Transformation of Alkenyl–N-Arylthioamido Ligands into **Quinoline-2-thiolate Ligands in Dirhenium Carbonyl** Complexes

Richard D. Adams,* Linfeng Chen, and Wengan Wu

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Received August 11, 1993®

Irradiation of the alkenyl-N-arylthioamido complexes $Re(CO)_4[(E)-HC=C(CO_2Me)C=N (C_{6}H_{4}-p-R)S]Re(CO)_{4}$, 1a-c, R = H, Me, Cl, in the presence of iodine yielded a mixture of four $(NHC_{6}H_{4}-p-R) = S]Re(CO)_{4}(I), 4a-c, R = H, Me, Cl; Re(CO)_{4}(2-S-3-CO_{2}Me-6-RNC_{9}H_{4}), 5a-c,$ R = H, Me, Cl, with compounds 5 being the major products. Compounds 2a-c, 4a-c, and 5a-c are new. Compounds 4a-c were also obtained from the reaction of 1a-c with HI. UV irradiation of 1b in the absence of iodine yielded the compounds $Re_2(CO)_8[\mu-2-S-3-CO_2Me-6-MeNC_9H_4](\mu-2-S-3-CO_2Me-6-MeNC_9H_4](\mu-2-S-3-CO_2Me-6-MeNC_9H_4)$ H), 6b, $\text{Re}_2(\text{CO})_7[\mu-2-S-3-\text{CO}_2\text{Me-6-MeNC}_9\overline{H}_4](\mu-H)$, 7b, and 5b, while UV irradiation of 6b yielded 7b and 5b plus $\text{Re}_3(\text{CO})_{12}(\mu-\text{H})_3$. UV irradiation of 2b in the presence of CO yielded 5b plus $\text{Re}_2(\text{CO})_8(\mu-I)_2$. UV irradiation of 3b also yielded 2b, 5b, and some 7b. Treatment of 7b with iodine yielded 2b. Finally, from the UV irradiation of 5b the dimer $[Re(CO)_3(2-S-3 CO_2Me-6-MeNC_9H_4$]₂, 8b, was obtained in 57% yield. Complexes 2b, 4c, 5b, 6b, 7b, and 8b were characterized by single crystal X-ray diffraction analyses. The compounds 2 and 5-8 all contain substituted quinoline-2-thiolate ligands formed by the coupling of one of the carbon atoms of the aryl ring to the hydrogen-substituted carbon atom of the alkenyl group. Crystal data: (for 2b·CH₂Cl₂) space group = $P\bar{1}$, a = 10.204(2) Å, b = 13.733(6) Å, c = 9.877(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 9.877(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, b = 13.733(6) Å, c = 10.204(2) Å, $\alpha = 10.204(2)$ Å, α 91.18(3)°, $\beta = 96.17(3)°$, $\gamma = 74.78(3)°$, Z = 2, 2746 reflections, R = 0.038; (for 4c) space group $= P2_1/c$, a = 7.027(2) Å, b = 10.894(2)Å, c = 34.470(4)Å, $\beta = 92.75(1)°$, Z = 4, 1762 reflections, R = 0.028; (for **5b**) space group = $P\bar{1}$, a = 11.250(2) Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 11.250(2)$ Å, b = 11.905(2) Å, b = 11.905(2) Å, c = 7.312(1) Å, $\alpha = 10.905(2)$ Å, c = 10.905(2) Å, c = 10.90107.23(1)°, $\beta = 106.59(1)°$, $\gamma = 67.73(1)°$, Z = 2,1716 reflections, R = 0.024; (for **6b**) space group $= P2_1/c$, a = 18.603(3) Å, b = 17.987(3) Å, c = 7.223(1) Å, $\beta = 90.05(2)°$, Z = 4,2099 reflections, R = 0.025; (for 7b) space group = $P\bar{1}$, a = 11.877(2) Å, b = 13.519(2) Å, c = 7.876(1) Å, $\alpha = 11.877(2)$ Å, b = 13.519(2) Å, c = 7.876(1) Å, $\alpha = 11.877(2)$ Å, b = 13.519(2) Å, c = 1.877(2) Å, c = 1.877(2)98.14(1)°, $\beta = 103.79(1)$ °, $\gamma = 109.25(2)$ °, Z = 2, 1677 reflections, R = 0.030; (for 8b) space group $= C_2/c, a = 20.727(4)$ Å, b = 10.669(2)Å, c = 14.487(2)Å, $\beta = 106.76(1)^\circ, Z = 4, 1827$ reflections, R = 0.022.

Introduction

Organic isothiocyanates have been shown to be useful reagents in organic synthesis,¹ but the organometallic chemistry of these molecules is not yet well developed.²

In recent studies we have found that aryl isothiocyanates react with the lightly stabilized dimetalated olefin complex $Re(CO)_4[trans-\mu-HC=C(CO_2Me)]Re(CO)_4(NCMe)$ by displacement of the NCMe ligand and insertion of the isothiocyanate molecule into the carboxylate substituted Re—C bond to yield the complexes $Re(CO)_4[(E)-HC=C (CO_2Me)C = N(C_6H_4-p-R)S]Re(CO)_4$, 1a-c, R = H, Me, Cl, containing alkenyl-N-arylthioamido ligands.³

We have now found that these complexes undergo a

* Abstract published in Advance ACS Abstracts, November 15, 1993.

(1) Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1.

- Werner, H. Coord. Chem. Rev. 1982, 43, 165.
 Adams, R. D.; Chen, L.; Wu, W. Organometallics 1993, 12, 3812.

remarkable cyclization reaction in which the aryl ring is coupled at its ortho-position to the unsubstituted olefin carbon atom to yield complexes containing quinoline-2thiolate ligands when they are irradiated in the presence of iodine. Quinoline-2-thiolates⁴ and pyridine-2-thiolates⁵ have recently attracted attention as ligands due to their ability to adopt several different multidentate coordination modes. A preliminary report of a portion of this work has been published.⁶

Experimental Section

Unless specified otherwise, all reactions were carried out under an atmosphere of nitrogen. Hexane was freshly distilled over

^{(4) (}a) Fanwick, P. E.; Qi, J.-S.; Walton, R. A. Inorg. Chem. 1990, 29, 3787. (b) Fanwick, P. E.; Qi, J.-S.; Wu, Y.-P.; Walton, R. A. Inorg. Chim. Acta 1990, 168, 159. (c) Padilla, E. M.; Yamamoto, J. H.; Jensen, C. M. Inorg. Chim. Acta 1990, 174, 209.

^{(5) (}a) Ciriano, M. A.; Perez-Torrente, J. J.; Viguri, F.; Lahoz, F. J.; (b) (a) Ciriano, M. A.; Ferez-1 orrente, J. J.; Viguri, F.; Lanoz, F. J.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Chem. Soc., Dalton Trans. 1990, 1493. (b) Ciriano, M. A.; Viguri, F.; Perez-Torrente, J. J.; Lahoz, F. J.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Chem. Soc., Dalton Trans. 1990, 25. (c) Yamamoto, J. H.; Yoshida, W.; Jensen, C. M. Inorg. Chem. 1991, 30, 1353. (d) Ciriano, M. A.; Viguri, F.; Lahoz, F. J.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. Angew. Chem. Int Ed. Engl. 1987, 26, 444. (e) Deeming. A. J.; Megh. M. N.; Batea, P. A. J., Barl, 1987, 26, 444. (e) Deeming, A. J.; Meah, M. N.; Bates, P. A.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1988, 2193. (f) Deeming, A. J.; Karim, M.; Bates, P. A.; Hursthouse, M. B. Polyhedron 1988, 1401. (g) Deeming, A. J.; Meah, M. N.; Bates, P. A.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1988, 235. (h) Pramanik, A.; Bag,
 N.; Chakravorty, A. Inorg. Chem. 1993, 32, 811.
 (6) Adams, R. D.; Chen, L.; Wu, W. Organometallics 1993, 12, 2404.

sodium under nitrogen before use. CH₂Cl₂ was dried over CaH₂. Traces of water in commerically obtained CP grade CO was removed by passing through a column of P_2O_5 before use. I₂ and HI (47% aqueous solution, 6.9 M) were purchased from Aldrich and were used without further purification. UV irradiations were performed by using an externally positioned 360-W high pressure mercury lamp purchased from Gates, Long Island, NY, on solutions in Pyrex glassware. TLC separations were performed in air by using silica gel (60 Å, F_{254}) on plates (Whatman, 0.25 mm). IR spectra were recorded on a Nicolet 5DXB FT-IR spectrophotometer. ¹H NMR spectra were taken at 300 MHz on a Brüker AM-300 spectrometer. Mass spectra were run on a VG Model 70SQ mass spectrometer using electron impact ionization. Elemental analyses were performed by Desert Analytics, Tucson, AZ. The compounds $Re(CO)_4[(E)-HC=C(CO_2Me)C=N(C_6H_4$ p-R)S]Re(CO)₄, 1a-c, R = H, Me, Cl,³ and [Re(CO)₄(μ -I)]₂⁷ were prepared by previously reported procedures.

Reactions of 1a-1c with I2 under UV Irradiation. A 50.0mg (0.061-mmol) amount of 1a and a 50.0-mg (0.197-mmol) amount of I_2 were dissolved in 80 mL of hexane. The solution was exposed to UV at 25 °C for 15 min. After the solvent was removed under vacuum at 25 °C, the residue was separated using a hexane/ CH_2Cl_2 2/1 solvent mixture to give the following compounds in order of elution: 13.9 mg of starting material; 5.0 mg of $Re(CO)_4[(E)-HC=C(CO_2Me)C=N(C_6H_5)S]Re_2(CO)_7(\mu-$ I), 3a,³ 10%; 4.4 mg of yellow Re(CO)₄[(E)-HC=C(CO₂Me)C- $(NHC_6H_5) = S]Re(CO)_4(I), 4a, 8\%; 8.2 \text{ mg of yellow } Re_2(CO)_7[\mu$ $2-S-3-CO_2MeNC_9H_5$ (µ-I), 2a, 1 5%; 10.3 mg of Re(CO)₄(2-S-3- $CO_2MeNC_9H_5$, 5a, 33%; 2.6 mg of $[Re(CO)_4(\mu-I)]_2$. IR (ν_{CO} in hexane, cm⁻¹): (for 4a) 2106 (w), 2102 (m), 2013 (s), 2005 (s), 2001 (s), 1996 (s), 1958 (s), 1591 (w, br); (for 2a) 2110 (m), 2035 (s), 2014 (s), 2004 (s), 1968 (s), 1959 (m), 1937 (s), 1926 (s), 1740 (w), 1733 (w); (for 5a) 2106 (w), 2009 (s), 1992 (s), 1945 (s), 1746 (w), 1729 (w). ¹H NMR (δ in CDCl₈, ppm): (for 4a) 11.69 (s, br, 1H, NH), 11.06 (s, 1H, CH), 7.33 (m, 2H, C₆H₅), 7.26 (m, 1H, C_6H_5), 7.11 (m, 2H, C_6H_5), 3.53 (s, 3H, OCH₃); (for 2a) 9.13 (s, 1H, CH), 8.20 (m, 1H, C₆H₄), 8.06 (m, 2H, C₆H₄), 7.77 (m, 1H, C₆H₄), 4.05 (s, 3H, OCH₃); (for 5a) 8.69 (s, 1H, CH), 7.81 (m, 2H, C_6H_4 , 7.64 (m, 1H, C_6H_4), 7.48 (m, 1H, C_6H_4), 3.98 (s, 3H, OCH₃). Mass spectrum: (for 2a (¹⁸⁷Re)) m/z = 915 - 28x, x = 0-7 (M⁺ -xCO; (for 4a (¹⁸⁷Re)) m/z = 945 - 28x, x = 0-8 (M⁺ - xCO); (for 5a (¹⁸⁷Re)) m/z = 517 - 28x, x = 0-4 (M⁺ - xCO).

When a 50.0-mg (0.060-mmol) amount of 1b was allowed to react with a 50.0-mg (0.197-mmol) amount of I2 in 80 mL of hexane under UV irradiation at 25 °C for 15 min, separation as described above gave the following compounds: 16.0 mg of starting material; 5.2 mg of Re(CO)₄[(E)-HC=C(CO₂Me)C=N-(C₆H₄-p-Me)S]Re₂(CO)₇(µ-I), 3b³, 11.0%; 4.2 mg of yellow Re- $(CO)_4[(E)-HC=C(CO_2Me)C(NHC_6H_4Me-p)=S]Re(CO)_4(I), 4b,$ 7%; 6.7 mg of yellow Re₂(CO)₇[μ -2-S-3-CO₂Me-6-MeNC₉H₄](μ -I), 2b, 12%; 13.1 mg of Re(CO)₄(2-S-3-CO₂Me-6-MeNC₉H₄), 5b, 41%; 2.0 mg of $[Re(CO)_4(\mu-I)]_2$. IR (ν_{CO} in hexane, cm⁻¹): (for 4b) 2106 (w), 2101 (m), 2013 (s), 2005 (s), 2000 (s), 1996 (s), 1958 (s), 1591 (w, br); (for 2b) 2110 (m), 2035 (s), 2014 (s), 2003 (s), 1967 (s), 1958 (m), 1937 (s), 1925 (s), 1740 (w); (for 5b) 2106 (w), 2008 (s), 1991 (s), 1944 (s), 1745 (w), 1728 (w). ¹H NMR: (for 4b) (δ in CDCl₃, ppm) 11.60 (s, br, 1H, NH), 11.02 (s, 1H, CH), 7.12 (d, ${}^{3}J_{H-H} = 8.3 \text{ Hz}$, 2H, C₆H₄), 6.99 (d, ${}^{3}J_{H-H} = 8.4 \text{ Hz}$, 2H, C_6H_4), 3.56 (s, 3H, OCH₃), 2.32 (s, 3H, $C_6H_4CH_3$); (for 2b) (δ in $CDCl_3$, ppm) 9.04 (s, 1H, CH), 8.12 (d, ${}^{3}J_{H-H} = 8.0$ Hz, 1H, $C_{6}H_3$), $7.89 (d, {}^{3}J_{H-H} = 8.0 Hz, 1H, C_{6}H_{3}), 7.79 (s, 1H, C_{6}H_{3}), 4.04 (s, 3H, C_{6}$ OCH₃), 2.63 (s, 3H, C₆H₃CH₃); (for **5b**) (δ in C₆D₆, ppm) 8.36 (s, 1H, CH), 8.05 (d, ${}^{3}J_{H-H} = 8.7$ Hz, 1H, C₆H₃), 6.86 (d, ${}^{3}J_{H-H} = 8.7$ Hz, 1H, C₆H₃), 6.68 (s, 1H, C₆H₃), 3.54 (s, 3H, OMe), 1.90 (s, 3H, C_6H_3Me). Mass spectrum: (for 4b (¹⁸⁷Re)) m/z = 959 - 28x, x= 0-8 (M⁺-xCO). Anal. Calcd (found) for 5b (ReSO₆NC₁₆H₁₀): C, 36.22 (36.14); H, 1.90 (1.86); N, 2.64 (3.12).

When a 50.0-mg (0.059-mmol) amount of 1c was allowed to react with a 50.0-mg (0.197-mmol) amount of I_2 in 80 mL of

hexane under UV irradiation at 25 °C for 15 min, separation as described above gave the following compounds: 17.7 mg of starting material; 5.0 mg of $Re(CO)_4[(E)-HC=C(CO_2Me)C=N-$ (C₆H₄-p-Cl)S]Re₂(CO)₇(µ-I), 3c,³ 10.0%; 4.8 mg of yellow Re- $(CO)_4[(E)-HC=C(CO_2Me)C(NHC_6H_4Cl-p)=S]Re(CO)_4(I), 4c,$ 8%; 5.1 mg of yellow Re₂(CO)₇[µ-2-S-3-CO₂Me-6-ClNC₉H₄](µ-I), 2c, 9%; 13.1 mg of Re(CO)₄(2-S-3-CO₂Me-6-ClNC₉H₄), 5c, 45%; 3.0 mg of $[Re(CO)_4(\mu-I)]_2$. IR (ν_{CO} in hexane, cm⁻¹): (for 2c) 2110 (m), 2036 (s), 2015 (s), 2004 (s), 1969 (s), 1960 (m), 1940 (s), 1927 (s), 1741 (w), 1734 (w); (for 4c) 2107 (w), 2101 (m), 2014 (s), 2007 (s), 2001 (s), 1997 (s), 1960 (s), 1591 (w, br); (for 5c) 2107 (w), 2010 (s), 1994 (s), 1947 (s), 1747 (w), 1730 (w). ¹H NMR: (for 2c) (δ in CDCl₃, ppm) 9.02 (s, 1H, CH), 8.14 (d, ³J_{H-H} = 9.1 Hz, 1H, C_6H_3), 8.02 (s, 1H, C_6H_3), 7.98 (d, ${}^{3}J_{H-H}$ = 9.1 Hz, 1H, C₆H₃), 4.05 (s, 3H, OCH₃); (for 4c) (δ in C₆D₆, ppm) 11.93 (s, br, 1H, NH), 10.34 (s, 1H, CH), 6.80 (d, ${}^{3}J_{H-H} = 8.8 \text{ Hz}, 2H, C_{6}H_{4}$), 6.59 (d, ${}^{3}J_{H-H} = 8.8$ Hz, 2H, C₆H₄), 2.40 (s, 3H, OCH₃); (for 5c) $(\delta \text{ in CDCl}_3, \text{ppm})$: 8.58 (s, 1H, CH), 7.75 (d, $^3J H_{-H} = 9.6 \text{ Hz}, 1H$, C_6H_3 , 7.74 (s, 1H, C_6H_3), 7.57 (d, ${}^{3}J_{H-H} = 9.6$ Hz, 1H, C_6H_3), 3.98 (s, 3H, OCH₃). Mass spectrum: (for 2c (¹⁸⁷Re)) m/z = 949 - 28x, x = 0-7 (M⁺ - xCO); (for 5c (¹⁸⁷Re)) m/z = 551 - 28x, x = 0-4(M⁺ - xCO). Anal. Calcd (found) for 4c (Re₂IClSO₁₀NC₁₉H₉): C, 23.33 (23.94); H, 0.92 (1.19); N, 1.43 (1.58).

Reactions of la-c with HI. To the solution of a 10.0-mg (0.012-mmol) amount of 1a in 25 mL of hexane was added a 1.0-mL amount of 6.9 M HI aqueous solution. The reaction mixture was heated to reflux for 45 min. After cooling, the solvent was removed by vacuum. The residue was separated using a hexane/CH₂Cl₂ 2/1 solvent mixture to give the following compounds in order of elution: 1.1 mg of starting material; 5.6 mg of 4a, 48% yield; 2.1 mg of [Re(CO)₄(μ -I)]₂. Compounds 4b and 4c were prepared similarly in 45% and 46% yields, respectively.

Reaction of 2b with CO. (1) With UV Irradiation. A solution of a 10.0-mg (0.011-mmol) amount of 2b in 20 mL of hexane was exposed to UV irradiation at 25 °C in the presence of a CO purge through the solution for 15 min. After the solvent was evaporated at 25 °C, the residue was separated by TLC to yield 2.0 mg of starting material, 3:9 mg of 5b, 69% yield, and 1.0 mg of $[\text{Re}(\text{CO})_4(\mu-I)]_2$.

(2) Without UV Irradiation. A solution of a 10.0-mg (0.011mmol) amount of 2b in 30 mL of hexane was purged with CO. No reaction was observed after 12 h at 25 °C or after 3 h at 68 °C.

Reaction of 5b with [Re(CO)₄(\mu-I)]₂. A 10.0-mg (0.019mmol) amount of **5b** and a 10.0-mg (0.012-mmol) amount of [Re-(CO)₄(μ -I)]₂ were dissolved in 30 mL of hexane. The solution was irradiated with UV at 25 °C for 15 min. After the solvent was removed at 25 °C, the residue was separated using a hexane/ CH₂Cl₂ 1/1 solvent mixture to give the following compounds in order of elution: 2.2 mg of 2b, 22% yield; 2.9 mg of 5b; 3.1 mg of [Re(CO)₄(μ -I)]₂.

Photolysis of 3b. A solution of 10.0 mg (0.019 mmol) of **3b** in 25 mL of hexane was exposed to UV at 25 °C for 15 min. The solvent was removed, and the residue was separated by TLC using a hexane/CH₂Cl₂ 2/1 solvent mixture to give the following compounds in order of elution: 0.8 mg of yellow Re₂(CO)₇[μ -2-S-3-CO₂Me-6-MeNC₉H₄](μ -H), 7b, 12% yield; 1.3 mg of 2b, 17% yield; 1.7 mg of 5b, 39% yield; 0.2 mg of [Re(CO)₄(μ -I)]₂. Spectral data for 7b: IR (ν _{CO} in hexane, cm⁻¹) 2105 (m), 2031 (s), 2009 (s), 1997 (s), 1967 (s), 1937 (s), 1928 (s), 1737 (w); ¹H NMR (δ in CDCl₃, ppm) 8.72 (s, 1H, CH), 7.84 (d, ³J_{H-H} = 8.9 Hz, 2H, C₆H₃), 7.78 (s, ³J_{H-H} = 8.8 Hz, 2H, C₆H₃), 7.60 (s, 1H, C₆H₃), 4.07 (s, 3H, OCH₃), 2.55 (s, 3H, C₆H₃CH₃), -10.14 (s, 1H, Re₂(μ -H)). Anal. Calcd (found) for 7b (Re₂SO₉NC₁₉H₁₁): C, 28.46 (28.68); H, 1.38 (1.33); N, 1.75 (1.90).

Reaction of 7b with I₂. A 10.0-mg (0.012-mmol) amount of **7b** in 20 mL of hexane was allowed to react with a 10.0-mg (0.039-mmol) amount of I₂ at 25 °C for 4 h. The solution was evaporated to dryness, and the residue was separated with a hexane/CH₂Cl₂ 2/1 solvent mixture to give 11.1 mg of **2b** in 97% yield.

Reaction of 3b with I₂ under UV Irradiation. A 10.0-mg (0.008-mmol) amount of 3b and a 10.0-mg (0.039 mmol) amount

⁽⁷⁾ Abel, E. W.; Hargreaves, G. B.; Wilkinson, G. J. Am. Chem. Soc. 1958, 80, 3149.

Table 1. Crystal Data for Compounds 2b and 4c-8b

		•	-			
compd formula	2b ·CH ₂ Cl ₂ Re ₂ ISO ₉ NC ₁₉ H ₁₀ ·CH ₂ Cl ₂	4c Re ₂ IClSO ₁₀ NC ₁₉ H ₉	5b ReSO ₆ NC ₁₆ H ₁₀	6b Re ₂ SO ₁₀ NC ₂₀ H ₁₁	7b Re ₂ SO ₉ NC ₁₉ H ₁₁	$\frac{8b}{\text{Re}_2\text{S}_2\text{O}_{10}\text{N}_2\text{C}_{30}\text{H}_{20}}$
1.		978,11	550.55 Ani alimi a	027.70	601.//	1005.05
cryst syst	triclinic	monoclinic	triciinic	monoclinic	triclinic	monoclinic
lattice params						
a (Å)	10.204(4)	7.027(2)	11.250(2)	18.603(3)	11.877(2)	20.727(4)
b (Å)	13.733(6)	10.894(2)	11.905(2)	17.987(3)	13.519(2)	10.669(2)
c (Å)	9.877(2)	34.470(4)	7.312(1)	7.223(1)	7.876(1)	14.487(2)
α (deg)	91.18(3)	- ,	107.23(1)	. ,	98.14(1)	
β (deg)	96.17(3)	92.75(1)	106.59(1)	90.05(2)	103.79(1)	106.76(1)
γ (deg)	74.78(3)		67.73(1)		109.25(2)	
$V(A^3)$	1328(2)	2623(2)	2128(1)	817.5(7)	1125.6(9)	3067(2)
space group	P1 (No. 2)	$P2_1/c$ (No. 14)	P1 (No. 2)	$P2_1/c$ (No. 14)	P1 (No. 2)	C_2/c (No. 15)
Ż value	2	4	2	4	2	4
$\rho_{\rm calc} ({\rm g/cm^3})$	2.53	2.46	2.08	2.28	2.37	2.18
μ (Mo K α) (cm ⁻¹)	107.11	106.89	74.03	102.79	110.29	81.83
temp (°C)	20	20	20	20	20	20
$2\theta_{\rm max}$ (deg)	43.0	40.0	43.0	43.0	42.0	46.0
no. obs $(I > 3\sigma)$	2746	1762	1716	2099	1677	1827
residuals: $R; \hat{R_w}$	0.038; 0.057	0.028; 0.027	0.024; 0.026	0.025; 0.024	0.030; 0.030	0.022; 0.027

of I_2 were dissolved in 20 mL of hexane. The solution was irradiated with UV at 25 °C for 5 min. After the solvent was removed at room temperature, the residue was separated using a hexane/CH₂Cl₂ 1/1 solvent mixture to give the following compounds in order of elution: 1.9 mg of starting material; 4.0 mg of 2b, 53% yield; 0.8 mg of 5b, 19% yield; 1.6 mg of [Re- $(CO)_4(\mu-I)]_2.$

Photolysis of 1b. (1) Under Nitrogen. A solution of 50.0mg (0.060-mmol) of 1b in 80 mL of hexane was exposed to UV at 25 °C for 15 min. After the solvent was removed at room temperature, separation of the residue using a hexane/ CH_2Cl_2 1/1 solvent mixture gave the following compounds in order of elution: 5.2 mg of starting material; 3.5 mg of yellow Re₂(CO)₈[µ-2-S-3-CO₂Me-6-MeNC₉H₄](μ-H), 6b, 7% yield; 3.7 mg of 7b, 8% yield; 5.8 mg of 5b, 18% yield. Spectral data for 6b: IR (ν_{CO} in hexane, cm⁻¹) 2114 (w), 2091 (m), 2018 (s), 2000 (s), 1970 (s), 1742 (w). ¹H NMR (δ in C₆D₆, ppm): 8.09 (s, 1H, CH), 7.85 (d, ³J_{H-H}) = 8.5 Hz, 2H, C₆H₃), 7.06 (s, ${}^{3}J_{H-H}$ = 8.7 Hz, 2H, C₆H₃), 6.89 (s, 1H, C₆H₃), 3.65 (s, 3H, OCH₃), 2.00 (s, 3H, C₆H₃CH₃), -13.95 (s, 1H, $\text{Re}_2(\mu$ -H)). Anal. Calcd (found) for **6b** ($\text{Re}_2\text{SO}_{10}\text{NC}_{20}\text{H}_{11}$): C, 28.95 (28.84); H, 1.34 (1.15); N, 1.69 (1.69).

(2) Under CO. When this reaction was performed in the presence of a CO purge at 25 °C for 2 h, the following products were obtained: 2.1 mg of starting material; 1.5 mg of 6b, 3%yield; 2.6 mg of 5b, 8% yield. No 7b was isolated.

Photolysis of 6b. The solution of 10.0 mg (0.012 mmol) of 6b in 20 mL of hexane was irradiated at 25 °C for 5 min. After the solvent was removed at 25 °C, the residue was separated using a hexane/CH₂Cl₂ 2/1 solvent mixture to give the following compounds in order of elution: 2.0 mg of starting material; 6.2 mg of 7b, 62% yield; 1.1 mg of 5b, 17% yield; 0.4 mg of Re₃- $(CO)_{12}(\mu-H)_3$ (ν_{CO} in cyclohexane, cm⁻¹: 2093 (m), 2030 (vs), 2008 (s), 1983 (m)).8

Transformations of 7b to 5b. (1) Under CO. The solution of 10.0 mg (0.012 mmol) of 7b in 20 mL of hexane was irradiated for 1 h in the presence of a slow purge with CO at 25 °C. After the solvent was removed at 25 °C, the residue was separated using a hexane/ $CH_2Cl_2 2/1$ solvent mixture to give the following compounds in order of elution: 0.8 mg of starting material; 4.8 mg of 5b, 73% yield; 1.3 mg of $Re_3(CO)_{12}(\mu-H)_3$. No 6b was formed in this reaction, and in the absence of UV irradiation no reaction was observed.

(2) In the Absence of CO. The solution of 10.0 mg (0.012 mmol) of 7b in 20 mL of hexane was exposed to UV at 25 °C for 15 min. After the solvent was removed at 25 °C, the residue was separated using a hexane/CH₂Cl₂ 2/1 solvent mixture to give the following compounds in order of elution: 1.7 mg of starting material; 3.9 mg of 5b, 60% yield; 0.5 mg of 8b, 8% yield.

Photolysis of 5b. The solution of 10.0 mg (0.019 mmol) of 5b in 20 mL of hexane was exposed to UV at 25 °C for 1 h, and then evaporated to dryness at room temperature. Separation of the residue using a hexane/CH₂Cl₂ 1/1 solvent mixture to give 0.8 mg of starting material and 5.4 mg of yellow [Re(CO)₃(2-S- $3-CO_2Me-6-MeNC_9H_4)]_2$, 8b, 57% yield. Spectral data for 8b: IR (ν_{C0} in CH₂Cl₂, cm⁻¹) 2036 (s), 2019 (s), 1937 (m), 1915 (s, br), 1734 (w), 1719 (w); ¹H NMR (δ in CDCl₃, ppm) 7.86 (s, 2H, CH), 7.79 (d, ${}^{3}J_{H-H} = 8.5$ Hz, 4H, C₆H₃), 7.70 (s, ${}^{3}J_{H-H} = 8.6$ Hz, 4H, C₆H₃), 7.37 (s, 2H, C₆H₃), 3.85 (s, 6H, OCH₃), 1.56 (s, 6H, C₆H₃CH₃). Anal. Calcd (found) for 8b $(Re_2S_2O_{10}N_2C_{30}H_{20})$: C, 35.85 (36.14); H, 2.01 (1.86); N, 2.79 (3.12).

Crystallographic Analyses. Crystals of 2b-CH₂Cl₂ were grown from solution in CH_2Cl_2 solvent by cooling to -14 °C. Crystals of 4c, 5b, and 7b were grown from solution in a hexane/ CH_2Cl_2 1/1 solvent mixture by slow evaporation of solvent at -3 °C. Compound 6b was crystallized from solution in a hexane/ $CH_2Cl_2 2/1$ solvent mixture by slow evaporation of the solvent at -3 °C. Crystals of 8b were grown from solution in a hexane/ CH_2Cl_2 1/2 solvent mixture by slow evaporation of the solvent at 25 °C. All crystals used in diffraction analyses were mounted in thin-walled glass capillaries. Diffraction measurements were made on a Rigaku AFC6S automatic diffractometer by using graphite-monochromated Mo K α radiation. Unit cells were determined from 15 randomly selected reflections obtained by using the AFC6 automatic search, center, index, and least-squares routines. Crystal data, data collection parameters, and results of the analyses are listed in Table 1. All data processing was performed on a Digital Equipment Corp. VAXstation 3520 computer by using the TEXSAN structure solving program library (version 5.0) obtained from the Molecular Structure Corp., The Woodlands, TX. Neutral atom scattering factors were calculated by the standard procedures.9ª Anomalous dispersion corrections were applied to all non-hydrogen atoms.^{9b} Full matrix least-squares refinements minimized the function: $\sum_{hkl} w(|F_0| |F_c|^2$, where $w = 1/\sigma(F)^2$, $\sigma(F) = \sigma(F_o^2)/2F_o$, and $\sigma(F_o^2) = [\sigma(I_{raw})^2$ + $(0.02I_{net})^2$]^{1/2}/Lp. All structures were solved by a combination of direct methods and difference Fourier syntheses.

Compounds 2b, 5b, and 7b crystallized in the triclinic crystal system. The centrosymmetric space group $P\tilde{1}$ was assumed and confirmed by the successful solution and refinement of the structures. All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the hydrogen atoms were calculated by assuming idealized geometries and using observed positions whenever possible for both analyses. The position of the hydride ligand in 7b was calculated by the energy minimization program HYDEX at a distance of 1.90 Å.¹⁰ The scattering

⁽⁸⁾ Andrews, M. A.; Kirtley, S. W.; Kaesz, H. D. Inorg. Synth. 1977, 17, 66.

^{(9) (}a) International Tables for X-ray Crystallography; Vol. IV, Kynoch Press: Birmingham, England, 1975; Table 2.2B, pp 99-101. (b) Ibid., Table 2.3.1, pp 149–150.
 (10) Orpen, A. G. J. Chem. Soc., Dalton Trans. 1980, 2509.

contributions of the calculated hydrogen atoms were added to the structure factor calculations, but their positions were not refined.

Compounds 4c and 6b crystallized in the monoclinic crystal system. The space group $P2_1/c$ was established for both of these structures on the basis of the patterns of systematic absences observed during the collection of the intensity data. All nonhydrogen atoms were refined with anisotropic thermal parameters. For 4c the hydrogen atoms H and H(1) were located and refined. For 6b the bridging hydride ligand was located and refined. The positions of all other hydrogen atoms for both of these analyses were calculated by assuming idealized geometries and using observed positions whenever possible for both analyses. The scattering contributions of the calculated hydrogen atoms were added to the structure factor calculations, but their positions were not refined.

Compounds 8b crystallized in the monoclinic crystal system. The patterns of systematic absences observed during the collection of the intensity data were consistent with either of the space groups C2/c or Cc. The centrosymmetric space group C2/c was selected initially and was confirmed by the successful solution and refinement of the structure. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms H(3), H(23), H(25) and H(26) were located and refined. The positions of the hydrogen atoms on the methyl groups were calculated by assuming idealized geometries and using observed positions whenever possible for both analyses. The scattering contributions of the calculated hydrogen atoms were added to the structure factor calculations, but their positions were not refined.

Results

Irradiation of the complexes $\operatorname{Re}(\operatorname{CO})_4[(E)-\operatorname{HC}\longrightarrow\operatorname{C}(\operatorname{CO}_2-\operatorname{Me})\operatorname{C}\longrightarrow\operatorname{N}(\operatorname{C}_6\operatorname{H}_4-p-\operatorname{R})\operatorname{S}]\operatorname{Re}(\operatorname{CO})_4$, $1\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl, in the presence of iodine yielded a mixture of four products: $\operatorname{Re}_2(\operatorname{CO})_7[\mu-2-S-3-\operatorname{CO}_2\operatorname{Me}-6-\operatorname{RNC}_9\operatorname{H}_4](\mu-I)$, $2\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl; $\operatorname{Re}(\operatorname{CO})_4[(E)-\operatorname{HC}\longrightarrow\operatorname{C}(\operatorname{CO}_2\operatorname{Me})\operatorname{C}\longrightarrow\operatorname{N}(\operatorname{C}_6\operatorname{H}_4-p-\operatorname{R})\operatorname{S}]$ - $\operatorname{Re}_2(\operatorname{CO})_7(\mu-I)$, $3\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl; $\operatorname{Re}(\operatorname{CO})_4[(E)-\operatorname{HC}\longrightarrow\operatorname{C}(\operatorname{CO}_2\operatorname{Me})\operatorname{C}(\operatorname{NHC}_6\operatorname{H}_4-p-\operatorname{R})\longrightarrow \operatorname{S}]\operatorname{Re}(\operatorname{CO})_4(I)$, $4\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl; $\operatorname{Re}(\operatorname{CO})_4(2-\operatorname{S}-3-\operatorname{CO}_2\operatorname{Me}-6-\operatorname{RNC}_9\operatorname{H}_4)$, $5\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl; $\operatorname{Re}(\operatorname{CO})_4(2-\operatorname{S}-3-\operatorname{CO}_2\operatorname{Me}-6-\operatorname{RNC}_9\operatorname{H}_4)$, $5\mathbf{a}-\mathbf{c}$, $\mathbf{R} = \mathbf{H}$, Me, Cl (see Scheme 1). Compounds $5\mathbf{a}-\mathbf{c}$ were the major products obtained in yields ranging from 33\% for $\mathbf{R} = \mathbf{H}$

Figure 1. ORTEP diagram of $\text{Re}_2(\text{CO})_7[\mu\text{-}2\text{-}S\text{-}3\text{-}\text{CO}_2\text{Me-}6\text{-}MeNC_9H_4](\mu\text{-}\text{I})$, 2b, showing 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Re(1)-NR(2) = 3.933(4), Re(1)-N = 2.20(1), Re(1)-S = 2.519(4), Re(2)-S = 2.533(4), Re(1)-I = 2.785(3), Re(2)-I = 2.803(3), C(1)-C(2) = 1.41(2), C(2)-C(3) = 1.40(2), C(1)-N = 1.33(1), C(1)-S = 1.76(1), C(3)-C(4) = 1.41(2); Re(1)-I-Re(2) = 89.49(8), Re(1)-S-Re(2) = 102.3(1) S-C(1)-N = 109.8(8).

to 45% for R = Cl. Compounds 3a-c were obtained previously from the reactions of 1a-c with $\text{Re}_2(\text{CO})_8(\mu-I)_2$.³ Compounds 2a-c, 4a-c, and 5a-c are new. All new compounds were characterized by IR and ¹H NMR spectroscopy and by a single crystal X-ray diffraction analysis of a representative member 2b, 4c, and 5b from each series.

An ORTEP diagram of the molecular structure of **2b** is shown in Figure 1. Final fractional atomic coordinates are listed in Table 2. The complex contains two rhenium atoms bridged by an iodo ligand and the sulfur atom of

Table 2. Positional Parameters and B(eq) for 2b

atom	x	У	Z	B(eq) (Å ²)
Re(1)	0.71456(6)	0.17483(4)	-0.06870(5)	3.01(3)
Re(2)	0.68017(6)	0.09823(4)	0.30479(5)	3.02(3)
IÚ	0.89907(11)	0.10644(9)	0.16016(11)	4.96(6)
Cl(1)	1.1045(9)	0.3089(8)	0.5970(8)	13.1(7)
Cl(2)	0.9644(5)	0.3790(4)	0.3340(5)	7.3(3)
SÌ	0.5429(3)	0.2018(2)	0.1031(3)	2.7(2)
O(1)	0.3931(10)	0.4756(7)	0.3708(9)	4.2(6)
O(2)	0.3828(10)	0.3242(8)	0.3087(9)	4.2(6)
O (11)	0.7175(14)	-0.0412(9)	-0.1546(14)	7.0(8)
O(12)	0.9450(14)	0.1685(9)	-0.2427(14)	7.0(8)
O(13)	0.5104(12)	0.2509(9)	-0.3156(11)	5.7(7)
O(21)	0.6470(14)	-0.0953(10)	0.1473(14)	7.2(9)
O(22)	0.4229(12)	0.1059(9)	0.4459(13)	5.8(7)
O(23)	0.7257(14)	0.2784(9)	0.4822(10)	6.0(8)
O(24)	0.8615(13)	-0.0348(10)	0.5326(13)	6.8(8)
N	0.6719(10)	0.3233(7)	0.0296(9)	2.6(5)
C(1)	0.5846(12)	0.3184(9)	0.1185(11)	2.5(6)
C(2)	0.5292(13)	0.3988(9)	0.2041(11)	2.8(7)
C(3)	0.5739(13)	0.4861(9)	0.1967(12)	3.0(7)
C(4)	0.6647(13)	0.4949(9)	0.1018(12)	2.8(7)
C(5)	0.7150(12)	0.4115(9)	0.0203(11)	2.5(6)
C(6)	0.8009(13)	0.4183(10)	-0.0792(13)	3.4(7)
C(7)	0.8403(15)	0.5074(11)	-0.0887(14)	3.9(8)
C(8)	0.7950(13)	0.5921(9)	-0.0018(13)	3.1(7)
C(9)	0.7086(14)	0.5844(10)	0.0873(12)	3.1(7)
C(10)	0.4278(14)	0.3924(10)	0.2960(12)	2.9(7)
C(11)	0.7161(16)	0.0395(13)	-0.1218(15)	5(1)
C(12)	0.8635(15)	0.1715(10)	-0.1778(16)	4.0(8)
C(13)	0.5873(16)	0.2218(11)	-0.2216(14)	3.8(8)
C(21)	0.6567(16)	-0.0249(13)	0.1981(18)	5(1)
C(22)	0.5193(16)	0.1019(9)	0.3945(14)	3.7(8)
C(23)	0.7066(16)	0.2156(11)	0.4122(14)	3.8(8)
C(24)	0.7958(17)	0.0118(12)	0.4474(16)	4(1)
C(31)	0.2950(17)	0.4749(13)	0.4630(17)	6(1)
C(32)	0.8367(14)	0.6859(11)	-0.0207(16)	4.2(8)
C(101)	1.082(2)	0.2869(15)	0.419(2)	7(1)

a 3-carbomethoxy-6-methyl-quinoline-2-thiolate ligand, Re(1)-I = 2.785(3) Å, Re(2)-I = 2.803(3) Å and Re(1)-S= 2.519(4) Å, Re(2)-S = 2.533(4) Å. The rhenium-sulfur distances are slightly longer than those found in the complexes [PPN][Re₃(CO)₁₀(μ -SCH₂CMe₂CH₂Cl)(μ -H)₃], 2.478(3) Å, and $\text{Re}_3(\text{CO})_{10}(\mu\text{-SCH}_2\text{CH}_2\text{CH}_2\text{NMe}_3)(\mu\text{-H})_3$, 2.472(5) and 2.471(4) Å, which contain edge bridging thiolato ligands.¹¹ The rhenium-rhenium distance is too long to permit the existence of any significant metal-metal bonding interactions, Re(1)-Re(2) = 3.933(4) Å. The nitrogen atom of the quinoline grouping is also coordinated to one of the rhenium atoms, Re(1)-N = 2.20(1) Å. Rhenium Re(1) contains three linear terminal carbonyl ligands, rhenium Re(2) has four, and both metal atoms obey the 18 electron rule. The aromatic hydrogen atoms appear as a pair of doublets, 8.12 (d), 7.89 ppm, (d), ${}^{3}J_{H-H}$ = 8.0 Hz, and two singlets, 9.04 (s), 7.79 ppm, (s), in the ¹H NMR spectrum, as expected on the basis of their proximities. Compounds 2a and 2c are believed to be structurally similar to 2b.

The ¹H NMR spectrum of compound 4a exhibits highly deshielded resonances that must be attributed to seven hydrogen atoms on the basis of intensities: 11.69 (s, br, 1H, NH), 11.06 (s, 1H, CH), 7.33 (m, 2H, C₆H₅), 7.26 (m, 1H, C₆H₅), 7.11 ppm (m, 2H, C₆H₅). Five of these are aromatic, which indicates that the phenyl ring was not transformed in the reaction. A single crystal X-ray diffraction analysis of 4c was performed to establish the structures. An ORTEP diagram of the molecular structure of 4c is shown in Figure 2. Final fractional atomic

Figure 2. ORTEP diagram of $\text{Re}(\text{CO})_4[(E)-\text{HC}\longrightarrow\text{C}(\text{CO}_2-\text{Me})\text{C}(\text{NHC}_6\text{H}_4-p-\text{Cl})\implies\text{S}]\text{Re}(\text{CO})_4(\text{I})$, 4c, showing 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Re(1)-C(1) = 2.14(2), Re(1)-O(1) = 2.21(1), Re(2)-I = 2.814(1), Re(2)-S = 2.491-(3), C(1)-C(2) = 1.32(2), C(2)-C(3) = 1.46(2), C(5)-N = 1.33(2), C(5)-S = 1.66(2), C(2)-C(5) = 1.44(2); C(5)-S = Re(2) = 118.5(6), C(1)-C(2)-C(5) = 124(1), S-C(5)-N = 124(1).

Table 3. Positional Parameters and B(eq) for 4c

atom	x .	У	Z	B(eq) (Å ²)
Re(1)	0.29480(9)	0.20342(7)	0.051863(18)	3.49(3)
Re(2)	-0.18250(9)	-0.38725(6)	0.117025(18)	3.30(3)
I	-0.21880(15)	-0.31876(11)	0.19502(3)	4.38(6)
Cl	0.7913(7)	0.0419(6)	0.25545(14)	7.4(3)
S	-0.0918(5)	-0.1786(4)	0.09485(11)	3.6(2)
O(1)	0.1898(14)	0.2268(10)	0.1108(3)	3.5(5)
O(2)	0.0735(13)	0.1260(10)	0.1613(3)	3.9(6)
O(11)	0.7010(17)	0.1397(14)	0.0860(4)	7.3(8)
O(12)	0.4462(17)	0.1362(14)	-0.0267(4)	7.4(8)
O(13)	-0.1050(18)	0.2385(14)	0.0094(4)	7.0(8)
O(14)	0.393(2)	0.4813(13)	0.0449(4)	7.4(9)
O(21)	-0.135(2)	-0.4731(14)	0.0340(4)	7.8(9)
O(22)	-0.5886(16)	-0.2815(12)	0.0967(3)	5.4(7)
O(23)	0.2247(17)	-0.4810(12)	0.1402(4)	6.5(8)
O(24)	-0.3505(18)	-0.6352(12)	0.1407(4)	7.6(9)
N	0.1460(17)	-0.1394(11)	0.1553(4)	3.0(7)
C(1)	0.2030(20)	0.0246(16)	0.0686(4)	3.4(9)
C(2)	0.1402(18)	0.0148(13)	0.1039(4)	2.3(7)
C(3)	0.1362(20)	0.1306(17)	0.1252(5)	3(1)
C(5)	0.0732(19)	-0.1018(15)	0.1208(4)	3.3(8)
C(6)	0.093(3)	0.2373(16)	0.1844(5)	6(1)
C(11)	0.552(2)	0.1656(16)	0.0739(5)	4(1)
C(12)	0.383(2)	0.1629(17)	0.0025(5)	5(1)
C(13)	0.039(3)	0.2304(16)	0.0260(5)	4(1)
C(14)	0.361(2)	0.380(2)	0.0471(5)	5(1)
C(21)	-0.152(2)	-0.4440(19)	0.0642(6)	6 (1)
C(22)	-0.438(2)	-0.3209(16)	0.1044(4)	4(1)
C(23)	0.079(3)	-0.4427(16)	0.1315(4)	4(1)
C(24)	-0.286(2)	-0.5431(18)	0.1313(5)	5(1)
C(31)	0.301(2)	-0.0935(14)	0.1787(4)	3.2(8)
C(32)	0.2994(20)	-0.1015(16)	0.2185(4)	4(1)
C(33)	0.449(2)	-0.0607(16)	0.2425(4)	4(1)
C(34)	0.599(2)	-0.0082(18)	0.2255(5)	5(1)
C(35)	0.610(2)	0.0034(16)	0.1867(5)	5(1)
C(36)	0.460(2)	-0.0433(15)	0.1625(4)	3.5(8)

coordinates are listed in Table 3. The complex contains two rhenium atoms bridged by alkenyl-N-(p-chlorophenyl)thioformamide ligand. The molecule appears to have been derived from 1c by the simple addition of HI, and this was subsequently confirmed by an independent reaction of 1c with HI that gave 4c in a 46% yield. Compounds 4a,b were also obtained from 1a,b, respec-

⁽¹¹⁾ Adams, R. D.; Cortopassi, J. E.; Falloon, S. B. Organometallics 1992, 11, 2404.

Figure 3. ORTEP diagram of $Re(CO)_4(2-S-3-CO_2Me-6-MeNC_9H_4)$, 5b, showing 50% probability thermal ellipsoids. Selected intramolecular bond distances (Å) and angles (deg) are as follows: Re-N = 2.196(5), Re-S = 2.505(2), C(1)-C(2) = 1.42(1), C(2)-C(3) = 1.37(1), C(1)-N = 1.345(9), C(21)-N = 1.383(9), C(1)-S = 1.731(7); S-Re-N = 64.9(2), S-C(1)-N = 110.3(5).

tively, in yields of 48% and 45% by reaction with HI. The alkenyl group C(1)-C(2) contains a normal C-C double bond, 1.32(2) Å. The rhenium-carbon distance, Re(1)-C(1) = 2.14(2) Å, compared favorably with that found in 1b, 2.149(9) Å.³ The C-S bond in 4c should have multiple character and the C(5)-S distance of 1.66(2) Å is significantly shorter than that found for the thioformamido ligand found in 1b, 1.717(9) Å.³ As in the compounds 1, the ketonic oxygen atom of the carboxylate group is coordinated to the metal atom that is bonded to the alkenyl carbon C(1), Re(1)-O(1) = 2.21 (1) Å. The deshielded resonances 11.93 (s, br, NH) and 10.34 ppm (s, CH), observed in 4c are attributed to the NH and alkenyl CH hydrogen atoms, respectively. The alkenyl hydrogen atom in 1c also exhibits a very similar deshielded resonance shift, 10.53 ppm.³

The structures of the mononuclear metal complexes 5a-c were established by a single crystal X-ray diffraction analysis of 5b. An ORTEP diagram of the molecular structure of 5b is shown in Figure 3. Final fractional atomic coordinates are listed in Table 4. The complex contains a six coordinate rhenium atom with four linear terminal carbonyl ligands and a chelated 3-carbomethoxy-6-methylquinoline-2-thiolate ligand. The metal-nitrogen and metal-sulfur distances are similar to those of the S-bridged quinoline-2-thiolate ligand found in 2b: Re-N = 2.196(5)Å, Re-S = 2.505(2) Å. The S-Re-N angle is fairly acute due to the chelating form of the ligand, S-Re-N = 64.9-(2)°. The quinoline-2-thiolate ligand serves as a threeelectron donor, and the rhenium atom thus has an 18electron configuration. The resonances of the aromatic hydrogen atoms of the quinoline-2-thiolate ligand consist of a pair of doublets, 8.05 (d), 6.86 ppm (d), ${}^{3}J_{H-H} = 8.7$ Hz, and two singlets, 8.36 (s), 6.68 ppm (s), similar to that found for the quinoline-2-thiolate ligand in 2b. The spectra of 5a and 5c indicate that they are structurally similar to 5b. Irradiation of compound 5b in the presence of [Re- $(CO)_4(\mu-I)]_2$ for 1 h resulted in the formation of compound 2b in 22% yield. Conversely, irradiation of 2b in the

Table 4. Positional Parameters and B(eq) for 5b

atom	x	у	Z	B(eq) (Å ²)
Re	0.90380(3)	0.23113(3)	0.37267(5)	3.74(2)
S	0.88776(19)	0.44508(18)	0.5743(3)	4.0(1)
O(1)	0.7542(7)	0.7152(5)	0.6731(10)	6.4(4)
O(2)	0.5400(6)	0.8022(5)	0.5836(9)	5.8(3)
O(11)	0.8731(7)	0.0094(6)	0.0855(11)	7.7(4)
O (12)	0.8192(7)	0.1711(6)	0.6938(11)	6.6(4)
O(13)	0.9849(6)	0.3012(6)	0.0541(9)	6.0(4)
O(14)	1.1913(6)	0.0911(6)	0.5276(11)	7.0(4)
NÚ	0.7110(5)	0.3722(5)	0.3187(8)	3.2(3)
C(1)	0.7288(7)	0.4763(6)	0.4418(10)	3.1(4)
C(2)	0.6259(7)	0.5912(6)	0.4538(10)	3.3(4)
C(3)	0.5043(7)	0.5931(6)	0.3427(10)	3.2(4)
C(4)	0.6510(9)	0.7066(7)	0.5812(12)	4.1(5)
C(5)	0.5533(11)	0.9165(8)	0.7102(15)	7.1(6)
C(11)	0.8824(8)	0.0844(9)	0.1969(15)	5.6(5)
C(12)	0.8500(8)	0.1934(7)	0.5764(13)	4.6(5)
C(13)	0.9587(8)	0.2755(7)	0.1706(13)	4.5(5)
C(14)	1.0840(10)	0.1427(8)	0.4693(14)	5.5(6)
C(21)	0.5896(7)	0.3735(6)	0.2032(10)	3.1(4)
C(22)	0.4820(7)	0.4859(7)	0.2187(10)	3.1(4)
C(23)	0.3566(7)	0.4830(7)	0.1074(11)	3.6(4)
C(24)	0.3380(7)	0.3764(8)	-0.0137(11)	3.9(5)
C(25)	0.4470(8)	0.2688(7)	-0.0331(12)	4.3(5)
C(26)	0.5714(8)	0.2654(7)	0.0731(11)	4.0(4)
C(27)	0.2021(8)	0.3735(8)	-0.1231(12)	5.1(5)

presence of CO regenerated **5b** in 69% yield plus [Re- $(CO)_4(\mu-I)$]₂.

To establish the importance of iodine in the reactions, the irradiation of 1b in the absence of iodine was studied. This reaction yielded a series of dirhenium complexes in low yields, $Re_2(CO)_8[\mu-2-S-3-CO_2Me-6-MeNC_9H_4](\mu-H)$, 6b, 7% yield, and $Re_2(CO)_7[\mu$ -2-S-3-CO₂Me-6-MeNC₉H₄]- $(\mu$ -H), 7b, 8% yield, that contain a 3-carbomethoxy-6methylquinoline-2-thiolate ligand and the mononuclear complex 5b described above in 18% yield (see Scheme 2). Compounds 6b and 7b were both characterized crystallographically, and ORTEP diagrams of the molecular structures of these compounds are shown in Figures 4 and 5, respectively. Final fractional atomic coordinates for these structures are listed in Tables 5 and 6, respectively. The structures of both compounds are very similar. Both contain a pair of rhenium atoms bridged by a hydride ligand and the sulfur atom of 3-carbomethoxy-6-methylquinoline-2-thiolate ligand. The principal difference is 6b contains eight carbonyl ligands while 7b has only seven and the nitrogen atom of the quinoline grouping is coordinated to one of the metal atoms in 7b. Thus, 7b is analogous to 2b, but has a bridging hydride ligand instead of a bridging iodide ligand. Since bridging iodide ligands serve as three-electron donors and hydride ligands can donate no more than one electron, a metal-metal bond is formed in complexes 6b and 7b in order to maintain the 18-electron configurations at the metal atoms. Accordingly, the metal-metal internuclear distance is much shorter in 6b and 7b than in 2b, Re-Re = 3.0854(8) Å in 6b and 3.119(1) Å in 7b. When irradiated, compound 6b was converted to 7b in 62% yield in 5 min. Some 5b, 17%yield, and $\text{Re}_3(\text{CO})_{12}(\mu-\text{H})_3$ was also formed in this reaction. When 7b was irradiated under an atmosphere of CO at 25 °C, compound **5b** was obtained in 73% yield together with a small amount of $\text{Re}_3(\text{CO})_{12}(\mu-H)_3$. In fact, 5b can also be obtained in a good yield (69%) together with some $[\operatorname{Re}(\operatorname{CO})_4(\mu-I)]_2$ from 2b irradiation in the presence of a CO. Even in the absence of CO, **5b** was obtained in a 60%yield from irradiated solutions of 7b, but a small amount of yet another compound [Re(CO)₃(2-S-3-CO₂Me-6- $MeNC_9H_4$]₂, 8b, in 8% yield was also obtained. It was

021

Сзі

Figure 4. ORTEP diagram of Re₂(CO)₈[µ-2-S-3-CO₂Me-6- $MeNC_9H_4](\mu-H)$, 6b, showing 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Re(1)-Re(2) = 3.0854(8), Re(1)-S = 2.488(3), $\operatorname{Re}(2)-\operatorname{S} = 2.474(2), \operatorname{C}(1)-\operatorname{C}(2) = 1.43(1), \operatorname{C}(2)-\operatorname{C}(3) = 1.37(1),$ C(1)-N = 1.30(1), C(1)-S = 1.806(9), C(3)-C(4) = 1.41(1);Re(1)-S-Re(2) = 76.90(7), S-C(1)-N = 116.8(6).

 Ω_2

subsequently found that 8b can be obtained in 57% yield by the photodecarbonylation of 5b.

Compound 8b was characterized by a single crystal X-ray diffraction analysis, and an ORTEP diagram of its molecular structure is shown in Figure 6. Final fractional atomic coordinates are listed in Table 7. The molecule contains a crystallographic 2-fold rotation axis and can be viewed as a dimer of a decarbonylated form of 5b. The two rhenium atoms are bridged by the sulfur atoms of two 3-carbomethoxy-6-methylquinoline-2-thiolate ligands which have a cis geometry. The rhenium-rhenium distance is long, Re---Re = 3.695(1) Å, and indicative no direct metal-

Figure 5. ORTEP diagram of Re₂(CO)₇[µ-2-S-3-CO₂Me-6-MeNC₉H₄](μ -H), 7b, showing 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Re(1)-Re(2) = 3.119(1), Re(1)-N = 2.22(1), Re(1)-S = 2.477(4), Re(2)-S = 2.497(4), C(1)-C(2) = 1.38(2),C(2)-C(3) = 1.36(2), C(1)-N = 1.34(2), C(1)-S = 1.81(1), C(3)-C(4) = 1.40(2); Re(1)-S-Re(2) = 77.7(1), S-C(1)-N =108(1).

Ha

metal bonding, as expected on the basis of electron counting considerations. The other distances Re-N =2.195(5) Å, Re–S = 2.521(2) Å, Re'–S = 2.530(2) Å, and C(1)-S = 1.768(6) Å are similar to those found in compounds 2b, 5b, and 6b, and 7b.

Compound 3b was also irradiated in the absence of iodine. This reaction yielded 5b as the major product (39% yield) with small amounts of 7b, 12% yield, 2b, 17%yield, and $[\text{Re}(\text{CO})_4(\mu\text{-I})]_2$.

Discussion

We have found that the alkenyl-N-arylthioamido ligands in complexes 1a-c are transformed into substituted

Table 5. Positional Parameters and B(eq) for 6b

atom	x	у	Z	B(eq) (Å ²)
Re (1)	0.34525(2)	0.05350(2)	0.79982(6)	3.83(2)
Re(2)	0.20236(2)	0.10300(2)	0.97798(6)	3.81(2)
S O(1)	0.28/61(14)	0.00/10(13)	1.0882(03)	3.7(1)
O(1)	0.3731(4) 0.4068(5)	-0.1976(3)	1.290/(12)	10.2(6)
O(11)	0.4818(5)	-0.0431(5)	0.7876(14)	8.8(6)
O (12)	0.3941(5)	0.1341(5)	0.4475(12)	7.8(6)
O(13)	0.2714(5)	-0.0662(5)	0.5548(12)	9.2(6)
O(14)	0.4281(4)	0.1749(4)	1.0272(12)	6.7(5)
O(21)	0.2810(5)	0.2155(5)	1.2342(14)	9.2(6)
O(22)	0.1123(5)	0.0115(4)	0.6904(12)	/.8(6)
O(23)	0.0001(3) 0.1207(4)	0.0713(3) 0.2381(4)	0.8274(13)	7 5(5)
N N	0.1837(4)	-0.0862(4)	0.9903(10)	3.3(4)
C(1)	0.2496(5)	-0.0841(5)	1.0515(13)	3.4(5)
C(2)	0.2900(5)	-0.1487(5)	1.1020(13)	3.4(5)
C(3)	0.2570(5)	-0.2160(5)	1.0733(13)	3.6(5)
C(4)	0.1861(5)	-0.2217(5)	1.0043(12)	3.2(5)
C(5)	0.1509(5) 0.0793(5)	-0.1538(5) -0.1561(5)	0.9022(13)	3.7(5)
C(0)	0.0793(3)	-0.1301(3) -0.2229(6)	0.9043(13) 0.8820(14)	4.0(3)
Č(8)	0.0809(6)	-0.2910(5)	0.9160(13)	4.2(6)
C(9)	0.1504(5)	-0.2913(5)	0.9756(13)	3.6(5)
C(10)	0.3628(6)	-0.1450(6)	1.1802(17)	4.7(6)
C(11)	0.4293(7)	-0.0075(6)	0.7935(16)	5.6(7)
C(12)	0.3758(6)	0.1031(6)	0.5804(17)	5.3(6)
C(13)	0.2908(0)	-0.0209(6)	0.0409(10)	5.0(7)
C(21)	0.3372(3) 0.2545(6)	0.1729(6)	1.1397(18)	5.5(7)
C(22)	0.1470(6)	0.0400(6)	0.7983(18)	5.6(7)
C(23)	0.1322(7)	0.0839(6)	1.1603(19)	6.2(7)
C(24)	0.1513(6)	0.1873(6)	0.8806(17)	5.3(6)
C(31)	0.4443(7)	-0.2010(8)	1.382(2)	9(1)
C(32)	0.0415(7)	-0.3632(6)	0.8940(15)	6.1(7)
Ta	able 6. Positi	ional Paramete	ers and B(eq)	for 7b
Ta atom	able 6. Positi	ional Paramete y	ers and B(eq)	for 7b B(eq) (Å ²)
Ta atom Re(1)	able 6. Positi x 0.31220(6)	ional Paramete y 0.38215(5) 0.1612(6)	z 0.69112(8)	$\frac{\text{for 7b}}{B(\text{eq}) (Å^2)}$ 3.48(3)
Ta atom Re(1) Re(2)	x 0.31220(6) 0.20813(7) 0.0559(4)	y 0.38215(5) 0.16842(6) 0.2451(2)	rs and B(eq) z 0.69112(8) 0.39301(10) 0.5718(5)	for 7b B(eq) (Å2) 3.48(3) 4.30(3) 4.0(2)
Ta atom Re(1) Re(2) S O(1)	x 0.31220(6) 0.20813(7) 0.0958(4) -02485(10)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10)	rs and B(eq) z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15)	for 7b B(eq) (Å2) 3.48(3) 4.30(3) 4.0(2) 5.8(5)
Ts atom Re(1) Re(2) S O(1) O(2)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12)	ional Paramete y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(11)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12)	ional Paramete y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11)	ional Paramete y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11)	ional Paramete y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.5885(11) 0.5277(11) 0.5456(11)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 0.05
Tr atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(22)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.448(12)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.585(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2720(10)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.9712(17)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(22) O(23)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2855(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.689(11)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2)	for 7b B(eq) (Å ²) 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(21) O(23) O(24)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2855(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.689(11) 0.940(13)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(21) O(23) O(24) N	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.689(11) 0.940(13) 0.4260(10)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4909(15)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(21) O(23) O(24) N C(1)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.689(11) 0.940(13) 0.4260(10) 0.3414(12)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(23) O(24) N C(1) C(2)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.6689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3343(12)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(11) O(12) O(13) O(21) O(22) O(23) O(24) N C(1) C(2) C(2) C(3)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0357(14)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.0940(13) 0.4260(10) 0.3414(12) 0.343(12) 0.4219(15)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.2512(19)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 2.6(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(13) O(21) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.0940(13) 0.4260(10) 0.3414(12) 0.343(12) 0.4219(15) 0.5154(13)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.3023(19) 0.425(218)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(13) O(21) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15) 0.1865(14)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.713(17) 0.702(2) 0.215(2) 0.4909(15) 0.4429(20) 0.3203(19) 0.2512(19) 0.3023(19) 0.4252(18) 0.472(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15) 0.1865(14) 0.2964(14)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6074(14)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.3023(19) 0.4252(18) 0.472(2) 0.415(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(6)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15) 0.1865(14) 0.3001(15) 0.1908(18)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6987(15)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.3023(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 4.2(6) 4.2(6) 4.6(7) 4.6(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0775(15) 0.1865(14) 0.2964(14) 0.3001(15) 0.1908(18) 0.0821(16)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.2855(11) 0.38215(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6987(15) 0.6094(15)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.2403(20)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 4.2(6) 4.2(6) 4.6(7) 4.6(7) 4.5(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(21) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0775(15) 0.1865(14) 0.2964(14) 0.3001(15) 0.1908(18) 0.0821(16)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2451(3) 0.2452(10) 0.1534(11) 0.2885(11) 0.2855(11) 0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6987(15) 0.2360(16) 0.2360(16)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.2403(20) 0.268(2) 0.268(2) 0.865(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 4.2(6) 4.6(7) 4.6(7) 4.5(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(11) C(12) C(11	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15) 0.1865(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.2885(11) 0.2855(11) 0.0356(13) 0.2739(10) 0.0689(11) 0.9460(10) 0.3414(12) 0.3433(12) 0.4260(10) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6987(15) 0.2360(16) 0.3257(13)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.323(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.2403(20) 0.268(2) 0.885(for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 4.2(6) 4.6(7) 4.6(7) 4.5(7) 4.5(7) 4.1(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(12) C(11) C(12) C(12) C(12) C(11) C(12) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(12)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.2807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0313(16) 0.0775(15) 0.1865(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2451(3) 0.2462(10) 0.1534(11) 0.2885(11) 0.285(11) 0.5277(11) 0.5456(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6987(15) 0.2360(16) 0.3257(13) 0.4768(14)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.2403(20) 0.268(2) 0.885(2) 0.882(2) 0.7128(20)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 4.2(6) 4.6(7) 4.6(7) 4.5(7) 4.7(7) 4.7(7) 4.7(7) 3.7(7)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(11) C(12) C(13) C(2) C(11) C(12) C(12) C(11) C(12) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(12) C(2) C(12	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0313(16) 0.0775(15) 0.1865(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14) 0.4725(18) 0.085(2)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.285(11) 0.285(11) 0.5277(11) 0.5456(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6987(15) 0.2360(16) 0.3257(13) 0.4768(14) 0.4768(14)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.472(2) 0.415(2) 0.298(2) 0.268(2) 0.268(2) 0.885(2) 0.882(2) 0.7128(20) 0.278(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.6(7) 4.5(7) 4.5(7) 4.7(7) 4.5(7) 7.7(7) 7.7(1)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(11) C(12) C(12) C(11) C(12)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0313(16) 0.0775(15) 0.1865(14) 0.3900(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14) 0.4725(18) 0.085(2) 0.1663(15)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.285(11) 0.2452(10) 0.1534(11) 0.285(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.940(13) 0.4260(10) 0.3414(12) 0.34343(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6989(13) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4766(14) 0.4876(14) 0.4876(14) 0.4876(14)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.4429(20) 0.452(18) 0.472(2) 0.45(2) 0.298(2) 0.298(2) 0.268(2) 0.885(2) 0.882(2) 0.7128(20) 0.278(2) 0.278(2) 0.190(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(6) 4.5(7) 3.7(7) 7(1) 4.5(7) 4.5(7) 3.7(7) 7(1) 4.5(7) 5(1) 5(1) 5(2) (2)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(11) C(12) C(12) C(13) C(2) C(1) C(2)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0313(16) 0.0775(15) 0.1865(14) 0.2964(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14) 0.4725(18) 0.085(2) 0.1663(15) 0.2607(16)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.285(11) 0.285(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.940(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6098(13) 0.6989(13) 0.6989(13) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) 0.4766(14) <td>z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.4429(20) 0.3203(19) 0.4521(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.268(2) 0.268(2) 0.885(2) 0.885(2) 0.885(2) 0.278(2) 0.278(2) 0.278(2) 0.278(2) 0.291(3) 0.251(2) 0.251(2) 0.</td> <td>for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(7) 3.5(6) 3.5(6) 4.2(7) 4.5(7) 5.9(8)</td>	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.4429(20) 0.3203(19) 0.4521(19) 0.4252(18) 0.472(2) 0.415(2) 0.298(2) 0.268(2) 0.268(2) 0.885(2) 0.885(2) 0.885(2) 0.278(2) 0.278(2) 0.278(2) 0.278(2) 0.291(3) 0.251(2) 0.251(2) 0.	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(7) 3.5(6) 3.5(6) 4.2(7) 4.5(7) 5.9(8)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(11) C(12) C(11) C(22) C(22) C(23) C(24) C(21) C(22) C(22) C(21) C(22) C(2)	x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0313(16) 0.0775(15) 0.1865(14) 0.2964(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14) 0.4725(18) 0.085(2) 0.1663(15) 0.2607(16) 0.3168(19)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.2885(11) 0.285(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6098(13) 0.6989(13) 0.6989(13) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.4768(14) 0.152(2) 0.2360(14) 0.1012(15) 0.1260(15)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.323(19) 0.4252(18) 0.472(2) 0.4429(20) 0.452(18) 0.472(2) 0.452(18) 0.472(2) 0.452(18) 0.472(2) 0.288(2) 0.288(2) 0.268(2) 0.885(2) 0.885(2) 0.885(2) 0.278(2) 0.278(2) 0.278(2) 0.291(3) 0.287(3) 0.201(2) 0.201(2) 0.297(3) 0.201(2) 0.201(2) 0.297(3) 0.201(2) 0.201(2) 0.201(2) 0.291(3) 0.201(2) 0.201(2) 0.201(2) 0.273(2) 0.201(2) 0.201(2) 0.278(2) 0.2	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.2(6) 4.5(7) 5.9(8) 7(1) 5.5(8)
Ta atom Re(1) Re(2) S O(1) O(2) O(12) O(12) O(12) O(22) O(23) O(24) N C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(7) C(10) C(11) C(12) C(11) C(22) C(22) C(23) C(21) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(22) C(x 0.31220(6) 0.20813(7) 0.0958(4) -0.2485(10) -0.1533(12) 0.4412(12) 0.807(11) 0.5692(11) -0.0188(15) 0.1458(12) 0.3046(14) 0.3800(16) 0.1821(11) 0.0728(15) -0.0357(14) -0.0313(16) 0.0775(15) 0.1865(14) 0.2964(14) 0.3001(15) 0.1908(18) 0.0821(16) -0.1484(16) 0.3940(15) 0.2966(14) 0.4725(18) 0.085(2) 0.1663(15) 0.2607(16) 0.3168(19) -0.3632(16)	y 0.38215(5) 0.16842(6) 0.2451(3) 0.2452(10) 0.1534(11) 0.2885(11) 0.285(11) 0.5277(11) 0.5456(11) -0.0356(13) 0.2739(10) 0.0689(11) 0.9400(13) 0.4260(10) 0.3414(12) 0.3433(12) 0.4219(15) 0.5154(13) 0.5141(14) 0.6989(13) 0.6989(13) 0.6989(13) 0.6987(15) 0.2360(16) 0.3257(13) 0.4768(14) 0.4876(14) 0.055(2) 0.2360(14) 0.1012(15) 0.1260(15) 0.1530(16)	z 0.69112(8) 0.39301(10) 0.5718(5) 0.1655(15) 0.306(2) 0.9752(18) 0.9963(15) 0.7171(15) 0.198(2) 0.0713(17) 0.702(2) 0.215(2) 0.4429(20) 0.3203(19) 0.2512(19) 0.4252(18) 0.472(2) 0.4429(20) 0.452(18) 0.472(2) 0.452(18) 0.472(2) 0.415(2) 0.298(2) 0.268(2) 0.268(2) 0.885(2) 0.885(2) 0.885(2) 0.885(2) 0.885(2) 0.278(2) 0.278(2) 0.278(2) 0.278(3) 0.104(3) 0.247(2)	for 7b $B(eq) (Å^2)$ 3.48(3) 4.30(3) 4.0(2) 5.8(5) 9.3(7) 7.7(6) 6.3(6) 6.0(5) 8.6(7) 6.4(6) 9.3(7) 11.1(9) 3.3(5) 3.4(6) 3.3(6) 4.2(7) 3.5(6) 3.5(6) 4.2(6) 4.6(7) 4.5(7) 4.5(7) 4.1(7) 3.7(7) 7(1) 4.6(7) 5.9(8) 7(1) 6.6(8) 6.6(9)

quinoline-2-thiolate ligands when irradiated in the presence of iodine to yield the complexes 2a-c and 5a-c. The reactions were studied for three different substituents at the para position of the *N*-aryl ring, R = H, Me, and Cl. Compounds 3a-c and 4a-c do not contain quinoline-2-

Figure 6. ORTEP diagram of $[Re(CO)_3(2-S-3-CO_2Me-6-MeNC_9H_4)]_2$, 8b, showing 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Re-..Re = 3.70(1), Re-N = 2.195(5), Re-S = 2.521(2), Re'-S = 2.530(2), C(1)-C(2) = 1.441(9), C(2)-C(3) = 1.35(1), C(1)-N = 1.327(8), C(1)-S = 1.768(6); Re(1)-S-Re(2) = 94.04-(6), S-Re-S = 81.75(6), S-C(1)-N = 108.8(4).

Table 7. Positional Parameters and B(eq) for 8b

atom	x	У	<i>z</i>	B(eq) (Å ²)
Re	0.434507(14)	0.16886(2)	0.132348(18)	2.49(1)
S	0.55897(9)	0.21410(15)	0.19380(12)	2.51(6)
O (1)	0.6728(2)	0.3909(5)	0.2497(4)	4.1(2)
O(2)	0.6661(3)	0.5983(5)	0.2457(5)	5.6(3)
O(11)	0.4231(4)	-0.1031(5)	0.1935(5)	6.8(3)
O(12)	0.2810(3)	0.1606(6)	0.0803(5)	6.6(3)
O(13)	0.4292(3)	0.0892(6)	-0.0721(4)	5.8(3)
N	0.4638(3)	0.3638(4)	0.1177(4)	2.3(2)
C(1)	0.5294(3)	0.3683(5)	0.1627(4)	2.2(3)
C(2)	0.5667(3)	0.4841(6)	0.1772(4)	2.5(3)
C(3)	0.5323(3)	0.5895(6)	0.1409(5)	2.7(3)
C(4)	0.6397(3)	0.4988(7)	0.2279(5)	3.2(3)
C(5)	0.7448(4)	0.4032(9)	0.2939(7)	5.3(4)
C(11)	0.4278(4)	-0.0039(8)	0.1688(5)	4.2(4)
C(12)	0.3391(4)	0.1673(7)	0.0975(5)	4.0(3)
C(13)	0.4315(4)	0.1202(7)	0.0046(5)	3.5(3)
C(21)	0.4290(3)	0.4698(6)	0.0761(4)	2.2(3)
C(22)	0.4636(3)	0.5868(6)	0.0873(5)	2.4(3)
C(23)	0.4269(4)	0.6952(6)	0.0433(5)	2.9(3)
C(24)	0.3604(4)	0.6881(6)	-0.0076(5)	3.1(3)
C(25)	0.3285(4)	0.5697(7)	-0.0167(5)	2.9(3)
C(26)	0.3611(3)	0.4634(7)	0.0237(5)	2.7(3)
C(27)	0.3224(4)	0.8019(7)	-0.0530(6)	4.2(4)

thiolate ligands, and an explanation of the formation of these side products will be described below. From studies on complex 1b, it was shown that related products containing quinoline-2-thiolate ligands are also formed when 1b is irradiated even in the absence of iodine, but the yields are significantly lower. This observation demonstrates that the quinoline ring forming process does not require iodine.

A possible mechanism for transformation of 1b to 5b is presented in Scheme 3. In brief, these transformations must include (1) a cleavage of the Re–O bond, (2) a *cis*– *trans* isomerization of the stereochemistry at the olefin site C(2)-C(3), (3) the activation of one of the aryl CH bonds at a position ortho to the nitrogen atom, (4) the formation of a carbon-carbon bond between the olefin carbon C(3) and the ortho carbon in the phenyl ring, and (5) the elimination of a HRe(CO)₄ grouping. The sequence Scheme 3

of these events has not been established experimentally, but clearly, the Re-O bond cleavage must precede the cis-trans isomerization at the olefin site C(2)-C(3) and these steps must precede the cyclization process. We propose that the irradiation process provides the energy for the combination of the first two steps. This results in the formation of a vacant coordination site on the rhenium atom which contains C(3) and shifts the aryl ring to a position from which ortho-metalation could occur. This could produce an intermediate species such as A shown in Scheme 3. A reductive elimination involving C(3) and the metalated aryl carbon would lead to the formation of the heterocyclic ring, the elimination of a $HRe(CO)_4$ fragment, and the formation of the major product 5b. It is possible that some of the unsaturated $HRe(CO)_4$ fragments might recombine with 5b by addition at the lone pair of electrons on the sulfur atom and yield the minor product 6b which in turn yields 7b by decarbonylation.

We suspect that the iodine might facilitate these reactions by reacting with the hydride containing intermediate and converting it to an iodide homolog with a simultaneous formation of HI. The iodide homolog might eliminate a "Re(CO)₄I" grouping more easily to yield the compounds 5. An additional driving force might also be the combination of two "Re(CO)₄I" groupings to yield [Re-(CO)₄(μ -I)]₂ which was also observed in these reactions. An "Re(CO)₄I" grouping or [Re(CO)₄(μ -I)]₂ could also combine with 5b to yield 2b. The latter possibility was established by an independent reaction. The formation of the side products 3 could occur by the reaction of unreacted 1 with [Re(CO)₄(μ -I)]₂. This was also established through independent reactions.³ Finally, the HI formed in the reaction of A with I₂ could react with unreacted 1 to yield the other side product 4. This reaction was also verified independently. Interestingly, when 5b was photodecarbonylated, it combined with a similar fragment to yield the dimer 8b.

Acknowledgment. This research was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy.

Supplementary Material Available: Tables of hydrogen atom positional parameters, interatomic distances, interatomic bond angles, and anisotropic thermal parameters for all six structural analyses (33 pages). Ordering information is given on any current masthead page.

OM930565M