Syntheses and Structures of Two Trifluoroacetate-Trapped **Derivatives of a Ruthenium Butatrienylidene Complex**

Jeffrey R. Lomprey and John P. Selegue*

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055

Received January 11, 1993

Summary: The alkynyl ketone $[Ru(C = CCOCHMe_2)]$ -(PPh₃)₂(Cp)] (1) reacts with trifluoroacetic anhydride at ambient temperature to give $[Ru\{C=CC(OCOCF_3) CMe_{2}(PPh_{3})_{2}(Cp)$]-0.5 $Et_{2}O$ (2), an enynyl trifluoroacetate ester which structurally resembles a ruthenium but a trieny lidene cation ($[Ru=C=C=CR_2]^+$) trapped by the attachment of a trifluoroacetate anion to C_{γ} . Compound 1 also reacts with 2 equiv of trifluoroacetic anhydride to form $[Ru{C=C(COCF_3)C(OCOCF_3) CMe_2$ (PPh₃)₂(Cp)] [H(CF₃CO₂)₂] (3), in which C_β of compound 2 has been acylated by a trifluoroacetyl group. The structures of 2 and 3 have been determined by X-ray crystallography.

Many stable transition-metal complexes of cumulated alkylidene ligands, i.e., vinylidene $(L_n M = C = CR_2)^{1-3}$ and allenylidene (propadienylidene, $L_nM=C=C=CR_2)^{1-7}$ complexes, have been isolated and characterized during the past 15 years. Dixneuf and co-workers have inferred the existence of pentatetraenylidene (L_n - $M = C = C = C = CR_2$) complexes by trapping them with alcohols,⁸⁻¹⁰ but no stable or transient metal butatrienylidene complexes ($L_n M = C = C = CR_2$) have yet been described. We report here an attempt to generate a cationic ruthenium butatrienylidene complex and the characterization of the resulting trifluoroacetate-trapped products.

The reaction of [RuCl(PPh₃)₂(Cp)] (Cp = η -C₅H₅),¹¹ Me₃SiC=CCOCMe₂H,¹² and KF in refluxing methanol (Scheme I) results in the formation of [Ru- $(C \equiv CCOCHMe_2)(PPh_3)_2(Cp)]$ (1).¹³ a crystalline, yellow solid which is stable in air indefinitely and in solution for several hours. The reaction between 1 and 1 equiv of trifluoroacetic anhydride (TFA) results in yellow, crystalline [Ru{C=CC(OCOCF₃)CMe₂}(PPh₃)₂(Cp)]·0.5Et₂O (2; 76% yield).¹³ Compound 2 is air-stable as a solid and is stable in dichloromethane solution at -78 °C for many hours but quickly degrades in solution at room temperature. The reaction between 1 and 2 equiv of TFA leads to yellow, crystalline $[Ru{C=C(COCF_3)C(OCOCF_3) CMe_{2}(PPh_{3})_{2}(Cp) [H(CF_{3}CO_{2})_{2}] (3; 86\% \text{ yield}).^{13}$

- Commun. 1990, 1410-1412. (9) Wolinska, A.; Touchard, D.; Dixneuf, P. H.; Romero, A. J. Organomet. Chem. 1991, 420, 217-226.
- (10) Romero, A.; Vegas, A.; Dixneuf, P. H. Angew. Chem., Int. Ed. Engl. 1990, 29, 215. (11) Bruce, M. I.; Hameister, C.; Swincer, A. G.; Wallis, R.; Ittel, S. D.
- Inorg. Synth. 1990, 28, 270-272.
- (12) Stang, P. J.; Fisk, T. E. Synthesis 1979, 6, 438-440.

The spectroscopic properties of 2, in particular alkynyl resonances in its ¹³C NMR spectrum at $\delta_{\rm C}$ 128.9 (C_a, triplet, $^{2}J_{PC} = 31.1$ Hz) and 127.8 (C_{β}, triplet, $^{3}J_{PC} = 4.7$ Hz) and a strong alkynyl infrared stretch at 2025 cm⁻¹, are consistent with the envnvl ester structure shown in Scheme I. The ${}^{2}J_{PC}$ value of 31.1 Hz for C_{α} is large in CD₂Cl₂, perhaps suggesting partial dissociation to the ion pair $[Ru(C=C=C=CMe_2)(PPh_3)_2(Cp)]^+[CF_3CO_2]^-(2a;$ Scheme I). Typically, ${}^{2}J_{PC}$ for [Ru(C=CR)(PPh_{3})_{2}(Cp)] ranges from 0 to ca. 25 Hz (e.g. ${}^{2}J_{PC} = 23.0$ Hz for 1), and ${}^{2}J_{PC}$ for [Ru(C==CR₂)(PPh₃)₂(Cp)]⁺ ranges from ca. 10 to 40 Hz.^{1,14} However, the ionized form 2a was not observable by ¹H NMR spectroscopy. Whereas an equilibrium between 2 and 2a should lead to NMR coalescence of the two methyl groups, their resonances are sharp and distinct in CD₂Cl₂ at 25 °C and in THF-d₈ from 25 to 60 °C. Compound 2 reacts with the more polar solvents nitromethane, acetonitrile, and dimethyl sulfoxide. X-ray crystal structure analysis (Figure 1) shows 2 to have a linear Ru—C==C—C chain, with typical Ru— C_{α} singlebond and $C_{\alpha} = C_{\beta}$ triple-bond lengths. C_{γ} is bonded to a crystallographically disordered trifluoroacetate, satisfactorily refined as two rigid, overlapping CF₃CO₂ groups in 7:3 occupancies. The refined carbon-trifluoroacetate bond lengths (C3-O1, 1.43(2) Å; C3-O1A, 1.65(2) Å) are significantly longer than a typical C-O single bond in an enol ester ($d_{av} = 1.35(2)$ Å in the Cambridge Crystallographic File¹⁵). The enynyl plane (Ru-C1-C2-C3-C4-C5-C6) makes a dihedral angle of 5.3° with the [Ru-(PPh₃)₂(Cp)] pseudosymmetry plane (Cp0-Ru-C1), having the alkenyl group oriented anti to the Cp group (torsion angle Cp0-Ru-C3-C4 = 174.0°).

The spectroscopic properties of 3 are more complicated than those of 2. Its ¹³C NMR spectrum indicates a vinylidene structure ($\delta_{\rm C}$ 344.1, triplet, ${}^2J_{\rm PC}$ = 14.5 Hz), but

(14) Frank, K. G. Ph.D. Thesis, University of Kentucky, 1990.
 (15) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A.

Bruce, M. I. Chem. Rev. 1991, 91, 197-257.
 Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59. (3) Antonova, A. B.; Ioganson, A. A. Russ. Chem. Rev. (Engl. Transl.) 1989. 58. 693.

⁽⁴⁾ Selegue, J. P. Organometallics 1982, 1, 217–218.
(5) Selegue, J. P. J. Am. Chem. Soc. 1983, 105, 5921.

⁽⁶⁾ Berke, H.; Gottfried, H.; Seyerl, J. V. Z. Naturforsch., B 1981, 36, 1277 - 1288.

⁽⁷⁾ Pirio, N.; Touchard, D.; Toupet, L.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1991, 980-982

⁽⁸⁾ Romero, A.; Peron, D.; Dixneuf, P. H. J. Chem. Soc., Chem.

⁽¹³⁾ Selected spectroscopic data are as follows (NMR spectra in CD₂-Cl₂ except as noted; IR spectra in Nujol). 1: ¹H NMR $\delta_{\rm H}$ 7.2 (m, 30 H, Ph), 4.38 (s, 5 H, Cp), 2.39 (sept, ³J_{HH} = 6.94 Hz, 1 H, CHMe₂), 0.98 (d, ³J_{HH} = 6.89 Hz, 6 H, Me); ¹³C[¹H] NMR $\delta_{\rm C}$ 189.0 (s, CO), 143.5 (t, ²J_{PC}) ³J_{HH} = 6.89 Hz, 6 H, Me); ¹³C[¹H] NMR δ_{C} 189.0 (s, CO), 143.5 (t, ³J_{PC} = 23.0 Hz, C_a), 139.5–128.1 (Ph), 121.3 (s, C_d), 86.7 (s, Cp), 42.7 (s, CHMe₂), 19.3 (s, Me); ¹³P[¹H] NMR δ_{F} 50.32 (s, P); IR 2025 (vs, C=C), 1602 (s, CO) cm⁻¹. 2: ¹H NMR δ_{H} 7.30 (m, 30 H, Ph), 4.33 (s, 5 H, Cp), 3.45 (q, ³J_{HH} = 7.02 Hz, 2 H, OCH₂CH₃), 1.86 (s, 3 H, cis-Me), 1.67 (s, 3 H, trans-Me), 1.17 (t, ³J_{HH} = 6.99 Hz, 3 H, OCH₂CH₃); ¹³C[¹H] NMR δ_{C} 155.8 (q, ²J_{FC} = 41.2 Hz, CO), 139.2–127.6 (Ph), 128.9 (t, ²J_{FC} = 31.1 Hz, C_a), 127.8 (t, ³J_{FC} = 4.7 Hz, C_d), 120.5 (s, C_d), 115.4 (q, ¹J_{FC} = 286.6 Hz, CF₃), 105.1 (s, C_γ), 86.0 (s, Cp), 66.0 (s, OCH₂CH₃), 20.5 (s, cis-Me), 17.2 (s, OCH₂CH₃), 15.5 (s, trans-Me); ³¹P[¹H] NMR δ_{P} 51.17 (s, P); IR 2049 (s, C=C), 1782 (s, CO) 2: ¹H NMR (CDL₃), 20.5 (s, 1 H, 20.49 (s), C=C), 1782 (s, CO). 3: ¹H NMR (CDCl₃) δ_H 10.89 (br s, 1 H, O-H-O), 7.10 (m, 30 (s, CO). 3: 'H NMR (CDCl₃) $\partial_{\rm H}$ 10.89 (br s, 1 H, O-H-O), 7.10 (m, 30 H, Ph), 5.22 (s, 5 H, Cp), 1.55 (s, 3 H, trans-Me), 1.30 (s, 3 H, cis-Me); ${}^{13}C_1^{11}H$ NMR δ_C 344.1 (t, ${}^{2}J_{\rm PC}$ = 14.5 Hz, C_a), 177.6 (q, ${}^{2}J_{\rm PC}$ = 34.3 Hz, F₃CCO), 159.0 (q, ${}^{2}J_{\rm PC}$ = 39.4 Hz, F₃CCO), 154.1 (q, ${}^{2}J_{\rm PC}$ = 43.0 Hz, F₃CCO), 134.6–128.9 (Ph), 132.9 (t, ${}^{3}J_{\rm PC}$ = 5.3 Hz, C_g), 127.3 (s, C_{\gamma}), 125.8 (s, C_b), 116.0 (q, ${}^{1}J_{\rm PC}$ = 292.1 Hz, CF₃), 115.3 (q, ${}^{1}J_{\rm PC}$ = 287.9 Hz, CF₃), 114.3 (q, ${}^{1}J_{\rm PC}$ = 285.9 Hz, CF₃), 20.8 (s, trans-Me), 18.9 (s, cis-Me); ${}^{31}P_1^{11}H$ NMR δ_P 39.2, 36.4 (each d, ${}^{2}J_{\rm PP}$ = 25 Hz); ${}^{19}F_1^{11}H$ NMR (376 MHz, CDCl₃) δ_F -74.29 (s), -75.37 (s), -76.59 (s, [H(CF₃CO₂)₂]-); IR 1806 (vs, CO), 1785 (vs, CO), 1734 (vs, CO), 1685 (vs, C=)C cm⁻¹. (vs, CO), 1734 (vs, CO), 1685 (vs, C=C) cm⁻¹

G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.

Scheme I

Figure 1. Perspective drawings of the central portions of compounds 2 (top) and 3 (bottom). Selected distances (Å) and angles (deg) are as follows. 2: Ru-C1, 2.02(1); C1-C2, 1.20(1); C2-C3, 1.42(2); C3-C4, 1.37(2); C3-O1, 1.43(2); Ru-C1-C2, 175.1(11); C1-C2-C3, 175.2(14); C2-C3-C4, 131.5(15); C2-C3-O1, 118(2); C4-C3-O1, 106(2). 3: Ru-C1, 1.812(9); C1-C2, 1.35(1); C2-C3, 1.50(1); C3-C4, 1.30(1); C3-O1, 1.44(1); C2-C9, 1.46(1).

the observation of two doublets in its ³¹P NMR spectrum¹³ indicates that the molecule does not have an effective plane of symmetry in solution. Further, there are three distinct trifluoroacetyl environments by ¹⁹F NMR spectroscopy.¹³ X-ray crystallographic data for 3 were collected at 95 K because of unresolvable disorder present in the crystal at room temperature. The structure of the cation of 3 confirms that it is a vinylidene complex, with the linear Ru=C1=C2 group displaying typical Ru=C_α and C_α=C_β double-bond lengths. Compound 3 is derived from 2 by attachment of a *trifluoroacetyl* group to C_β. C_γ is bonded to a crystallographically well-ordered trifluoroacetate, with a long C3-O1 bond length (1.44(1) Å) as in 2. The plane of the vinylidene ligand approximately bisects the pseudosymmetry plane of the [Ru(PPh₃)₂(Cp)] group (dihedral angle (Cp centroid-Ru-C1)-(C1-C2-C3-C9) = 76.9°). Steric crowding around the large vinylidene substituents is evidenced by several intramolecular contacts shorter than 3.5 Å. Restricted rotation of the vinylidene ligand accounts for the ³¹P NMR inequivalence of the PPh₃ ligands. The hydrogen-bonded anion [H(CF₃CO₂)₂]⁻ (O5-O6 distance 2.44(1) Å, H not located but confirmed by a ¹H NMR resonance at 10.89 ppm) and a molecule of CH₂-Cl₂ complete the structure of **3**.

Scheme I summarizes the formation of compounds 1–3. Alkynyl 1 is regioselectively acylated at oxygen by trifluoroacetic anhydride to form 2. Acylation of 1 at oxygen rather than C_{β} is probably favored by the crowded [Ru-(PPh₃)₂(Cp)] environment and by the preference of trifluoroacetic anhydride for the harder oxygen site.¹⁶ Compound 2 is acylated at C_{β} to form 3 in a second, slower step.

Although compound 2 is not significantly ionized to 2a in solution, trifluoroacetate is readily displaced from 2 by a variety of nucleophiles (Scheme I). In this system, both hard (methanol) and softer (phosphines, pyridine, etc.) nucleophiles attack at C_{γ} , unlike the isoelectronic [Mn-(C=C=CR₂)(CO)₂(Cp)] system, in which hard nucleophiles attack the cumulene chain at C_{α} but soft nucleophiles attack at C_{γ} .⁶ The lack of reactivity of C_{α} toward hard nucleophiles in the [Ru(PPh₃)₂(Cp)] system may be due to steric crowding by the bulky ancillary ligands. Further details of the nucleophilic and electrophilic reactivity of 2 are forthcoming.

Acknowledgment. We are grateful to the U.S. Department of Energy (Grant No. DE-FG05-85ER13432) and the Kentucky EPSCoR program (Grant No. DE-FG02-91ER75657) for financial support, the University of Kentucky Center for Computational Science for computing time and facilities, the University of Kentucky Major Research Instrumentation Bond Program (ID No. 7E-8E48-25), and the National Science Foundation (Grant. No. CHE-9113581) for equipment and John C. Huffman (Indiana University Molecular Structure Center) for the low-temperature X-ray data.

Supplementary Material Available: Text giving experimental procedures and spectroscopic data for 1-3 and listings of crystal structure data, positional and thermal parameters, bond distances and angles, torsion angles, and least-squares planes for 2 and 3 (29 pages). Ordering information is given on any current masthead page.

OM930020S

⁽¹⁶⁾ Ho, T.-L. Hard and Soft Acids and Bases Principle in Organic Chemistry; Academic Press: New York, 1977.