Gas-Phase and Solution Studies of the Oxidation of the First Perfluorocyclopentadienyl Complex, $\left[\text{Ru}(\eta^5 \text{-} \text{C}_5\text{Me}_5)(\eta^5 \text{-} \text{C}_5\text{F}_5) \right]$

David E. Richardson* and Matthew F. Ryan

Department of Chemistry, University of Florida, Gainesville, Florida 32611

William E. Geiger* and Teen T. Chin

Department of Chemistry, University of Vermont, Burlington, Vermont 05405

Russell P. Hughes* and Owen J. Curnow

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755

Received December 3, 1992

Summary: The oxidation of the title compound (1) has been investigated in solution (electrochemistry in various solvents) and thegas phase (by using the electron-transfer equilibrium method). The C_SF_S ligand is compared in its electronic effect to other known cyclopentadienyl ligands.

The preparation of the first metallocene complex of the pentafluorocyclopentadienyl ligand, $\left[\text{Ru}(\eta^5 \text{-} \text{C}_5 \text{Me}_5)(\eta^5 \text{-} \text{C}_6) \right]$ C_5F_5] (1), was reported recently.¹ Given the novelty of

the C_5F_5 ligand, it is of interest to consider its effect on the oxidation thermochemistry of **1** relative to that of a large number of ruthenocene derivatives that have been investigated in solution² and the gas phase.³ We report here the solution redox chemistry of **1** (studied by using cyclic voltammetry) and the gas-phase ionization free energy of 1 (to 1^+) (ΔG_i°) , studied by using Fourier transform ion cyclotron resonance **mass** spectrometry).

Gas-Phase Ionization Energetics. Fourier transform mass spectrometry⁴ was used to investigate the thermal electron-transfer equilibrium5 (ETE) reactions of **1** with several organic reference compounds. The general reaction of eq lwas studied, and equilibrium constants and reaction

$$
1 + R^{+} = R + 1^{+}
$$
 (1)

free energies $(\Delta G_{\text{et}}^{\circ})$ were determined as previously described^{3,5} for various reference compounds R. Previ-
ously reported ΔH_i° values and estimates of ΔS_i° for the reference compounds have been used to derive $\Delta G_{i,350}$ ^o(R)

values at 350 K.^{5a} The measured $\Delta G_{\text{et}}^{\circ}$ values for ETE reactions of 1 with reference compounds azulene (ΔG_i^o = 167.8 ± 1.5 kcal mol⁻¹) and m-toluidine (172.2 \pm 1.5 kcal mol⁻¹) are $+2.6$ and -1.0 kcal mol⁻¹, respectively, yielding an average value of ΔG_i° for 1 of 170.8 \pm 1.5 kcal mol⁻¹.

Comparison of C_5F_5 to Other C_5H_5 Derivatives. Ryan et al.³ recently reported a new parameter scale (γ) parameters) for the electronic effects of Cp derivatives **as** ligands based on their effect on the ionization free energy of LL'Ru complexes, where L is the ligand of interest and L' is either L or another Cp ligand with a known γ parameter. The scale is anchored to $\gamma = 0$ for Cp and γ $= -1.0$ for C₅Me₅, and a negative value of γ indicates that the ligand decreases the ionization free energy of ruthenocene derivatives relative to Cp. Equation 2 can be

 ΔG_i° (LL'Ru) =

$$
[13.0(\gamma(L) + \gamma(L')) + 164.6] \text{ (kcal mol}^{-1}) (2)
$$

used to derive the appropriate γ parameter for C₅F₅ by setting γ (Cp^{*}) = -1.0 and using the above value for $\Delta G_i^{\circ}(1)$. The value of $\gamma(C_5F_5) = 1.5$ obtained from eq 2 is compared to a number of other Cp derivatives in Table 1. Initially, it might be surprising to find that the highly electronegative F leads to a $\gamma(C_5F_5)$ value comparable to that for C_5C_5 (γ = 1.06) and a value much smaller than that estimated for $C_5(CF_3)H \sim (3)$. The effect on the free energy of ionization of $[Ru(C_5X_5)Cp^*]$ (Cp^{*} = n^5 -pentamethylcyclopentadienyl) when $X = Cl$ is replaced with F amounts
to an increase of only ~ 1 kcal mol⁻¹ per F. This effect can be compared to the ionization energetics of substituted benzenes, C_6X_6 , where F substitution for Cl increases the ionization energy by \sim 3.5 kcal mol⁻¹ per F.⁶ A "perfluoro" effect has been well characterized in the photoelectron spectroscopy of perfluorinated aromatic compounds, where the ionization energies of ring σ electrons are more strongly affected than those of the π electrons as a result of the π resonance interactions.'

The nature of F substituent effects can be described by classical electrostatic parameterization schemes. Param-

⁽¹⁾ Curnow, O. J.; Hughes, R. P. J. Am. Chem. Soc. 1992, 114, 5895.

(2) (a) Hill, M. G.; Lammana, W. M.; Mann, K. R. Inorg. Chem. 1991, 30, 4687. (b) Gassman, P. G.; Winter, C. H. J. Am. Chem. Soc. 1988, 110, 5130 and ref

Organometallics **1992, 11, 4231. (4) For review of FTICR-MS, see: (a) Marahall, A.** *G. Acc. Chem.*

Res. **1985,18,316. (b) Groas, M. L.;Rempel, D. L.** *Science* **1984,226,261. (c) Eyler, J. R.; Baykut, G.** *TrAC, Trends Anal. Chem. (Pers. Ed.)* **1986,** *5,* **44.**

⁽⁵⁾ (a) Ryan, M. F.; Eyler, J. R.; Richardson, D. E. *J. Am. Chem.* **SOC. 1992,114,8611. (b) Sharpe,P.;Richardson,D. E.** *Inorg. Chem.* **1990,29, 2776. (c) Richardson, D. E.; Christ, C. S.; Sharpe, P.; Ryan, M. F.; Eyler, J. R. In** *Bond Energetics in Organometallic Compounds;* **Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington DC, 1990.**

⁽⁶⁾ Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin,
R. D., Mallard, W. G., Eds. *Gas-Phase Ion and Neutral Thermochemistry*; **American Institute of Physics: New York, 1988. (7) Rabalais, J. W.** *Principles of Ultraoiolet Photoelectron Spectros-*

copy; **Wiley: New York, 1977; pp 323-327.**

Table I. Ligand and Substitmat Parameters for Selected Cyclopentadienyl Derivatives

	$\gamma(L)^a$	substituent	$\sigma_{\alpha'}$	σF	σ_{R+}^{σ}	$\Delta G_i^{\circ}[\text{Ru}(L)Cp^*]$	E_{net} vs Fc^e
C_5F_5	1.5		0.13	0.44	-0.25	170.8	1.07
C_5Cl_5	.06،	-CI.	-0.43	0.45	-0.17	165.4	1.11^{f}
$C_5H_4NO_2$	0.79	NO ₂	-0.26	0.65		161.9	0.7
$C_5(CF_3)_4H$	\sim 3	CF ₃	-0.25	0.44		\sim 192	1.3
C ₅ H ₅	04	н	0 ^d	0ª	Od	152.3	0.35
C ₅ Me ₅	$-1.00d$	Me	-0.35		-0.08	137.9	0.155

^a From ref 3 except for C_SF₅ (this work). ^b Substituent parameters from ref 7. ^c Free energy of ionization at 350 K in kcal mol⁻¹. ^{*d*} By definition. **Anodic peak potentials (in V) in CH₂Cl₂/0.10 M NBu₄PF₆ at ambient temperature. The reference potential is** $E_{1/2}(\text{Fc}^{+}/0)$ **.** *Quasi-reversible with* $E_{1/2} = 1.03$ V vs Fc. *8* Reversible with $E_{1/2} = 0.09$ V vs Fc.

0.71 mM.

eters appropriate for fitting gas-phase data have been described by Taft and co-workers, and they include σ_{α} (polarizability), σ_F (field effects), and σ_{R^+} (π resonance effects on aromatic rings). 8 The published parameters for several substituents are given in Table I. A negative value for the particular parameter indicates that this effect would stabilize the buildup of positive charge and, in the present case, contribute to a lowering of the ionization energy of LL'Ru. The field effects of C1 and F are essentially equal in this particular parameterization scheme (Table I), so only σ_{α} and $\sigma_{R^{+}}$ will contribute to the difference between C1 and F **as** substituents. Compared to C1, F is expected to increase the ionization energy **as** a consequence of its lower polarizability, but the π resonance effect of F compensates substantially in the case of the ruthenocene derivatives here with the net result that the ionization energies of 1 and $[Ru(C_5Cl_5)Cp^*]$ are similar.

Electrochemistry. Cyclic voltammetry (CV) experiments were conducted at Pt electrodes with an electrolyte system of $CH_2Cl_2/0.1$ M Bu₄NPF₆ at ambient temperatures over the scan rate range of $0.02 < v < 50$ V/s. Ferrocene (Fc) was used **as** a le- Nernstian internal standard, and all potentials are referenced to the $Fc^{+/0}$ couple. Peak potentials for the oxidation of **1** at different CV scan rates were referenced to those of Fc in order to minimize ohmic errors.

Complex **1** exhibits a diffusion-controlled, irreversible, two-electron oxidation for which E_{pa} = $+1.07$ V vs Fc when $v = 0.2$ V/s. No cathodic waves were observed out to the solvent limit of -2.4 V. At a Pt-disk electrode, the peak current function for this wave, 10.0 μ A/mM(V/s)^{1/2}, was about twice that of equimolar ferrocene (4.3 μ A/mM- $(V/s)^{1/2}$ under identical conditions (Figure 1). Since the diffusion coefficients of **1** and Fc are expected to be similar, the comparative current functions are strongly suggestive of a 2e- oxidation for **1.**

The anodic peak potential of an irreversible wave is predicted to shift positively by $30/\alpha n$ mV per decade increase in v ⁹ Taking $n = 2$ and assuming $\alpha \approx 0.5$, the observed shift of 35 mV is consistent with expectations for an irreversible system.

Bulk electrolysis of 1 under nitrogen with $E_{\text{apol}} = +1.2$ V consumed 2.2 faradays/equiv as the solution went from colorless to light yellow. Voltammetric scans after electrolysis showed cathodic waves for electrolysis products at E_{pc} = -0.16 and -0.96 V. After subsequent reduction of the electrolysis solution at $E_{\text{appl}} = -0.3 \text{ V}$, several other waves arising from apparent decomposition products were observed, but **1** was not regenerated.

Figure 1. Cyclic voltammogram of **an** equimolar mixture of ferrocene and 1 in $CH_2Cl_2/0.1$ M Bu_4NPF_6 at a Pt electrode. Conditions: ambient temperature, $\nu = 0.20 \text{ V/s}$, concentration

All electrochemical results are consistent with the oxidation of 1 being an irreversible $2e^-$ process in $CH₂Cl₂/$ 0.1 M Bu₄NPF₆. Similar observations have been made for other ruthenocene derivatives.2 Mann and co-workers have shown that the oxidation of Cp_2Ru is a reversible $1e^$ process when the poorly nucleophilic ion tetrakis[3,5 **bis(trifluoromethyl)phenyl]borate** is used **as** the anion of the supporting electrolyte.2a It is unlikely, therefore, that the electron-transfer reactions of ruthenocenee are inherently slow and very likely that the irreversibility of these processes is due to rapid follow-up reactions of the initial monocation with the anions present in most supporting electrolytes. If the rates of such reactions are similar for a set of substituted ruthenocene cations, their electrochemical potentials (e.g., E_{pa} or $E_{1/2}$ values) will be displaced an approximately constant amount from their *Eo* values. This apparently accounts for the overall correlation of E_{pa} values for substituted ruthenocenes with the Ru 3d binding energies^{2b} and the gas-phase free energies of ionization of the complexes.³

Values of $E_{\rm pa}$ vs Fc for several ruthenocene derivatives are given in Table I for comparison to gas-phase ΔG_i° values. As expected from the gas-phase results, the E_{pa} values for 1 and $[Ru(C_5Cl_5)Cp^*](2)$ are close to the same value.¹⁰ The differential solvation energy^{5,11} for the $1^{+/0}$ couple would be expected to be somewhat larger than that of **2+/O** because of the smaller size of the former, and this is consistent with the smaller difference between the solution potentials $(\sim 1 \text{ kcal mol}^{-1})$ compared to the

⁽⁸⁾ Hansch, C.; Leo, A,; Taft, R. W. *Chem. Reu.* **1991,91, 165. Note that** *v* **parameters apply to substituents while** γ **parameters apply to the Cp derivative as a ligand. (9) Bard, A. J.; Faulkner, L. R.** *Electrochemical Methods;* **Wiley: New**

York, 1980, p 222.

⁽¹⁰⁾ We have investigated the electrochemistry of [Ru(CsCb)Cp*] in CH_2Cl_2/NBu ₊ PF_6 and find that the $+/0$ redox couple is quasi-reversible with an $E_{1/2}$ value of 1.03 V vs Fc $(E_{pa} = 1.11$ V). Potentials measured in this work for other [RuCp⁺L] couples are also given in Table I. In **general, our** reeulta **are in agreement with the potantiah** *rekatiue* **to** *E%* reported in ref 2b (within ~ 100 mV).

⁽¹¹⁾ Richardson, D. E. *Inorg. Chem.* **1990,29,3213.**

difference between the gas-phase potentials $(\sim 5 \text{ kcal})$ mol-'). Variations in solvation energetics account for part of the scatter in plots correlating ΔG_i° values and electrochemical potentials for ruthenocene derivatives.³

Conclusions. It is clear that the n^5 -C₅ F_5 ligand is quite comparable to other Cp derivatives with moderately electron-withdrawing substituents in its electronic properties. This result is consistent with the findings of Paprott and Seppelt,¹² who observed a small perfluorination effect on the acidity of C_5F_5H . They estimated the acidity of C_5F_5H to be greater than that of cyclopentadiene (p $K_a =$ 15.5) but less than that of CF_3CH_2OH (p $K_a = 12.8$).¹²

Comparison of the present data to our earlier ETE studies of ruthenocene derivatives indicates that the F substituent is similar in electronic effect to C1 **as** a substituent. Although η^5 -C₅F₅ complexes have proven to be elusive until recently, the ligand does not lead to any particularly unexpected effects in the redox chemistry of the **ru**thenocene complex **1.**

Acknowledgment. This **work was** supported by grants from the National Science Foundation (Grant No. CHE **9008663** to D.E.R., Grant No. CHE **9116332** to W.E.G.) and the *Air* Force Office of Scientific Research (Grant No. **AFOSR91-0227 to** R.P.H.).

OM9207732

⁽¹²⁾ Paprott, G.; Seppelt, K. *J. Am. Chem. SOC.* **1984,** *106,* **4060.**