

Subscriber access provided by American Chemical Society

Reaction of palladium(II) complexes with allylsilanes: convenient synthesis of [.eta.3-1-silylallyl]palladium complexes

Sensuke Ogoshi, Wataru Yoshida, Kouichi Ohe, and Shinji Murai Organometallics, **1993**, 12 (2), 578-579• DOI: 10.1021/om00026a049 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00026a049 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Reaction of Palladium(II) Complexes with Allylsilanes: Convenient Synthesis of $[\eta^3-1-(Silyl)allyl]$ palladium Complexes

Sensuke Ogoshi, Wataru Yoshida, Kouichi Ohe, and Shinji Murai*

Department of Applied Chemistry, Faculty of Engineering, Osaka University,

Suita, Osaka 565, Japan

Received September 14, 1992

Summary: While the reaction of allyltrimethylsilane with $PdCl_2(CH_3CN)_2$ gave $(\eta^3$ -allyl)palladium chloride by desilylation, addition of Et_3N changed the reaction course completely, leading to a different product $[\eta^3-1-(trimethylsilyl)allyl]$ palladium chloride by deprotonation.

The great diversity of the chemistry of η^3 -allyl transition metal complexes has been reported. In particular, $(\eta^3$ allyl)palladium chemistry has been well investigated, and its application to organic synthesis has been developed and exploited.¹ The early definitive studies of allylpalladium complexes concerned the preparation of dimeric palladium chloride complexes. (η^3 -Allyl)palladium derivatives are readily available from alkenes by reactions with Pd(II) complexes like PdCl₂, Na₂PdCl₄, and Pd(OAc)₂ under appropriate conditions via deprotonation.² Analogously, reaction of PdCl₂(PhCN)₂ with olefins containing electron-withdrawing β -substitutents, in particular carbonyl, formed (η^3 -allyl)palladium complex under mild conditions.³ If deprotonation occurred in the reaction of allylsilane with Pd(II) salts, $[\eta^3-1-(silyl)allyl]$ palladium complexes⁴ might be obtained. However, the reaction of palladium(II) salt with ally silane usually affords $(\eta^3$ -ally)palladium derivatives by desilylation under mild conditions.^{4,5} We wish to report here selective synthesis of $[\eta^3$ -1-(silyl)allyl]palladium chloride by the reaction of palladium(II) salts with allylsilanes. The new reaction does not involve usual desilylation.

Results and Discussion

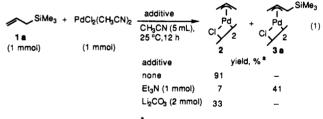

The reaction of allyltrimethylsilane (1a) with $PdCl_2(CH_3-CN)_2$ in CH_3CN at 25 °C afforded anticipated (η^3 -allyl)-

Table I.	Effect of	the	Amounts	of	Allylsilane	and	Et ₃ N i	in Eq	
			1					-	

		yield, ^a %		
allylsilane, mmol	Et ₃ N, mmol	2	3a ^b	
1	1	7	41	
	3		40	
2	3	2	71	
3	1	15	74	
	2	6	81	
	3		80	
5	3		82 (82)	

^{*a*} All yields refer to the NMR yield based on the $PdCl_2(CH_3CN)_2$ used. ^{*b*} **3a** was obtained as a mixture of syn and anti isomers (uniformly 75/25). ^{*c*} Isolated yield.

palladium chloride 2 in high yield (91%), an electrophilic reaction of Pd(II) with the double bond assisted by nucleophilic attack of a chloride ion on the silicon atom.⁵ Looking for a mild process for deprotonation in this combination, the same reaction was examined in the presence of some additives, amines or Li₂CO₃, and triethylamine was found to be effective for the desired reaction to give $[\eta^3-1-(trimethylsily)]$ palladium chloride⁶ 3a (41% yield) with 2 (7% yield) (eq 1). Note that

^a NMR yield based on Pd Cl₂(CH₃CN)₂ used

the labile cationic leaving group, the trimethylsilyl group, was left intact. Addition of Li_2CO_3 led to exclusive formation of 2. Other amines were not effective; DBU, TMEDA, and pyridine gave insoluble amine complexes, and imidazole gave palladium black. Furthermore, when the method of Ketley and Braatz using NaHCO₃ as an additive⁷ was applied to this reaction, only small amounts of 2 and 3a were obtained (12 and 10% yields, respectively).

The effect of the amounts of amine and allylsilane was investigated to optimize the reaction conditions, and the results are summarized in Table I. The use of more than 3 equiv of Et_3N with respect to $PdCl_2(CH_3CN)_2$ was required to suppress the formation of 2, and the use of

⁽¹⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. In Principles and Applications of Organotransition Metal Chemistry; University Science Books; Mill Valley, CA, 1987; Chapter 19. Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1975, 97, 2534. Trost, B. M. Acc. Chem. Res. 1980, 13, 385. Tsuji, J. Pure. Appl. Chem. 1982, 54, 197. Tsuji, J. J. Organomet. Chem. 1986, 300, 281. Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.

⁽²⁾ Hüttel, R.; Kratzer, J. Angew. Chem. 1959, 71, 456. Hüttel, R.;
(2) Hüttel, R.; Kratzer, J. Angew. Chem. 1959, 71, 456. Hüttel, R.; Kratzer, J.; Bechter, M. Angew. Chem. 1959, 71, 456. Hüttel, R.; Kratzer, J.; Bechter, M. Chem. Ber. 1961, 94, 766. Hüttel, R.; Christ, H. Chem. Ber. 1963, 96, 3101. Hüttel, R.; Christ, H. Chem. Ber. 1964, 97, 1459. Shaw, B. L.;
Shaw, G. J. Chem. Soc., Chem. Commun. 1969, 602. Dunne, K.; McQuillin, F. J. J. Chem. Soc., Chem. Commun. 1970, 2200. Hüttel, R.; McNiff, M. Chem. Ber. 1973, 106, 1789. Trost, B. M.; Strege, P. E.; Weber, L.;
Fullerton, T. J.; Dietsche, T. J. J. Am. Chem. Soc. 1978, 100, 3407.

 ⁽³⁾ Tsuji, J.; Imamura, S.; Kiji, J. J. Am. Chem. Soc. 1964, 86, 4491.
 Tsuji, J.; Imamura, S. Bull. Chem. Soc. Jpn. 1967, 40, 197. Parshall, G.
 W.; Willkinson, G. Chem. Ind. 1962, 261.

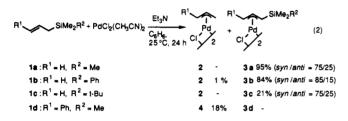
⁽⁴⁾ Corriu, R. J. P.; Escudie, N.; Guerin, C. J. Organomet. Chem. 1984, 271, C7.
(5) Kliegman, J. M. J. Organomet. Chem. 1971, 29, 73. Hayashi, T.;

⁽⁵⁾ Kliegman, J. M. J. Organomet. Chem. 1971, 29, 73. Hayashi, T.; Ito, H.; Kumada, M. Tetrahedron Lett. 1982, 23, 4605. Hayashi, T.; Konishi, M.; Kumada, M. J. Chem. Soc., Chem. Commun. 1983, 736. Hayashi, T.; Yamamoto, A.; Iwata, T.; Ito, Y. J. Chem. Soc., Chem. Commun. 1987, 398. Fugami, K.; Oshima, K.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1987, 60, 2509.

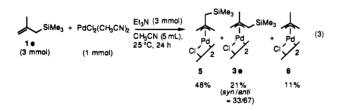
⁽⁶⁾ Ogoshi, S.; Ohe, K.; Chatani, N.; Kurosawa, H.; Kawasaki, Y.; Murai,
S. Organometallics 1990, 9, 3021. Ogoshi, S.; Ohe, K.; Chatani, N.;
Kurosawa, H.; Murai, S. Organometallics 1991, 10, 3813.
(7) Ketley, A. D.; Braatz, J. J. Chem. Soc., Chem. Commun. 1968, 169.

⁽⁷⁾ Ketley, A. D.; Braatz, J. J. Chem. Soc., Chem. Commun. 1968, 169. A suspension of 570 mg (5 mmol) of 1a, 177 mg (1 mmol) of PdCl₂ and 887 mg (8.37 mmol) of NaHCO₃ in 2.5 mL of CHCl₃ was stirred for 5 h at room temperature. A mixture of 3a (10%) and 2 (12%) was obtained.

Table II. Effect of Solvent on the Yield of 3a in Eq 1^a


	yield, ^b %		
solvent	2	3a	
CH ₃ CN		80	
THF	5	27	
CH ₂ Cl ₂	4	45	
C ₆ H ₆		78 (95) ^c	
toluene	trace	(78)	

^a Reaction conditions: 1a (3 mmol), $PdCl_2(CH_3CN)_2 (1 \text{ mmol})$, $Et_3N (3 \text{ mmol})$, solvent (5 mL), 25 °C, 12 h. ^b NMR yield based on $PdCl_2(CH_3CN)_2$ used. ^c 24 h.


more than 3 equiv of allylsilane was required to afford 3a in a high yield. Thus, the reaction of 3 equiv of allylsilane with PdCl₂(CH₃CN)₂ in the presence of 3 equiv of Et₃N gave 3a as the sole product (80% yield based on the Pd used).

As can be seen in Table II, the use of THF and CH_2Cl_2 as the solvent led to the formation of the desilylated product 2. Benzene, CH_3CN , and toluene were solvents of choice for the deprotonation. In particular, the reaction of 1a with $PdCl_2(CH_3CN)_2$ in benzene at 25 °C gave 3a exclusively in an excellent yield (95%).

The reaction of other allylsilanes with $PdCl_2(CH_3CN)_2$ was examined (eq 2). Allyldimethylphenylsilane (1b) reacted with $PdCl_2(CH_3CN)_2$ to give $[\eta^3-1-(dimethyl-$

phenylsily]ally]palladium chloride $3b^6$ in a high yield (84%) with a small amount of 2 (1%). Allyl-tertbutyldimethylsilane (1c) also reacted with PdCl₂(CH₃-CN)₂ to afford [η^3 -1-(tert-butyldimethylsilyl)allyl]palladium chloride 3c (21% yield) exclusively. However, desilylation occurred in the reaction of cinnamyltrimethylsilane (1d) to give [η^3 -1-(phenyl)allyl]palladium chloride 4 (18% yield) and no deprotonation product. The reaction of 2-methyl-3-(trimethylsilyl)propene (1e) with PdCl₂(CH₃CN)₂ afforded a mixture of deprotonation products [η^3 -2-methyl-1-(trimethylsilyl)allyl]palladium chloride $3e^6$ (21% yield) and [η^3 -2-[(trimethylsilyl)methyl]allyl]palladium chloride 5 (48% yield) and a desilylation product [η^3 -2-(methyl)allyl]palladium chloride 6 (11% yield) (eq 3).

A plausible mechanism is described below, but it is only speculative at this time. The desilylation gives $(\eta^3$ -allyl)palladium chloride.⁵ Although not clear, a possible role of Et₃N may be as follows. The reaction may begin with an electrophilic interaction of the Pd(II) with the double bond followed by either nucleophilic desilylation by Cl⁻ or deprotonation⁸ by Et₃N in a competitive manner to afford 2 or 3a, respectively. We described here an efficient synthesis of $(\eta^3$ -allyl)palladium complexes containing a silyl group by the reaction of PdCl₂(CH₃CN)₂ with allylsilanes involving deprotonation instead of the usual desilylation. Studies on the reaction of the $[\eta^3$ -1-(silyl)allyl]palladium complexes thus obtained, in particular complex 5 which might be an interesting precursor to (trimethylenemethane)palladium,⁹ are in progress.

Experimental Section

¹H NMR spectra were recorded on a JEOL-GSX-270 (270-MHz) spectrometer as solution in CDCl₃ with reference to CHCl₃ (δ 7.26). Melting points were determined on a Mitamura Riken Kogyo micro melting point apparatus and are uncorrected. The characterization of **3a**, **3b**, and **3e** was described in previous papers.⁶

Reaction of Allyltrimethylsilane (1a) with PdCl₂(CH₃-CN)₂. Under a nitrogen atmosphere, 259 mg (1 mmol) of PdCl₂(CH₃CN)₂ was suspended in 5 mL of dry CH₃CN. Allyltrimethylsilane (1a, 114 mg, 1 mmol) was added, and the mixture was stirred at 25 °C for 1 h. The reaction mixture was concentrated, and the product was isolated by column chromatography (Florisil, 15-mm i.d. × 200-mm length, CH₂Cl₂), and the eluent of yellow band was concentrated to give (\eta^3-allyl)palladium chloride (2) (165 mg, 90%).

Reaction of Allyltrimethylsilane with PdCl₂(CH₃CN)₂ in the Presence of Triethylamine. Preparation of $[\eta^3-1-$ (trimethylsilyl)allyl]palladium Chloride (3a). Under an atmosphere of nitrogen, 259 mg (1 mmol) of PdCl₂(CH₃CN)₂ and 303 mg (3 mmol) of triethylamine were dissolved in 5 mL of dry CH₃CN. Allyltrimethylsilane (1a) (342 mg, 3 mmol) was added and the mixture was stirred at 25 °C for 12 h. The reaction mixture was concentrated and separated by column chromatography (Florisil, 15-mm i.d. × 200-mm length, CH₂Cl₂/hexane = 1/1), and the eluent of the yellow band was concentrated to give $[\eta^3-1-(trimethylsilyl)allyl]$ palladium chloride (3a) (209 mg, 82%).

[η³-1-(*tert*-Butyldimethylsilyl)allyl]palladium Chloride (3c). The complex 3c was prepared in benzene from 1c by the method described above. Yield: 21% (syn/anti = 75/25). Mp: 139–143 °C dec. ¹H NMR (CDCl₃): δ (syn) 0.14 (s, 3 H), 0.22 (s, 3 H), 0.91 (s, 9 H), 2.96 (d, J = 11.2 Hz, 1 H), 2.99 (d, J = 13.7Hz, 1 H), 4.07 (d, J = 6.1 Hz, 1 H), 5.31 (ddd, J = 13.7 Hz, 112, 6.1, 1 H); δ (anti) 0.25 (s, 3 H), 0.32 (s, 3 H), 0.86 (s, 9 H), 3.04 (d, J = 12.5 Hz, 1 H), 3.97 (d, J = 9.8 Hz, 1 H), 3.98 (d, J = 7.1Hz, 1 H), 5.85 (ddd, J = 12.5 Hz, 9.8, 7.1, 1 H). Anal. Calcd for C₉H₁₉ClPdSi: C, 36.37; H, 6.44. Found: C, 36.23; H, 6.56.

[η^3 -2-[(Trimethylsilyl)methyl])allyl]palladium Chloride (5). A mixture of 5, 3e, and 6 was obtained from 1b by the method described above. Complex 5 was isolated by column chromatography (silica gel 100-200 mesh, CH₂Cl₂/hexane = 1/1, R_f = 0.35) followed by recrystallization from CH₂Cl₂/hexane (1/1). Yield: 16%. Mp: 148-152 dec. ¹H NMR (CDCl₃): δ 0.09 (s, 9 H), 1.90 (s, 2 H), 2.74 (s, 2 H), 3.67 (s, 2 H). Anal. Calcd for C₇H₁₅ClPdSi: C, 31.24; H, 5.62. Found: C, 30.92; H, 5.83.

Acknowledgment. We thank Professor Hideo Kurosawa of our department for his interests and stimulating discussions. This work has been supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture of the Japanese Government and by a Fellowship (to S.O.) of the Japan Society for the Promotion of Science for Japanese Junior Scientists (4-2234).

OM920562U

⁽⁸⁾ Chrisope, D. R.; Beak, P. J. Am. Chem. Soc. 1986, 108, 334. Chrisope, D. R.; Beak, P.; Sanders, W. H., Jr. J. Am. Chem. Soc. 1988, 110, 220.

⁽⁹⁾ Jones, M. D.; Kemmitt, R. W. D. J. Chem. Soc., Chem. Commun. 1985, 811. Molander, G. A.; Shubert, D. C. Tetrahedron Lett. 1986, 27, 787.