Generation and Reactivity of Cp2Ti(CH2Ph) (L)+ Complexes. Oxidation and Protonolysis Chemistry of Cp₂Ti(CH₂Ph)₂

Samuel L. Borkowsky, Norman C. Baenziger, and Richard F. Jordan*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received October 22, 1992

The reaction of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ (5) with Ag[BPh₄] in CD₃CN yields bibenzyl, C_{P2}Ti^{IV}{N=C(CH₃)(CH₂Ph)}(NCCH₃)⁺ (6a,b), and C_{P2}Ti^{III}(NCCH₃)₂⁺ (7) as the BPh₄⁻ salts. Recrystallization of 7 from hot THF yields Cp₂Ti^{III}(THF)(NCCH₃)⁺ (8), which has been characterized by X-ray crystallography. Labeling studies show that reaction of **5** with Ag $[BPh₁]$ proceeds via a stepwise mechanism, involving initial generation of the reactive cationic monobenzyl species CpzTi(CHzPh)(NCCH3)+ **(12)** followed by competitive insertion to yield 6a,b or Ti-benzyl bond homolysis to yield **7.** Intermediate **12** has also been generated by (i) one-electron oxidation of $Cp_2Ti^{III}(CH_2Ph)$ with AgBPh₄, (ii) reaction of 5 with $Cp'_2Fe^+(Cp' = C_5H_4Me)$, (iii) protonolysis of 5 with HNMe₃⁺, and (iv) reaction of $Cp_2Ti(CH_2Ph)(Cl)$ with NaBPh₄ in CH₃CN. The reaction of 5 with either Cp'_2Fe^+ or $HMMe₃⁺$ in THF yields the cationic Ti(III) complex $Cp_2Ti(THF)_2$ ⁺ (19), most likely via an intermediate $Cp_2Ti(CH_2Ph)$ -(THF)⁺ species. The metastable, base-free ion pair $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})(\text{CB}_{11}\text{H}_{12})$ (22) has been observed spectroscopically. Complex 22 reacts with CD_3CN to form 6a,b- d_6 as the $CB_{11}H_{12}^$ salts. The chemistry of these reactive $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})(L)^+$ species is contrasted with that of related group 4 metal complexes.

Introduction

It is believed that cationic, group **4** metal alkyl complexes $Cp_2M(R)(L)^+$ (L = labile ligand) and $Cp_2M(R)^+$ are the active species in Cp_2MX_2 -based Ziegler-Natta olefin polymerization catalysts.' For several years we have studied the chemistry of 16-electron $Cp_2Zr(R)(L)$ ⁺ systems in an effort to model the structures and reactivity of cationic species in catalytic reactions and to develop new synthetic reagenta.1-3 There is **also** a major current effort, which has been stimulated by the seminal work of the Exxon group⁴ to prepare 14-electron base-free $\text{Cp}_2\text{M}(R)^+$ species for application as high-activity catalysts.⁵ Cationic $Cp_2M(R)(L)^+$ and $Cp_2M(R)^+$ complexes have been obtained by M-R oxidative cleavage or protonolysis reactions, or R^- abstraction reactions, of neutral $Cp_2M(R)(R')$

complexes with Ag⁺,^{1c,6} Cp₂Fe⁺,⁷ HNR₃⁺,^{4,5,8} Ph₃C⁺,⁹ $B(C_6F_5)_3$,¹⁰ and related reagents.

We reported earlier that reaction of $\text{Cp}_2\text{Zr}(\text{CH}_2\text{Ph})_2$ (1) with AgBPh₄ in CH₃CN yields the cationic η^2 -benzyl complex $\text{Cp}_2\text{Zr}(\eta^2\text{-CH}_2\text{Ph})(\text{NCCH}_3)^+$ (2; Scheme I).^{7a,11} Complex **2** does not insert acetonitrile even upon thermolysis **(5** h, 60 "C), presumably because the Zr-Ph interaction precludes a cis arrangement of the migrating Zr-C bond and the coordinated CH3CN.12 The reaction of 1 with Cp_2Fe^+ in THF yields $\text{Cp}_2\text{Zr}(\text{CH}_2\text{Ph})(\text{THF})^+$ (3) , which contains a normal η ¹-benzyl ligand. This species undergoes significant THF dissociation in CD_2Cl_2 at -78 $\rm ^oC$ to yield the THF-free species $\rm Cp_2Zr(\eta^2\text{-}CH_2Ph)^+$ (4 or its CD_2Cl_2 adduct), which is stabilized by an η^2 -benzyl interaction. Complex **4** is an active ethylene polymerization catalyst under mild conditions (1 atm pressure of ethylene, 23° C).

Previous studies have shown that five-coordinate $C_{D2}M (X)(L)₂$ ⁺ and $Cp₂M(L)₃$ ²⁺ complexes are often preferred for Zr systems but that four-coordinate $\mathrm{Cp}_2M(X)(L)^+$ and $\rm Cp_2M(\bar L)_2^{2+}$ species are observed for the Ti analogues. This trend results from the difference in metal ionic radii (Zr (0.98 Å) vs Ti (0.88 Å) in eight-coordinate geometries).¹³

⁽¹⁾ (a) For a recent review with extensive references see: Jordan, R. F. *Adu. Organomet. Chem.* **1991,32,325.** (b) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. *J. Am. Chem. SOC.* **1986, 107, 7219.** (c) Jordan, R. F.; Bagjur, C. S.; Willett, R.; Scott, B. J. *Am.* Chem. *SOC.* **1986,108,7410.** (d) Gassman, P. *G.;* Callstrom, M. R. J. *Am.* Chem. *SOC.* **1987,109,7875.**

⁽²⁾ (a) Jordan, R. F. J. *Chem.* Educ. **1988,65,285.** (b) Jordan, R. F.; Bradley, P. K.;Baenziger, N. C.; LaPointe, R. E. J. *Am. Chem. SOC.* **1990, 112, 1289.**

⁽³⁾ (a) Jordan, R. F.; Taylor, D. F. J. *Am.* Chem. SOC. **1989,111, 778.** (b) Jordan, R. F.; Bradley, P. K.; LaPointe, R. E.; Taylor, D. F. New J.
Chem. 1990, 14, 505. (c) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C.
Chem. 1990, 14, 505. (c) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C.
Orga F. *Organometallics* **1991, 10, 3470.**

r. Organometalics 1991, 10, 3470.
(4) (a) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc.
1989, 111, 2728. (b) Turner, H. W.; Hlatky, G. G. Eur. Patent Appl.
0 277 003, 1988. (c) Turner, H. W. Eur. Patent App

^{(5) (}a) Bochmann, M.; Jagger, A. J.; Nicholls, J. C. Angew. Chem.

1990, 102, 830. (b) Horton, A. D.; Orpen, A. G. Organometallics 1991,

10, 3910. (c) Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991,

10, 840. Orpen, **A.** *G. Organometallics* **1992, 11, 8.**

⁽⁶⁾ (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. *J. Am.* Chem. *SOC.* 1986, 108, 1718. (b) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041. (c) Borkowsky, S. L.; Jordan, R. F.; Hinch, G. D. Organometallics 1991, 9, 2574.

⁽⁷⁾ (a) Jordan, R. F.: LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. D. J. Am. Chem. Soc. 1987, 109, 4111. (b) Jordan, R. F.;
LaPointe, R. E.; Bradley, P. K.; Baenziger, N. C. Organometallics 1989,
8, 2892. (c) See also: Crowther, D. J.; Jordan, R. F.; Baenziger, N. C.

Organometallics **1990, 9, 2574. (8)** (a) Bochmann, M.; Wilson, L. M. J. Chem. Sac., Chem. *Commun.* **1986,1610.** Eshuis, J. J. W.;Tan, Y. Y.;Teuben, J. H. *J.Mol. Catal.* **1990,** $62, 277$

⁽⁹⁾ Chien, J. C. W.; Tsai, W. M.; Rausch, M. D. J. *Am. Chem. SOC.* **1991,113, 8570.**

⁽¹⁰⁾ Yang, **X.;** Stern, C. L.; Marks, T. J. J. *Am.* Chem. *SOC.* **1991,113, 3623.**

⁽¹¹⁾ Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch, G. D.

⁽¹²⁾ Wang, Y.; Jordan, R. **F.;** Echols, S. F.; Borkowsky, S. L.; Bradley, *Organometallics* **1990, 9, 1539.** P. K. *Organometallics* **1991,10, 1406.**

For example, the $\text{Cp}_2\text{Zr}(\text{CH}_3)^+$ ion coordinates two PMe₃ ligands to form the 18-electron $Cp_2Zr(Me)(PMe_3)_2$ ⁺ complex, whereas the analogous Ti cation forms the stable 16-electron mono-PMe₃ complex $Cp_2Ti(CH_3)(PMe_3)^{+.14}$ Similarly, the Ti(1V) analogues of the 18-electron Zr complexes $Cp_2Zr(L)₃²⁺$ (L = CH₃CN, H₂O) are 16-electron $Cp_2Ti(L)_2^{2+}$ complexes.¹⁵ On the basis of this general trend, and the observed lability of the THF ligand of Cp_{2} - $Zr(CH_2Ph)(THF)^+$, we anticipated that the base free $(\eta^2$ benzyl)titanium complex $Cp_2Ti(\eta^2-CH_2Ph)^+$ might be stable. We therefore initiated an effort to explore the synthesis and reactivity of $\rm Cp_2Ti(CH_2Ph)(L)^+$ and related base-free complexes.

Cationic $(C_5R_5)_2Ti(CH_3)(L)^+$ $(C_5R_5 = Cp$, indenyl, C_5 -Mes) complexes have been studied extensively by Bochmann.^{14,16} These species are formed by halide displacement from $Cp_2Ti(CH_3)X$ by coordinating solvents or by protonolysis of neutral $\rm Cp_2Ti(CH_3)_2$ complexes and display a rich insertion chemistry. The base-free species $(C_5Me_5)_2$ -Ti(CH₃)⁺ has been reported recently.^{16c} Additionally, Cp*zTi(CHs)(THF)+ **has** been prepared by one-electron oxidation of the Ti^{III} precursor Cp*₂Ti(CH₃).¹⁷ In this paper, we describe related reactions which generate C_{p_2} - $Ti(CH_2Ph)(L)^+$ complexes and the surprising reaction chemistry of these cationic species. We also report the **crystal** structure of the new cationic Ti(II1) complex Cp2- Ti(THF)(NCCHs)+. *All* complexes were isolated/manipulated as the BPh₄⁻ salts unless otherwise noted.

Results

Reaction of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{C}_6\text{H}_5)_{2}$ **(5) with Ag[BPh₄].** Synthesis and Characterization of Cp₂Ti{N=C-

U.; **Lasser, W. J. Organomet. Chem. 1984, 276, 341. (16) (a) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli,**

M. *Organometallics* **1988, 7, 1148.** (b) Taube, R.; Krukowka, L. J. *Organomet. Chem.* **1988, 347,** C9. (c) Bochmann, M.; Jaggar, **A.** J. J.

Organomet. Chem. **1992,424, C5. (17) Bochmann,** M.; Jagger, **A.** J.; Wilson, L. M.; Hursthouee, M. B.; Motevalli, M. *Polyhedron* **1989,8, 1838.**

 $(CH₃)(CH₂Ph)(NCCH₃)⁺ (6a,b) and Cp₂Ti(NCCH₃)₂⁺$ **(7).** The reaction of Cp2Ti(CHzPh)2 **(6)** and 1 equiv of Ag[BPh₄] in CH₃CN did not yield the expected Cp₂Ti- $(CH_2Ph)(CH_3CN)^+$ cation but instead yielded the cationic Ti(IV) azomethine complexes $\text{Cp}_2\text{Ti/N}=\text{C}(\text{CH}_3)(\text{CH}_2-$ Ph))(NCCH3)+ **(6a,b;** 2/1 ratio, **9.3%** isolated yield; *eq* 11, the **known** paramagnetic cationic Ti(II1) complex [Cpz- $Ti(NCCH₃)₂][BPh₄]$ (7; 44% isolated yield),¹⁸ and bibenzyl.¹⁹ This reaction is complete within ca. 15 min at

The isomeric complexes **6a,b** were identified by their characteristic 'H and I3C NMR and **IR** spectra and elemental analysis. Complexes **6a,b** are **also** formed by the reaction of $\text{Cp}_2\text{Ti}(\text{CH}_3)(\text{Cl})$ (18)²⁰ and Na[BPh₄] in PhCH₂CN (23 °C, 24 h) followed by recrystallization from CH3CN.21 A varietyof related azomethinecomplexes have

⁽¹³⁾ Shannon, R. D. *Acta Crystallogr., Sect. A* **1976,32,751. (14)** *See* ref **&and** Bochmann, M.; Wilson, L. M.; Humthouse, **M.** B.;

Short, R. L. *Organometallics* **1987,6, 2556. (15)** (a) Jordan, R. **F.;** Echole, **5.** F. *Inorg. Chem.* **1987,26,383. (b)** Thewalt,R.;Klein,H.P. *J.Organomet.Chem.* **1980,194,297.** (c)Thewalt,

⁽¹⁸⁾ (a) Coutta, R. S. P.; Kautzner, B.; Wailes, P. C. *Awt. J. Chem.* **1969,22,1137.** (b) For an X-ray **structure** of [CpzTi(NCCH3)*1~[ZnC41, **see:** Seewald, P. **A.;** White, **G.** S.; Stephan, D. W. *Can. J. Chem.* **1988, 66, 1148.**

⁽¹⁹⁾ 1H NMR **of** bibenzyl(300 MHz, in CDaCN): **6 7.3-7.2 (10** H, m, C_6H_5), 2.91 (4 H, σ CH₂).

⁽²⁰⁾ Clauss, K.; Bestian, H. *Justus Liebigs Ann. Chem.* **1962**, 654, 8. **(21) Cp₂TiCl₂** and several minor unidentified Cp₂Ti^{IV} and possibly Ti(III) product(s) are also formed.

Figure **1.** ORTEP view of the cation of **8.**

been characterized previously.^{1,16a,22} Complex 7 was identified by comparison of ita IR spectrum with that reported by Coutts (v_{CN} = 2268, 2278 cm⁻¹ for 7, v_{CN} = 2265, 2275 cm⁻¹ reported).¹⁸ The splitting of the v_{CN} band was noted in the literature and is due to Fermi resonance. The ESR spectrum of 7 contains a single major peak (g) value $1.979 \mu_B$) and satellite peaks from hyperfine coupling **(9** *G)* to 47Ti (I = *5/2)* and 49Ti (I = **7/2),** consistent with a monomeric Ti(II1) complex.23 In addition, recrystallization of 7 from THF yielded the new cationic Ti(II1) complex Cp2Ti(NCCH3)(THF)+ **(8;** eq **21,** which has been characterized by spectroscopy, analysis, and X-ray diffraction (Figure **1;** vide infra).

The low isolated yields of the 6a,b and 7 in eq 1 are primarily due to the difficulty of separating these complexes from each other and from the $Ag⁰$ and bibenzyl coproducts. As a prelude to mechanistic studies of this reaction, we determined accurate product yields by a combination of H NMR and quantitative EPR spectroscopies. The reaction of 5 and Ag $[BPh_4]$ in CD_3CN was performed on an NMR scale with a slight excess of 5 ; under these conditions $Ag[BPh₄]$ is the limiting reagent and all of the BPh₄⁻ salts are soluble at the end of the reaction. When the reaction was complete, a known amount of Si(CH2CH3)4 was added **as** an internal standard and the yield of 6a,b determined to be **26** % by comparison of the Cp and $Si(CH_2CH_3)_4$ ¹H NMR integrals. To determine the yield of paramagnetic 7, the EPR spectra of standard solutions of 7 in $CH₃CN$, and neat $CH₃CN$, were recorded. A linear calibration curve of peak area (determined by double integration) vs [71 was obtained from these spectra. The NMR reaction mixture was then diluted to an accurate volume and ita EPR spectrum was obtained under identical conditions. The only observable peak was that for 7. The yield of 7 was determined to be **71** % by interpolation using the peak area/[71 calibration curve. Thus, the product ratio for 7/6a,b is **71/26** or **2.7:**

cryst size, **mm** cryst color cryst shape *T,* **K** space group *a,* **A** *b,* **A c, A 8,** deg V, A ³ Z d (calcd), g/cm^3 cell dimens radiation scan ratio, **26'/w** scan limit, deg scan speed, deg/min scan range data collected no. of rflns collected no. of unique rflns decay $(F²)$, % agreement between equiv rflns no. of rflns $I > 2\sigma(I)$ abs: μ , cm⁻¹ abs cor (emp on *F)* soh method refinement model data/param in LS R" R_{w}^{b} wt (Killean and Lawrence)' SDOUWd max param shift/esd **15.393 (4) 96.08 (2) 3339.1 (2.7) 4 1.214 25** rflns; **30-40° (26')** Mo *Ka* **(A** = **0.710 73 A)** 1 .o **0.66-5.0** $\pm h, -k, \pm l$ $2 < 2\theta < 40$ $0.8 + 0.35 \tan(2\theta)$ **6518 3113 0.9** 16on *F* **1991 3.01** none Patterson and DIRDIF anisotropic on all non-H in cation, isotropic on non-H in anion, fixed H **1991 1272 0.058 0.088** $P = 0.06, Q = 1.0$ **1.20 0.14** max residual electron density, e/\mathring{A}^3 **0.47**

compd

fw

empirical formula

 $^a R = \sum \Delta F_H / \sum F_{o,H}$, where $H = h k l$ and F_o is scaled to F_c . ΔF is $\|F_0\| - |F_0\|$. $\frac{b}{R_w}$ $\|^2 = \Delta w (\Delta F_H)^2 / \Delta w (F_{0,H})^2$. $\frac{c}{2}$ Killean and Lawrence weights are $1/(S^2 + (PF)^2 + Q)$, where *S* is the ESD in *F* from counting statistics. If several octants are averaged, S is the larger of the two estimates-one based on counting statistics and the other based on the agreement between equivalent reflections. esd = estimated standard deviation (Killean, R. C. G.; Lawrence, J. L. *Acta Crystallogr., Sect. B* **1969,** *B25*, 1750). \textdegree SDOUW = standard deviation in an observation of unit weight.

l.24 *As* identical product ratio was obtained by NMR integration assuming that the excess BPh_4 ⁻ (vs $6a.b$) is associated with NMR-silent 7. Furthermore, comparison of the BPh_4 ⁻ para H integral with the total CH_2 integrals (Ti- $CH₂$ for 6a,b and bibenzyl) revealed an excellent mass balance of benzyl groups **(>go%)** for the reaction.

It is surprising that Ti(II1) complex 7, which is generated by the oxidation of 5 with Ag[BPh₄], is not further oxidized to $\text{Cp}_2\text{Ti}(\text{NCCH}_3)_2^{2+18,25}$ In fact, control experiments show that there is no reaction between Ag[BPh₄] and 7. This may in part be due to the insolubility of Ag[BPh₄].

X-ray Structure of **[CpzTi(CH&N)(THF)][BPh,].** To confirm the identity of the $Cp_2Ti(L)_2$ ⁺ products, $[Cp_2$ -Ti(THF)(NCCH₃)][BPh₄] (8) was characterized by X-ray crystallography (Figure 1). Crystallographic data, positional parameters, and bond distances and angles are given in Tables I-IV.

^{(22) (}a) den Haan, K. H.; Luinstra, G. A.; Meetsma, A.; Teuben, J. H.
Organometallics 1987, 6, 1509. (b) Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1984, 106, 1291. (c) Bercaw, J. E.; Daviea, D. L.; Wolczanski, P. T. *Organometallics* **1986,** *5,* **443. (23)** (a) Green, M. L. H.; Lucas, C. R. *J. Chem. SOC., Dalton Trans.*

^{1972,1000.} (b) Chaloyard, A.; Dormond, A.; Tirouflet, J.; el Murr, Nabil. *J. Chem. Soc., Chem. Commun.* **1980, 214.** (c) Samuel, *E.;* Vedel, J. *Organometallics* **1989,8, 237.**

⁽²⁴⁾ The uncertainty in this value is dominated by the uncertainty in

the NMR integrals and is estimated to be $\pm 10\%$.

(25) (a) The reaction of Cp₂TiI₂ with Tl[PF₆] in CH₃CN yields [Cp₂Ti(NCCH₃)₂][PF₆]₂ see: Bruce, M. R. M.; Tyler, D. R. *Organometalics*

1985, 4, 528. 8, **315.**

Table 11. Positional Parameters for 8'

atom	x	y	z	B, \mathbf{A}^2
Ti	0.28194(8)	$-0.39449(8)$	0.33806(8)	4.21(3)
C ₁	0.3230(7)	$-0.4617(6)$	0.4709(6)	8.2(3)
C ₂	0.2247(7)	$-0.4407(6)$	0.4664(5)	8.2(2)
C ₃	0.1724(6)	$-0.4849(5)$	0.3998(5)	7.2(2)
C ₄	0.2411(6)	$-0.5368(5)$	0.3636(5)	6.6(2)
C5	0.3341(6)	$-0.5212(5)$	0.4075(5)	7.2(2)
C11	0.2580(7)	$-0.2716(5)$	0.2557(6)	7.9(2)
C12	0.3226(6)	$-0.2533(5)$	0.3249(7)	8.0(3)
C13	0.2800(8)	$-0.2627(5)$	0.4011(7)	9.5(3)
C14	0.1810(7)	$-0.2842(6)$	0.3742(7)	9.4(3)
C15	0.1689(6)	$-0.2917(5)$	0.2865(7)	8.8(3)
O ₁	0.2594(3)	$-0.4456(3)$	0.2066(3)	5.3(1)
C ₂₂	0.1603(7)	$-0.4665(7)$	0.1649(6)	9.6(3)
C ₂₃	0.1780(8)	$-0.5124(7)$	0.0853(6)	9.4(3)
C ₂₄	0.2748(8)	$-0.4864(9)$	0.0635(6)	12.4(4)
C ₂₅	0.3297(6)	$-0.4506(6)$	0.1433(5)	7.7(2)
N1	0.5604(4)	0.4022(4)	0.6805(4)	5.2(2)
C ₃₁	0.4783(5)	0.4102(4)	0.6869(5)	5.0(2)
C ₃₂	0.3717	0.4233(5)	0.6932(6)	6.4(2)
B	0.6678(5)	$-0.1263(4)$	0.2649(4)	$3.2(1)$ [*]
C1P	0.6047(4)	$-0.1831(4)$	0.1898(4)	$3.6(1)$ *
C2P	0.5081(5)	$-0.1642(5)$	0.1579(4)	$5.3(2)$ *
C3P	0.4518(6)	$-0.2117(5)$	0.0944(5)	$6.3(2)$ *
C4P	0.4923(6)	$-0.2801(6)$	0.0632(5)	7.0 (2)*
C ₅ P	0.5858(6)	$-0.3043(5)$	0.0944(6)	$7.4(2)^*$
C6P	0.6421(5)	$-0.2548(5)$	0.1580(5)	$5.4(2)^*$
C11P	0.6381(4)	$-0.0282(4)$	0.2511(4)	$3.2(1)$ *
C12P	0.6177(5)	0.0057(4)	0.1677(4)	$4.3(1)$ *
C13P	0.6013(5)	0.0908(5)	0.1551(4)	$5.2(2)^*$
C14P	0.6047(5)	0.1414(5)	0.2254(5)	$5.4(2)$ *
C15P	0.6228(5)	0.1132(5)	0.3045(5)	$5.6(2)^*$
C16P	0.6413(5)	0.0279(4)	0.3197 (4)	$5.1(2)^*$
C21P	0.7882(4)	$-0.1292(4)$	0.2602(4)	$3.5(1)$ *
C22P	0.8552(5)	$-0.1122(5)$	0.3327(4)	$5.3(2)$ *
C23P	0.9601(6)	$-0.1115(5)$	0.3299(5)	$6.4(2)$ *
C24P	0.9972(6)	$-0.1274(5)$	0.2522(5)	$6.4(2)$ [*]
C25P	0.9369(6)	$-0.1425(5)$	0.1808(5)	$5.7(2)$ *
C26P	0.8327(5)	$-0.1440(4)$	0.1840(4)	4.6(1)
C31P	0.6388(4)	$-0.1625(4)$	0.3581(4)	$3.6(1)$ [*]
C32P	0.5589(5)	$-0.1368(5)$	0.3987(4)	$5.0(2)$ *
C33P	0.5332(6)	$-0.1712(5)$	0.4796 (5)	$6.5(2)^*$
C34P	0.5886(6)	$-0.2324(5)$	0.5151(5)	$6.4(2)$ *
C35P	0.6665(6)	$-0.2636(5)$	0.4788(5)	$6.6(2)$ *
C36P	0.6930(5)	$-0.2276(5)$	0.4007(5)	$5.2(2)^*$

Starred values denote atoms refined isotropically. Anisotropically refined atomsaregiven in the formof theisotropicequivalent displacement parameter defined as $\frac{4}{3} [a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \theta)]$ γ)B(1,2) + $ac(\cos \beta)B(1,3)$ + $bc(\cos \alpha)B(2,3)$].

$Ti-(C1$ centroid)	2.055	$C1-C5$	1.39(1)
$Ti-(C2$ centroid)	2.041	$C1-C2$	1.36(1)
$Ti-N1$	2.170(6)	$O1 - C25$	1.429(9)
$Ti-O1$	2.175(4)	$C2-C3$	1.38(1)
$N1 - C31$	1.124(8)	$C3-C4$	1.41(1)
$O1-C22$	1.456(9)	$C4-C5$	1.38(1)
$C22-C23$	1.48(1)	$C24-C25$	1.48(1)
$C23-C24$	1.44(1)		

Table IV. Selected Bond and Dihedral Angles (deg) for 8

Complex 8 adopts a normal **bent-metallocene/pseudo**tetrahedral structure similar to those of related $\text{Cp}_2\text{Ti}^{\text{III}}$ - $(L)₂$ ⁺ complexes. The (Cp centroid)-Ti-(Cp centroid) angle (135.6°) is very similar to those of $[Cp_2Ti^{III}(acetone)-$ $(THF)]_2[Zn(B_{10}H_{12})_2]$ (9; 136.0, 135.2° for two independent cations),²⁶ [Cp₂Ti^{III}(NCCH₃)₂]₂[ZnCL] (10; 134.8°),^{18b} and [Cp₂Ti^{III}(THF)₂][C₀(CO)₄] (11; 131.3-134.2° for three independent cations). 27 The Ti-(Cp centroid) distances for 8-11 are all very similar (2.05-2.07 **A).** The 01-Ti-N1 angle of 8 (84.2°) is close to the optimum value (85°) predicted by EHMO theory for d^1 Cp₂ML₂ complexes²⁸ and in the normal range observed experimentally for d¹ Cp_2MX_2 ⁿ⁺ halide complexes.²⁹ It is, however, larger than the observed O-Ti-O angles for $9(76.9, 78.6^{\circ})$ and $11(77-$ 83°) and the N-Ti-N angle for 10 (80.6, 80.8°). The Ti- $OC₄H₈$ distance of 8 (2.175 (4) Å) is somewhat shorter than those for 9 (2.21 **A)** and 11 (average 2.21 **A).** These differences can reasonably be ascribed to the reduced crowding in 8. The Ti-N bond length of 2.170 (6) **A** for **8** compares well with the average Ti-N bond length for 10 (2.16 Å) , and the $CH₃CN$ ligand is nearly linear. The dihedral angle defined by the 01-Ti-N1 and C22-01- C25 (THF) planes is 11.8° and places the THF ligand in the sterically noncongested plane between the two Cp ligands. This geometry precludes any significant $Ti-O$ $d\pi$ -p π orbital overlap.³⁰

Mechanism of Formation of 6a,b and 7. One reasonable mechanism for the formation of **6a,b** and **7** in the reaction of 5 with Ag[BPh₄] involves the stepwise cleavage/ loss of benzyl groups from **5 as** illustrated in Scheme 11. In this scheme, initial oxidative cleavage of one $Ti-CH₂$ -Ph bond by Ag+ yields the reactive cationic monobenzyl complex $Cp_2Ti^{IV}(CH_2Ph)(NCH_3)^+$ (12),³¹ a benzyl radical, and Ag⁰, analogous to Scheme I. Complex 12 then undergoes competitive CH3CN insertion (path a) followed by trapping by CH_3CN , yielding Ti^{IV} azomethine products **6a,b** *or* Ti-CH₂Ph homolysis (path b) followed by CH₃CN trapping to yield $\text{Cp}_2\text{Ti}^{\text{III}}(\text{NCCH}_3)_2^+$ (7). In CD_3CN or CH3CN solvent, benzyl radicals are expected to undergo predominant dimerization to the observed coupling product $PhCH_2CH_2Ph$ rather than D/H abstraction from solvent.³²

An alternative possible mechanism (Scheme 111) for this reaction involves initial outer-sphere oxidation of **5** followed by intramolecular reductive elimination of bibenzyl (path c), yielding Ti^{III} product 7. Competitive with this path is loss of benzyl radical from the initial oxidation product to yield intermediate 12, which undergoes CH3- CN insertion, ultimately yielding **6a,b** (path d). This mechanism is suggested by the recent observation of Burk, **Tumas,** and Ward that chemicaVelectrochemical oxidation of titanacyclobutane complexes results in reductive elim-

(27) Merola, J. S.; Campo, K. S.; Gentile, R. A.; Modrick, M. A. *Inorg.*

Chim. Acta 1989, 165,87. (28) Lauher, J. W.; Hoffmann, R. J. *Am. Chem. SOC.* 1976,98,1729. (29) Prout, K.; Cameron, T. S.; Forder, R. A,; Critchley, S. R.; Denton, B.; Rees, G. V. *Acta Crystallogr., Sect. B* 1974, *B30,* **2290.**

(30) In contrast, the THF ligand of the d^o complex $\rm Cp_2Zr(CH_3)(THF)^+$ lies nearly **in** the (Cp centroid)-Zr-(Cp centroid) plane, which allows for $Zr-O d\pi$ -p π ovelap. Chemical reactivity results are consistent with $Zr-O$ π bonding in this case.^{6b}

(31) This cleavage may involve $-CH_2Ph$ abstraction by Ag⁺ to yield [AgCH₂Ph], which is expected to decompose to Ag^o, and PhCH₂CH₂Ph, or initial outer-sphere electron transfer **as** in Scheme **I11** (vide infra), followed by loss of CH₂Ph radical. Attempts by others to prepare AgCH₂-
Ph or to observe it at -78 °C have been unsuccessful and have yielded
Ag⁰ and bibenzyl: (a) Glockling, F.; Kingston, D. J. Chem. Soc. 1959,
3001 A. J.; Noltes, J. G. *Organomet. Chem. Reu. A* 1970,5, 215.

(32) (a) The photodecarbonylation of dibenzyl ketone in CH₃CN yields bibenzyl, not toluene; see: Robbins, W. K.; Eastman, R. H. J. *Am. Chem.*
Soc. 1970. 92. 6077. (b) In CH₃OH; see: Meiggs, T. O.; Grossweiner, L. I.; Miller,'S. I. *J. Am. Chem. soc.* 1972, 94, *%86.*

⁽²⁶⁾ Allman, R.; Batzel, V.; Pfeil, R.; Schmid, *G.* Z. *Naturforsch.* 1976, *3IB,* 1329.

ination of cyclopropanes with a high degree of retention of configuration.33

The key difference between these two mechanisms is that in Scheme **I1** bibenzyl is formed by **an** intermolecular path (coupling of benzyl radicals), while in Scheme I11 bibenzyl is formed by intramolecular reductive elimination. To distinguish these mechanisms several labeling experimenta were conducted.

The reaction of a 1:1 mixture of 5 and $Cp_2Ti(CD_2C_6D_5)_2$ $(5-d_{14})$ with Ag[BPh₄] in CD₃CN yielded a 1:2:1 mixture of scrambled bibenzyls $C_6H_5CH_2CH_2C_6H_5$, $C_6H_5CH_2$ - $CD_2C_6D_5$, and $C_6D_5CD_2CD_2C_6D_5$ by GC-MS. This statistical scrambling favors Scheme 11. However, the observed scrambling may also have resulted from a Ag+ mediated exchange of benzyl groups between 5 and $5\cdot d_{14}$. To investigate the facility of such benzyl exchange reactions in $Cp_2Ti(benzyl)_2$ systems, we studied the reactions of 5 with the chemically labeled complex Cp₂- $Ti(p-CH_2C_6H_4CH_3)_2$ (13).³⁴

On the basis of ¹H NMR data for related mixed Cp_2 - $Zr(R)(R')$ and $Cp_2Ti(R)(R')$ compounds, $35,36$ we anticipated that the 'H NMR Cp resonance of the mixed-benzyl complex $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})(p\text{-CH}_2\text{C}_6\text{H}_4\text{CH}_3)$ (14) would lie between the resonances for **5** and **13.** In fact, **lH** NMR analysis of a 1:l mixture of **⁶**(6 *5.54,* Cp) and **13 (6 5.59,** Cp) in C_6D_6 after 1.5 h at 23 °C revealed the appearance of a single new Cp resonance at δ 5.57, which is assigned to **14** (eq **3).37** Complex **14** grew in with time relative to 5 and 13 $(5:14:13 = 3:1:3$ after 7 h), but thermal decomposition **also** occurred, **as** evidenced by the appearance of

⁽³³⁾ Burk, M. J.; Tumas, W.; Ward, M. D.; Wheeler, D. R. J. **Am. Chem. SOC. 1990, 112,6133.**

⁽³⁴⁾ Chemical labeling is required here, as parent ions are not observed in the mass spectra of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ complexes.

^{(35) (}a) ¹H NMR of sample Zr compounds (Cp in C_eD_e): Cp₂Zr(CH₂-
Ph)₂, δ 5.51; Cp₂Zr(Ph)₂, δ 5.77; Cp₂Zr(CH₂Ph)(Ph) ¹H NMR δ 5.65. (b) ¹H NMR in CD₃CK(CH₃P, δ 5.92Zr(CH₃Ph)₂, δ **(CH;&, 65.90; CpzTi(CH,)(Cl),** *6* **6.19 (in CCld (Beachell, H. C.; Butter, S. A.** *Inorg.* **Chem. 1965,4,1133). (b) CpzTi(CHzPh)z, 6 6.01; CpzTiC12,** 8. A. *inorg. Chem.* 1966, 4, 1133). (b) Cp₂11(CH₂Fh)₂, *b* 6.01; Cp₂11C₁₂, *b* 6.70 (Bruce, P. M.; Kingston, B. M.; Lappert, M. F.; Spalding, T. R.; Srivasta, R. C. J. Chem. Soc. A 1969, 2106), Cp₂Ti(CH₂Ph **(37) The other resonances of 14 are coincident wth those for 5 or 13.**

resonances for toluene and p-xylene. This establishes that **14** can be detected by NMR and that exchange of benzyl groups between **5** and **13** is slow in the absence of Ag+ in C_6D_6 . ¹H NMR monitoring of the reaction of 13 with Ag[BPh₄] in CD_3CN revealed the formation of the substituted bibenzyl $(p\text{-CH}_3\text{C}_6\text{H}_4\text{CH}_2)_2$ (δ 2.84, 2.27), as the sole organic product and the insertion products $Cp₂$ - $Ti{N}$ = C(CH₃)(p -CH₃C₆H₄)}(NCCH₃)⁺ (15a,b). Thus, complex **13** reacts in a manner analogous to that for 5.38

To check for the scrambling of benzyl groups of neutral Cp₂Ti(benzyl)₂ complexes in the *presence of Ag⁺ prior to* Ti-CHgh cleavage, we reacted a 1:l mixture of **5** and **¹³** with $\frac{1}{2}$ equiv of Ag[BPh₄] in CD₃CN at 23 °C for 15 min (reaction complete) and then removed the solvent under vacuum. The ¹H NMR spectrum of a C_6D_6 extract of the residue indicated the presence of unreacted **5** and **13,** but no **14.39** Thus, scrambling of benzyl groups between **5** and 13 does not occur under the Ag[BPh₄] reaction conditions. On this basis, we conclude that scrambling of benzylgroups between 5 and $5-d_{14}$ also is unlikely under Ag[BPh₄] reaction conditions and that the reaction of **5** with Ag- [BPh₄] proceeds via the mechanism in Scheme II.

Alternate Routes to Cp₂Ti(CH₂Ph)(NCCH₃)⁺ (12). To confirm the conclusion above that cationic complex **12** is formed by the reaction of 5 and Ag[BPh₄] and undergoes competitive $CH₃CN$ insertion and Ti- $CH₂Ph$ homolysis, we explored other routes to this species and qualitatively analyzed the resulting product distributions.

(i) Reaction of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})$ with Ag[BPh₄]. A solution of Cp₂Ti(CH₂Ph)⁴⁰ (16) in toluene was prepared by the reaction of Cp₂TiCl⁴¹ with K[CH₂Ph];⁴² at -78 °C under N_2 this solution displayed the expected intense blue color of the N_2 adduct $Cp_2Ti(CH_2Ph)(N_2)$. The solution was transferred via cannula to a slurry of $Ag[BPh₄]$ in CH₃CN. The mixture was stirred for 1 h at -10 °C and then warmed and filtered, and the filtrate was evaporated to dryness. The ¹H NMR spectrum of the crude product mixture showed resonances for bibenzyl and insertion products **6a,b. An** IR spectrum of the product showed $v_{\rm CN}$ bands for coordinated CH₃CN which matched those for **7.** Teuben has reported that the sole organic product of the thermal decomposition of **16** is toluene43 and that $\mathrm{Cp}_2\mathrm{Ti}(\mathrm{R})$ complexes reductively couple rather than insert CH3CN.& Thus, the observed products **6a,b, 7,** and bibenzyl are not derived from thermolysis of **16** or the reaction of **16** with CH3CN. We therefore conclude that **6a,b** and **7** are formed from cationic complex **12,** which is 4). - **WI** -

the expected product of one-electron oxidation of 16 (eq 4).
\n
$$
^{Cp_2Ti} \longrightarrow
$$
\n
$$
^{Cp_2Ti} \longrightarrow
$$
\n
$$
^{Ag^+ \cdot CH_3CN} \longrightarrow
$$
\n
$$
^{[12]} \longrightarrow
$$
\n
$$
^{6a,b + 7} \longrightarrow
$$
\n
$$
^{b|benzy|} \longrightarrow
$$
\n(4)

(ii) Reaction of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ (5) with $\text{[Cp'}_2\text{Fe}]$ - $[\mathbf{B} \mathbf{P} \mathbf{h}_4] (\mathbf{C} \mathbf{p}' = \mathbf{C}_5 \mathbf{H}_4 \mathbf{M} \mathbf{e})$. The reaction of 5 with the outersphere oxidant $[Cp'_{2}Fe][BPh_{4}]$ in $CD_{3}CN$ is much slower (hours) and less clean than the reaction with $Ag[BPh₄]$. The ¹H NMR spectrum of the product mixture from this reaction included resonances for insertion products **6a,b** (2/1 ratio), Cp'2Fe **(6 3.95,** 1.95), bibenzyl, toluene, and several unidentified Cp₂Ti^{IV} species. The GC-MS of the product mixture included a peak at $m/e 304$ corresponding to dimethylbenzylferrocene, an expected coupling product of benzyl radicals and $Cp'_2Fe^{+,45,46}$ When the reaction was performed on a preparative scale, the IR spectrum of the crude product mixture contained the characteristic $\nu_{\rm CN}$ bands of 7. These results are consistent with formation and further reaction of **12.**

(iii) Reaction of Cp₂Ti(CH₂Ph)₂ with [HNMe₃]-[BPh₄]. The NMR-scale reaction of 5 with [HNMe₃]-[BPh₄] in CD₃CN yielded 6a,b and 7 (eq 5), toluene and bibenzyl(2.5/1 ratio), and several other minor unidentified Cp-containing products. This reaction likely proceeds via initial protonation of 5 by HNMe₃⁺ to form toluene and **12,** which then undergoes competitive insertion and homolysis to form **6a,b** and **7,** respectively. ral other minor unidentifiered other minor unidentifiered in Me_3^+ to form toluene an competitive insertion and competitive insertion and the separation of $\text{a}, \text{b} + 7$
 \leftarrow [12] \longrightarrow \leftarrow bibenz

$$
C_{P_2T1}
$$
\n
$$
F_{P_2T1}
$$
\n
$$
F_{P_1CH_3}
$$
\n
$$
[12]
$$
\n
$$
[12]
$$
\n
$$
6a, b + 7
$$
\n
$$
+ \text{bibenzyl}
$$
\n
$$
(5)
$$

(iv) Reaction of Cp₂Ti(CH₂Ph)Cl with Na[BPh₄] in CH₃CN. Bochmann has prepared $\text{Cp}_2\text{Ti}(\text{CH}_3)(\text{CH}_3-)$ CN)⁺ by reaction of $\text{Cp}_2\text{Ti}(\text{CH}_3)$ Cl with Na[BPh₄] in CH₃-CN; evidently Na⁺ precipitates the Cl⁻ formed by dissociation from Ti. We anticipated that a similar reaction between $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})\text{Cl}$ (17)⁴⁷ and Na[BPh₄] in CH₃-CN would provide a simple route to **12.** The reaction of 17 with $Na[BPh₄]$ in $CD₃CN$ was monitored by variabletemperature lH NMR spectroscopy (eq **6).** No reaction was apparent below 10 \degree C. However, when the temperature was raised to 23 °C, resonances for 6a,b-d₆ and

⁽³⁸⁾ Presumably 7 is also formed in this reaction.

⁽³⁹⁾ CeDa was used to simplify the spectrum due to overlapping resonances for 5 and one isomer of 6a,b. The 1H NMR spectrum of the C_6D_6 extract also contained resonances for PhCH₂CH₂Ph, PhCH₂CH₂-Ph', and Ph'CH₂CH₂Ph' (Ph' = p-CH₃C₆H₄). The ratio of these products was quite sensitive to the reaction conditions, but the last two complexes were always present in excess, indicating more facile cleavage of Ti-**CHzPh' groups vs Ti-CH2Ph groups. Consistent with this, there was always more unreacted 5 than 11 and more 13a,b than 6a,b in the product mixture.**

⁽⁴⁰⁾ Teuben, J. H.; De Liefde Meijer, H. J. *J. Organomet. Chem.* **1972, 46, 313.**

⁽⁴¹⁾ Manzer, L. *J. Organomet. Chem.* **1976, 110, 291.**

^{(42) (}a) Schlosaer, M. *J. Organomet. Chem.* **1967,8,9. (b) Schlosser, M.; Hartmann, J.** *Angew. Chem., Int. Ed. Engl.* **1983,22,248. (c) Bulb, A. R.; Schaefer, W. P.; Serfas, M.; Bercaw, J. E. Organometallics 1987, 6, 1219.**

⁽⁴³⁾ Teuben, J. H. *J. Organomet. Chem.* **1974,69,241. (44) (a) De Boer, E. J. M.; Teuben, J. H.** *J. Organomet. Chem.* **1977, 140,41. (b) De Boer, E. J. M.; Teuben, J. H.** *J. Organomet. Chem.* **1978, 153, 53.**

^{(45) (}a) Little, W. F.; Clark, A. K. *J. Og. Chem.* **1960,25, 1979. (b)** Little, W. F.; Lynn, K. N.; Williams, R. J. *Am. Chem. Soc.* 1963, 85, 3055.

⁽⁴⁶⁾ The reaction of benzyl radicals with Cp2Fe+ yields benzylferrocene and H+, which may protonate 6 to yield toluene: (a) Beckwith, A. L.; Leyden, R. J. *Tetrahedron* **1964,20, 791. (b) Beckwith, A. L.; Leyden,**

R. J. *Aut. J.* **Chem. 1966, 1381. (47) (a) Long, W. P.; Breslow, D. S.** *J. Am. Chem.* **SOC. 1960,82,1953.**

⁽b) Waters, J. A.; Mortimer, G. A. *J. Organomet. Chem.* **1970,22,417.**

bibenzyl were observed. When the reaction of **17** with $Na[BPh₄]$ was performed on a preparative scale in $CH₃$ -CN, a blue paramagnetic solid was isolated whose EPR and IR spectra were identical with those for **7.** These observations are consistent with the generation of **12** via C1- dissociation from **17.**

During these studies we **also** noted that a reaction occurs between 17 and CD₃CN even in the absence of Na[BPh₄]. When a solution of 17 in $CD₃CN$ was monitored by ¹H NMR, resonances for bibenzyl and two new sets of Cp and $N=C-CH_2$ resonances $(2/1 \text{ ratio})^{48}$ which are slightly shifted from those of 6a,b were observed. The residual CD₂HCN solvent resonance appeared as a single, broad **(>400** Hz) peak rather than the expected sharp pentet. After addition of $Na[BPh₄]$ to the sample, ¹H NMR resonances of 6a,b were observed, and the residual solvent peak was sharp. When the solvent was evaporated, the IR spectrum of the resulting precipitate contained bands matching those for **7.** On the basis of these observations, we suggest that **17** reacts with CD3CN by C1- dissociation, yielding **12,** followed by competitive insertion and homolysis, and ultimate trapping by Cl^- to yield Cp_2 - $Ti^{IV}(N=C(CH₂Ph)(CD₃)(Cl)$ (18a,b) and the Ti(III) complex $Cp_2Ti(Cl)(CD_3CN)$, which undergoes rapid CD_3 -CN exchange with solvent. Consistent with this interpretation, the ¹H NMR spectrum of a solution of $[Cp₂ -$ Tic112 in CD3CN contained a broad **(>600** Hz at **360** MHz) $CD₂HCN$ resonance. Addition of Na[BPh₄] to this solution (to generate **7)18** resulted in a sharp pentet for $CD₂HCN.$

Reaction of 5 with $[Cp'_2Fe][BPh_4]$ and $[HNMe_3]$ - $[BPh_4]$ in THF. Synthesis of $[Cp_2Ti(THF)_2][BPh_4]$. The results described above establish that $\rm Cp_2Ti(CH_2 Ph(CH_3CN)^+$ (12) is unstable toward CH_3CN insertion and homolysis. We were unable to detect this species under a variety of conditions, even at low temperature. In an effort to prepare a more stable $Cp_2Ti(CH_2Ph)(L)$ ⁺ species, we investigated the oxidation and protonolysis of 5 in THF. The reaction of **5** with [Cp'zFe][BPh41 in THF at room temperature yields the blue-green paramagnetic complex [CpzTi(THF)z] [BPhl **(19; 27** % isolated yield; eq **7).** 12) is unstable toward CH₃CN insertion

We were unable to detect this species under

ditions, even at low temperature. In an

a more stable Cp₂Ti(CH₂Ph)(L)⁺ species,

he oxidation and protonolysis of 5 in THF.

5

The ¹H NMR spectrum of 19 in THF- d_8 includes broad C_4H_8O and $B(C_6H_5)_4^-$ resonances but no C_5H_5 resonances.⁴⁹ Comparison of the C_4H_8O and $B(C_6H_5)_4$ - peak integrals confirms the presence of two THF ligands per $BPh_4^$ counterion. The ESR spectrum of **19** shows one major peak $(g = 1.973)$ with hyperfine coupling (12 G) to ⁴⁷Ti and 49Ti consistent with a monomeric Ti(II1) complex. The IR spectrum contains bands for coordinated THF **(1026,850** cm-l), which are shifted to lower energy relative to those of free THF (1065, 907 cm⁻¹).⁵⁰ Merola has prepared the analogous $Co(CO)_{4}$ -salt $[Cb_{2}Ti(THF)_{2}]$ [Co-(CO)4] **(20)** and has characterized it by single-crystal X-ray diffraction. $27,51$

Two mechanisms are again possible for the formation of **19** in eq **7:** (i) initial oxidation of 5 followed by concerted reductive elimination of bibenzyl or (ii) initial oxidative cleavage of one Ti-CHzPh bond to yield **an** intermediate $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})(\text{THF})^+$ (21) species followed by Ti-CH₂-Ph homolysis. To probe this question, we looked briefly **atalternativeroutesto21.** The reactionof5with [HNMe3]- [BPh4] in THF is slow at room temperature but proceeds at **50** "C (overnight) to yield **19 (74** *5%* isolated yield) along with toluene and bibenzyl (approximately **2/1** ratio, eq **8).** nation of bibenzyl or (ii) initial oxidative

Ti-CH₂Ph bond to yield an intermediate

THF)⁺ (21) species followed by Ti-CH₂-

To probe this question, we looked briefly

utes to 21. The reaction of 5 with [HNMe₃]-

As the first step in this reaction is almost certainly Ti-CHzPh protonolysis to yield **2 l,** this experiment establishes that **21** does indeed decompose to **19** and that **21** is a reasonable intermediate in the oxidation of 5 by Cp_2Fe^+ .

Synthesis and Reactivity of the Base-Free Ion Pair $\mathbf{Cp}_2\mathbf{Ti}(\mathbf{CH}_2\mathbf{Ph})(\mathbf{CB}_{11}\mathbf{H}_{12})$ (22). Hlatky and Turner have prepared the base-free complexes $Cp_{2}Zr(Me)(C_{2}B_{9}H_{12})$ and $(C_5Me_4Et)_2Zr(Me)(C_2B_9H_{12})$ by reaction of $(C_5R_5)_2$ - $ZrMe₂$ with $nido-C₂B₉H₁₃$ in pentane.^{4a} In these compounds, the $(C_5R_5)_2ZrCH_3$ ⁺ cations are weakly ion-paired with the $C_2B_9H_{12}$ ⁻ anion via Zr-H-B bridges. Reed has developed the chemistry of $CB_{11}H_{12}^-$, an alternative weakly coordinating carborane counterion which has the practical advantage (vs $C_2B_9H_{12}^-$) of not having an acidic hydrogen.⁵² In other work we have prepared $(C_5H_4Me)_2Zr(CH_3)(n^1$ - $CB_{11}H_{12}$, $Cp_2Zr(\eta^2-CH_2Ph)(\eta^1-CB_{11}H_{12})$, and $Cp^*Zr (CH_3)_2(\eta^3-CB_{11}H_{12})$ using Ag(CB₁₁H₁₂).⁵³ In these compounds $CB_{11}H_{12}^-$ is ion-paired with the Zr cations via one or three B-H-Zr bridges. In view of these results, we attempted to prepare $Cp_2Ti(CH_2Ph)(CB_{11}H_{12})$, a basefree analogue of **12.**

The reaction of 5 with $Ag[CB_{11}H_{12}]$ in C_6D_6 yielded the thermally sensitive, base-free species $Cp_2Ti(CH_2Ph)$ - $(CB_{11}H_{12})$ (22; eq 9), the composition of which was confirmed by NMR and chemical reactivity studies. The benzyl ligand likely adopts an η^1 structure, but this could

⁽⁴⁸⁾ **'H** NMR of **18a,b (300** MHz, CDaCN): **6 5.90** (major C,J&), **5.79** $(\text{minor } C_5H_5)$, 3.41 $(\text{minor } CH_2)$, 3.25 $(\text{major } CH_2)$.

⁽⁴⁹⁾ Exchange of free and coordinated THF is rapid on the NMR time scale.

⁽⁵⁰⁾ (a) Clark, R. J. H.; Lewis, J.; Machin, D. J.; Nyholm, R. S. *J. Chem. SOC.* **1963, 379.** (b) Lewis, J.; Miller, J. R.; Richards, R. L.; Thompson, **A.** *J. Chem. SOC.* **1965,5850.** (c) Clark, D.; Sattleberger, **A.** ; Bott, S.; Vrits, R. N. *Inorg. Chem.* **1989**, 28, 1771. Simard, M.; Wuest, J. D. Inorg. *Chem.* **1990,29,955. (51)** Merola, J. S.; Campo, K. S.; Gentile, R. **A.** Inorg. *Chem.* **1989,28,**

^{2950.&}lt;br>
(52) (a) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C.

A. *J. Am. Chem. Soc.* 1985, 107, 5955. (b) Shelly, K.; Reed, C. A.; Lee,

Y. J.; Scheidt, W. R. *J. Am. Chem. Soc.* 1986, 108, 3117. (c) Li **2740.** (d) Gupta, **G.** P.; Lang, **G.;** Lee, Y. J.; Scheidt, W. R.; Shelly, K.; Reed, C. **A.** Inorg. *Chem.* **1987,** *26,* **3022.** (e) Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. **A.** J. *Am. Chem. SOC.* **1989, 111,6643.**

⁽⁵³⁾ Crowther, D. J.; Borkowsky, S. L.; Jordan, R. F.; Baenziger, N. C.; Swenson, D. Manuscript in preparation.

not be conclusively established. The ¹H NMR spectrum of 22 (C_6D_6) includes resonances for the Cp ligands (δ 5.66), the $Zr-CH_2$ group (δ 2.31), and the ortho phenyl hydrogens (δ 6.62, d, $J = 7.4$ Hz; remaining phenyl resonances obscured by the C_6D_6 peak). The ortho H resonance is shifted somewhat upfield from that of 5 $(\delta 6.82, \text{ in } C_6D_6)$ which is suggestive of an η^2 -benzyl structure;⁵⁴ however, the ipso 13C resonance for 22 appears in the normal range $(\delta$ 154, toluene- d_8 ; vs 153.7 for 5), which is inconsistent with an n^2 -benzyl structure. The ipso C ¹³C NMR resonances of η^2 -benzyl complexes are usually shifted upfield compared to the resonances of similar $n¹$ species.

Complex 22 could not be isolated or characterized further **as** it decomposes at room temperature to a paramagnetic complex, possibly $Cp_2Ti(CB_{11}H_{12})$ (24) or a species derived therefrom, although this was not pursued further. Toluene and bibenzyl are formed, consistent with $Ti-CH_2Ph$ homolysis. No ¹¹B NMR resonance is observed for 22. Presumably this results from rapid exchange of $CB_{11}H_{12}^$ between diamagnetic 22 and its paramagnetic decomposition product(s). The reaction of 22 with CD_3CN yields $6a, b-d_6$ as the $CB_{11}H_{12}$ ⁻ salts.⁵⁵ These observations are consistent with the expected displacement of $CB_{11}H_{12}$ - by CD_3CN and formation of reactive intermediate 12 (eq 10).

From the results described above, 7 is an expected coproduct of this reaction, but it was not detected by IR.56

Discussion

The neutral Ti(IV) complex $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ (5) reacts with Ag $[BPh_4]$ in CH_3CN to yield bibenzyl, the cationic $Ti(IV)$ azomethine complexes $Cp_2Ti[N=C(CD_3)(CH_2Ph)\}$ -(NCCD3)+ **(6a,b;** 26%), and the cationic Ti(II1) complex $Cp_2Ti(NCCH_3)_2+(7,71\%)$. Several lines of evidence argue that this reaction proceeds by the mechanism in Scheme 11. This mechanism involves initial net cleavage of one Ti-CHzPh bond to yield the reactive monobenzyl intermediate $\rm Cp_2Ti(CH_2Ph)(NCCH_3)^+$ (12),³¹ which undergoes rapid, competitive CH3CN insertion leading to **6a,b,** or $Ti-CH₂Ph$ homolysis leading to 7. The formation of a statistical 1:2:1 mixture of scrambled bibenzyls in the reaction of a 1:1 mixture of 5 and $5-d_{14}$ with Ag[BPh₄], under conditions where benzyl scrambling between Cp₂- $Ti(benzyl)_2$ complexes does not occur, is consistent with the coupling of benzyl radicals and inconsistent with mechanisms involving intramolecular C-C reductive elimination. Intermediate 12 can be generated in a variety of ways from **5** or other, monobenzyl, Cp2Ti complexes. These include oxidation of **5** by Cp'2Fe+, protonolysis of **5** by HNMe3+, one-electron oxidation of the Ti(II1) complex $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})$ by Ag⁺, and Cl⁻ dissociation from Cp_2Ti - $(CH_2Ph)Cl$ in CH_3CN . In all these reactions the characteristic products of 12, i.e. 6a,b, and 7, are observed.⁵⁷ The reaction of 5 with $Ag[CB_{11}H_{12}]$ in benzene yields the metastable, base-free monobenzyl species $\mathrm{Cp}_2\mathrm{Ti}(\mathrm{CH}_2\mathrm{Ph})$ - $(CB₁₁H₁₂)$ (22), which behaves similarly to 12. The cleavage of a single $Ti-CH_2Ph$ bond of 5 by Ag^+ and Cp_2 -Fe+ and the formation of 12 parallel the chemistry observed for the analogous Zr system, although the Zr product Cp_2 - $Zr(CH_2Ph)(CH_3CN)^+$ is thermally stable.

The reaction of 5 with Cp_2Fe^+ or $HNMe_3$ ⁺ in THF yields the Ti(III) cation $\text{Cp}_2\text{Ti}(THF)_2^+$. Both of these reactions most likely involve initial generation of the reactive intermediate $\rm Cp_2Ti(CH_2Ph)(THF)^+$ (19), which undergoes rapid $Ti-CH_2Ph$ homolysis.

The structures of 12 and 19 are not fully established, as these species could not be directly observed, even at low temperature. However, given the general tendency for $Cp₂Ti$ systems to remain four-coordinate, 12 and 19 are almost certainly mono(so1vento) species. NMR data suggest that the ion pair 22 adopts an η^1 -benzyl structure.

The facile $Ti-CH_2Ph$ homolysis chemistry of 12 and 19 contrasts with the thermal stability of the corresponding Cp2Ti(CH3) **(L)+** methyl complexes studied by Bochmann, but this difference is entirely reasonable given the relative bond strengths $Ti-CH_2Ph < Ti-CH_3$.⁵⁸ The neutral benzyl species Cp₂Ti(CH₂Ph)₂ (5) and Cp₂Ti(CH₂Ph)Cl (17) are also comparatively stable toward homolysis at ambient temperature versus 12 and 19. This difference is due in large part to the greater metal electron deficiency in the cationic systems, which favors reduction to Ti(II1). The chloride complex 17 undergoes more rapid homolysis under conditions where Cl^- dissociation is favored, i.e. in CH_3 -CN solvent. Interestingly, Floriani noted many years ago that 17 reacts with cyclohexyl isocyanide to yield Cp_{2} -TilI1(CNR)C1 and bibenzyl; in view of the results reported here this reaction may well proceed via Ti-CH₂Ph homolysis of an intermediate $\rm Cp_2Ti(CH_2Ph)(CNR)^+$ cation.59 The stability of ion pair 22 toward homolysis is intermediate compared to that of neutral complexes **5** and 17 and cationic species 12 and 19. Similar Ti-R bond homolysis reactions of $Cp_2Ti(R)^+$ species in Cp_2TiX_2 -based

⁽⁵⁴⁾ For η^2 -benzyl complexes see the following: (a) $(ArO)_2Zr(CH_2-$ **Ph)z: Latesky, S. L.; McMullen,** *G.* **P. N.;Rothwell, I. P.** *Organometallics* 1985, 4, 902. (b) M(CH₂Ph)₄ (M = Ti, Zr, H₁). Davies, G. R.; Jarvis, J. **A. J.; Kilbourn, B. T.; Pioli, A. J. P. J.** *Chem. Soc., Chem. Commun.* **1971, 677. (c) Davies,** *G.* **R.; Jarvis, J. A. P.; Kilbourn, B. T.** *J. Chem. SOC., Chem. Commun.* **1971,1511. Id) Bassi, 1. W.; Allegra,** *G.;* **Scordamaglia,** Chem. Commun. 1971, 1511. (d) Bassi, I. W.; Allegra, G.; Scordamaglia, R.; Chioccola, G. *J. Am. Chem. Soc.* 1971, 93, 3787. (e) Cp₂Zr(η ²-CH₂-Ph)(L)⁺ complexes: ref 15 and 22. (f) Scholz, J.; Schlegel, M.; Thiele, **K. H.** *Chem. Ber.* **1987,** *120,* **1369.**

⁽⁵⁵⁾ The counterion in these salts is free: ¹H NMR δ 2.4 ($HCB_{11}H_{11}$), ¹¹**B** NMR δ -6.1 (1 **B**), -12.5 (5 **B**), -15.4 (5 **B**).

⁽⁵⁶⁾ The IR spectrum of the crude reaction product contained a single ν_{CN} band for coordinated CH₃CN at 2272 cm⁻¹ and did not include the characteristic ν_{CN} bands of 7. The reaction of 12 in this case may be **complicated by the unavoidable presence of 24 in 22.**

⁽⁵⁷⁾ These product distributions were not analyzed quantitatively. We anticipate that the 6a,b/7 ratio will vary due to the heterogeneity of some of these reactions, ligand and counterion effects, and temperature variations.

⁽⁵⁸⁾ Leading references: (a) Lappert, M. F.; Patil, D. S.; Pedley, J. B. *J. Chem.* Soc., *Chem. Commun.* **1975,830. (b) Davidson, P. J.; Lappert, M. F.; Pearce, R.** *Chem. Rev.* **1976, 76, 219. (c) Skinner, H. A.; Connor,** J. **A.** *Pure Appl. Chem.* **1985,57,79. (d) Dias, A. R.; Martinho-Simoes,** J. A. Polyhedron 1988, 16/17, 1531. (e) Stoutland, P. O.; Bergman, R. G.; Nolan, S. P.; Hoff, C. D. Polyhedron 1988, 16/17, 1531. (f) Schock, L.; Marks, T. J. J. Am. Chem. Soc. 1988, 10/7701.

⁽⁵⁹⁾ Floriani, C.; Fachinetti, *G. J. Chem. SOC., Dalton Trans.* **1973, 1954.**

olefin polymerization catalysts may be important catalyst deactivation pathways.

The reactivity of 12 is quite different from that of related group **4** Cp2M benzyl complexes. **As** mentioned above, the \overline{Zr} analogue of 12, $\text{Cp}_2\text{Zr}(\eta^2\text{-CH}_2\text{Ph})(\text{CH}_3\text{CN})^+$ (2), is resistant to CH3CN insertion. This was ascribed to the n^2 -benzyl bonding mode, which prevents the cis arrangement of coordinated $CH₃CN$ and $Zr-CH₂Ph$ ligands which is required for migratory insertion. This rapid $CH₃CN$ insertion of 12 suggests that this species may have an η^1 structure in which there are no geometric restrictions toward insertion. The neutral $Ti(III)$ complex $Cp_2Ti(CH_2-$ Ph) (16) coordinates nitriles but undergoes reductive RCN coupling rather than simple insertion. The difference in the RCN reactivity of 12 and 16-RCN may be traced to back-bonding in the latter $(d¹)$ system, which inhibits migration of the nucleophilic $PhCH_2^-$ ligand and promotes RCN coupling.⁶⁰ The neutral dibenzyl complexes $Cp_2M (CH_2Ph)_2$ (M = Ti, Zr) do not coordinate nitriles.

Experimental Section

All manipulations were performed under an inert atmosphere or under vacuum using a Vacuum Atmospheres drybox or a highvaccum line. Solvents were purified by initial distillation from appropriate **dehydrating/deoxygenating** agents (ethers and hydrocarbons, Na/benzophenone; CH₂Cl₂, CaH₂; CH₃CN, P₂O₅), stored in evacuated bulbs over **a** drying agent, and vacuumtransferred into reaction vessels.61 Deuterated NMR solvents were handled similarly (toluene- d_8 , dried and stored over Na/ benzophenone; benzene- d_6 , predried over CaH₂, dried and stored over Na/K/benzophenone; CD_2Cl_2 , dried over CaH₂; CD_3CN , dried over P205 and stored over **4-A** sieves) and vacuumtransferred into NMR tubes. NMR spectra were obtained on Bruker AMX-360, **MSL-300, AC-300,** or **WP-360** instruments. ¹H and ¹³C chemical shifts are reported versus Me₄Si and were determined by reference to the residual ¹H and ¹³C solvent peaks. Elemental analyses were performed by E+R Microanalytical. IR spectra were obtained on a Mattson Cygnus **25** FT-IR spectrometer. EPR spectra were obtained on Varian **E-4** EPR and Bruker ESP-300 spectrometers with a standard cavity. Cp₂TiCl₂ was purchased from Strem Chemicals and used without further purification. $Na[BPh₄]$ and $(C_5H_4Me)_2Fe$ were purchased from Aldrich and used without further purification. $[HN(CH_3)_3]$ -[BPh4] was purchased from Aldrich, recrystallized from THF/ hexane, and dried on a high-vacuum line. $Ag(CB_{11}H_{12})$ was prepared by Reed's method.52

CpzTi(CHzPh)2 (5),6z A slurry of CpzTiClz **(3.81** g, **15.3** mmol) and K[CHzPh] **(4.19** g, **32.2** mmol, **5%** excess) in toluene (50 mL) was prepared at **-78** "C and warmed to **23** "C. The slurry was protected from light with A1 foil, stirred for *5* h, and then filtered, leaving a purple filtrate and a purple precipitate. The precipitate was washed with **10 x 15** mL of toluene, and the combined filtrate and washes were evaporated to dryness. The resulting purple solid was washed with **4 X 10** mL of cold pentane and dried under high vacuum, yielding **4.42** g (80%) of deep purple 5. The product may be recrystallized from toluene. ¹H (t, J ⁼**7.3** Hz, **2** H, p Ph), **6.82** (d, *J* = **7.3** Hz, **4** H, o Ph), **5.54** *(8,* **10** H, Cp), **1.88** (5, **4** H, TiCH2). 'H NMR **(300** MHz, ppm in CD3CN): 6 **7.15** (t, J ⁼**7.7** Hz, **4** H, *m* Ph), **6.82** (t, J ⁼**7.3** Hz, **2** H, p Ph), **6.78** (d, *J* = **8.2** Hz, **4** H, o Ph), **5.99 (s, 10** H, Cp), **NMR** (300 **MHz**, C_6D_6): δ 7.21 (t, $J = 7.7$ Hz, 4 H, m Ph), 6.93 **1.87** *(8,* **4** H, CHz).

 $Cp_2Ti(CD_2C_6D_5)_2$ (5- d_{14}). A slurry of Cp_2TiCl_2 (1.33 g, 5.36 mmol) and K[CD₂C₆D₅] (1.50g, 10.93 mmol, 2% excess) in toluene (50 mL) was prepared at **-78** "C and warmed to **23** "C. The slurry was protected from light with A1 foil and stirred for **2** h. The reaction mixture was filtered, leaving a purple filtrate and a purple precipitate. The precipitate was washed with **4 X 10** mL of toluene, and the combined filtrate and washes were evaporated to dryness, leaving a purple solid. This solid was washed with **2 X 10** mL of hexane and dried under high vacuum, yielding 1.42 g of crude $5-d_{14}$. This solid was dissolved in 35 mL of toluene, filtered, and cooled to **-40** "C, producing deep purple crystals which were filtered, washed with **2 X 10** mL of cold pentane, and dried under vacuum to give 0.86 g (43%) of $5-d_{14}$. 1 H NMR (90 MHz, C₆D₆): δ 5.55 (s, 10 H).

 $[Cp_2Ti(N=CC(H₃)(CH₂Ph)(NCCH₃)][BPh₄] (6a,b).$ A slurry of Cp₂Ti(CH₂Ph)₂ (5.06 g, 14.1 mmol) and Ag[BPh₄] (6.00 g, **14.1** mmol) in CH3CN **(120** mL) was prepared at **-30** "C. The reaction mixture was protected from light, warmed to room temperature, and stirred for **3.5** h. Some of the solvent was evaporated, and the mixture was cooled to **-30** "C for **10** min. The reaction mixture was filtered, giving a black Ag^o precipitate and a dark filtrate. The filtrate was concentrated to approximately **10** mL, cooled to **-45** "C for **30** min, and filtered, leaving a blue precipitate and a red filtrate. The filtrate was extracted with 16×15 mL of hexane to remove bibenzyl. The CH₃CN layer was cooled to **-45** "C and filtered, leaving a small amount of red precipitate and a red filtrate. The solvent was evaporated, yielding **0.96** g **(9.3%** of brown 6a,b. lH NMR **(360** MHz, CD3- CN): 6 **7.36** (t, *J* = **6.5** Hz, **2** H, aryl), **7.27** (br m, **11** H, aryl, **o** BPh-), **6.99** (t, *J* = **7.4** Hz, **8** H, m BPh-), **6.84** (t, *J* = **7.2** Hz, **4** H, p BPh-), **6.00 (s, 10** H, Cp, **6a), 5.91** *(8,* **10** H, Cp, 6b), **3.50 (a, 2** H, CHz, 6b), **3.41 (s, 2** H, CH2, 6a), **1.86** *(8,* **3** H, CHI, 6a), (N=C, 6a), **173.7** (N=C, 6b), **164.8 (9,** *JBC* = **49.3** Hz, i BPh-), **136.8** *(0* BPh4-), **134.0** (i aryl, 6a and/or 6b), **130.6** *(0* or *m* aryl, 6b), **130.5** *(0* or *m* aryl, 6a), **129.7** *(0* or *m* aryl, 6b), **129.5** *(0* or *m* aryl, **6a**), **128.0** (*p* aryl, **6b**), **127.8** (*p* aryl, **6a**), **126.6** (*m* BPh₄⁻), **122.8** @ BPh-1, **112.0** (C5H5, 6a), **111.8** (C5H5, 6b), **47.3** (CH2, 6b),45.6 (CHz,6a),27.0 (CH3,6a), **24.3** (CH3,6b). Anal. Calcd for C45H43NzBTi: C, **80.60;** H, **6.46;** N, **4.18.** Found C, **80.79;** H, **6.62;** N, **4.46. 1.81 (s, 3 H, CH₃, 6b).** ¹³C{¹H} NMR (360 MHz, CD₃CN): δ 174.1

 $[Cp_2Ti(CH_3CN)_2][BPh_4]$ (7). A slurry of $Cp_2Ti(CH_2Ph)_2$ **(1.00** g, **2.78** mmol) and Ag[BPh] **(1.19** g, **2.78** mmol) in CH3CN **(25** mL) was prepared at **-78** "C and warmed to **23** "C. The slurry was protected from light with A1 foil, stirred for **30** min, and filtered, leaving a black Ag^o precipitate and purple filtrate. The filtrate was cooled with a dry ice/ethanol bath, resulting in formation of a blue crystalline solid. This new slurry was warmed to room temperature, stirred for **20** min, and filtered, leaving a blue precipitate. The precipitate was washed with 1×10 mL of CH3CN and dried for several hours under vacuum, leaving **0.71** g of bright blue **7 (44%).** IR (cm-l, in KBr): **3111** (w), **3052 (s), 2996 (s), 2982 (s), 2913 (s), 2313** (m), **2301** (w), **2278** (m), **2268** (m), **2249** (w), **1945** (w), **1879** (w), **1819** (w), **1581** (m), **1478 (81, 1427 (s), 1379** (w), **1268** (w), **1181** (w), **1150** (w), **1067** (w), **1014 (s),** 806 (vs), **743 (s), 731 (s), 702** (vs), **615** (m), **589 (8).** 'H NMR $(360 \text{ MHz}, \text{CD}_3\text{CN})$: δ 7.28 $(8 \text{ H}, \text{ br } s, m \text{ BPh}_4)$, 7.00 $(8 \text{ H}, \text{ br } s)$ **s**, o BPh₄⁻), 6.85 (4 H, br **s**, p BPh₄⁻). UV-vis: $\lambda_{\text{max}} = 584 \text{ nm}$, ϵ_0 = 95. EPR (9.78 GHz, CH₃CN): g value 1.979 μ_B , satellite peaks from hyperfine coupling to ⁴⁷Ti $(I = 5/2)$ and ⁴⁹Ti $(I = 7/2)$, hyperfine coupling **9** G.

Preparation of 7 via Reaction of Cp₂Ti(CH₂Ph)(Cl) with NaBP4. Aslurry of CpzTi(CHzPh)(CI) **(0.42** g, **1.37mmol)** and NaBPh, **(0.47** g, **1.37** mmol) in CH3CN **(25** mL) was prepared at -78 °C and warmed to 23 °C. The slurry was stirred overnight and then filtered, leaving a white NaCl precipitate and a green filtrate. The filtrate was evaporated to dryness, leaving a blue solid. This solid was recrystallized from CH₃CN at -35 °C and dried under high vacuum overnight, yielding **0.15** g (20%) of bright blue **7.**

 $[Cp_2Ti(NCCH_3)(THF)][BPh_4]$ (8). A solution of $[Cp_2Ti (NCCH₃)₂$] [BPh₄] in warm THF was placed in a -40 ^oC freezer.

⁽⁶⁰⁾ De Boer, E. J. M.; Teuben, J. H. *J.* **Organomet.** *Chem.* **1978,153,**

^{53.&}lt;br>(61) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of*
Laboratory Chemicals, 2nd ed.; Pergamon Press: New York, 1980.
(62) (a) Boekel, C. P.; Teuben, J. H.; De Liefde Meijer, H. J. *J.*
Organomet. Chem

Vishinskaya, L. I. *Dokl. Akad. Nauk. SSSR* **1969, 189, 103.**

$Cp_2Ti(CH_2Ph)(L)^+$ *Complexes*

After **2** days, **8** precipitated **as** blue crystale. IR (cm-l, in KBr): **3054** (m), **3000** (m), **2984** (m), **2925** (w), **2897** (w), **2299** (m), **2268** (m), **1941** (w), **1885** (w), **1818** (w), **1751** (w), **1581** (m), **1479** (m), **1427** (m), **1019 (a), 868** (m), **816 (a), 742 (a), 735 (e), 709 (a), 607** *(s).* Anal. Calcd for C₄₀H₄₁BNOT_i: C, 78.70; H, 6.77; N, 2.29. Found C, **78.77;** H, **6.61;** N, **2.30.**

 $\mathbf{Cp}_2\mathbf{Ti}(\mathbf{p}\text{-}\mathbf{CH}_2\mathbf{C}_6\mathbf{H}_4\mathbf{CH}_3)_2$ (13). A slurry of $\mathbf{Cp}_2\mathbf{TiCl}_2$ (1.37 g, 5.50mmol) andK[p-CH&€€&H,] **(1.72g, 11.9mmo1,8%** excess) in toluene (60 mL) was prepared at $-78 \degree \text{C}$ and warmed to $23 \degree \text{C}$. The slurry was protected from the light with Al foil and stirred for **3** h. The reaction mixture was filtered, and the solvent was evaporated, leaving a foam which was dried overnight: yield **1.2 ⁴**H), **6.78** (d, J ⁼8.0 Hz, **4** H), **5.59** *(8,* **10** H), **2.25 (e, 6** H), **1.91** *(8,* **4** HI. **g** of **13** (56%). ¹H NMR (360 MHz, C_6D_6): δ 7.05 (d, $J = 7.9$ Hz,

 $[Cp_2Ti(THF)_2][BPh_4]$ (19). A slurry of $Cp_2Ti(CH_2Ph)_2$ (1.00 g, **2.77** mmol) and [Cp'~Fel[BPhd **(1.48** g, **2.77** mmol) in THF **(30** mL) was prepared at **-78** 'C and warmed to **23** "C. The slurry was protected from light with Al foil and stirred for **9** h. The slurry was evaporated to dryness and then extracted with **2 x 50** mL of toluene, leaving a blue-green solid. This solid was recrystallized from THF **(-40** "C) and dried under high vacuum overnight to yield **0.46** g **(27** %) of blue-green **19.** lH NMR (THF- &): *b* **7.29** (br 8, **8** H, **m** BPh-), **6.87** (br **s, 8** H, **o** BPh-), **6.72** (br **s,** 4 H, *p* BP4-). IR (cm-l in KBr): **3051 (e), 3031 (a), 2996 (a), 2981 (a), 2897** (m), **1941** (w), **1884** (w), **1818** (w), **1751** (w), **1580** (m), **1479** (m), **1457** (m), **1448** (m), **1438** (m), **1427** (m), **1364** (w), **1347** (w), **1266** (w), **1248** (w), **1181** (w), **1145** (w), **1067** (w), **1026** (m), **1014 (e), 916** (w), **860 (e), 847 (81, 810 (w), UV-vis** (THF). λ_{max} 706 nm. EPR (9.083 GHz in THF): $g = 1.973 \mu_{\text{B}}$. Anal. Calcd for C₄₂H₄₆BTi: C, 78.63; H, 7.23. Found: C, 78.55; H, **7.30.**

Preparation of 19 via Reaction of Cp₂Ti(CH₂Ph)₂ with $[HNMe₃][BPh₄].$ A slurry of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ (0.369 g, 1.02 mmol) and [HNMe₃][BPh₄] (0.390 g, 1.02 mmol) in THF (40 mL) was heated to **55** "C for **36** h. The THF was evaporated, and the resulting precipitate was washed with **50** mL of toluene and **2 x 5** mL of pentane, leaving a dark blue solid. The solid was dried under high vacuum (1 day), yielding 0.45 g (74%) of powdery dark blue **19.**

Spectroscopic Characterization of $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})(\text{CB}_{11}\text{H}_{12})$ (22). A resealable NMR tube was charged with $\text{Cp}_2\text{Ti}(\text{CH}_2\text{Ph})_2$ $(0.004 \text{ g}, 0.011 \text{ mmol})$ and $Ag(CB_{11}H_{12})$ $(0.028 \text{ g}, 0.011 \text{ mmol})$. Benzene- d_6 was added via vacuum transfer at -78 °C, and the tube waa warmed to room temperature for several minutes and centrifuged upside down to collect the Ag^0 precipitate at the top of the tube. ¹H, ¹³C, and ¹¹B NMR spectra were recorded and are discussed in the text. The solvent was removed under vacuum and the residue redissolved in $CD₃CN$, and NMR spectra were again recorded. Attempts to isolate **22** in larger scale reactions were unsuccessful due to its facile decomposition.

X-ray Structure of **8.** Crystals of **8** were obtained by recrystallization of **7** from THF solution and mounted in capillaries which were sealed with a torch under N_2 . X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer system, and the crystallographic calculations were performed by using the SDP package for that system.⁶³

Acknowledgment. This work was supported by **NSF** Grant CHE-9022700. We thank Prof. Harold Goff and John Pollack for assistance with the Varian E-4 spectrometer and Dr. Gary Buettner (University of Iowa) for assistance with the quantitative EPR experiments. We **also** thank Prof. Chris **Reed** for a detailed preparation for **AgCB11H12.**

Supplementary Material Available: Listings of all bond distances and angles, least-squares planes, anisotropic thermal parametere for the non-hydrogen atoms, and positional and isotropic thermal parameters for the hydrogen atoms **(9** pages). Ordering information is given on any current masthead page.

OM920668P

⁽⁶³⁾ Frenz, B. **A.** The Enraf-Noniua **CAD4** SDP **System.** In *Computing in Crystallography*; Delft University Press: Delft, Holland, 1978; p 64.