Solid-Liquid Reactions of Manganese and Cobalt Carbonyl Anions with Alkyl Halides Containing β -Hydrogens or **-Halogens**

István Kovács^{t,†} and Ferenc Ungváry*,§

Research Group for Petrochemistry of the Hungarian Academy of Sciences and Department of Organic Chemistry, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary

John F. **Garst**

Department of Chemistry, School of Chemical Sciences] The University of Georgia, Athens, Georgia 30602

Received June 1, 1992

Heterogeneous reactions afforded the first detection (by IR and NMR spectroscopy) of a secondary $(\eta^1$ -allyl)manganese carbonyl complex, $CH_3CH=CHCH(CH_3)Mn(\overline{CO})_5$, which results from the reaction of solid $\text{NaMn}(\text{CO})_5$ with 4-bromo-2-pentene in benzene or in saturated hydrocarbons at temperatures up to 5 °C. The analogous reaction of NaCo(CO)₄ gives CH₃- $CH=CHCH(CH₃)C(O)Co(CO)₄$, the product of CO insertion into $CH₃CH=CHCH(CH₃)Co (CO)₄$, which constitutes approximately 10% (by IR spectroscopy) of the equilibrium mixture with $CH_3CH=CHCH(CH_3)C(O)Co(CO)_4$ under CO at 1 atm and 5 °C. Addition of PPh₃ to this mixture leads to the formation of isolable CH₃CH=CHCH(CH₃)C(O)Co(CO)₃PPh₃. Similar reactions of 4-bromo-2-pentene with $N\text{a}Mn(CO)_4\text{PPh}_3$ and $N\text{a}Co(CO)_3\text{PPh}_3$ do not give metalcarbon-bonded species, nor do room-temperature reactions of 4-bromo-2-pentene with NaMn- $(CO)_5$ and NaCo(CO)₄. Instead, the products include 2-pentenes, 1,3-pentadienes, 4,5-dimethyl-2,6-octadiene isomers, $BrMn(CO)_5$, $Mn_2(CO)_{10}$, $Co_2(CO)_8$, and η^3 -(CH₃CHCHCHCH₃)Co(CO)₃. Reactions of dimethyl chlorosuccinate, ethyl 2-bromopropionate, methyl 3-bromopropionate, and dimethyl dibromosuccinate with $NaMn(CO)_5$ and $NaCo(CO)_4$ give varying amounts of alkylmetal carbonyl compounds and products of β -elimination. The characteristics of these transformations suggest radical mechanisms initiated by single electron transfer (SET). Radical pairs formed by **SET** are implicated **as** intermediates in both substitutions and eliminations.

Introduction

In addition to providing syntheses of alkyl-, acyl-, and $(\pi$ -allyl)metal carbonyls,¹ substitution reactions of alkyl halides RX with carbonyl metalates $M(CO)_n$ ⁻ (Mn(CO)₅⁻, $Co(CO)₄$, etc.) in homogeneous solutions play key roles in catalytic and stoichiometric carbonylations of $RX^{2,3}$ **Introduction**

ion to providing syntheses of alkyl-, acyl-, and

stal carbonyls,¹ substitution reactions of alkyl
 X with carbonyl metalates $M(CO)_n$ ⁻ $(Mn(CO)_5$ ⁻,

etc.) in homogeneous solutions play key roles

c a **H-R-F-F-R-F-F-X + M(CO)_n** determined by elimination.
 $H-\frac{1}{2}+\frac{1}{2}+X$ + M(CO)_n determined by elimination.

H- $\frac{1}{2}+\frac{1}{2}+X$ + M(CO)_n determined by elimination.

H- $\frac{1}{2}+\frac{1}{2}+X$ + M(CO)_n determined by

Substitution is often accompanied by elimination.

$$
H - C - C + M(CO)_n \longrightarrow C = C + HM(CO)_n + X \qquad (2)
$$

Consistent with the variety and significance of the applications of $RX/M(CO)_n$ reactions, their mechanisms have received considerable attention over the past two decades. Certain kinetic⁴ and stereochemical⁵ studies support one-step, S_N2 mechanisms,³ with the carbonyl metalates **as** nucleophiles? and this view has been widely

*^f***Hungarian Academy of Sciences.**

accepted. Radical pathways initiated by single electron transfer (SET) are also plausible in many cases. Equation **3** represents a simple SET mechanism in which the product $RM(CO)_n$ is formed by geminate recombination, but chain **And nonchain mechanisms involving nongeminate radicals are also possible.**
 $RX + M(CO)_n \xrightarrow{SET} [RX^*] M(CO)_n] \xrightarrow{X} [Row(CO)_n] \longrightarrow RM(CO)_n$ are also possible.

$$
RX + M(CO)n \xrightarrow{SET} [RX^{\bullet}, M(CO)n] \xrightarrow{\cdot X} [Row(CO)n] \xrightarrow{\cdot} RM(CO)n
$$

$$
\parallel
$$

$$
R\bullet + \bullet M(CO)n \xrightarrow{\cdot} RR + M_{2}(CO)2n (3)
$$

The ESR detection of alkyl radicals in the reaction of $Fe(CO)₂$ Cp⁻ and alkyl iodides,⁷ the formation of coupling products of organic and inorganic radicals? and the formation of halometal carbonyls9 **all** support radical mechanisms. Such evidence is consistent with SET (eq

⁺**Postdoctoral fellow at the University of Georgia (1986-1987) where part of this work was carried out.**

⁹ Department of Organic Chemistry.

(1) King, R. B. Acc. Chem. Res. 1970, 3, 417.

(2) Weil, T. A.; Cassar, L.; Foá, M. In Organic Syntheses via Metal

Carbonyls; Wender, I., Pino, P., Eds.; Wiley: New York, 1977; Vol. 2 **531.**

⁽³⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke,R. G.Principles and Applications *of* **Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; p 755.**

^{(4) (}a) Pearson, R. G.; Figdore, P. E. J. Am. Chem. Soc. 1980, 102, 1541. (b) Darensbourg, M. Y. In *Progress in Inorganic Chemistry*; Lippard, S. J., Ed.; Wiley: New York, 1985; Vol. 33, p 265. See also references therei

⁽⁵⁾ Johnson, R. W.; Pearson, R. G. J. *Chem. Soc., Chem. Commun.* **1970,986.**

⁽⁶⁾ **Dessy, R. E.; Pohl, R. L.; King, R. B.** *J.* **Am.** *Chem. SOC.* **1966,88, 5121.**

⁽⁷⁾ Krusic, P. J.; Fagan, P. J.; SanFilippo, J., Jr. *J. Am. Chem. SOC.* **1977,99, 250.**

^{(8) (}a) Seyferth, D.; Millar, M. D. *J.* **Organomet.** *Chem.* **1972,38,373.** (b) **Akita, M.; Kakinuma, N.; Moro-Oka, Y.** *J.* **Organomet.** *Chem.* **1988, 348,91.**

^{(9) (}a) Palmer, G. T.; Basolo, F. *J.* **Am.** *Chem. SOC.* **1985, 107, 3122.** (b) **Burkhardt, E. R.; Doney, J. J.; Berg", R. G.; Heathcock, C. H. J. Am.** *Chem. SOC.* **1987,** *109,* **2022.**

3), but it is also consistent with S_N2 substitution followed by C-M bond homolysis, which has been invoked to account for the formation of coupling products (eq 4).¹⁰ **BUT IT IS ALSO CONSISTENT WITH** SNZ **SUDSTITUTION TOHOWED
by C-M bond homolysis, which has been invoked to
account for the formation of coupling products (eq 4).¹⁰
RX + M(CO)_n \xrightarrow{\text{SM}} RM(CO)_n \xrightarrow{\text{SM}} [Row(CO)_n] \xrightarrow{\text{SM}} R \cdot * M(CO)_n \x**

$$
RX + M(CO)_n \xrightarrow{\text{Sn2}} \text{RM}(CO)_n \xrightarrow{\text{Sn3}} \text{[Re} \bullet M(CO)_n] \xrightarrow{\text{Sn3}} \text{R} \bullet + \bullet M(CO)_n \xrightarrow{\text{Sn4}} \text{R} \bullet \text{Sn} \xrightarrow{\text{Sn4}} \text{R} \bullet \
$$

RR + Mz(C0)zn **(4)**

Recent investigations provide an even more complicated picture. Reactions of $N\text{aMn}(\text{CO})_5$ with 2-bromoacyl halides, leading to ketenes and $BrMn(CO)₅$, may proceed through enolate intermediates.11 The formation of manganese enolate and dienolate complexes probably occurs through a carbanion mechanism, but the initial step could be SET.12 In other studies, benzyl chloride was found to undergo a reversible oxidative addition to $Co(CO)₄$ -in the presence of a crown ether, giving an $RC(O)Co(CO)_{3}X^{-}$ species, complicating what was otherwise considered to be an S_N2 reaction.¹³

8-Eliminations of hydrogen or halogen atoms in metal carbonyl systems have received less mechanistic attention than substitution. Eliminations of hydrogen have often been considered to be unrelated reactions, probably because there is a commonly cited scheme in which a coordinative unsaturated alkylmetal species transforms II *+co* I I H-C-C-M(C0)n ^GH-C-C-M(CO),.i --MH(CO)n.i to a hydrido-olefin complex and subsequently dissociates to the olefin and hydride.14

$$
H - \oint_{\Gamma} \cdot \oint_{\Gamma} M(CO)_n \xrightarrow{\cdot \frac{CO}{CO}} H - \oint_{\Gamma} \cdot \oint_{\Gamma} M(CO)_{n-1} \xrightarrow{\cdot \frac{CO}{C}} \int_{\sqrt{C}}^{\sqrt{C}} - MH(CO)_{n-1} \xrightarrow{\cdot \frac{CO}{CO}} HMCO)_{n} \quad (5)
$$

However, there are possible mechanistic connections between substitutions and eliminations. E2 often accompanies S_N2 , providing an alternative to the "classic" mechanism of eq *5.*

$$
H - C - C
$$

\n
$$
H - C - C
$$

\n
$$
H - C - C
$$

\n
$$
H - C
$$

It is not the only additional possibility, however. Recent studies provide precedent for radical disproportionations between \mathbb{R}^* and $^*\mathbb{M}(\mathbb{C}(\mathbb{O})_n)$. The isomerization of tetramethylallene to **2,4-dimethyl-l,3-pentadiene,** catalyzed by $HMn(CO)₅$ or $HCo(CO)₄$, appears to proceed through the disproportionation of intermediate radical pairs [R"Mn- $(CO)_{5}$].¹⁵ No intermediate RMn $(CO)_{5}$ is required. In addition, kinetic studies show that $MeOOCCH_2CH (COOMe)Co(CO)₄$ thermally decomposes to $HCo(CO)₄$ and dimethyl fumarate in a completely reversible (radical) process catalyzed by $Co_2(CO)_8.^{16}$ Most recently, while the manuscript was in preparation, Baird et al. communicated

on halogen and β -hydrogen atom abstraction from several alkyl halides by $Cr(CO)₃$ Cp radicals leading to olefins.¹⁷

There are only sporadic reports in the literature about β -eliminations of halogens.¹⁸ It is evident from these results that elimination of a halogen (fluorine or bromine) is favored over that of hydrogen when both are attached to the same C_β atom. E2 and radical disproportionation pathways were suggested for the reactions of several vicinal dibromides with \overline{n}^3 -C₃H₅Fe(CO)₃⁻ and \overline{n}^3 -C₃H₅Fe(CO)₃ radicals, respectively.18b

Our work began in efforts to prepare allylmetal carbonyls that are possible intermediates in reactions between 2,3 pentadiene and $HMn(CO)_5$ or $HCo(CO)_4$ by reactions of $NaMn(CO)₄L$ and $NaCo(CO)₃L$ (L = CO, PPh₃) with 4-bromo-2-pentene.19 Similarly, manganese analogues of MeOOCCH₂CH(COOMe)Co(CO)₄²⁰ and MeOOCCH₂CH- $(COOMe)Co(CO)_{3}PPh_{3}^{21}$ were attempted to be prepared through reactions of $NaMn(CO)₄L$ with dimethyl chlorosuccinate. Prompted by unsatisfactory results obtained in homogeneous reactions 1 in ethereal solvents and by the hope that nonpolar solvents might promote the formation of the desired products by radical mechanisms, we conducted the reactions heterogeneously, using hydrocarbon solvents (benzene, octane, etc.), atmospheres of CO or Ar, and sometimes PPh3 or HMn(C0)adppe **as** an additive. We later broadened the study to include reactions of 1-bromo-2-pentene and α - and β -halo esters ethyl 2-bromopropionate, methyl 3-bromopropionate, and (\pm) - and meso-dimethyl dibromosuccinates.

To the best of our knowledge, **all** previously reported reactions of alkyl halides with metal carbonyl anions were carried out in homogeneous solutions, most frequently in basic solvents such **as** tetrahydrofuran (THF) or diethyl ether.

We now report our preparative and mechanistic observations on these reactions under heterogeneous conditions. In this context a new mechanistic pathway for β -eliminations of both hydrogen and halogen, through radical pairs, is discussed.

Rasults

General Methods. As pure liquids or in nonpolar solvents such **as** benzene, toluene, and alkanes, several activated primary and secondary alkyl halides, namely l-bromo-2-pentene, 4-bromo-2-pentene, dimethyl chlorosuccinate, ethyl 2-bromopropionate, methyl 3-bromopropionate, and (*)- **as** well **as** meso-dimethyl dibromosuccinate, react readily with $M(CO)_nL$ ⁻ (M = Co, Mn; n = 3, $4; L = CO, PPh₃$ when stirred with the solid sodium salts NaM(CO)_n L in the "concentration" range 0.01-1 M, using

⁽¹⁰⁾ (a) King, R. B. In *Aduances* **in Organometallic** *Chemhtry;* **Stone,**

F. G. A., West, R., Eds.; Academic Press: New York, 1964; Vol. 2, p 202.
(b) Galamb, V.; Pályi, G. *Coord. Chem. Rev.* 1984, 59, 203.
(11) Masters, A. P.; Sorensen, T. S.; Ziegler, T. *Organometallics* 1989, **8, 1088.**

⁽¹²⁾ Masters, A. P.; Sorensen, T. S. *Can. J. Chem.* **1990,68, 492.** (13) Haász, F.; Bartik, T.; Galamb, V.; Pályi, G. *Organometallics* 1990, **9.** 2773.

⁹- , *211.1* - . . -. **(14) Kochi, J. K.** *OrganometallicMechanisms and* **Catalysis; Academic (15) Press: New York, 1978; p 246.**

(15) Garst, J. F.; Bockman, T. M.; Batlaw, R*. J. Am. Chem. Soc.* 1986,

^{108, 1689.}

⁽¹⁶⁾ (a) KovBcs, L;UngvBzy,F.PresentedattheXXVIIIthIntemational Conference on Coordination Chemistry (ICCC), Cera, Germany, Aug 13- 18, 1990; Proc 1, pp 3-35. (b) Kovács, I.; Ungváry, F.; Markó, L. Manuscript **in preparation.**

^{(17) (}a) Goulin, C. A.; Huber, T. A,; Nelson, J. M.; Macartney, D. H.; Baird, M. C. *J. Chem. SOC., Chem. Commun.* **1991,798. (b) MacConnnchie, C. A.; Nelson,** J. **M.; Baird, M. C. Organometallics 1992, 11, 2521.**

^{(18) (}a) Booth, B. L.; Haszeldine, R. N.; Mitchell, P. R.; Cox, J. J. J.
Chem. Soc. A 1969, 691. (b) Wegner, P. A.; Delaney, M. S. Inorg. Chem.
1976, 15. 1918. (c) Gladysz, J. A. Acc. Chem. Res. 1984, 17, 326.
1976, 15. 19

at the 194th National Meeting of the American Chemical Society, New
Orleans, LA, Aug 30–Sept 4, 1987; Abstr. ORGN 230. (b) Kovács, I.; **Garst,** J. **F. Unpublished results.**

⁽²⁰⁾ Ungváry, F.; Sisak, A.; Markó, L. In Homogeneous Transition
Metal Catalyzed Reactions; Moser, W., Slocum, D., Eds.; Advances in
Chemistry Series 230; ACS Books: Washington, DC, 1992; Chapter 20.

⁽²¹⁾ Ungváry, F.; Kovács, I.; Hammerschmitt, B.; Cordier, G. Manu**script in preparation.**

the reactants in ca. 1:l molar ratio, temperatures in the range -30 °C to rt $(rt = room$ temperature), and atmospheric pressures of CO or Ar. In addition, we note that metal carbonyl halides react with a number of metal carbonyl anions under the same conditions.

Allylic Bromopentenes. Reactions of 4-Bromo-2 pentene with $NaMn(CO)_{5}$ and $NaCo(CO)_{4}$. The secondary allylic bromide, 4-bromo-2-pentene, reacts readily with $NaMn(CO)_{5}$ and $NaCo(CO)_{4}$ above 0 °C. With benzene solutions of relatively high halide concentrations **(ca.** 0.6 M) at room temperature, perceptible heat evolution takes place.

In room-temperature reactions of $N\text{a}Mn(CO)_{5}$ under CO, mixtures of 2-pentene, 1,3-pentadiene, and 4,5-dimethyl-2,6-octadiene isomers²² are formed. $Mn_2(CO)_{10}$ and $BrMn(CO)$ ₅ are the only metal carbonyl complexes that were detected. Under Ar, traces of η^3 -(CH₃CHCH-CHCH3)Mn(C0)423 were **also** identified.

In room-temperature reactions of $NaCo(CO)_4$, $Co_2(CO)_8$ is accompanied by η^3 -(CH₃CHCHCHCH₃)Co(CO)₃ isomers.²⁴ which are the main carbonyl-containing species under Ar $(>60\%)$. The organic product mixture consists of 2-pentenes and 1,3-pentadienes.

 η ¹-CH₃CH=CHCH(CH₃)Mn(CO)₅ or η ¹-CH₃CH=C- $HCH(CH₃)Co(CO)₄$ results when 4-bromo-2-pentene is mixed with $N\text{a}Mn(CO)₅$ or $N\text{a}Co(CO)₄$ under CO at about -30 °C and the temperature is allowed to rise slowly to 5 °C. This is the first report of the detection of $(sec-\eta^1$ ally1)manganese and -cobalt carbonyl complexes.25

 $CH_3CH=CHCH(CH_3)Mn(CO)_5,$ ²⁸ which is formed together with considerable amounts of $Mn_2(CO)_{10}$, BrMn-

(25) The transient formations of **(3-cyc1ohexenyl)manganese** pentacarbonyl and mixtures of (3-cyclohexenyl)-/[**(3-cyclohexenyl)carbonyll**and **(l-methyl-2-butenyl)-/(2-methyl-3-pentenoyl)cobalt** tetracarbonyls are mentioned, without characterization, in connection with additions of $HMn(CO)_5$ and $HCo(CO)_4$ to conjugate dienes.^{26.27}
(26) Wassink, B.; Thomas, M. J.; Wright, S. C.; Gillis, D. J.; Baird, M.
C. J. Am. Chem. Soc. 1987

MHz): $\delta = 1.44$ (d, 3H, -CH-CH₃), 1.54 (d, 3H, -CH-CH₃), 2.465 (m, lH, *-CH-),* 5.065 (m, lH, =CH-CH,), 5.79 (m, lH, -CH-CH=) ppm.

 $(CO)₅$, and organic decomposition products, even at the beginning of the reaction, undergoes CO insertion very slowly. Only a weak band at 2111 cm^{-1} and a shoulder at 2016 cm^{-1} , representing the acyl complex, appear in the IR spectrum after a prolonged reaction time. The formation of 2-penten-4-al, however, when $CH_3CH=CHCH$ - $(CH₃)_{Mn}(CO)₅ decomposes is more convincing evidence$ of **CH3CH=CHCH(CH3)C(O)Mn(C0)5.** The aldehyde was identified by high-resolution (300 MHz) ¹H NMR spectroscopy²⁹ and could derive from the cleavage of the acylmanganese complex by $HMn(CO)₅$, which, in turn, is a product of β -elimination. Added PPh₃ does not promote the incorporation of CO. In fact, there is no substitution of the alkyl complex at **all** at room temperature. Only the substitution of $BrMn(CO)₅$ and transient formation of $HMn(CO)₄PPh₃$ were detected.

 $CH_3CH=CHCH(CH_3)Co(CO)_4$ immediately converts to its equilibrium mixture with the more stable acyl derivative $CH_3CH=CHCH(CH_3)C(O)Co(CO)_4.^{30}$ In this mixture, the acyl/alkyl ratio is $\approx 9:1.^{27}$ Thus, the alkylcobalt complex is detected only by its characteristic A_1 infrared band at 2092 cm^{-1} . When PPh₃ is added to the cold reaction mixture, both the alkyl- and acylcobalt tetracarbonyl complexes are substituted to $CH₃CH=$ $CHCH(CH₃)C(O)Co(CO)₃PPh₃$, which was isolated.

The alkyl and acyl complexes of both metals, detected in situ, spontaneously decompose or transform to the above mixtures of organic and organometallic products, even in cold solutions, in about 2 h. We were unable to isolate them in pure form. These transformations are **summarized** in Scheme I.

Reactions of 1-Bromo-2-pentene with $N\text{aMn}(\text{CO})_5$ and $NaCo(CO)_4$. Room-temperature reactions of NaMn- $(CO)_{5}$ or NaCo $(CO)_{4}$ with the primary allylic bromide 1-bromo-2-pentene give quantitative yields of CH_3CH_2 - $CH=CHCH₂Mn(CO)₅^{32}$ or η^3 -(CH₃CH₂CHCHCH₂)Co- $(CO)₃$.²⁴ (Quantitation is based on the complete con-

⁽²²⁾ The three compounds were identified by GC-MS. Only traces of cis-2-pentene and cis-1,3-pentadiene could be observed; e.g., the trans isomers dominated in both cases. The concentration of cis-1,3-pentadiene was below the sensitivity level of the NMR spectrometer; its characteristic olefinic proton resonances did not appear. Three additional peaks were found in the GC spectra and assigned to the same constitution, **4,5-dimethyl-2,6-octadiene.** These peaks probably represent cis,cis, cis,trans, and trans,trans isomers.

⁽²³⁾ Lipps, W.; Kreiter, C. G. J. **Organomet.** *Chem.* **1983,** 241, 185. (24) Bertrand, J. **A,;** Jonassen, H. G.; Moore, D. W. *Inorg.* Chem. **1963,** 2,601.

⁽²⁹⁾ Data for CH₃CH=CHCH(CH₃)CHO are as follows. ¹H NMR $($ toluene-d₈, 300 MHz): $\delta = 1.36$ (d, 3H, $=$ CH-CH₃), 2.385 (m, 1H, -CH-), 9.13 (s, 1H, -COH) ppm and two multiplets in the range 4.95-5.23 ppm, partly overlapped with the multiplets of 2-pentene and trans-1,3pentadiene and characteristic of the vinylic protons, **as** well **as** a eecond doublet, completely covered by that of $1,3$ -pentadiene at 1.44 ppm and attributable to $-CH-CH_3$.

⁽³⁰⁾ Data for CH₃CH=CHCH(CH₃)C(O)Co(CO)_t are as follows. IR (pentane): *v_{CO}* = 2103 m, 2044 vs, 2023 vs, 2003 vs, 1746 ah, 1721 w, br, 1685 sh cm⁻¹, identical with that observed in the reaction of $HCo(CO)_4$ with trans-1,3-pentadiene.³¹ IH NMR (toluene-d₈, -10 °C, 80 MHz): δ = 0.90 (d, 3 H, -CH-CH₃), 1.12 (d, 3H, -CH-CH₃), 3.50 (m, 1H, -CH-CH₃), 5.22 (m, 2H, -CH-CH-) ppm.

(31) Ungváry, F. Unpublished results.

sumption of the bromide and was determined by 'H NMR spectroscopy.)

There is no published example of CO insertion in any of the known primary $(\eta^1$ -allyl)manganese pentacarbonyls. The evidence that the secondary allyl complex $CH₃CH=CHCH(CH₃)Mn(CO)₅ undergoes CO insertion$ prompted us to attempt to force insertion in $CH₃CH₂$ - $CH=CHCH₂Mn(CO)₅$. We therefore added PPh₃ to its benzene solution and heated the mixture to 50 °C, under 1 atm of CO. $CH_3CH_2CH=CHCH_2Mn(CO)_5$ is completely consumed within 3 h, giving mostly decomposition products $(\approx 90\%)$ and some n^3 -(CH₃CH₂CHCHCH₂)Mn(CO)₄³³ $(\approx]10\%$), according to eq 7. Without PPh₃, there is a very slow loss of CO, leading to the η^3 -allyl complex ($\approx 50\%$) and coupling products $(\approx 50\%)$ in 2 days.³⁴ $\text{ucts} (\approx 90\%)$ and some η^3 -(CH₃CH₂CH
($\approx 10\%$), according to eq 7. Without I
slow loss of CO, leading to the η^3 -all
and coupling products ($\approx 50\%$) in 2
CH₃CH₂CH-CHCH₂Mn(CO)₅ + PPh₃ <u>4</u>

 $Mn_2(CO)_{8}(PPn_3)_{2} + (CH_3CH_2CH=CHCH_{2})_{2} + \eta^3-(CH_3CH_2CHCHCH_2)Mn(CO)_{4}$ (7)

Reactions of 4-Bromo-2-pentene and l-Bromo-2 pentene with $NaMn(CO)_{5}$ and $NaCo(CO)_{4}$ in the Presence of HMn(CO)₃dppe. The persistence of the free radical $Mn(CO)_3$ dppe³⁶ suggests that $HMn(CO)_3$ dppe might be a useful trap for alkyl radical intermediates. It can be used sensibly as a radical trap only if it does not otherwise interfere. Control experiments show that HMn- (CO) ₃dppe does not react with any of the reactants and products of the reactions under study. Most important, and unlike $HMn(CO)_5$ and $HMn(CO)_4PPh_3$, $HMn(CO)_3$ dppe does not react with 4-bromo-2-pentene or l-bromo-2-pentene to produce 2-pentenes.

Reactions of $NaMn(CO)$ ₅ with either 4-bromo-2-pentene or 1-bromo-2-pentene in benzene in the presence of equimolar amounts of $HMn(CO)₃dppe$ results in organic product mixtures that are rich in 2-pentenes. In eachcase, the IR spectrum shows bands characteristic of Mn- (C0)sdppe radicals (which is indicated **also** by a characteristic purple-red color) and $BrMn(CO)_3d$ ppe. 1-Bromo-2-pentene gives $Mn(CO)_3$ dppe, Br $Mn(CO)_3$ dppe, and 2-pentenes (35%) along with $CH_3CH_2CH=CHCH_2Mn (CO)₅$, which is formed quantitatively in the absence of $HMn(CO)₃dppe.$ The formation of $BrMn(CO)₃dppe$ indicates that $Mn(CO)$ ₃dppe partly reacts with the starting halides.^{36c}.

Reactions of **4-Bromo-2-pentene with NaMn-** $(CO)_4$ PPh₃ and NaCo(CO)₃PPh₃. NaMn(CO)₄PPh₃ and NaCo(CO)₃PPh₃, unlike their parent salts, fail to give any alkyl or acyl complexes, even though they react smoothly under the same conditions. Again, decomposition products, among them the organometallics $Co_2(CO)_{6}(PPh_3)_{2}$

(34) A recent publication describes the similar lack of CO insertion on phosphine substitution of primary (η ¹-allyl)cobalt tetracarbonyls.³⁵
However, some derivatives containing branched carbon chains, such as
(3-methyl-2-butenyl)- and (2,3-dimethyl-2-butenyl)cobalt tetracarbonyls, insert CO spontaneously. Even so, these give a considerably smaller acyl/
alkyl ratio than the (*sec-η*'-allyl)cobalt complexes (1-methyl-2-butenyl)and (3-cyclohexenyl)cobalt tetracarbonyls.²

(35) Loubser,C.; Roos, H. M.; Lotz, S. J. Organomet. Chem. 1991,402, *RQR*

(36) (a) Sacco, A. *Cazz. Chim. Ital.* 1963,93,698. (b) Reimann, R. H.; Singleton, E. J. Organomet. Chem. 1972, 38, 113. (c) Tyler, D. R.; Goldman, A. **S.** J. Organomet. Chem. 1986, 311, 349.

or $Mn_2(CO)_8(PPh_3)_2$, Br $Mn(CO)_4PPh_3$, and $HMn(CO)_4$ -PPh3, were identified.

These results may be surprising, since phosphinesubstituted derivatives of both alkyl- or acylmanganese and -cobalt carbonyls, once formed, are invariably more stable than their unsubstituted counterparts. This is certainly true for $CH_3CH=CHCH(CH_3)C(O)Co(CO)_{3}$ -PPh3, which we obtain from its very unstable percursor CH₃CH=CHCH(CH₃)C(O)Co(CO)₄ by PPh₃ substitution. In homogeneous solutions, primary allylic halides, however, are known to react with $N\text{aMn(CO)}_4$ PPh₃ to form $(n^1$ allyl)manganese tetracarbonyl phosphine complexes. $9a$

Halo Esters. Reactions of α - and β -Halo Esters with NaMn(CO)₅, NaCo(CO)₄, NaMn(CO)₄PPh₃, and **NaCo(CO),PPh,.** Dimethyl chlorosuccinate reacts less vigorously than 4-bromo-2-pentene, but still at a convenient rate at room temperature, with $NaMn(CO)_5$, NaCo-(CO)₄, NaMn(CO)₄PPh₃, and NaCo(CO)₃PPh₃. Our attempts to prepare the corresponding alkyl or acyl complexes succeeded only with $N\text{a}Mn(\text{CO})_5$.

IR spectroscopy³⁷ shows that reactions of dimethyl chlorosuccinate with $N\text{aMn(CO)}_5$ at 0 °C and in diluted octane solutions give MeOOCCH₂CH(COOMe)Mn(CO)₅, along with $Mn_2(CO)_{10}$. Unfortunately, all of our attempts failed to obtain this complex in solvents and concentrations suitable for NMR detection. No signs of spontaneous CO insertion into its C-Mn bond, nor of substitution with PPh3 when it was present, were detected.

At room temperature, reactions of dimethyl chlorosuccinate with $N\text{aMn(CO)}_5$ give ClMn(CO)₅, Mn₂(CO)₁₀, dimethyl fumarate (dimethyl trans-2-butenedioate), and dimethyl succinate. In these and other reactions of dimethyl chlorosuccinate, dimethyl fumarate and dimethyl succinate are formed in \approx 1:1 molar ratio.

From reactions in the presence of PPh₃, which might stabilize the alkyl or perhaps an acyl complex **as** a PPh3 substituted derivative, only $\text{CIMn}(\text{CO})_4\text{PPh}_3, \text{Mn}_2(\text{CO})_{10}$ and $Mn_2(CO)_8(PPh_3)_2$ were detected. Similarly, from reactions of $NaMn(CO)_4PPh_3$, the only metal carbonyl species detected were $CIMn(CO)_4$ PPh₃ and $Mn_2(CO)_8$ - $(PPh₃)₂$.

The known complex MeOOCCH₂CH(COOMe)Co(CO)4 was not detected from the rection of dimethyl chlorosuccinate with $NaCo(CO)_4$, perhaps because it thermally decomposes as it is formed.16 The reaction of dimethyl chlorosuccinate with $NaCo(CO)₃PPh₃$ results in the formation of $Co_2(CO)_6(PPh_3)_2$ as the only cobalt carbonyl compound. The absence of MeOOCCH₂CH(COOMe)Co- $(CO)₃PPh₃$ is not due to its instability. We have synthesized it in an other way and found that it is quite stable.^{16,21}

In contrast to heterogeneous reactions in hydrocarbon solvents. more dimethvl succinate than dimethvl fumarate 90 MHz): $\delta = 0.93$ (t, 3H, -CH₃), 1.70 (d, 2H, Mn-CH₂-), 1.92 (m, 2H,
-CH₂-Me), 5.27 (m, 1H, =CH-Et), 5.67 (m, 1H, =CH-CH₂-) ppm.
(33) Oudeman, A.; Sorensen, T. S. J. Organomet. Chem. 1978, 156,
259. **We also car** is formed when a solution of the anions in THF is added to an alkane solution of dimethyl chlorosuccinate. When

We also carried out reactions of NaMn(CO)₅, NaCo- $(CO)_4$, and NaCo $(CO)_3$ PPh₃ with a primary β -bromo ester, methyl 3-bromopropionate, in n-octane at **rt** or at **-30** "C under Ar [NaCo(CO)₄, NaCo(CO)₃PPh₃] and CO [NaMn- $(CO)_5$, NaCo $(CO)_4$] at 1 atm total pressure. In each case, the rapid formation of metal carbonyl hydrides [HMn- $(CO)_5$, $HCo(CO)_4$, $HCo(CO)_3$ PPh₃] and methyl acrylate

⁽³²⁾ Data for $\text{CH}_3\text{CH}_2\text{CH}=\text{CHCH}_2\text{Mn}(\text{CO})_5$ are as follows.

((hexane): $v_{\text{CO}} = 2104$ w, 2010 vs, 1992 s cm⁻¹. ¹H NMR (benzene-d₆, IR(hexane): $v_{\text{CO}} = 2104 \text{ w}, 2010 \text{ vs}, 1992 \text{ s cm}^{-1}.$ ¹H NMR (benzene- d_6 , **90** MHz): $\delta = 0.93$ (t, 3H, -CH₃), 1.70 (d, 2H, Mn-CH₂-), 1.92 (m, 2H,

⁽³⁷⁾ Data for MeOOCCH₂CH(COOMe)Mn(CO)₅ are as follows. IR (octane): *YCO* = 2117 w, 2024 vs, 2003 *8,* 1744 w, 1708 w cm-I.

was observed (eq 8). The hydrides subsequently decom-Mn and Co Carbonyl Anions
was observed (eq 8). The hydrides subsequently decom-
MeOOCCH₂CH₂Br + NaM(CO)_nL - MeOCCH-CH₂ + HM(CO)_nL + NaBr (8)

posed slowly to the corresponding metal carbonyl dimers, $Mn_2(CO)_{10}$, $Co_2(CO)_8$, and $Co_2(CO)_6(PPh_3)_2$, respectively. In parallel with its decomposition, $HC_0(CO)_4$ adds to methyl acrylate to form some MeOOCCH(CH₃)Co(CO)₄.³⁸

There are two especially interesting features of these results. First, $N\alpha Mn(CO)_{5}$ and methyl 3-bromopropionate do not give the known complex $MeOOCCH₂CH₂Mn(CO)₅$ even in cold solutions. It can be prepared, however, by decarbonylation of its acylmanganese precursor.39 Since $MeOOCCH₂CH₂Mn(CO)₅$ is expected to be stable under forced conditions (90 °C), $HMn(CO)₅$ could not arise in its fast decomposition. Second, $MeOOCH_2CH_2C(O)$ - $Co(CO)₄$ was reported to form in a solution reaction of $NaCo(CO)₄$ with methyl 3-bromopropionate⁴⁰ as well as in the thermal rearrangement of $MeOOCH(CH₃)Co (CO)₄$ ³⁸ under 1 atm pressure of CO. Both processes require the transient formation of $MeOOCCH₂CH₂Co (CO)_4$, which undergoes CO insertion rather than β -hydride elimination. Consequently, $HCo(CO)_4$ could not be the product of a fast decomposition of $MeOOCH_2CH_2Co$ - $(CO)₄$.

Ethyl 2-bromopropionate behaves differently. EtOO- $CCH(CH_3)Co(CO)₄$ and $EtOOCCH(CH_3)Mn(CO)₅5$ are formed in good yields $(\approx 60\%)$ with NaMn(CO)₅ and NaCo-(CO)4, respectively. The byproducts in each case include ethyl acrylate, ethyl propionate, diethyl methylmalonate, and diethyl succinate, which were detected by GC-MS analyses.

Reactions of **Dimethyl Dibromosuccinates with** $\text{Nam}_1(CO)_{5}$, NaCo(CO)₄, and NaCo(CO)₃PPh₃. Both (\pm) - and meso-dimethyl dibromosuccinates undergo apparently instantaneous reactions with $N\text{aMn}(\text{CO})_5$ (CO) atmosphere), $\rm NaCo(CO)_4$ (CO), or $\rm NaCo(CO)_3PPh_3$ (Ar) at rt. When $N\text{aMn}(\text{CO})_5$ is the limiting reagent, the reactions proceed according to the stoichiometry of eq 9. (\pm)- and *meso*-dimethyl dibromosuccin
parently instantaneous reactions with l
atmosphere), NaCo(CO)₄ (CO), or NaC
at rt. When NaMn(CO)₅ is the limit
reactions proceed according to the stoic
 M_{H} 000CCHBrCHBrCO

Me00CH=CHCOOMe+ BrMn(C0)5+ NaBr **(9)**

An excess of $\text{NaMn}(\text{CO})_5$ results in the conversion of the primary product, $BrMn(CO)₅$, to $Mn₂(CO)₁₀$ and NaBr under these conditions. $NaCo(CO)_4$ and $NaCo(CO)_3PPh_3$ **also** give the olefins, but the corresponding cobalt carbonyl halides decompose **as** they are formed, owing to their extreme instability. Nevertheless, CO evolution and precipitation of $CoBr₂$ give clear signs of their transient formation. Considerable amounts of $Co_2(CO)_8$ as well as $Co_2(CO)_{6}(PPh_3)_2$ and $Co_2(CO)_7PPh_3$ (a result of CO evolution) are also found.

When the anions are added **as** stock solutions in diethyl ether or THF, the saturated byproduct, dimethyl succinate, appears in small quantities. Ita amount can be reduced by keeping the temperature low. No traces of any carbonmetal-bonded species or partly hydrogenated dimethyl bromosuccinate were identified, even in cold $(>=30 °C)$ mixtures.

meso-Dimethyl dibromosuccinate gives mostly dimethyl fumarate at rt, although traces of dimethyl maleate

(dimethyl cis-2-butenedioate) are also formed. At -30° C, only the fumarate is formed-no traces of maleate were detected.

At rt, the racemic bromide also gives dimethyl fumarate but together with a significant amount (at least $\approx 10\%$) of dimethyl maleate. In reactions initiated at -30 "C, the cis and trans isomers are formed in about equal ratios.

Discussion

Synthetic Considerations. For syntheses of substitution products and their derivatives, the method described here sometimes has considerable advantages over homogeneous reactions in basic solvents.

(1) In spite of careful purification, THF and ether solvents sometimes lead to unexpected complications and poor yields of metal carbonyl derivatives. In some cases, the use of nonpolar solvents and heterogeneous reactions gives superior results.

(2) Solutions of alkyl-, acyl- or $(\pi$ -allyl)cobalt and manganese carbonyls in hydrocarbons are often required for further studies. These solutions can be produced directly in heterogeneous reactions, thereby avoiding several workup steps that often lead to decomposition, especially when the product is very unstable.

(3) The probability of undesirable secondary reactions of the halides can be minimized. Because unreacted salts such as NaMn(CO)_5 and NaCo(CO)_4 remain largely in the solid phase, it is not necessary to use the halides in excess. Reactions can be carried nearly to completion, so that in the **final** solution the halides are not available for secondary reactions. This can be especially important for the less volatile halides.

(4) With either nonpolar or polar solvents, the presence of some $Co_2(CO)_8$ and $Mn_2(CO)_{10}$ in the product cannot be avoided. However, alkane solvents offer the advantage that $Co_2(CO)$ ₈ precipitates almost quantitatively from chilled solutions. $Mn_2(CO)_{10}$ can be removed only by chromatography if the desired product is stable enough to tolerate this procedure.

Mechanistic Considerations. Our data certainly do not permit us to sort out all of the previous suggestions concerning the mechanism of substitution and elimination in $RX/M(CO)_n$ reactions, and we make no such attempt, but we are led to several conclusions. (1) Radicals are intermediates in many, perhaps all, of our reactions. (2) In some cases, at least, the radicals are formed in processes that precede carbon-metal bond formation. They do not arise in homolyses of alkylmetal carbonyl complexes (eq 4) but may be formed by SET (eq 3). (3) β -Elimination of hydrogen or bromine can occur by radical disproportionation in the same radical-pair intermediate **as** substitution. A vacant coordination site in an alkyl complex (eq *5)* is not required.

The formation of both organic and inorganic radicals in the course of our reactions is suggested by the following observations:

(1) Coupling products, RR and $M_2(CO)_{2n}L_2$, are formed in several reactions. They could be the products of dimerization of radicals escaped from a radical pair.

(2) Halomanganese carbonyls, XMn(C0)4L, are formed in reactions of $N\text{aMn(CO)}_5$ and $N\text{aMn(CO)}_4$ PPh₃ with monohalides. $XMn(CO)₄L$ complexes could be formed by halide atom abstraction of $Mn(CO)_4L$ radicals from RX.41

⁽³⁸⁾ Ungvby, F.; Mark6, L. *Organometallics* **1986,5, 2341. (39) Casey, C. P.; Brunsvold, W. R.; Koch,** J. *Inorg. Chem.* **1976,** *8,*

^{1991.}

⁽⁴⁰⁾ Heck, R. F.; Breslow, D. S. *J. Am. Chem. SOC.* **1962,** *84,* **2499.**

(3) $Mn_2(CO)₈(PPh₃)₂$, formed in the reactions of NaMn- $(CO)₅$ when added PPh₃ was present, could arise by facile PPh₃ substitution for CO in Mn(CO)₅ radicals.⁴²

(4) Dimethyl succinate, which is formed in large amounts, exceeding those of dimethyl fumarate, in reactions of dimethyl chlorosuccinate in the presence of THF or diethyl ether, could be a product of the reaction of the intermediate MeOOCCH2CHCOOMe radical with the solvent.

These observations point to radicals, but they do not exclude the possibility of radical formation exclusively from homolytic dissociations of metal-carbon bonds following S_N2 reactions (eq 4), for which there is ample evidence and precedent in analogous systems. There is kinetic evidence for the thermal homolysis of the C-M bond of alkylmetal carbonyl complexes.⁴³ In agreement with these results, we find that the products of the thermolysis of $CH_3CH_2CH=CHCH_2Mn(CO)_5$ are those expected from such homolysis. In addition, this kind of decomposition of E tOOCCH(CH₃)Co(CO)₄, leading to coupling products and three times **as** much ethyl propionate **as** ethyl acrylate, **has** been proposed in connection with the homogeneous reactions (thought to be $S_N(2)$ of NaCo(CO)₄ with secondary α -halo carboxylates.⁴⁴

Mechanisms of radical formation that are formally related to $S_N2/homolysis$ are supported by strong evidence found in recent studies of the annihilation of metal carbonyl anions and metal carbonyl cations. Radicals are formed by additions of the anions $-M(CO)_n$, with the metal as nucleophilic site, to $C=O$ or $C=$ bonds of ligands L in the cations $+{\bf M}'({\rm CO})_m{\bf L}$, followed by C-M bond homolyses.^{45,46} For example, Kochi et al. reports⁴⁶ that the formally $(n^1$ -allyl)molybdenum carbonyl complexes, which are intermediates in eachof the reactions studied, undergo thermal homolysis. The radicals subsequently couple to dimers or $^{\circ}$ Mo(CO)₃Cp reacts with added PPh₃ and alkyl halides to give products similar to those we obtained. It is also evident that primary complexes are much more stable than secondary ones. In both Kochi's work and ours, primary η^1 -allyl complexes are formed at room temperature but secondary ones are not.

Even **so,** no direct analogy can be drawn between the mechanisms of cation-anion annihilation and those of the anion/halide reactions considered here, and we think it unlikely that the initial steps of our reactions are nucleophilic additions. In fact, for some of our cases, an S_N2 reaction followed by the homolysis of a carbon-metal bond can be excluded.

(1) We find that alkylmetal carbonyl complexes cannot be intermediates in the formation of radicals.

The products of reactions of PPh₃-substituted anions, both manganese and cobalt, do not include carbon-metalbonded species, even at low temperatures, despite the fact that PPh₃ ligands generally stabilize carbon-metal bonds. Indeed, **CH3CH=CHCH(CH3)C(0)Co(C0)3PPh3** and MeOOCCH₂CH(COOMe)Co(CO)₃PPh₃,²¹ which were synthesized through alternative routes, decompose too slowly to account for their absence from reactions of NaCo-

(43) (a) Nappa, M. J.; Santi, R.; Halpern, J. Organometallics 1985, 4, 34. (b) Mancuso, C.; Halpern, J. J. Organomet. Chem. 1992, 428, C8. (44) Galamb, V.; Pályi, G. Acta Chim. Acad. Sci. Hung. 1982, 111, 131.

 $(CO)_{3}PPh_{3}$ with 4-bromo-2-pentene and dimethyl chlorosuccinate, respectively.

In addition, MeOOCCH₂CH₂Mn(CO)₅ and MeOOCCH₂- $CH₂C(O)Co(CO)₄$ are known to be thermally stable, $38-40$ yet neither could be prepared in a heterogeneous reaction of methyl 3-bromopropionate with $NaMn(CO)_{5}$ or NaCo-(CO)₄. The intermediates $CH_3CH=CHCH(CH_3)Mn(CO)_5$ and **MeOOCCHzCH(COOMe)Mn(CO)5** are formed in low yields in heterogeneous reactions of the corresponding halides with $NaMn(CO)₅$ below room temperature. Even at room temperature, they decompose relatively slowly in solution for that process to be responsible for the other products.

(2) For some reactions, giving stable organometallic products, radical intermediates can be trapped.

Although heterogeneous reactions of 1-bromo-2-pentene with $NaMn(CO)_{5}$ and $NaCo(CO)_{4}$ at room temperature give $(\eta^1$ - or $(\eta^3$ -allyl)metal complexes cleanly, the addition of $HMn(CO)₃dppe$ to the reaction mixture of $NaMn(CO)₅$ diverts $\approx 35\%$ of the product to 2-pentenes and Mn-(C0)sdppe radicals or BrMn(C0)sdppe. Since HMn- (C0)adppe does not react with any of the reactants or products, it apparently scavenges intermediate 1-ethylally1 radicals that escape geminate reaction.

The yield of 2-pentenes, however, may not be an exact measure of escape, because Mn(CO)3dppe radicals could initiate a chain reaction leading to the formation of BrMn- (CO) ₃dppe. In turn, it is known that $Mn(CO)$ ₃dppe radicals are not reactive enough to complete a chain reaction initiated by only trace **amounts** of escaped, or adventitous, radicals.^{36c} In accordance with that, we observed the formation of free $Mn(CO)$ ₃dppe radicals in substantial concentrations. Consequently, it is reasonable to assume that still significant, but less than 35 *75,* amounts of 2-pentenes could derive from the trapping of allylic radicals by HMn(CO)₃dppe, which is a plausible extent of escape.

Assuming that a radical mechanism describes reactions of both primary and secondary allylic bromides, steric effects can explain the much larger extent of radical combination of primary allylic radicals with $^{\bullet}$ M(CO)_n.

Taken all together, the data discussed above support the conclusion that radicals are formed first and then carbon-metal bonds, when the latter are formed at **all.**

The stereochemistries of reactions of (\pm) - and mesodimethyl dibromosuccinates with metal carbonyl anions are also consistent with radical mechanisms. Heterolytic substitutions and eliminations tend to be highly stereospecific, but in our cases the reactions give mixtures of trans and cis products dimethyl fumarate and dimethyl maleate, respectively, in which the trans isomer is predominant. S_N2 reactions occur with inversion of configuration,⁵ and the elimination of $DCo(CO)₄$ from MeOO- $CCH_2CH(COOMe)Co(CO)_4$ is syn.^{16,47} If the elimination of BrM(CO),L from a hypothetic intermediate MeOOC- $CHBrCH(COOMe)M(CO)_nL$ were also syn, then an S_N2 reaction of a metal carbonyl anion with (\pm) -dimethyl dibromosuccinate, followed by the elimination of BrM- $(CO)_nL$, would give dimethyl maleate, contrary to what is found. The observed stereochemistries are consistent with radical intermediates. Indeed, a radical pathway has been suggested previously to explain the sole formation of *trans*stilbene from both *meso*- and (\pm) -dibromostilbene in

⁽⁴¹⁾ Herrick, R. S.; Herrinton, T. R.; Walker, H. W.; Brown, T. L. Organometallics 1986, 4, 42.

⁽⁴²⁾ Kidd, D. R.; Brown, T. L. *J.* **Am. Chem. SOC. 1978, 100,4095.**

⁽⁴⁵⁾ Zhen. Y.; Feiahew, W. G.;Lai, C.-K.;Atwood. J. D.J. **Am. Chem. SOC. 1989,111, 7832:**

⁽⁴⁶⁾ Lehmann, R. E.; Kochi, J. K. Organometallics 1991, 10, 190.

⁽⁴⁷⁾ Csizmadia, J.; Ungváry, F.; Markó, L. Transition Met. Chem. 1976, *I,* **170.**

reactions analogous to **0urs.8*** In our cases, some cis product is formed dong with the trans.

 S_{N2} processes are counterindicated also by weak nucleophilicities of $Mn(CO)_{5}^-$ and $Co(CO)_{4}^-$ ⁶ and the vigor of their reactions **(as** solids) with solutions of alkyl halides in hydrocarbon solvents. Since S_N2 reactions are often fastest in dipolar aprotic solvents, such facile reactions (of weak nucleophiles) with halides in nonpolar medium might be more consistent with single electron transfer (SET), which would explain the formation of radical intermediates. **A** caveat to this reasoning is that the initial steps of the reactions probably occur at the interface between the ionic solid and the nonpolar solvent. It is not clear how polar the interfacial environment is.

However, there is a plausible scenario for SET and radical formation at this interface. SET might be favored by a bridging sodium ion, **as** in [M]--CO--Na+*-X-R. Such an oxygen-sodium interaction is clearly present in the crystal structure of NaCo(C0)448 and can be presumed for salts of this class on the basis of solution ion-pairing studies.4b The driving force for SET at the surface of the ionic solid could be the formation of $Na⁺X⁻$ there, where its ions are attracted to those of the lattice **as** well **as** one another, along with two relatively stable, nonpolar free radicals. The SET transition state could be stabilized similarly.

These considerations may apply generally to reactions of solutes at interfaces between ionic solids and nonpolar solvents. Juaristi and Jiménez-Vázquez argue similarly in connection with observations that support SET from solid 1,3-dithianyllithium to 2-iodooctane in hexane. 49

A correlation between charge delocalization and electron-transfer ability also has been pointed out and applied to the dehalogenation of halides, somewhat similar to those considered here, by $HFe(CO)_4^{-.50}$

If radicals form in a SET process, before that of carbonmetal bonds, then they are available for reactions leading to net elimination, that is, the formation of new carboncarbon double bonds and metal carbonyl hydrides (from monohalides) or halides (from vicinal dihalides). This provides a new, radical mechanism for β -elimination.

$$
x - \varphi - \varphi - x' + M(CO)_n L^2 \xrightarrow{\cdot X'} [x - \varphi - \varphi_{\text{on}}(CO)_n L] \xrightarrow{\cdot} \varphi - \varphi' + X'M(CO)_n L \tag{10}
$$

We note that a similar disproportionation step was suggested recently for the reactions of tetramethylallene with $HMn(CO)_5$ and $HCo(CO)_4$,¹⁵ but SET followed by this step has not been proposed previously as a mechanism of elimination of either HX or X_2 in reactions with $M(CO)_nL^-$.
We observed, furthermore, in accordance with this step has not been proposed previously **as** a mechanism of elimination of either HX or X_2 in reactions with

We observed, furthermore, in accordance with earlier reporta,18 that if there are hydrogen and bromine atoms present in the C_β position, elimination of bromine is always favored over that of hydrogen, even when it takes place through radical intermediates.

Summary. Heterogeneous reactions of solid NaMn- $(CO)_5$ and NaCo $(CO)_4$ with allylic bromides in hydrocarbon solvents sometimes offer significant synthetic advantages over similar reactions in homogeneous solutions in ethers. Heterogeneous reactions of 4-bromo-2-pentene give secondary allylmetal carbonyl complexes, the detection of which is reported here for the first time. There is substantial evidence that heterogeneous substitution and elimination reactions of allylic bromides and of certain halo esters appear to proceed through radical, not $S_N2/$ E2, mechanisms. In some cases, it is clear that radicals are not formed through homolytic bond cleavage of intermediate alkylmetal carbonyls $RM(CO)_n$.

Experimental Section

General Methods. All manipulations were carried out under anaerobic conditions, using standard Schlenk technique.⁵¹ Gastight Hamilton syringes were used for sample transfers.

Solvents and gases were carefully deoxygenated and dried prior to use. Solvents were freshly distilled from benzophenone ketyl under CO or Ar and stored in a sealed flask under the appropriate atmosphere in the dark. The gases were passed through columns filled with KOH, silica gel, P_2O_5 , and an oxygen-scavenging BTS contact (BASF). Deuterated solvents were purchased from Aldrich. 4-Bromo-2-pentene (cis and trans, Wiley), ethyl 2-bromopropionate, and methyl 3-bromopropionate (Fluka) were obtained commercially and used without further treatment. 1-Bromo-2-pentene,⁵² dimethyl chlorosuccinate,⁵³ and dimethyl dibromosuccinates⁵⁴ were prepared by literature methods.

IR spectra were recorded on Perkin-Elmer 599B (0.1-mm NaCl cuvettes) and Specord IR 75 (Zeiss, Jena, Germany; **0.057-** and 0.21 -mm Ca \mathbf{F}_2 cuvettes) spectrophotometers. The spectra were calibrated by $CO^{.55}$ benzene (1959.4 cm⁻¹), and polystyrene (1601.5) cm⁻¹). ¹H NMR spectra were recorded on 300-MHz Varian Unity 300, 90-MHz Varian EM-390, and 80-MHz BS-487 (Tesla, Brno, Czechoslovakia) spectrometers, using TMS **as** an internal **stan**dard. Gas chromatographic analyses were performed on a Hewlett-Packard 5830A chromatograph equipped with FID and capillary columns (1) SP-2330, 25 m (for maleates, fumarates, and succinates) and (2) SPB-1, 30 m. GC-MS spectra were obtained on a HP 5890 I1 gas chromatograph equipped with a 12-m HP-1 capillary column and a HP 5971A mass-selective detector.

Preparation of (2-Methyl-3-pentenoyl)cobalt Tricarbonyl Triphenylphosphine. CH₃CH=CHCH(CH₃)C(O)Co(CO)₃-PPh₃ was prepared according to our general method. To a stirred suspension of solid $NaCo(CO)_4$ (290 mg, 1.5 mmol) in 10 mL of n-pentane under CO (1 atm total pressure) at -20 °C, 180 μ L (223 mg, 1.5 mmol) of 4-bromo-2-pentene was injected. The temperature was allowed to rise slowly, over about 30 min, to 5 "C. During this time the mixture turned brown. Stirring was stopped, and after the solid phase had settled, a sample was taken for IR analysis, which showed the presence of CH3- $CH=CHCH(CH₃)C(O)Co(CO)₄$, along with some η^1 -alkyl and η^3 -allyl complexes. The solution was decanted and transferred to a second Schlenk tube containing 3 mL of a 0.5-M ethereal solution of PPh₃. This mixture was stirred at rt, and a voluminous ocher precipitate appeared instantly. It was filtered out, washed with 3×5 mL of *n*-pentane and then dried in vacuo. Yield: 600 mg (80%). The product, $CH_3CH=CHCH(CH_3)C(O)Co(CO)_3$ - $PPh₃$, was characterized by spectroscopic means.⁵⁶

Although no decomposition was observed on exposure of CH₃- $CH=CHCH(CH₃)C(O)Co(CO)₃PPh₃$ to air or on keeping the sample at rt for a short time, it can be stored for long periods only

IR (pentane): $v_{\text{CO}} = 2045$ m, 1980 vs, 1959 vs, 1708 sh, 1676 w cm^{-1. 1}H **NMR** (CDCl₃, 80 MHz): δ = 1.06 (d, 3H, -CH-CH₃), 1.58 (d, 3H, --CH-**CH:,), 3.95 (m, lH, -CH-Me), 5.44 (m, 2H, -CH=CH-), 7.26 (m, 15H,** PPh_3) ppm.

⁽⁴⁸⁾ Kliifers, P. *2.* **Kristallogr. 1984, 167, 275.**

⁽⁴⁹⁾ Juaristi, E.; Jiménez-Vázquez, H. A. J. Org. Chem. 1991, 56, 1623.
(50) Kao, S. C.; Spillett, C. T.; Ash, C.; Lusk, R.; Park, Y. K.;
Darensbourg, M. Y. Organometallics 1985, 4, 83.

⁽⁵¹⁾ Shriver, D. F. The Manipulation *of* **Air-Sensitiue Compounds; Wiley: New York, 1986.**

⁽⁵²⁾ Hunsdiecker, H.; Wirth, E. *Ber.* **1947, 80, 137.**

⁽⁵³⁾ Karrer, P.; Reschofsky, H.; Kaase, W. *Helu.* **Chim. Acta 1947,30, 271. Methanol and chlorosuccinic acid were esterified directly.**

⁽⁵⁴⁾ Organikum; VEB Deutacher Verlag der Wissenschaften: Berlin, 1977; p 321.

⁽⁵⁵⁾ IUPAC Commission *on* **Molecular** *Structure* **and Spectroscopy: Tables** *of* **Wavenumbers** *for* **the Calibration** *of* **Infrared** *Spectrometers;* $\textbf{Butterworths:} \quad \textbf{London, 1961; p 581.} \\ \textbf{(66) Data for CH}_{3}CH=CHCH(CH_{3})C(O)Co(CO)_{3}PPh_{3} \textbf{ are as follows.}$

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. We

at dry ice temperature. In contrast, CH₃CH=CHCH(CH₃)C- also thank the Hungarian National Science Foundation
(O)Co(CO), readily decomposes in solution (benzene or chlori- (for financial support under Grant No. OTKA 138) (O)Co(CO)₄ readily decomposes in solution (benzene or chlori-
nated hydrocarbons), even at low temperatures.
The University of Georgia (for a scholarship to I.K.). We The University of Georgia (for a scholarship to I.K.). We are also grateful to Professor **R.** B. King and Professor **A.** Sisak for discussions.

OM920310T