

Subscriber access provided by American Chemical Society

Pyrrolyl-N and pyrrolyl-C complexes of the chiral rhenium fragment [(.eta.5- C5H5)Re(NO)(PPh3)]+: synthesis, protonation, and rearrangement chemistry

Todd J. Johnson, Atta M. Arif, and J. A. Gladysz

Organometallics, **1993**, 12 (12), 4728-4730• DOI: 10.1021/om00036a006 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on March 8, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00036a006>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Pyrrolyl-N and Pyrrolyl-C Complexes of the Chiral Rhenium Fragment $[(\eta^5 \text{-} C_5H_5)Re(NO)(PPh_3)]^+$: Synthesis, **Protonation, and Rearrangement Chemistry**

Todd J. Johnson, **Atta** M. **Arif, and** J. **A. Gladysz***

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received September 15, 199P

Summary: The pyrrolyl-N complex $(n^5$ *-C₅H₅)Re(NO)-* $(PPh₃)(NC₄H₄)$ and TfOH or $HBF₄·OEt₂ react$ to give $2H$ *pyrrole complexes [(q5-C5H5)Re(NO)(PPh3)-* 728
 **Pyrrolyl-Na

Rhenium Fragn

Protonat**

Todd J

Department of C

Todd J

Department of C

Ph₃)(NC₄H₄) and TfOH or HBF₄·OE

yrrole_complexes_[(η ⁵-C₅H₅)]

N=CHCH=CHCH₂)]⁺X⁻. These re

N=NHCH₂CH

(N=CHCH=CHCH2)]+X-. These rearrange to the carbon-ligated species $[(p^5 - C_5H_5)Re(\overline{NO})(PPh_3)$ pyrrote complexes $I(\eta^T-C)$
 $(N=CHCH=CHCH_2)$ YX^- . The bon-ligated species $I(\eta^5-C)$
 $(C=NHCH_2CH=CH)$ YX^- , whit tallographically and treated with
 $T\sim N$ $C+CP$ T T T T
 $CH=CHNH$.

Many transition-metal pyrrom T
 N

(C=NHCH2CH=CH)]+X-, which is characterized crystallographically and treated with KH to give the pyr-

 $rolyl$ -C complex $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(C=CH-*CH=CHNH).*

Many transition-metal pyrrolyl-N complexes, **L,-** $MNC₄H₄$, have been synthesized.¹ However, despite the importance of the pyrrole moiety in natural products, materials, and hydrodenitrogenation chemistry, there do not appear to be any studies of ligand-based reactions. Although pyrroie undergoes attack by electrophiles at the 2-position,² pyrrolyl ligands should be further activated. There would be the potential for altered regiochemistry³ and, in adducts of chiral metal fragments, control of the configurations of new stereocentera. Hence, we set out to prepare σ -pyrrolyl complexes of the chiral rhenium fragment $[(\eta^5-C_5H_5)Re(NO)(PPh_3)]^+$ and study their reactions with electrophiles. In this communication, we report that additions of protic acids to pyrrolyl-N complexes can trigger remarkable metal-carbon bond-forming rearrangements.

In a reaction similar to those used to access other pyrrolyl-N complexes,^{1a-d} the triflate complex $(\eta^5$ -C₅H₅)- $Re(NO)(PPh₃)(OTf)$ (1)⁴ and the pyrrolide salt $KNC₄H₄$ $(1.5 \text{ equiv})^5$ were combined in THF at room temperature (Scheme I). Workup gave crystalline, air-stable $(\eta^5$ -C₅H₅)- $Re(NO)(PPh₃)(NC₄H₄)$ (2) in 88% yield. Complex 2, and other new compounds isolated below, were characterized by microanalysis and IR and NMR $(^1H/^{13}C/^{31}P)$ spectroscopy.6 The 'H and 13C NMR chemical shifts of the NCH=CH moiety **(6** 6.39, 5.76; 137, 108 ppm) were comparable to those of other pyrrolyl- N complexes.^{1a,f}

In separate experiments, TfOH and $HBF₄·OEt₂$ were added to ether solutions of 2 (Scheme I). The adducts

(2) Pyrroles; Jones, R. A., Ed.; Wiley: New York, 1990; Part One.

(3) Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.;

Artis, D. R.; Muchowski, J. M. J. Org. Chem. 1990, 55, 6317.

(4) Merrifield, J.

(6) Full characterization of new compounds is provided in the supplementary material. NMR spectra were recorded in CD₂Cl₂.

Scheme I. Synthesis of Pyrrolyl-N **and** Pyrrolyl-C Complexes **2 and 8 and** Reactions with **Acids**

possible intermediates in reaction of 1 and pyrrole

 $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(N=CHCH=CHCH_2)]+X-$ (3+X-)-which can be viewed **as** complexes of the unisolable pyrrole tautomer **2H-pyrrole2-precipitated as** analytically pure yellow powders in $96-83\%$ yields.⁶ They exhibited IR ν_{NO} values (1681-1683 cm⁻¹) and downfield CH=N ¹H and ¹³C NMR resonances $(\delta 8.1 \text{ br s}; 178 \text{ ppm})$ d, $^{2}J_{\text{CP}}$ = 1.8 Hz) similar to those of the corresponding acyclic imine complexes.⁷ The CH₂ ¹³C NMR chemical shift (78 ppm) was characteristic of $2H$ -pyrrole derivatives and downfield of the range for $3H$ -pyrroles.² The =CH 13C resonances were within 6 ppm of those of the *2H*pyrrole salt $[HN=CHCH=CHCH₂]+HSO₄⁻,⁸$ and the $\begin{array}{ll}\n\begin{array}{c}\n\text{4* TfO} \\
\text{and/or} \\
\text{5* TfO}\n\end{array}\n\end{array}\n\quad\n\begin{array}{ll}\n\text{and/or} \\
\text{5* TfO}\n\end{array}\n\quad\n\begin{array}{ll}\n\text{and/or} \\
\text{5* TfO}\n\end{array}\n\quad\n\begin{array}{ll}\n\text{and/or} \\
\text{5* TfO}\n\end{array}\n\quad\n\begin{array}{ll}\n\text{and/or} \\
\text{5* TfO}\n\end{array}\n\quad\n\begin{array}{ll}\n\text{and/or} \\
\text{5* TfO}\n\$

a Abstract published in Advance ACS Abstracts, November 15,1993. (1) Leadreferences: (a) Pauson,P. L.;Qazi, A. R. J. Organomet. Chem. **1967, 7,321.** (b) Bynum, R. V.; Hunter, W. E.; Rogers, R. D.; Atwood, J. L. Inorg. Chem. **1980,19,2368.** (c) Carmona, E.; Marfn, J. M.; Palma, P.; Paneque, M.; Poveda, M. L. Znorg. Chem. **1989,28,1895.** (d) Edema, J. **J.H.;Gambarotta,S.;Meetsma,A.;vanBolhuis,F.;Spek,A.L.;Smeets,** W. J. J. Znorg. Chem. **1990,29, 2147.** (e) Lapido, F. T.; Merola, J. S. Znorg. Chem. **1990, 29, 4172.** *(0* Simpson, R. D.; Bergman, R. G. Organometallica **1992,** *11,* **3980.**

C. A. *J.* Am. Chem. *SOC.* **1962,84,43.**

⁽⁷⁾ Knight, D. A.; Dewey, M. A.; **Stark,** G. A.; Bennett, B. K.; kif, A. M.; Gladysz, J. A. Organometallics **1993, 12, 4523.**

carbon connectivity was verified by a 2D INADEQUATE pulse sequence.⁹

In CH_2Cl_2 or CD_2Cl_2 , $3+X^-$ sequentially rearranged to two isomers $(4+X-$, $5+X-$), as assayed by NMR $(3+Tf0-$, slow, -40 °C; $3^{+}BF_{4}$ ⁻, slower). The yields of $4^{+}TfO^{-}$ and 4+BF4- reached maxima of ca. **84%** and **34% (6** h, room temperature). After **4** days, workups of preparative remperature). After 4 days, workups of preparative
reaction mixtures gave 5^+X^- (90–96%), which were as-
signed as the *carbon*-ligated N-protonated iminoacyl
complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(C=NHCH_2-CH=-CH)]^+X^{-6}$ The struc signed **as** the carbon-ligated N-protonated iminoacyl

complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(C=NHCH_2-$

 $CH=CH$]⁺X⁻⁶ The structure was evidenced by a downfield C=N ¹³C NMR resonance $(221$ ppm d, $^2J_{CP} = 8$ Hz), supported by numerous decoupling experiments, and confirmed by the crystal structure shown in Figure **1.** The Re-C bond length was similar to that in the related formyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH=O)$ (2.046(3) vs **2.055(10) A),** but the ReC-X bond was longer **(1.314(4)** vs 1.220(12) Å).^{10,11a} The distance between one triflate oxygen **(03)** and the C=NH proton **(H25), 2.31** A, was within the range associated with $N \cdot H \cdot \cdot O$ hydrogen bonds.12 exaction mixtures gave $5+X-$ (90-96%)
gned as the *carbon*-ligated N-protagned as the *carbon*-ligated N-proto
omplexes $[(\eta^5-C_5H_5)Re(NO)(PP]$
 $H=CH)]+X^{-6}$ The structure was evident
eld C=N ¹³C NMR resonance (221 pp
uppor

Complex 4+X-gave NMR data **similar** to those for 5+X- ti and in accord with analogous decoupling experiments was assigned as the tautomer $[(\eta^5$ -C₅H₅)Re(NO)(PPh₃)-

 $(C=NHCH=CHCH₂)]+X-$. We next sought to probe the mechanisms of these unusual rearrangements. We first considered the possibility that 3+Tf0- might be kinetically unstable with respect to triflate complex **1** and free pyrrole. Subsequent electrophilic attack of **1** at the 2-position of pyrrole would give 6+Tf0- (Scheme I), which could convert via proton shifts to 4+Tf0- and 5+Tf0-. Indeed, the reaction of 1 and excess pyrrole in refluxing toluene gave 5+Tf0- in **92%** yield after workup. NMR experiments established the intermediacy of 4+Tf0- and the formation of some 3+Tf0- (5 min, **65%** conversion; 3+Tf0-/ 4+TfO-/5+TfO- = **4/24/72).** Pyrrole **(1** equiv) and **1** were then combined in CD_2Cl_2 . The reaction was monitored by 'H and 31P NMR at room temperature and the rate compared to that of the disappearance **of** 3+X- under identical conditions. After **24** h, only **18%** of **1** had been consumed $(3+TfO^{-}/4+TfO^{-}/5+TfO^{-}/other$ species¹³ = $6/33/$ **6/55),** but **96-9276** of 3+X- had isomerized. Hence, 1 and pyrrole react *too slowly* to be viable intermediates in the conversion of $3+X^-$ to $5+X^-$. The appearance of some

(11) Lead references: (a) Bodner, G. S.; Patton, A. T.; Smith, D. E.; Georgiou, S.; Tam, W.; Wong, W.-K.; Strouse, C. E.; Gladysz, J. A. Organometallics 1987, 6, 1954. (b) Crowe, W. F.; Schreiber, S. L. In *Advances in Metal-Organic Chemistry;* Liebeskind, L. *S.,* Ed.; JAI Press: Greenwich, CT 1991; Vol. 2, p 247. (c) Davies, S. G.; Smallridge,
A. J. *J. Organomet. Chem.* 1990, 397, C13.
_ (12) Dewey, M. A.; Knight, D. A.; Klein, D. P.; Arif, A. M.; Gladysz,

J. A. *Znorg. Chem.* **1991,30,4995.**

(13) Cyclopentadienyl lH *NMR* chemical **shifts: 3+TfO-/4+TfO-/6+TfO**at **6 5.55/5.64/5.61;** other species at **6 5.48, 5.36, 5.25, 5.01.**

Figure 1. Structure of 5⁺TfO⁻: (top) numbering diagram; (bottom) Newman-type projection down the **C24-Re** bond with phenyl rings omitted. The **C=N** linkage **is** darkened to illustrate the discussion in footnote 10. Selected bond lengths (\hat{A}) and angles (deg) : $\text{Re}-\text{C}24 = 2.046(3), \text{C}24-\text{N}2 = 1.314(4),$ **N2-C27** = **1.453(4), C24-C25** = **1.476(4), C25-C26** = **1.323(5), C26-4227** = **1.469(6), Re-Nl** = **1.763(3), Re-P** * **2.3854(7), N1-O1 = 1.182(3), O2-H25 = 2.31, O3-H25 = 2.77;
Re-C24-N2 = 129.3(2), P-Re-N1 = 92.4(1), N1-Re -C24 = 93.6(1), P-Re-C24 = 92.5(1), Re-N1-O1 = 175.8(2), N2-C24-** $C25 = 105.1(3)$, $C24-C25-C26 = 109.5(3)$, $C25-C26-C27 = 110.2(3)$, $N2-C27-C26 = 101.2(3)$, $C24-N2-C27 = 114.0(3)$ **02-H25-N2** = **162.2.** N1 C25

Revenue of 5⁺TfO⁻: (top) numbering c

Newman-type projection down the C24-H

nyl rings omitted. The C=N linkage is dark

the discussion in footnote 10. Selected bond

ngles (deg): Re-C24 = 2.046(3), C24-N2 = 1 = N inkage is darkened to

e 10. Selected bond lengths

e 10. Selected bond lengths

= $1.476(4)$, $C25-C26$ =

e-N1 = $1.763(3)$, Re-P =
 $H25 = 2.31$, 03- $H25 = 2.77$;
 $1 = 92.4(1)$, N1-Re-C24 =
 $N1$ -O1 = $175.8(2)$, N2

3+TfO- in reactions of **1** and pyrrole suggests the intermediacy of the 1H-pyrrole complex $[(\eta^5-C_5H_5)Re(NO)]$ -

(PPb)(NHCH=CHCH=CH)I+TfO- (7+Tfo-, Scheme I). In fact, 7+TfO- may-instead of 6+TfO--constitute the primary reaction channel. 14

We **also** noted that the deprotonation of S+X- might give another potential intermediate, the pyrrolyl-C **com-**

plex $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(C==CHCH==CHNH) **(8)**. Thus, 5+Tf0- and KH were combined in **THF** at room temperature. Workup gave 8 **(68% 1,** which exhibited a downfield ReC¹³C NMR resonance (286 ppm d, ²J_{CP} =

⁽⁸⁾ (a) Chiang, **Y.;** Whipple, E. B. J. *Am. Chem. SOC.* **1963,85,2763. (b)** Whipple, **E.** B.; Chiang, **Y.;** Hinman, R. L. J. *Am. Chem. SOC.* **1963, 85, 26.**

⁽⁹⁾ (a) Dunkel, R.; Mayne, C. L.; Pugmire, R. J.; Grant, D. M. *Anal. Chem.* 1992, 64, 3133. (b) Dunkel, R.; Mayne, C. L.; Foster, M. P.; Ireland, 3
C. M.; Li, D.; Owen, N. L.; Pugmire, R. J.; Grant, D. M. *Anal. Chem.* 1992, 3 *64,* **3150.**

⁽¹⁰⁾ The ON- $\text{Re}-\text{C}=$ NH torsion angle in 5^+ TfO⁻ is $177.4(4)$ ^o, indicating an *anti* arrangement of the ON-Re and C=NH moieties. The opposite Re-C conformation, which would have *anti* ON-Re and C-CH moieties, would be equivalent sterically (neglecting hydrogen bonding). Although there is presently **no** assurance that S+TfO- **has** crystallized in the lower energy Re-C conformation, this feature is of interest in the context of a lively controversy involving the origin of analogous orientations of acyl and formyl ligands **in-** complexes of the formula $(\eta^5$ -C₅H₅)M(XO)(PPh₃)(COR) (M = Fe, Re; X = C, N).¹¹

⁽¹⁴⁾ Under acidic conditions, pyrrole undergoes H/D exchange **at** nitrogen much more rapidly than C2 or C3. Thus, the least basic site is the most reactive toward certain electrophiles. *See* ref **2,** pp 306-306.

7 Hz). To our knowledge, 8 is the first pyrrolyl-C complex to be prepared. Subsequent reaction with TfOH in CD₂-Clz (-80 "C, **<5** min) gave exclusively 5+Tf0-, **as** assayed by 'H and **31P** NMR. Hence, 8 cannot be a precursor to 4+TfO-.

Although the preceding data exclude several plausible mechanisms for the rearrangement of $3+X^-$ to $4+X^-$ and **5+X-,** they do not in our view identify a compelling choice among the remaining possibilities. We have considered pathways that involve initial formation of **7+X-** or the corresponding 3H-pyrrole complex. The requisite proton **shifts** might be mediated by the counteranions, accounting for the rate trend (more basic TfO-faster than BF_4^-). From these species, either (1) series of sigmatropic shifts or (2) deprotonations of $=CH$ groups adjacent to nitrogen (possibly via π isomers) allow rhenium-carbon bond formation in a manner consistent with the above data. Efforts to further probe and defiie the reaction coordinate are in progress.

Other aspects of the preceding reactions deserve emphasis. To our knowledge, **1** is the first transition-metal electrophile observed to attack free pyrrole to give a species with a metal-carbon σ bond. However, in important related work, osmium dications have been found to add to pyrrole to give π complexes.¹⁵ These also undergo a rich array of reactions with electrophiles. Further, the facile formation of nonaromatic pyrrole derivatives in Scheme I suggests several means by which metals could promote ring degradation reactions that would facilitate hydrodenitrogenation processes. In this context, potentially relevant conversions of cationic thiophene to neutral 2-thienyl complexes have recently been reported.16 Finally, extensions of the above chemistry to other aromatic heterocycles, optically active complexes, and stereoselective carbon-carbon bond-forming reactions will be described in the near future.

Acknowledgment. We thank the NIH for support of this research and Dr. C. Mayne for the 2D NMR spectra.

Supplementary Material Available: Text **giving** experimental procedures and analytical data and a table of **NMR** and IR data for new compounds⁶ and tables of crystallographic data for 5^+ TfO⁻ (17 pages). Ordering information is given on any current masthead page.

OM930639U

^{(15) (}a) Cordone, R.; Harman, W. D.; Taube, H. J. Am. Chem. Soc.
1989, 111, 5969. (b) Myers, W. H.; Koontz, J. I.; Harman, W. D. J. Am.
Chem. Soc. 1992, 114, 5684. (c) Hodges, L. M.; Gonzalez, J.; Koontz, J. I.; Myers, W. **H.;** Harman, W. D. *J. Org. Chem.* 1993,58,4788. (16) **Robertson,** M. J.; Angelici, R. J. Submitted for publication.