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Summary: The pyrrolyl-N complex (#°-CsHs)Re(NO)-
(PPhs)(NC4H,) and TfOH or HBF +OEtsreact to give 2H-
pyrrole complexes [(n®-CsH;)Re(NOQ)(PPhg)-

— ]
(N=CHCH=—CHCH3)]*X". These rearrange to the car-
bon-ligated species [(n°-CsH5)Re(NO)(PPhj3)-

(C=NHCH;CH=CH)]*X-, which is characterized crys-
tallographically and treated with KH to give the pyr-

—
rolyl-C complex (95-CsH;)Re(NO)(PPhs)(C=CH-

—
CH=CHNH).

Many transition-metal pyrrolyl-N complexes, L,-
MNC H,, have been synthesized.! However, despite the
importance of the pyrrole moiety in natural products,
materials, and hydrodenitrogenation chemistry, there do
not appear to be any studies of ligand-based reactions.
Although pyrrole undergoes attack by electrophiles at the
2-position,? pyrrolyl ligands should be further activated.
There would be the potential for altered regiochemistry®
and, in adducts of chiral metal fragments, control of the
configurations of new stereocenters. Hence, we set out to
prepare o-pyrrolyl complexes of the chiral rhenium
fragment [(n5-Cs;Hs)Re(NO)(PPhs)]* and study their
reactions with electrophiles. In this communication, we
report that additions of protic acids to pyrrolyl-N com-
plexes can trigger remarkable metal-carbon bond-forming
rearrangements.

In a reaction similar to those used to access other
pyrrolyl-N complexes,'¢-d the triflate complex (15-C;Hs)-
Re(NO)(PPh3)(OTf) (1) and the pyrrolide salt KNC H,
(1.5 equiv)® were combined in THF at room temperature
(SchemeI). Workup gave crystalline, air-stable (5-CsHj)-
Re(NO)(PPh3)(NC4Hy) (2) in 88% yield. Complex 2, and
other new compounds isolated below, were characterized
by microanalysis and IR and NMR (*H/13C/31P) spec-
troscopy. The 'H and 3C NMR chemical shifts of the
NCH=CH moiety (6 6.39, 5.76; 137, 108 ppm) were
comparable to those of other pyrrolyl-N complexes.laf

In separate experiments, TfOH and HBF;.OEt; were
added to ether solutions of 2 (Scheme I). The adducts
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Scheme I. Synthesis of Pyrrolyl-N and Pyrrolyl-C
Complexes 2 and 8 and Reactions with Acids
TIOH
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[(1°-C5sHs)Re(NO) (PPhs) (N—=CHCH—CHCH,)]*X-
(3*X-)—which can be viewed as complexes of the unisol-
able pyrrole tautomer 2H-pyrrole’—precipitated as an-
alytically pure yellow powders in 96-83% yields.® They
exhibited IR »no values (1681-1683 cm!) and downfield
CH==N 'H and 3C NMR resonances (5 8.1 br s; 178 ppm
d, 2Jcp = 1.8 Hz) similar to those of the corresponding
acyclic imine complexes.” The CHz 13C NMR chemical
shift (78 ppm) was characteristic of 2H-pyrrole derivatives
and downfield of the range for 3H-pyrroles.?2 The =—=CH
13C resonances were within 6 ppm of those of the 2H-

——
pyrrole salt [HN=CHCH=CHCH,]*HSO4",® and the

(7) Knight, D. A.; Dewey, M. A,; Stark, G. A.; Bennett, B. K.; Arif, A.
M.; Gladysz, J. A. Organometallics 1993, 12, 4523.
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carbon connectivity was verified by a 2D INADEQUATE
pulse sequence.®

In CH:Cl; or CDyCl;, 3*X- sequentially rearranged to
two isomers (4YX-, 5*X"), as assayed by NMR (3*TfO-,
slow, —40 °C; 3*BF -, slower). The yields of 4*TfO- and
4*BF4 reached maxima of ca. 84% and 34% (6 h, room
temperature). After 4 days, workups of preparative
reaction mixtures gave 5*X- (90-96 %), which were as-
signed as the carbon-ligated N-protonated iminoacyl

——
complexes [(75-CsH;5)Re(NO)(PPhj)(C=NHCH,-

CH=CH)]*X-.6 The structure was evidenced by a down-
field C=N 13C NMR resonance (221 ppm d, 2Jcp = 8 Hz),
supported by numerous decoupling experiments, and
confirmed by the crystal structure shown in Figure 1. The
Re—Cbond length was similar to that in the related formyl
complex (75-CsHs)Re(NO)(PPh3)(CH=0) (2.046(3) vs
2.055(10) A), but the ReC=X bond was longer (1.314(4)
vs 1.220(12) A).10!1s The distance between one triflate
oxygen (03) and the C=NH proton (H25), 2.31 A, was
within the range associated with N..H.+O hydrogen
bonds.!2

Complex 4*X-gave NMR data similar to those for 5+X- 6
and in accord with analogous decoupling experiments was
assigned as the tautomer [(n®-CsHs)Re(NO)(PPhj)-

 —
(C=NHCH=CHCHj,)]*X~. We nextsought to probe the
mechanisms of these unusual rearrangements. We first
considered the possibility that 3+ TfO- might be kinetically
unstable with respect to triflate complex 1 and free pyrrole.
Subsequent electrophilic attack of 1 at the 2-position of
pyrrole would give 6*TfO~ (Scheme I), which could convert
via proton shifts to 4*TfO- and 5*TfO-. Indeed, the
reaction of 1 and excess pyrrole in refluxing toluene gave
5*TfO- in 92% yield after workup. NMR experiments
established the intermediacy of 4*TfO- and the formation
of some 3*TfO- (5 min, 65%. conversion; 3*+TfO-/
4*TfO-/5*TfO- = 4/24/72). Pyrrole (1 equiv) and 1 were
then combined in CD;Cl;. The reaction was monitored
by 'H and 3P NMR at room temperature and the rate
compared to that of the disappearance of 3*X- under
identical conditions. After 24 h, only 18% of 1 had been
consumed (3+TfO-/4*TfO-/5*TfO-/other species!® = 6/33/
6/55), but 96-92% of 3*X- had isomerized. Hence, 1 and
pyrrole react too slowly to be viable intermediates in the
conversion of 3*X- to 5*X-. The appearance of some
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Figure 1. Structure of 5*Tf0~: (top) numbering diagram;
(bottom) Newman-type projection down the C24-Re bond
with phenyl rings omitted. The C=N linkage is darkened to
illustrate the discussion in footnote 10. Selected bond lengths
(A) and angles (deg): Re—C24 = 2.046(3), C24-N2 = 1.314(4),
N2-C27 = 1.453(4), C24-C25 = 1.476(4), C25-C26 =
1.323(5), C26~C27 = 1.469(6), Re-N1 = 1.763(3), Re-P =
2.3854(7), N1~-01 = 1.182(3), 02-H25 = 2.31, 08-H25 = 2.77;
Re—C24-N2 = 129.3(2), P-Re-N1 = 92.4(1), N1-Re -C24 =
93.6(1), P-Re—C24 = 92.5(1), Re-N1-01 = 175.8(2), N2-C24~
C25 = 105.1(3), C24-C25-C26 = 109.5(3), C25-C26-C27 =
110.2(3), N2-C27-C26 = 101.2(3), C24-N2-C27 = 114.0(3),
02-H25-N2 = 162.2.

3+TfO- in reactions of 1 and pyrrole suggests the inter-
mediacy of the 1H-pyrrole complex [(n5-CsHs)Re(NO)-

I 1
(PPh3)(NHCH=CHCH=CH)]*T{O- (7*TfO~;Scheme I).
In fact, 7t*TfO- may—instead of 6*TfO-—constitute the
primary reaction channel.14

We also noted that the deprotonation of 5+X- might
give another potential intermediate, the pyrrolyl-C com-

A —
plex (7%-Cs;H5)Re(NO)(PPh3)(C=CHCH=CHNH) (8).
Thus, 5*TfO- and KH were combined in THF at room
temperature. Workup gave 8 (68%), which exhibited a
downfield ReC 3C NMR resonance (286 ppm d, 2Jcp =

(14) Under acidic conditions, pyrrole undergoes H/D exchange at
nitrogen much more rapidly than C2 or C3. Thus, the least basic site is
the most reactive toward certain electrophiles. See ref 2, pp 305-306.
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7Hz). Toour knowledge, 8 is the first pyrrolyl-C complex
to be prepared. Subsequent reaction with TfOH in CD;-
Cl; (-80 °C, <5 min) gave exclusively 57 T{fO-, as assayed
by 'H and 3P NMR. Hence, 8 cannot be a precursor to
4*TfO".

Although the preceding data exclude several plausible
mechanisms for the rearrangement of 8*X- to 4*X- and
5*X-, they do not in our view identify a compelling choice
among the remaining possibilities. We have considered
pathways that involve initial formation of 7tX- or the
corresponding 3H-pyrrole complex. The requisite proton
shifts might be mediated by the counteranions, accounting
for the rate trend (more basic TfO- faster than BF,). From
these species, either (1) series of sigmatropic shifts or (2)
deprotonations of =—CH groups adjacent to nitrogen
(possibly via = isomers) allow rhenium-carbon bond
formation in a manner consistent with the above data.
Efforts to further probe and define the reaction coordinate
are in progress.

Other aspects of the preceding reactions deserve em-
phasis. To our knowledge, 1 is the first transition-metal
electrophile observed to attack free pyrrole to give aspecies
with a metal-carbon ¢ bond. However, in important
related work, osmium dications have been found to add
to pyrrole to give m complexes.!®> These also undergo a
rich array of reactions with electrophiles. Further, the
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facile formation of nonaromatic pyrrole derivatives in
Scheme I suggests several means by which metals could
promote ring degradation reactions that would facilitate
hydrodenitrogenation processes. In this context, poten-
tially relevant conversions of cationic thiophene to neutral
2-thienyl complexes have recently been reported.’® Fi-
nally, extensions of the above chemistry to other aromatic
heterocycles, optically active complexes, and stereoselec-
tive carbon—carbon bond-forming reactions will be de-
scribed in the near future.
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