Syntheses and Structures of Two Trifluoroacetate-Trapped Derivatives of a Ruthenium Butatrienylidene Complex

Jeffrey R. Lomprey and **John P. Selegue'**

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055

Received January 11, 1993

Summary: The alkynyl ketone [Ru(C=CCOCHMe2)- (PPhs)~(Cp)l (I) reacts with trifluoroacetic anhydride at ambient temperature to give [Ru{C=CC(OCOCF3)- $CMe₂$ $(PPh₃)₂(Cp)$].0.5Et₂O (2), an enynyl trifluoroac*etate ester which structurally resembles a ruthenium butatrienylidene cation* ($Ru=C=C=C=CR_2J^+$) trapped by the attachment of a trifluoroacetate anion to C_{γ} . *Compound 1 also reacts with 2 equiv of trifluoroacetic* anhydride to form $[Ru(C=C(COCF_3)C(OCOCF_3) CMe₂$ $(PPh₃)₂(Cp)$ *[H(CF₃CO₂)₂] (3), in which C_B of compound 2has been acylated by a trifluoroacetylgroup. Thestructures of %and 3have been determined by X-ray crys tu llography* .

Many stable transition-metal complexes of cumulated alkylidene ligands, i.e., vinylidene $(L_nM=C=C_1)^{1-3}$ and allenylidene (propadienylidene, $L_nM=C=C=CR_2)^{1-7}$ complexes, have been isolated and characterized during the past 15 years. Dixneuf and co-workers have inferred the existence of pentatetraenylidene $(L_n M=C=C=C=C=CR_2$) complexes by trapping them with alcohols,⁸⁻¹⁰ but no stable or transient metal butatrienylidene complexes $(L_nM=C=C=C=C-CR_2)$ have yet been described. We report here an attempt to generate a cationic ruthenium butatrienylidene complex and the characterization of the resulting trifluoroacetate-trapped products.

The reaction of $[RuCl(PPh₃)₂(Cp)]$ (Cp = η -C₅H₅),¹¹ $Me₃SiC=CCOCMe₂H₁¹²$ and KF in refluxing methanol (Scheme I) results in the formation of [Ru- $(C=CCOCHMe₂)(PPh₃)₂(Cp)$] $(1).¹³$ a crystalline, yellow solid which is stable in air indefinitely and in solution for several hours. The reaction between **1** and *1* equiv of trifluoroacetic anhydride (TFA) results in yellow, crys $talline [Ru{}^{\dagger}C\equiv CC(OCOCF_{3})CMe_{2}{}^{\dagger} (PPh_{3})_{2} (Cp)] \cdot 0.5Et_{2}O$ **(2;** 76% yield).13 Compound 2 is air-stable as a solid and is stable in dichloromethane solution at -78 "C for many hours but quickly degrades in solution at room temperature. The reaction between **1** and *2* equiv of TFA leads to yellow, crystalline $\text{Ru}{}_{1}C=\text{C}(\text{C}O\text{C}F_{3})\text{C}(\text{O}CO\text{C}F_{3})$ CMe_2 {(PPh₃)₂(Cp)][H(CF₃CO₂)₂] (3; 86% yield).¹³

-
- **(1) Bruce, M. I.** *Chem. Rev.* **1991,91, 197-257. (2) Bruce, M. I.; Swincer, A. G.** *Adv. Organomet. Chem.* **1983,22,59. (3) Antonova, A. B.; Ioganson, A. A.** *Russ. Chem. Rev. (Engl. Transl.)* **1989,58, 693.**
-
- (4) Selegue, J. P. *Organometallics 1982, 1, 217–218.*
(5) Selegue, J. P. *J. Am. Chem. Soc. 1983, 105,* 5921.
- **(6) Berke, H.; Gottfried, H.; Seyerl,** J. **V.** *2. Naturforsch., B* **1981,36, 1277-1288.**
- **(7) Pirio, N.; Touchard, D.; Toupet, L.; Dixneuf, P. H.** *J. Chem. Soc., Chem. Commun.* **1991,980-982.**
- *(8)* **Romero, A.; Peron, D.; Dixneuf, P. H.** *J. Chem. SOC., Chem. Commun.* **1990, 1410-1412.**
- **(9) Wolinska, A.; Touchard, D.; Dixneuf, P. H.; Romero, A.** *J. Organomet. Chem.* **1991, 420,217-226.**
- **(10) Romero, A.; Vega, A.; Dixneuf, P. H.** *Angew. Chem., Int. Ed. Engl.* **1990, 29, 215.**
- **(11) Bruce, M. I.; Hameister, C.; Swincer, A. G.; Wallis, R.; Ittel, S. D.** *Inorg. Synth.* **1990,28,270-272.**
- **(12) Stang, P. J.; Fisk, T. E.** *Synthesis* **1979, 6, 438-440.**

The spectroscopic properties of **2,** in particular alkynyl resonances in its ¹³C NMR spectrum at δ_C 128.9 (C_{α}, triplet, $^{2}J_{\text{PC}}$ = 31.1 Hz) and 127.8 (C_B, triplet, $^{3}J_{\text{PC}}$ = 4.7 Hz) and a strong alkynyl infrared stretch at 2025 cm-l, are consistent with the enynyl ester structure shown in Scheme I. The ²J_{PC} value of 31.1 Hz for C_{α} is large in CD₂Cl₂, perhaps suggesting partial dissociation to the ion pair $[Ru(C=C=C=CMe_2)(PPh_3)_2(Cp)]$ ⁺[CF₃CO₂]⁻(2a; Scheme I). Typically, ${}^2J_{PC}$ for $[Ru(C=CR)(PPh_3)_2(Cp)]$ ranges from 0 to ca. 25 Hz (e.g. $^2J_{\text{PC}} = 23.0 \text{ Hz}$ for 1), and $^{2}J_{\rm{PC}}$ for [Ru(C= ${\rm CR}_2$)(PPh₃)₂(Cp)]⁺ ranges from ca. 10 to 40 Hz.lJ4 However, the ionized form **2a** was not observable by ¹H NMR spectroscopy. Whereas an equilibrium between **2** and **2a** should lead to NMR coalescence of the two methyl groups, their resonances are sharp and distinct in CD_2Cl_2 at 25 °C and in THF- d_8 from 25 to 60 °C. Compound 2 reacts with the more polar solvents nitromethane, acetonitrile, and dimethyl sulfoxide. X-ray crystal structure analysis (Figure 1) shows **2** to have a linear Ru-C=C-C chain, with typical Ru-C_{α} singlebond and $C_{\alpha} = C_{\beta}$ triple-bond lengths. C_{γ} is bonded to a crystallographically disordered trifluoroacetate, satisfactorily refined as two rigid, overlapping $CF₃CO₂$ groups in 7:3 occupancies. The refined carbon-trifluoroacetate bond lengths ((23-01, 1.43(2) **A;** C3-01A, 1.65(2) **A)** are significantly longer than a typical C -O single bond in an enol ester $(d_{av} = 1.35(2)$ Å in the Cambridge Crystallographic File¹⁵). The enynyl plane (Ru-C1-C2-C3-C4-C5-C6) makes a dihedral angle of 5.3° with the [Ru- $(PPh₃)₂(Cp)$] pseudosymmetry plane $(Cp0-Ru-C1)$, having the alkenyl group oriented anti to the Cp group (torsion angle $Cp0-Ru-C3-C4 = 174.0^{\circ}$.

The spectroscopic properties of 3 are more complicated than those of **2.** Its 13C NMR spectrum indicates a vinylidene structure $(\delta_C 344.1, \text{triplet}, \mathcal{V}_{PC} = 14.5 \text{ Hz})$, but

(14) Frank, K. G. Ph.D. Thesis, University of Kentucky, 1990. (15) Allen, F. H.; Kennard, *0.;* **Watson, D. G.; Brammer, L.; Orpen, A.**

⁽¹³⁾ Selected spectroscopic data are a follows (NMR spectra in CDr Cl₂ except as noted; IR spectra in Nujol). 1: ¹H NMR $\delta_{\rm H}$ 7.2 (m, 30 H, Ph), 4.38 (s, 5 H, Cp), 2.39 (sept, $\delta J_{\rm HI}$ = 6.94 Hz, 1 H, CHMe₂), 0.98 (d, $\delta J_{\rm HI}$ = 6.89 Hz, 6 H, Cp), 2.39 (sept, $\delta J_{\rm HI}$ = 6 = 23.0 Hz, C_a), 139.5-128.1 (Ph), 121.3 (s, C_B), 86.7 (s, Cp), 42.7 (s, CHMe₂),
19.3 (s, Me); ¹³P{¹H} NMR δ_P 50.32 (s, P); IR 2025 (vs, C=C), 1602 (s, CO)
cm⁻¹. 2: 'H NMR δ_H 7.30 (m, 30 H, Ph), 4.33 (s, (s, CO). 3: ¹H NMR (CDCl₃) δ_H 10.89 (br s, 1 H, O-H-O), 7.10 (m, 30
H, Ph), 5.22 (s, 5 H, Cp), 1.55 (s, 3 H, trans-Me), 1.30 (s, 3 H, cis-Me);
¹³C[¹H] NMR δ_c 344.1 (t, $\delta_{PC} = 14.5$ Hz, C_c), 177.6 (q, ²J (s, C₈), 116.0 (q, ¹J_{FC} = 292.1 Hz, CF₃), 115.3 (q, ¹J_{FC} = 287.9 Hz, CF₃), 114.3 (q, ¹J_{FC} = 285.9 Hz, CF₃), 20.8 (s, trans-Me), 18.9 (s, cis-Me); ³¹P{¹H}
114.3 (q, ¹J_{FC} = 285.9 Hz, CF₃), 20.8 **(vs, CO), 1734 (vs, CO), 1685 (vs, C=C) cm-I. 63-74.29 (E), -75.37 (~),-76.59** *(8,* **[H(CF3COz)zI-);IR 1806** (~8, **CO), 1785**

G.; Taylor, R. *J. Chem.* **SOC.,** *Perkin Trans. 2* **1987, S1-S19.**

Figure 1. Perspective drawings of the central portions of compounds **2** (top) and 3 (bottom). Selected distances **(A)** and angles (deg) are **as** follows. **2:** Ru-Cl, 2.02(1); Cl-C2, 1.20(1); C2-C3, 1.42(2); C3-C4, 1.37(2); C3-O1, 1.43(2); Ru- (15) ; C2-C3-O1, 118(2); C4-C3-O1, 106(2). 3: Ru-C1, 01, 1.44(1); C2-C9, 1.46(1). C1-C2, 175.1(11); C1-C2-C3, 175.2(14); C2-C3-C4, 131.5-1.812(9); C1-C2, 1.35(1); C2-C3, 1.50(1); C3-C4, 1.30(1); C3-

the observation of two doublets in its ³¹P NMR spectrum¹³ indicates that the molecule does not have an effective plane of symmetry in solution. Further, there are three distinct trifluoroacetyl environments by 19 F NMR spectroscopy.¹³ X-ray crystallographic data for 3 were collected at 95 K because of unresolvable disorder present in the crystal at room temperature. The structure of the cation of 3 confirms that it is a vinylidene complex, with the linear $Ru=C1=C2$ group displaying typical $Ru=C_{\alpha}$ and $C_{\alpha}=C_{\beta}$ double-bond lengths. Compound 3 is derived from **2** by attachment of a *trifluoroacetyl* group to C_g . C_γ is bonded to a crystallographically well-ordered trifluoroacetate, with a long C3-01 bond length (1.44(1) **A) as** in **2.** The plane of the vinylidene ligand approximately bisects the pseu-

dosymmetry plane of the $[Ru(PPh_3)_2(Cp)]$ group (dihedral angle (Cp centroid-Ru-C1)- $(C1-C2-C3-C9) = 76.9^{\circ}$). Steric crowding around the large vinylidene substituents is evidenced by several intramolecular contacts shorter than 3.5 A. Restricted rotation of the vinylidene ligand accounts for the ³¹P NMR inequivalence of the PPh₃ ligands. The hydrogen-bonded anion $[H(CF_3CO_2)_2]$ ⁻ (O5-06 distance 2.44(1) A, H not located but confirmed by a ¹H NMR resonance at 10.89 ppm) and a molecule of $CH₂$ -Clz complete the structure of **3.**

Scheme I summarizes the formation of compounds **1-3.** Alkynyl **1** is regioselectively acylated at oxygen by trifluoroacetic anhydride to form **2.** Acylation of **1** at oxygen rather than C_{β} is probably favored by the crowded [Ru- $(PPh₃)₂(Cp)$] environment and by the preference of trifluoroacetic anhydride for the harder oxygen site.16 Compound 2 is acylated at C_β to form 3 in a second, slower step.

Although compound **2** is not significantly ionized to **2a** in solution, trifluoroacetate is readily displaced from **2** by a variety of nucleophiles (Scheme I). In this system, both hard (methanol) and softer (phosphines, pyridine, etc.) nucleophiles attack at C_{γ} , unlike the isoelectronic [Mn- $(C=C=CR_2)(CO)_2(Cp)$] system, in which hard nucleophiles attack the cumulene chain at C_{α} but soft nucleophiles attack at C_{γ} ⁶ The lack of reactivity of C_{α} toward hard nucleophiles in the $[Ru(PPh₃)₂(Cp)]$ system may be due to steric crowding by the bulky ancillary ligands. Further details of the nucleophilic and electrophilic reactivity of **2** are forthcoming.

Acknowledgment. We are grateful to the U.S. Department of Energy (Grant No. DE-FG05-85ER13432) and the Kentucky EPSCoR program (Grant No. DE-FGO2- 91ER75657) for financial support, the University of Kentucky Center for Computational Science for computing time and facilities, the University of Kentucky Major Research Instrumentation Bond Program (ID No. 7E-8E48-25), and the National Science Foundation (Grant. No. CHE-9113581) for equipment and John C. Huffman (Indiana University Molecular Structure Center) for the low-temperature X-ray data.

Supplementary Material Available: Text giving experimental procedures and spectroscopic data for **1-3** and listings of crystal structure data, positional and thermal parameters, bond distances and angles, torsion angles, and least-squares planes for **2** and 3 (29 pages). Ordering information is given on any current masthead page.

OM930020S

⁽¹⁶⁾ Ho, T.-L. *Hard and Soft Acids and Bases Principle in Organic Chemistry;* **Academic Press: New York, 1977.**