Syntheses and Reactivity of Ph₃SiOReO₃, Mes₃GeOReO₃, and (O₃ReOPh₂SnOPh₂SnOH)₂

Torsten Schoop, Herbert W. Roesky,* Mathias Noltemeyer, and Hans-Georg Schmidt

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, W-3400 Göttingen, Germany

Received August 6, 1992

Summary: Re₂O₇ reacts with Ph₃SiOH, Mes₃GeOH, and Ph_3SnOH to give $Ph_3SiOReO_3(1)$, $Mes_3GeOReO_3(2)$, and $(O_3 ReOPh_2 SnOPh_2 SnOH)_2$ (3), respectively. In the reaction of Mes_2BOH with Re_2O_7 no rhenium-containing product was isolated. The silvlperrhenate 1 reacts with 2,6-diisopropylphenyl isocyanate (ArNCO) in toluene to form $Ph_3SiORe(NAr)_3$ (5) in high yield. The reaction of 3 with ArNCO gives the unexpected product PhRe- $(NAr)_3$ (6). 1 reacts with neat tert-butyl isocyanate to give $Ph_3SiORe(N-t-Bu)_3$ (8). The structures of $(O_3 ReOPh_2SnOPh_2SnOH)_2(3)$, $Ph_3SiORe(N-2,6-i-Pr_2C_6H_3)_3$ $(5), PhRe(N-2,6-i-Pr_2C_6H_3)_3$ (6), $Ph_3SiORe(N-2,6-Me_2 C_6H_3$ (7), and $Ph_3SiORe(N-t-Bu)_3$ (8) were determined by X-ray diffraction.

Introduction

Recently we became interested in reactions of Re_2O_7 with OH-substituted compounds^{1,2} since the OH group plays an important role in the fixation of metal oxides on silica surfaces.³ Our intention was to obtain a better understanding of the catalytic processes of such systems by investigating model reactions. In initial studies (t- $Bu_2Si(OReO_3)_2$, prepared by reaction of $t-Bu_2Si(OH)_2$ with Re_2O_7 , was found to be a model compound for reactions of metal oxides on silica surfaces by using our method for the insertion of imido groups.⁴ In this paper we report our results on further studies of reactions of Re₂O₇ with group 14 and group 13 hydroxy derivatives.

Results and Discussion

1. Reactions of Re_2O_7 with Ph_3MOH (M = Si, Sn), Mes₃GeOH, and Mes₂BOH. We have carried out the reactions shown in Scheme I.

 Ph_3SiOH reacts immediately with Re_2O_7 at room temperature in toluene, giving Ph₃SiOReO₃ (1) in good yield. However, the preparation of Mes₃GeOReO₃ (2; Mes = 2,4,6-Me₃C₆H₂) requires longer reaction times. The expected product Ph₃SnOReO₃ could not be isolated from the reaction of Ph_3SnOH with Re_2O_7 . The product actually isolated was (O₃ReOPh₂SnOPh₂SnOH)₂ (3), whose structure was determined by X-ray diffraction (Figure 1, Table I). It is remarkable that in the formation of 3 every tin atom has lost a phenyl substituent.

The structure of 3 involves a cluster with a framework of three four-membered rings that form a ladder-type

Figure 1. Molecular structure of 3.

Table I. Selected Bond Lengths (Å) and Angles (deg) of 3

	-		
Sn(1)-C(11)	2.116 (8)	Sn(1)-C(21)	2.100 (8)
Sn(1) - O(1)	2.036 (4)	Sn(1)-O(2)	2.169 (5)
Sn(1)-O(1A)	2.133 (4)	O(1) - Sn(2)	2.008 (5)
O(1)-Sn(1A)	2.133 (4)	O(2) - Sn(2)	2.114 (5)
Sn(2) - O(3)	2.238 (5)	O(3) - Re(1)	1.744 (5)
Re(1) - O(11)	1.711 (7)	Re(1)-O(12)	1.681 (7)
Re(1) - O(13)	1.695 (7)		
$O(1) = S_{2}(1) = O(1A)$	73 5 (2)	$O(1) = S_{2}(1) = O(2)$	77 4 (7)
$S_{n}(1) = O(1) = O(1A)$	1111(2)	O(1) = Sin(1) = O(2)	145 0 (2)
$S_{1}(1) = O(1) = S_{1}(2)$	111.1 (2)	O(2) - SI(1) - O(1A)	143.9 (2)
Sn(2) - O(1) - Sn(1A)	142.3 (2)	Sn(1)=O(1)=Sn(1A)	106.5 (2)
O(1)-Sn(2)-O(2)	74.2 (2)	Sn(1) - O(2) - Sn(2)	102.3 (2)
O(2)-Sn(2)-O(3)	155.6 (2)	O(1)-Sn(2)-O(3)	81.6 (2)
O(3)-Re-(1)-O(11)	110.8 (3)	Sn(2) - O(3) - Re(1)	169.0 (3)
O(11)-Re(1)-O(12)	107.4 (3)	O(3) - Re(1) - O(12)	109.8 (3)
O(11)-Re(1)-O(13)	108.3 (4)	O(3) - Re(1) - O(13)	109.7 (3)
		O(12) - Re(1) - O(13)	110.9 (4)

structure.⁵ The tin atoms have a distorted-trigonalbipyramidal coordination sphere. The rhenium atoms have a distorted-tetrahedral geometry with angles ranging

(5) Holmes, R. R. Acc. Chem. Res. 1989, 22, 190.

⁽¹⁾ Roesky, H. W.; Hesse, D.; Mazzah, A.; Noltemeyer, M. Chem. Ber. 1991, 124, 519.

⁽²⁾ Roesky, H. W.; Winkhofer, N.; Robinson, W. T.; Noltemeyer, M. Angew. Chem. 1992, 104, 670; Angew. Chem., Int. Ed. Engl. 1992, 31, 599. (3) Andreini, A. J. Mol. Catal. 1991, 65, 359.
 (4) Roesky, H. W.; Hesse, D.; Bohra, R.; Noltemeyer, M. Chem. Ber.

¹⁹⁹¹, *124*, 1913.

Figure 2. Molecular structure of 5.

from 108 to 110°. A comparison with the polymeric Me_{3} -SnOReO₃ shows the same coordination geometry of the rhenium atoms (108-110°).⁶ The Sn(2)-O(2) bond distance (2.11 Å) is noticeably smaller than that found in $[HO(t-Bu)(Me_3SiCH_2)Sn)_2)O]_2$ (2.30 Å).⁷ A possible explanation for this could be the electron-withdrawing properties of the ReO_3 group.

The reaction of Mes₂BOH with Re₂O₇ gave (MesBO)₃ (4) instead of the expected product Mes₂BOReO₃.⁸

2. Reactions of Group IV Perrhenates with Isocvanates. Compound 1 is isoelectronic with Ph₃PNReO₃. which we have reported previously9 and which reacts with ArNCO (Ar = 2,6-i-Pr₂C₆H₃) in excess ArNCO, but not in toluene solution, to give Ph₃PNRe(NAr)₃.¹⁰ The reaction of Me₃SiOReO₃ with ArNCO in toluene gave mixtures of products,¹¹ but 1 was found to react with ArNCO in toluene to give red crystals of $Ph_3SiORe(NAr)_3$ (5) in high yield.

The structure of 5 was determined by X-ray diffraction. $Ph_3SiORe(NAr)_3$ is not only isoelectronic but also isomorphous with Ph₃PNRe(NAr)₃. The Re=N bond lengths are comparable (1.741-1.759 Å). The molecule has a distorted-tetrahedral geometry with angles at the rhenium atom of 109-110°. The Re-O-Si angle is exactly linear (180°) (Figure 2, Table II). The Si(1)-Re(1) arrangement in the cell is in the inverted direction of that of Si(3)-Re(3). Furthermore, the substituents on Si(2) and Re(2)have an eclipsed conformation, whereas Si(1)-Re(1) and Si(3)-Re(3) have a staggered one.

In contrast to the chemistry of silylperrhenates, the chemistry of stannylperrhenates is unknown. In the reaction of 3 with ArNCO in toluene the expected stannylperrhenate imide was not formed. The isolated product was $PhRe(NAr)_3$ (6), whose structure was determined by X-ray diffraction (Figure 3, Table II). In 6 the coordination geometry at the rhenium atom is tetrahedrally distorted (103-115°). The Re=N bond lengths (1.750-1.761 Å) are similar to those in compound 5. The

- 50

Re(1)-O(1)	1.891 (10)	Re(1)-N(1)	1.741 (5)
Re(1)-N(1A)	1.741 (6)	Re(1)-N(1B)	1.742 (2)
Re(2) - O(2)	1.870 (8)	Re(2) - N(2)	1.759 (4)
Re(2)-N(2A)	1.758 (6)	Re(23)-N(2B)	1.760 (3)
Re(3) - O(3)	1.879 (11)	Re(3) - N(3)	1.759 (5)
Re(3)-N(3A)	1.759 (6)	Re(3)-N(3B)	1.759 (5)
Si(1) - O(1)	1.624 (11)	Si(2)-O(2)	1.626 (9)
Si(3) - O(3)	1.624 (11)		
O(1) - Re(1) - N(1A)	108.8 (2)	O(1) - Re(1) - N(1)	108.8 (2)
O(1) - Re(1) - N(1B)	108.8 (2)	N(1)-Re(1)-N(1A)	110.1 (2)
N(1A)-Re(1)-N(1B)) 110.1 (2)	N(1)-Re(1)-N(1B)	110.1 (2)
O(2) - Re(2) - N(2A)	109.3 (2)	O(2) - Re(2) - N(2)	109.3 (2)
O(2) - Re(2) - N(2B)	109.3 (2)	N(2)-Re(2)-N(2A)	109.7 (2)
N(2A)-Re(2)-N(2B)) 109.7 (2)	N(2)-Re(2)-N(2B)	109.6 (2)
D(3) - Re(3) - N(3A)	109.8 (2)	O(3) - Re(3) - N(3)	109.8 (2)
O(3) - Re(3) - N(3B)	109.8 (2)	N(3)-Re(3)-N(3A)	109.1 (2)
N(3A)-Re(3)-N(3B)) 109.1 (2)	N(3)-Re(3)-N(3B)	109.1 (2)
Re(2) - O(2) - Si(2)	180.0 (1)	Re(1)-O(1)-Si(1)	180.0 (1)
		Re(3) - O(3) - Si(3)	180.0 (1)

Table II. Selected Bond Lengths (Å) and Angles (deg) of 5

Figure 3. Molecular structure of 6.

Table III.	Selected	Bond	Lengths •	(Å) and	Angles	(deg) of	6

Re(1) - N(1)	1.761 (5)	Re(1) - N(2)	1.750 (5)
Re(1)-N(3)	1.750 (6)	Re(1)-C(41)	2.088 (8)
N(1)-Re(1)-N(2)	114.1 (2)	N(1) - Re(1) - N(3)	115.7 (3)
N(2)-Re(1)-N(3)	113.8 (2)	N(1)-Re(1)-C(41)	104.8 (3)
N(2) - Re(1) - C(41)	103.0 (3)	N(3) - Re(1) - C(41)	103.4 (3)
Re(1)-N(1)-C(11)	162.6 (4)		

Re-C bond length (2.088 Å) is comparable to that in $MesRe(N-t-Bu)_3$ (2.10 Å).¹²

The transfer of alkyl groups from organotin compounds to rhenium is well-known.¹³ In the formation of 6 from 3 we most likely are dealing with an intramolecular Ph transformation from Sn to Re:

Recently, Herrmann et al. synthesized PhReO₃.¹⁴ This compound decomposed slowly at room temperature and rapidly at higher temperatures. In contrast, the imide analogue $PhRe(NAr)_3$ (6) is quite stable.

⁽⁶⁾ Herdtweck, E.; Kiprof, P.; Herrmann, W. A.; Kuchler, J. G.; Degnan, Z. Naturforsch., B 1990, 45, 937. (7) Puff, H.; Friedrichs, E.; Visel, F. Z. Anorg. Allg. Chem. 1981, 477,

⁽⁸⁾ Schoop, T. Diplomarbeit, Göttingen, 1992.
(9) Roesky, H. W.; Hesse, D.; Rietzel, M.; Noltemeyer, M. Z. Naturforsch., B 1990, 45, 72. (10) Roesky, H. W.; Hesse, D.; Noltemeyer, M.; Sheldrick, G. M. Chem.

Ber. 1991. 124. 757. (11) Horton, A. D.; Schrock, R. R.; Freudenberger, J. H. Organome-

tallics 1987, 6, 893.

⁽¹²⁾ Gutierrez, A.; Wilkinson, G. Polyhedron 1990, 9, 2081.
(13) Herrmann, W. A.; Kuchler, J. G.; Felixberger, J. K.; Herdtweck,
E.; Wagner, W. Angew. Chem. 1988, 100, 420; Angew. Chem., Int. Ed.
Engl. 1988, 27, 394.

^{(14) (}a) Herrmann, W. A.; Romao, C. C.; Fischer, R. W.; Kiprof, P.; de Bellefon, C. M. Angew. Chem. 1991, 103, 183; Angew. Chem., Int. Ed. Engl. 1991, 30, 185. (b) de Bellefon, C. M.; Herrmann, W. A.; Kiprof, P. K.; Withaker, C. R. Organometallics 1992, 11, 1072.

Figure 4. Molecular structure of 7.

Table IV.	Selected	Bond]	Lengths	(Å) and	Angles	(deg) of 7
Re(1)-O(1	l) 1	.902 (3)) R	le(1)-N(1)	1.743 (3)
Re(1)-N(2)	2) 1	.750 (3)) R	le(1)-N(3)	1.726 (3)
Si(1)-O(1) 1	.652 (3))			
O(1) - Re(1)	-N(2)	108.6 ((1) O (1)-Re(1))–N(1)	106.0 (1)
O(1) - Re(1)	-N(3)	107.0 ((1) N((1) - Re(1))-N(2)	112.0(1)
N(2)-Re(1)	–N(3)	112.4 ((2) N((1)- Re (1))–N(3)	110.5 (2)
Re(1) - N(1)	-C(11)	158.4 ((3) Re	:(1)–O(1))-Si(1)	139.7 (2)
C(11) C(11)	C(33) C(31) C(32)	9 (c13) () () () () () () () () () () () () ()		C(45) C(46) C(41) C(41) Si	C(44) C(43) C(42)	(52) Do

Figure 5. Molecular structure of 8.

In order to obtain information on whether 1 is a model compound for reactions of metal oxides on silica surfaces, we studied the reaction of 1 with $2,6-Me_2C_6H_3NCO$ (Ar'NCO) is toluene. As indicated in eq 1, 7 was produced. Its structure was determined by X-ray diffraction (Figure 4, Table IV).

$$Ph_{3}SiOReO_{3} + 3Ar'NCO \rightarrow 1$$

$$Ph_{3}SiORe(NAr')_{3} + 3CO_{2} (1)$$

Previously, conversion of Re=0 by Re=N-t-Bu was possible only by silylamines.¹⁵ Compound 1 also reacts with neat t-BuNCO at 80 °C to give $Ph_3SiORe(N-t-Bu)_3$ (8), whose structure also was determined by X-ray diffraction. The molecular structure of 8 is shown in Figure 5; selected bond lengths and angles are given in Table V.

Experimental Section

All experiments were performed under a dry nitrogen atmosphere using standard Schlenk techniques or a drybox. Reagent

Table V. Selected Bond Lengths (Å) and Angles (deg) of 8

Re-N(1)	1.749 (8)	Re-N(2)	1.723 (11)
Re-N(3)	1.735 (9)	Re-O	1.902 (8)
O–Si	1.620 (8)		.,
N(1)-Re-N(3)	108.7 (4)	N(1)-Re-N(2)	110.2 (6)
N(1)-ReO	111.4 (5)	N(2)-Re-N(3)	111.2(7)
N(3)-ReO	109.0 (6)	N(2)-Re-O	106.4 (4)
Re-O-Si	152.2 (5)	Re-N(1)-C(1)	150.6 (10)

grade toluene, hexane, and THF were distilled prior to use from benzophenone ketyl under nitrogen. Reagent grade acetonitrile was distilled from calcium hydride. Deuterated solvents were trap-to-trap distilled as follows: CDCl₃ and CD₃CN from CaH₂; d_8 -THF from Na.

¹H and ²⁹Si NMR data are listed in ppm downfield from TMS. NMR spectra were recorded on a Bruker AM 250 spectrometer. IR spectra were recorded on a Perkin-Elmer Bio-Rad Digilab FTS-7. Microanalyses were performed by Beller Laboratory (Göttingen, Germany) or in our institute.

Ph₃SiOReO₃ (1). To a suspension of Re₂O₇ (3.00 g, 6.2 mmol) in 10 mL toluene was added a suspension of Ph₃SiOH (3.76 g, 13.6 mmol) in 40 mL toluene at room temperature. The resulting mixture was stirred for 1 h. The solvent was removed in vacuo, and the residue was recrystallized from hot hexane to afford 5.10 g (10.0 mmol, 81%) of a white solid: mp 110 °C; ¹H NMR (CDCl₃) δ 7.44-7.64 (m, 15 H, arom H); ²⁹Si NMR (CDCl₃) δ 3.08 (s); mass spectrum (EI) m/e 510 ([M⁺], 68%); IR (KBr, cm⁻¹) ν 1121 vs, 1106 vs, 997 s, 964 vs, 953 vs, 904 vs. Anal. Calcd for C₁₈H₁₅O₄ReSi: C, 42.4; H, 3.0. Found: C, 42.3; H, 2.9.

Mes₃GeOReO₃ (2). To a suspension of Re₂O₇ (0.50 g, 1.0 mmol) in 5 mL toluene was added a suspension of Mes₃GeOH¹⁶ (1.01 g, 2.3 mmol) in 15 mL toluene, and the resulting mixture was stirred for 16 h at room temperature. After the solvent was removed in vacuo, the residue was washed with hexane and then MeCN to give a white powder: dec pt 182 °C (1.28 g (1.9 mmol, 95%)); ¹H NMR (d^{8} -THF) δ 6.93 (s, 6 H, arom. H), 2.27 (s, 9 H, p-Me), 2.24 (s 18 H, o-Me); mass spectrum (EI) m/e 681 ([M⁺], 4%), 560 ([M⁺ - Me], 34%), 327 (MesGeO, 100%); IR (KBr, cm⁻¹) ν 950 vs, 894 vs. Anal. Calcd for C₂₇H₃₃O₄GeRe: C, 47.7; H, 4.9. Found: C, 47.5; H, 5.1.

(O₃ReOPh₂SnOPh₂SnOH)₂ (3). To a suspension of Re₂O₇ (1.00 g, 2.1 mmol) in 10 mL toluene was added a suspension of Ph₃SnOH (1.67 g, 4.5 mmol) in 20 mL toluene at room temperature. The resulting mixture was stirred for 1 day. During this time a white suspension was obtained. The solvent was evaporated in vacuo, and the white residue was dissolved in hot MeCN and left 12 h at room temperature. The solution was filtered through a glass fiber frit (G4). Concentration of the filtrate afforded 1.31 g (0.8 mmol, 38%) of octahedral colorless crystals: dec pt 332 °C; ¹H NMR (CD₃CN) δ 7.48–7.82 (m, 40 H, arom H0, 2.51 (s, 2 H, SnOH); mass spectrum (EI) m/z 77 ([Ph], 100%); IR (KBr, cm⁻¹) ν 1378 s, 997 vs, 957 vs, 908 vs, 860 vs, 727 vs, 694 vs, 664 s, 461 vs. Anal. Calcd for C₄₈H₄₂O₁₂Re₂Sn₄: C, 34.8; H, 2.5. Found: C, 35.8; H, 2.7.

Ph₃SiORe(NAr)₃ (5). A mixture consisting of 1 (0.51 g, 1.0 mmol) and 2,6-diisopropylphenyl isocyanate (0.78 mL, 3.3 mmol) in 15 mL toluene was heated at reflux for 16 h. Subsequently, the solvent was evaporated in vacuo, leaving a deep red oil which was extracted with 5 mL hot hexane, and the extract stored 2 days at room temperature to yield 0.84 g (0.9 mmol, 85%) of red crystals: mp 115 °C: ¹H (CDCl₃) δ 6.92–7.72 (m, 24 H, arom H), 3.25 (sept, ³J_{HH} 7 Hz, 6 H, -CH(CH₃)₂), 0.84 (d, ³J_{HH} 7 Hz, 36 H, -CH(CH₃)₂); ²⁹Si NMR (CDCl₃) δ -10.92 (s); mass spectrum (EI) m/e 987 ([M⁺], 100%); IR (KBr, cm⁻¹) ν 1315 vs, 1261 vs, 1095 vs, 1019 vs. Anal. Calcd for C₅₄H₆₆N₃OReSi: C, 65.7; H, 6.7; N, 4.3. Found: C, 65.8; H, 6.9; N, 4.2.

PhRe(NAr)₃ (6). A mixture consisting of **3** (1.06 g, 0.7 mmol) and 2,6-diisopropylphenyl isocyanate (0.90 mL, 4.7 mmol) was heated at reflux in 20 mL toluene for 3 days. The solvent was removed in vacuo, the residue extracted with hot hexane (5 mL),

and the extract stored for 1 day. The extract was filtered through a glass fiber filter. Concentration of this filtrate afforded dark red crystals in ca. 10% yield: mp 114 °C; ¹H NMR (CDCl₃) δ 7.18–7.62 (m, 24 H, arom H), 3.06 (sept, ³J_{HH} 7 Hz, 6 H, CH(CH₃)₂), 1.04 (d, ³H_{HH} 7 Hz, 36 H, CH(CH₃)₂); mass spectrum (EI) m/z 789 ([M⁺], 100%); IR (KBr, cm⁻¹) ν 1378 s, 1258 m, 908 vs, 727 s. Anal. Calcd for C₄₂H₅₆N₃Re: C, 63.9; H, 7.1; N, 5.3. Found: C, 64.0; H, 7.6; N, 5.1.

Ph₃SiORe(NAr')₃ (7). A mixture of 1 (0.51 g, 1.0 mmol) and 2,6-dimethylphenyl isocyanate (0.46 mL, 3.3 mmol) was refluxed in toluene (20 mL) for 5 h. The solvent was evaporated in vacuo, the residue was extracted with hot hexane (5 mL), and the extract was stored for 12 h at room temperature to afford 0.30 g (0.4 mmol, 37%) of red-purple crystals: mp 119 °C; ¹H NMR (CDCl₃) δ 6.60–7.69 (m, 24 H, arom H), 2.13 (s, 18 H, $-CH_3$); ²⁹Si NMR (CDCl₃) δ -9.34 (s); mass spectrum (EI) *m/e* 819 ([M⁺], 100%); IR (KBr, cm⁻¹) ν 1377 vs, 1315 vs, 1030 s, 907 s, 765 s, 699 s. Anal. Calcd for C₄₂H₄₂N₃OReSi: C, 61.6; H, 5.1; N, 5.1. Found: C, 61.6; H, 5.1; N, 4.9.

Ph₃SiORe(N-t-Bu)₃ (8). A suspension of 1 (0.51 g, 1.0 mmol) and 1 mL tert-butyl isocyanate was stirred for 10 h at 80 °C. After cooling to room temperature, and storing for 2 days, yellow crystals are obtained from the reaction mixture (0.50 g, 0.7 mmol, 74%): mp 96 °C; ¹H NMR (CDCl₃) δ 7.40–7.62 (m, 15 H, arom H), 1.21 (s, 27 H, N–C(CH₃)₃); ²⁹Si NMR (CDCl₃) δ –14.42 (s); mass spectrum (EI) m/e 675 ([M+], 18%), 660 ([M⁺-Me], 100%); IR (KBr) ν 1357 vs, 1206 vs, 1116 vs, 975 vs, 803 vs, 711 vs. Anal. Calcd for C₃₀H₄₂N₃OReSi: C, 53.4; H, 6.2; N, 6.2. Found: C, 54.1; H, 6.4; N, 6.3.

Crystal Structure Solution and Refinement. Diffraction data were collected an a Siemens-Stoe AED2 four-circle instrument at room temperature with Mo K α radiation, on-line profile fitting, and variable scan speeds. The structures were solved by Patterson methods (SHELX-86) and refined by full-matrix leastsquares techniques (SHELX-76). Semiempirical absorption corrections were applied in all cases. Non-hydrogen atoms were refined anisotropically and hydrogen atoms inserted at calculated positions.

Crystal Data for 4: $C_{48}H_{40}O_{12}Sn_4Re_2$, M_r 1656.0, orthorhombic, space group Pbca, a = 17.844 (3) Å, b = 14.448 (2) Å, c = 19.837 (4) Å, V = 5114 (3) Å³, Z = 4, $\rho(\text{calcd}) = 2.15 \text{ mg/m}^3$, $\mu = 6.769 \text{ mm}^{-1}$, F(000) = 3096, crystal size (mm) $0.7 \times 0.7 \times 0.8$, 4493 measured reflections, 3337 unique reflections, 3083 observed reflections, goodness of fit 1.61, refinement converged with R = 0.037, $R_w = 0.044$, and maximum/minimum rest electron density $+0.8/-1.8 \text{ e} \text{ Å}^{-3}$.

Crystal Data for 5: $C_{54}H_{66}N_3OReSi$, M_r 987.4, trigonal, space group P3, a = 18.546 (3) Å, c = 12.721 (3) Å, V = 3789.6 (12) Å³,

Z = 3, $\rho(\text{calcd}) = 1.30 \text{ mg/m}^3$, $\mu = 2.497 \text{ mm}^{-1}$, F(000) = 1524, crystal size (mm) $0.5 \times 0.5 \times 0.5$, 5205 measured reflections, 5204 unique reflections, 5082 observed reflections, goodness of fit 1.20, refinement converged with R = 0.027, $R_w = 0.032$, and maximum/ minimum rest electron density $+1.1/-1.1 \text{ e} \text{ Å}^{-3}$.

Crystal Data for 6: $C_{42}H_{56}N_3Re$, M_r 798.1, orthorhombic, space group $P2_12_12_1$, a = 19.361 (2) Å, b = 19.417 (2) Å, c = 10.616 (1) Å, V = 3991.0 (7) Å³, Z = 4, $\rho(\text{calcd}) = 1.31 \text{ mg/m}^3$, $\mu = 3.11 \text{ mm}^{-1}$, F(000) = 1616, crystal size (mm) $0.5 \times 0.5 \times 0.5$, 5872 measured reflections, 5196 unique reflections, 4927 observed reflections, goodness of fit 1.70, refinement converged with R = 0.033, $R_w = 0.038$, and maximum/minimum rest electron density +0.7/-0.9 e Å⁻³.

Crystal Data for 7: $C_{42}H_{42}N_3$ OReSi, M_r 819.1, triclinic, space group P1, a = 9.7500 (10) Å, b = 11.015 (1) Å, c = 18.576 (3) Å, $\alpha = 75.87$ (1)°, $\beta = 83.66$ (1)°, $\gamma = 89.37$ (1)°, V = 1922.6 (10) Å³, Z = 2, ρ (calcd) = 1.415 mg/m³, $\mu = 3.266$ mm⁻¹, F(000) = 824, crystal size (mm) $0.4 \times 0.5 \times 1.0$, 5507 measured reflections, 5009 unique reflections, 4897 observed reflections, goodness of fit 2.43, refinement converged with R = 0.025, $R_w = 0.033$, and maximum/ minimum rest electron density +0.6/-0.8 e Å⁻³.

Crystal Data for 8: $C_{30}H_{42}N_3OReSi$, M_r 675.0, monoclinic, space group $P2_1$, a = 8.996 (3) Å, b = 21.257 (10) Å, c = 9.376 (3) Å, $\beta = 114.04$ (3)°, V = 1637.4 (8) Å³, Z = 2, ρ (calcd) = 1.37 mg/m³, $\mu = 3.771$ mm⁻¹, F(000) = 680, crystal size (mm) 0.5 × 0.5 × 0.6, 2819 measured reflections, 2682 unique reflections, 2632 observed reflections, goodness of fit 1.81, refinement converted with R = 0.032, $R_w = 0.042$, and maximum/minimum rest electron density +1.4/-1.3 e Å⁻³.

Further details of the crystal structure determination are available upon request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, Germany, on quoting the deposition number CSD-56527, the authors, and the journal citation.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, DEGUSSA AG, and STARK AG.

Supplementary Material Available: For 3, 5, 6, 7, and 8 tables of atomic coordinates, displacement parameters, and bond distances and angles (43 pages). Ordering information is given on any current masthead page.

OM920484A