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Summary: Interaction of  (q5-CsMe5)Rh(PMe3)(0Tf)2 
with (*-C&)Pt(PPh3)2 and (*-PhC=CH)Pt(PPh3)2 at 
25 "C in CH2Cl2 results in [((r15-CsMes)(PMe3)Rh(p-H)- 
(p- q2:q1 - CH=CH2)Pt (PPh3)272s-20Tf- and [ (q5- C5- 
Me5) (PMe3)Rh [p- q2:q1PhC=C)Pt  (PPh3)2J2+* 
20Tf- in 72% and 76% isolated yields, respectively, as 
air-stable crystals. 

We wish to report new examples of homogeneous 
intermolecular alkene and alkyne C-H activation by a 
Rh(II1) species of the preformed Pt-?r-complexes and the 
concomitant formation of novel hydride and alkenyl- as 
well as alkynyl-bridged Rh-Pt heterobimetallic complexes. 
These reactions are of interest from the perspective of 
homogeneous C-H activation1p2 by organometallic species 
under mild conditions, potential catalyses, and funda- 
mental structural  consideration^.^*^ 

Reaction of (Ph3P)2Pt(CHeCHz), 1 ,  with 1 equiv of 
(q5-C5Me5)(PMe3)Rh(OS02CF3)2,5 2, in CH2C12 a t  25 "C 
for 2 h gave, after workup, [(q5-C5Me5)(PMe3)Rh(p- 
H)(p-q2:q1-CH=CH2)Pt(PPh3)2l2+.20Tf-, 3, in 72% iso- 
lated yield as air-stable yellow crystalse (Scheme I). 
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Likewise, reaction of (PhaP)aPt(HC=CPh), 4, with 2 in 
CH2C12 at  -40 "C with slow warming to 25 "C over 14 h 
gave, a f t e r  workup,  [(q5-C5Me5) (PMea)Rh(p-  
H)(p-q2:q1-Ph~)Pt(PPha)2I2+.20Tf, 5, in 76 7% isolated 
yield as air-stable red crystals7 (Scheme I). 

The structures of complexes 3 and 5 were established 
by multinuclear NMR spectroscopy, elemental analysis, 
and analogy to literature data including an X-ray structure 
for an Ir analogue of 3.4 Specifically, for complex 3 in the 
31P(1HJ NMR, as expected, shows three distinct signals at 
8.97 ppm with a J p - m  = 118 Hz corresponding to the Me3P 
group, whereas the signals at  18.8 ppm with a Jp-pt = 2300 
Hz and 15.9 ppm with a Jp-pt = 3829 Hz correspond to the 
two Ph3P groups. In the lH spectrum a particularly 
characteristic feature is the bridging hydride centered at  
-12.1 ppm with Pt-H satellites of JpeH = 541 Hz. In the 
13C11HJ NMR, the bridging ethylene signals are at  162.5 
ppm and at  75.7 ppm for 3, respectively. Likewise, for 5, 
the 31P(1H) NMR signals are a t  5.72 ppm with a JRh-p = 
135 Hz, corresponding to the Me3P group, and the two 
Ph3P groups are at  17.9 ppm with Jptp = 2941 Hz and 
16.2 ppm with a J p e p  = 3226 Hz, respectively. The 
bridging hydride is centered at  -10.2 ppm with a J ~ - H  = 
79.4 Hz and Pt satellites with a JP&H = 588 Hz. In the 
13C(lH) NMR spectra the alkyne carbon signals are a t  118.9 
and 27.6 ppm, respectively. Moreover, the characteristic8 
J P ~ H  values and the absence of both terminal Pt-H and 

( 6 )  Data  for  3: m p  195-197 "C dec.  Anal. Calcd for 
C53H58P3S206FsRhPt.CH2Cl~: C, 44.89; H, 4.19; S, 4.44. Found C, 45.00; 
H, 4.15; S, 4.40. IR (CHC13): 1266 (e), 1150 (m), 1030 (8 )  cm-1 (OS02CF3). 
'H NMR (CD2C12, ppm): 7.47-7.18 (m, 30H, C&), 4.62-4.26 (m, lH, 
JH-P = 11 Hz, J p t - ~  = 84 Hz, C H d H ) ,  3.87-3.76 (m, lH, C H H H ) ,  
1.77 (d, 15H,J~-p = 3.3 Hz, C5Me5), 1.62 (d, 9H, JH-P = 10.9 Hz, PMea), 

Clp, ppm): 162.5 (m, VC-P = 84.9 Hz, 2 J ~ - ~  = 8.8 Hz, 2 J ~ - p  = 4.7 Hz, 
-12.1 (m, 1H, JH-Rh = 64 HZ, JH-P~ = 541 HZ, P-H). I3C('H) NMR (CDz- 

C H H H ) ,  133.9 (dd, Jc-p = 11.4 Hz, Jc-p = 5.0 Hz), 132.2 (dd, Jc-p 
= 9.7 Hz, Jc-p = 2.0 Hz), 132.1 (dd, Jc-p = 178.7 Hz, 128.0 Hz), 129.5 
(dd, Jc-p = 11.2 Hz, Jc-p = 8.6 Hz, P(C&)3), 121.2 (q, JC-F = 320 Hz, 
CFBOd, 107.5 (d,JRhd = 5 Hz,C5Me5),75.7 (d,Jc-p = 7.3 H z , C H d H ) ,  
18.7 (d, Jc-P = 35.1 Hz, PMeS), 10.6 (8 ,  C5Me5). 31P(1H) NMR (CDpCl2, 
ppm, H3P04): 18.8 (dd, 'Jp-p = 20 Hz, Jp-Rh 3.50 Hz, 'Jp-pt = 2300 

Jp-pt = 3829 Hz, Pt-p), 8.97 (dd, 3Jp-p = 6.9 Hz, Jp-Rh  = 118 Hz, *Jp-pt 
HZ, Pt-P), 15.9 (m, 'JP-P 20 Hz, 3 J ~ - ~  6.9 Hz, JP-Rh = 5.40 Hz, 

= 43 Hz, Rh-P). 19F NMR (CD2C12, ppm, CFC13): -76.7 (8, CFsS03). 
( 7 )  D a t a  for  5: m p  217-218 OC dec. Anal. Calcd  for 

C59H,&'&06F&thPt: C, 49.41; H, 4.22; S, 4.47. Found: C, 49.52; H, 
4.26; S, 4.57. IR (CHZCh): 2030 (w) ( C W ) ,  1266 (a), 1155 (m), 1032 (e), 
cm-I (OS02CF3). 'H NMR (CDZClz ppm): 7.55-6.94 (m, 35H, C&), 
1.62 (d, 1 5 H , J ~ - p  = 2.9 Hz, CbMes), 1.58 (d, ~ H , J H - P  = 11.2 Hz, PMeS), 

(CDZC12, ppm): 134.1 (dd, JC-P = 15.8 Hz, Jc-p = 11.2 Hz), 132.5 (dd, 

P h C S ) ,  106.0 (dd, JC-Rh = 2.4 Hz, Jc-P = 6.1 Hz, C5Me5), 27.6 (8 ,  

= 2941 Hz, Pt-P), 16.2 (m, 2Jp-p = 21.6 Hz, Vp-p  

Hz, Up-pt  = 30.1 Hz, Rh-P). 19F NMR (CDZC12, ppm, CFCln): -77.1 
(8 ,  CF3S03). 

-10.2 (m, lH, JH-Rh  79.4 Hz, JH-Pt = 588 Hz, P-H). "C('H) NMR 

Jc-p = 20 Hz, Jc-p = 3 Hz), 129.5 (dd, Jc-p = 35 Hz, Jc--p 11 Hz, 
P(CsHs)3, 121.8 (q, Jc-F = 319 Hz, CF3SOs), 118.9 (d, Jc-p = 2.4 Hz, 

P h C s ) ,  18.3 (d, Jc-p = 33 Hz, PMes), 10.5 (8 ,  CsMes). SlP('H) NMR 
(CDzC12 ppm, H3PO1): 17.9 (dd, 'Jp-p = 21.6 Hz, Jp-Rh  4.3 Hz, 'Jp-pt 

5.5 Hz, 'Jp-pt = 3226 HZ, Pt-P), 5.72 (dd, Vp-p  = 6.4 Hz, Jp-Rh = 135 
6.4 Hz, J p - ~ h  
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erally occur in the 19F NMR below -78 ppm (for example 
the 19F of the starting material 2 is a t  -78.5 ppm) whereas 
ionic CF3S03- signals resonate around -77 ppm and are 
a t  -76.7 and -77.1 ppm for 3 and 5, respectively. Similarly, 
the IR absorptions at  1266,1150, and 1030 cm-l for 3 and 
1266,1155, and 1032 cm-' for 5 are characteristic of ionic 
triflate, as covalent triflate is shifted to higher wavelengths, 
usually around 1380 cm-l.12 

Compounds 3 and 5 also represent a novel class of Rh- 
Pt heterobimetallic species, besides the olefin C-H acti- 
vation, at  or below room temperature, in the absence of 
photochemical or any other initiation. To our knowledge, 
there are only four other stable Rh-Pt heterobimetallic 
complexes reported to date.13 

In conclusion, reaction of the rhodium(II1) bis(triflate) 
complex 2 with either ?r-ethylene-Pto 1 or *-acetylene 
Pto 4 results in olefin or alkyne C-H activation under very 
mild conditions as well as the ready formation of novel 
heterobimetallic Rh-Pt complexes 3 and 6. To our 
knowledge these reactions represent one of the few 
examples of C-H activation by rhodium(II1) and the first 
example of olefin and alkyne C-H activation of a prior 
?r-complexed alkene and alkyne by Rh. Moreover, com- 
plexes 3 and 5 are new members of the select family of 
Rh-Pt heterobimetallic compounds. 
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9101767) for financial support and Johnson-Matthey, Inc., 
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Supplementary Material Available: lH and 31P NMR 
spectra for 3 and 5 (4 pages). Ordering information is given on 
any current masthead page. 
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Rh-H absorptionsg in the IR spectra7 further support a 
Rh-Pt bimetallic bridging hydride moiety in 3 and 5. 

The spectral data for 5 compare favorably with the 
related rhenium complex 6 recently reported by Top and 
co-workers.1° In particular the bridging hydride in the lH 
spectrum for 6 is at  -11.5 ppm compared to -10.2 ppm for 
5 and the PhC*-Re signal in the 13C spectrum is at  
101.78 ppm for 6 and at  118.9 for 5. 

6 

The presence of the CF3S03 counterion in both 3 and 
5 is supported by both the 19F NMR signals and the IR 
absorptions.ll Specifically, covalent triflate signals gen- 

~ 
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