D₆): δ 16.9 (s). Selected ¹³C{¹H} NMR data (50 MHz, C₆D₆): δ 15.8 (t, 2 PMe₂Ph, J_{CP(app)} = 11 Hz), 34.8 (br s, C₂H₄). Anal. Calcd for C₂₂H₃₀O₂P₂Mo: C, 54.6; H, 6.2. Found: C, 54.6; H, 6.2.

Reaction of 8 with CN'Bu: trans,trans,trans-Mo(C₂H₄)₂-(CN'Bu)₂(PMe₂Ph)₂ (11). A solution of 8 (0.2 g, 0.28 mmol) in THF (40 mL) was reacted with a slight excess of CN'Bu (0.7 mL of a 1 M solution in THF) and the mixture stirred for 2 h. The solvent was removed in vacuo and the residue extracted with petroleum ether (10 mL). Filtration and crystallization of the resulting solution at -30 °C afforded 11 as yellow crystals. Yield: 75%. IR (Nujol): 1965 cm⁻¹ (br, ν (CN)). ¹H NMR (200 MHz, C₆D₆): δ 1.0 (s, CNCMe₃), 1.46 (t, 2 PMe₂Ph, J_{HP}(app) = 3 Hz), 1.62 (t, 2 C₂H₄, ³J_{HP} = 5 Hz), 7.15 (m, 2 PMe₂Ph). ³¹P{¹H} NMR (81 MHz, C₆D₆): δ 20.2 (s, 2 PMe₃). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 15.6 (pt, 2 PMe₂Ph, J_{CP}(app) = 8 Hz), 31.3 (s, CNCMe₃), 31.5 (br s, C₂H₄), 54.0 (s, CNCMe₃), and signals due to Ph group of PMe₂Ph. The CNCMe₃ resonance was not observed.

Reaction of 8 with depe: trans-Mo(C₂H₄)₂(depe)(PMe₂Ph)₂ (12). To a stirred solution of 8 (0.35 g, 0.5 mmol) in THF (30 mL) was added 1 equiv of depe via syringe (0.5 mL of a 1 M solution in THF). After 30 min of stirring, the resulting mixture was taken to dryness and the residue crystallized from acetone at -30 °C. Orange-red crystals were obtained in 80% yield. ¹H NMR (200 MHz, C₆D₆): δ 7.2-7.0 (m, PMe₂Ph), 1.3 (dd, Me depe), $1.5-1.0 (m, C_2H_4 and CH_2 depe)$, $0.85 (m, PMe_2Ph)$. ³¹P{¹H} NMR (81 MHz, C₆D₆): AA'XX' spin system, δ_A 15.4 (PMe₃), δ_X 47.9 (depe) $(J_{AA'} = 17, J_{XX'} = 8, J_{AX(cis)} = 17, J_{AX'(trans)} = 105 \text{ Hz},$ absolute values). ¹³C{¹H} NMR (50 MHz, C₆D₆): δ 9.5 (m, 2 P(CH₂CH₃)₂ of depe), 10.1 (s, 2 P(CH₂CH₃)(CH₂CH₃) of depe), 18.4 (filled-in d, PMe₂Ph, $J_{CP(app)} = 5$ Hz), 17.0 (filled-in d, $PMe_2Ph, J_{CP(spp)} = 5 Hz), 20.2 (d, 2 P(CH_2CH_3)(CH_2CH_3) of depe,$ ${}^{1}J_{CP} = 17$ Hz), 20.6 (pt, 4 – CH₂P, $J_{CP(app)} = 18$ Hz), 26.4 (br d, 2 H₂C=CH₂ trans, $J_{CP(app)} = 14$ Hz), 27.5 (br d, 2 H₂C=CH₂ trans, $J_{CP(app)} = 9$ Hz), and signals due to Ph group in PMe₂Ph. Anal. Calcd for C₃₀H₅₄P₄Mo: C, 56.8; H, 8.6. Found: C, 55.9; H, 8.5.

Reactions with Carbon Dioxide. The following reactions with carbon dioxide have been carried out under the stated experimental conditions. The starting material was recovered unaltered at the end of the experimental time. Complex 1a: THF, 40 °C, 3 atm, 24 h. Complex 1b: Et₂O, 20 °C, 3 atm, 48 h. Complex 3: THF, 20 °C, 3 atm, 8 h. Complex 2a reacts with CO₂ (THF, 20 °C, 3 atm), but no pure products could be isolated from the reaction mixture. The following bis(ethylene) complexes⁹ do not react with 3 atm of CO₂ at room temperature: trans-M(C₂H₄)₂(CO)(PMe₃)₃, trans-M(C₂H₄)₂(COR)₂(PMe₃)₂, trans-M(C₂H₄)₂(COR)(PMe₃)₃, and trans-M(C₂H₄)₂(COR)₂(PMe₃)₂ (M = Mo, W).

Reaction of 2b with Carbon Dioxide: Synthesis of $WH(OOCCH=CH_2)(C_2H_4)(PMe_3)(depe)$ (13). A solution of complex 2b (0.25 g, 0.4 mmol) in Et₂O (30 mL) was pressurized with 3 atm of CO2 and was stirred for 20 h. The resulting orange solution was centrifuged and concentrated. White crystals of compound 13 were obtained after cooling at -30 °C overnight. Yield: 62%. IR (Nujol): 1850 (v(Mo-H)), 1630 (v(COO)) cm⁻¹. ¹H NMR (500 MHz, C₆D₆): δ -3.31 (dt, 1 H, W-H, ²J_{HP} = 91, ${}^{2}J_{\text{HP}} = 20 \text{ Hz}$, 0.59 (m, 3 H, Me depe), 0.72 (m, 3 H, Me depe), 0.95 (m, 3 H, Me depe), 0.97 (d, 9 H, PMe₃, ${}^{2}J_{HP} = 8$ Hz), 1.10 (m, 3 H, Me depe), 1.2 (br m, 2 H, H₂C=CH-), 1.36 (m, 2 H, H₂C=CH₂), 1.4 (br m, 2 H, CH₂ depe), 1.6 (br m, 2 H, CH₂ depe), 2.7 (br m, 2 H, CH₂ depe), 3.21 (br s, CH₂=CHCOO). The other ethylene resonance $(H_2C=CH_2)$ is obscured by the phosphine absorptions. ³¹P{¹H} NMR (81 MHz, C₆D₆): AMX spin system, $\delta_{A} = -2.7 \text{ (dd, } {}^{2}J_{AM} = 51, {}^{2}J_{AX} = 123, {}^{1}J_{PW} = 156 \text{ Hz}), \delta_{M} = 12.9 \text{ (dd,}$ ${}^{2}J_{MX} = 14$, ${}^{1}J_{PW} = 159$ Hz), $\delta_{X} 51$ (dd, ${}^{1}J_{PW} = 157$ Hz). ${}^{13}C{}^{1}H$ NMR (75.5 MHz, C₆D₆): δ 4.0 (d, P(CH₂CH₃) of depe, ¹J_{CP} = 13 Hz), 5.8 (d, P(CH₂CH₃) of depe, ${}^{1}J_{CP} = 5$ Hz), 7.3 (d, P(CH₂CH₃) of depe, ${}^{1}J_{CP} = 4$ Hz), 7.6 (d, P(CH₂CH₃) of depe, ${}^{1}J_{CP} = 6$ Hz), 7.9 (d, P(CH₂CH₃) of depe, ${}^{1}J_{CP} = 4$ Hz), 12.1 (d, PMe₃, ${}^{1}J_{CP} =$ 30 Hz), 12.3 (d, $-CH_{2^-}$, ${}^{1}J_{CP}$ = 23 Hz), 16.9 (d, $-CH_{2^-}$, ${}^{1}J_{CP}$ = 28 Hz), 20.9 (m, 2 –CH₂–), 21.4 (d, H₂C=CH₂, ${}^{1}J_{CP} = 9$ Hz), 23.0 (dd, $-CH_{2-}$, $J_{CP} = 16$, $J_{CP} = 11$ Hz), 28.5 (m, $H_2C=-CH_2$), 33.6 (d, $H_2C=CH^-$, ${}^1J_{CP} = 9$ Hz), 46.8 (s, $H_2C=CH^-$), 179.9 (br s, COO).

Reaction of 8 with Carbon Dioxide: Synthesis of $[MoH(OOCCH=CH_2)(C_2H_4)(PMe_2Ph)_2]_2 (14). Complex 8$ (0.25 g, 0.35 mmol) was dissolved in THF (30 mL) and CO₂ bubbled through the solution at room temperature for 15 min. The solvent was removed in vacuo and the residue extracted with acetone. Concentration and cooling at -30 °C afforded 14 as white crystals. Yield: 60%. IR (Nujol): 1790 (v(Mo-H)), 1540 (ν (COO)) cm⁻¹. ¹H NMR (200 MHz, C₆D₆): δ -5.2 (br t, 1 H, Mo-H, ${}^{2}J_{HP} = 98$ Hz), 1.4 (d, 3 H, PMeMePh, ${}^{2}J_{HP} = 9$ Hz), 1.5 (d, 3 H, PMeMePh, ${}^{2}J_{HP} = 9$ Hz), 1.6 (d, 3 H, PMeMePh, ${}^{2}J_{HP}$ = 9 Hz), 1.7 (d, 3 H, PMeMePh, ${}^{2}J_{HP}$ = 9 Hz), 2.4 (br s, 2 H, C_2H_4), 3.3 (pseudoquartet, 1 H, CH_2 =CHCOO, ${}^{3}J_{HP} \simeq {}^{3}J_{HP} =$ 7 Hz), 7.3-7.4 (m, 10 H, $PMe_2(C_6H_5)$). The remaining olefinic resonances appear between 2 and 1 ppm and are obscured by PMe₂Ph absorptions, δ 7.3-7.4 (m, 10 H, PMe₂(C₆H₅)). ³¹P{¹H} NMR (81 MHz, C₆D₆): AX spin system, $\delta_A 50.8$ (d, ²J_{PP} = 51 Hz), δ_X 44.9 (d). Anal. Calcd for $C_{42}H_{60}P_4O_4Mo_2:$ C, 53.4; H, 6.4. Found: C, 52.6; H, 6.4.

OM9303414