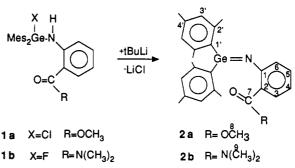
Novel Stable Germanimines: Synthesis and **Characterization of Dimesitylgermanimine Derivatives of** Methyl Anthranilate and N.N-Dimethylanthranilamide

Monique Rivière-Baudet,* Abdelhay Khallaayoun,† and Jacques Satgé

Laboratoire de Chimie des Organominéraux, URA 477 du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France

Received December 22, 1992


Summary: The title compounds (2a and 2b) are novel, thermally stable germanimines formed by dehydrohalogenation of the corresponding precursor halogermylamines with tert-butyllithium; each undergoes protic dipolar addition and 1,3-cycloaddition reactions, characteristic of germanium-nitrogen double bonds.

Ever since the first reports^{1,2} of transient intermediates having germanium doubly bonded to nitrogen, the isolation and structure determination of stable crystalline germanimines have been of particular interest. Among the dozen stable germanimines reported to date,³ only three have been characterized by X-ray diffraction. Each was prepared by the reaction between an azide and a germylene: specifically, a bulky azide with either poly(cycloazasilagermylene)⁴ or a sterically hindered diazagermylene.⁵ In our own search for a convenient and general synthesis of germanimines, we have explored the dehydrohalogenation reaction of halogermyl secondary amines. Although dehydrohalogenation has proved to be an effective route to doubly bonded germanium species such as germaphosphenes and germenes,^{6,7} preliminary attempts to obtain a stable germanimine in this way failed because the reactivity of the halogermylamine precursor decreases as internal steric hindrance increases.8 To overcome this difficulty, we have recently prepared a series of precursors,^{9,10} including 1a, each having a germanium-halogen bond whose reactivity is enhanced by the electronwithdrawing effect of the substituent on the nitrogen and/ or by nucleophilic assistance on germanium. We now report the synthesis and physicochemical data characterizing the title dimesitylgermanimines of methyl anthranilate (Mes₂Ge=NAE; 2a) and N,N-dimethylanthranilamide (Mes₂Ge=NAA; 2b) and the new precursor 1b. Preliminary results on the chemical behavior of these new stable germanimines are also included.

[†] On leave from the University Ibnou Zohr, Agadir, Morocco.

(5) Meller, A.; Ossig, G.; Maringgele, W.; Stalke, D.; Herbst-Irmer, R.; Freitag, S.; Sheldrick, G. M. J. Chem. Soc., Chem. Commun. 1991, 1123.

Scheme I

Compounds 2a¹¹ and 2b¹³ were prepared by treatment of 1a¹⁰ and 1b¹² with tBuLi (Scheme I). The lower yield obtained for 2a compared with 2b is due to the well-known secondary reactions of tBuLi with the ester carbonyl

(12) Synthesis of 1b. AANHLi (2.15 \times 10⁻³ mol) (prepared from AANH₂²⁶ (0.354 g, 2.15 \times 10⁻³ mol) and tBuLi (2.15 \times 10⁻³ mol)) was added dropwise to a solution of Mes_2GeF_2 (0.75 g, 2.15 × 10⁻³ mol) in C_6H_6 (6 mL). After removal of LiF by centrifugation and evaporation of solvents in vacuo, the residue was dissolved in pentane (at 30 °C) and then evaporated, leaving 1b as an amorphous white powder (0.949 g, 90% yield): mp 136 °C after reprecipitation from pentane. IR (CDCl₃): 1621 (ν (C=O)), 3365 (ν (NH)). ¹H NMR (CDCl₃, 80 MHz): δ 2.27 (s, 6H, p-Me), 2.40 (d, 12H, o-Me, $J_{\rm HF}$ = 1.3 Hz), 6.84 (s, 4H, C₆H₂), 3.02 (s, 6H, NMe₂), 5.56 (d, 1 H, NH, $^3 J_{\rm HF}$ = 4.5 Hz), 6.57–7.15 (m, 4H, C₆H₄). 13 C NMR (CDCl₃, 50.3 MHz): δ 130.33 (C₁), 143.71 (C₂), 129.53 (C₃), 140.74 (C₄), 13 C NMR (22.77 (o-Me), 21.14 (p-Me), 146.28 (C₁), 121.80 (C₂), 123.00 (C₃), 147.17.36 (C₄, C₆), 130.74 (C₅), 37 (broad, C₉), 171.45 (C₇). ¹⁹F NMR (CF₃COOH, 75 MHz): δ -82.33 (s, ¹H decoupled). MS (EI, 70 eV): m/z 494 (M⁺, 6); 475 (M⁺ - F, 3), 450 (M⁺ - NMe₃, 6), 375 (M⁺ - Me₅, 39). Anal. Calcd for C₂₇H₃₃GeN₂OF: C, 65.76; H, 6.74; N, 5.68. Found: C, 65.72; H, 6.85; N, 5.64.

⁽¹⁾ Rivière-Baudet, M.; Rivière, P.; Satgé, J. J. Organomet. Chem. 1978. 154. C23

⁽²⁾ Rivière, P.; Cazes, A.; Castel, A.; Rivière-Baudet, M.; Satgé, J. J. Organomet. Chem. 1978, 155, C58.

⁽³⁾ Escudié, J.; Couret, C.; Ranaivonjatovo, H.; Satgé, J. Coord. Chem. Rev., in press

⁽⁴⁾ Veith, M.; Becker, S.; Huch, V. Angew, Chem., Int. Ed. Engl. 1990, 29, 216.

⁽⁶⁾ Barrau, J.; Escudié, J.; Satgé, J. Chem. Rev. 1990, 90, 283. (7) Satgé, J. J. Organomet. Chem. 1990, 400, 121

⁽⁸⁾ Rivière-Baudet, M.; Khallaayoun, A.; Satgé, J.; Ahra, M. Synth.

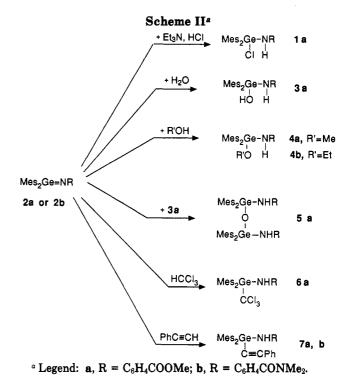
React. Inorg. Met.-Chem. 1992, 22, 683. (9) Rivière-Baudet, M.; Rivière, P.; Castel, A.; Morère, A.; Abdennhader, C. J. Organomet. Chem. 1991, 409, 131. (10) Rivière-Baudet, M.; Morère, A.; Khallaayoun, A.; Satgé, J. Main

Group Met. Chem. 1992, 15, 255.

⁽¹¹⁾ Synthesis of 2a. With the rigorous exclusion of moisture, to a solution of 1a¹⁰ (2.400 g, 4.84 × 10⁻³ mol) in THF (8 mL) at -78 °C was added an equimolar amount of tert-butyllithium (1.7 M in pentane). After the mixture had been kept between -78 and -20 °C for 3 h and the solvents were replaced by $C_6 \hat{H_6}$, LiCl was removed by centrifugation, at which stage the solution was deep red; the resulting crystals of 2a (0.38 g, 17% yield) were yellow, however, once recrystallized from Et_2O at -30 °C: mp 201 °C. IR (Nujol): 1738 (ν (CO)) cm⁻¹. UV (cyclo-C₆H₁₂): 261 (58 860, 282 (34 385), 343 (23 831), 391 (11 715) nm. ¹H NMR (CDCl₃, 80 MHz): δ 2.13 (s, 6H, p-Me), 2.29 (s, 12H, o-Me), 6.55 (s, 4H, C₆H₂), 3.65 (s, 3 H, OMe), 7.45 (m, 1 H, H₃), 6.68 (s, 2H, H₄, H₅), 6.65 (s, 1 H, H₆), ^{13}C NMR (CDCl₃, 50.3 MHz): δ 134.32 (C₁'), 142.94 (C₂'), 128.60 (\mathbb{C}_3) , 137.93 (C₄), 23.93 (o-Me), 20.91 (p-Me), 151.07 (C₁), 126.28 (C₂), 129.24 (C₃), 131.39 (C₅), 120.40 (C₆), 169.03 (C₇), 51.59 (C₈). MS (DCI, CH₄): m/z 462 (M + 1, 100). MS (EI, 70 eV): m/z 461 (M⁺, 30), 446 (M⁺ - Me, 17), 430 (M⁺ - OMe, 4), 402 (M⁺ - COOMe, 1). Anal. Calcd for $C_{26}H_{29}NGeO_2$: C, 67.87; H, 6.35; N, 3.04. Found: C, 67.66; H, 6.59; N, 2.80

⁽¹³⁾ Synthesis of 2b: Experimental conditions were identical with those used to prepare 2a. 2b was a white precipitate (2 g, 85% yield) in THF when the reaction mixture (1b, 5×10^{-3} mol, and tBuLi, 5×10^{-3} mol) was brought to room temperature: mp 194-200 °C dec. IR (CDCl₃): 1634 cm⁻¹ (ν (C=O)). ¹H NMR (CDCl₃, 80 MHz): δ 2.15 (s, 6H, p-Me), 2.25 (s, broad, 12H, o-Me), 2.67 (s, 3H, NMe), 2.77 (s, 3H, NMe), 6.57 (s, 4H, C₆H₂), 6.69–7.00 (m, 4H, C₆H₄). ¹³C NMR (CDC), 50.3 MH₂): δ 132.33 (C₁), 142.98 (C₂), 128.72 (C₃), 137.79 (C₄), 20.89 (o-Me), 24.40 (p-Me), 148.88 (C₁), 131.58 (C₂), 124.13 (C₃), 151.15 (C₄), 26.55 (C₅), 120.50 (C₆), 170.53 (C₇), 39.16, 34.34 (C₉); MS (DCI, CH₄): m/z 475 (M⁺ + 1, 15). MS (EI, 70 eV): m/z 459 (M⁺ - Me, 3), 430 (M⁺ - MMe₂, 1), 355 (M⁺ - Mes, 3). Anal. Calod for C₂₇H₃₂N₂GeO: C, 68.54; H, 6.81; N, 5.92. Found: C, 68.55; H, 6.89; N, 5.80.

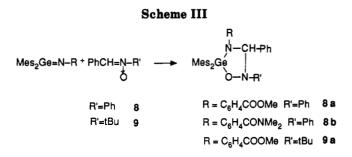
1004 Organometallics, Vol. 12, No. 4, 1993


group.¹⁴ Both 2a and 2b are very stable thermally (up to 190 °C for 2b), provided moisture is excluded. The purities of 2a and 2b were confirmed by elemental and spectroscopic analyses. Parent molecular ions are present in mass spectra, which also show the absence of polygermylated fragments that would be expected if oligomerization had occurred.

(14) Rivière-Baudet, M.; Morère, A. J. Organomet. Chem. 1992, 431, 17.

(15) Et₃N·HCl (0.006 g, 0.04×10^{-3} mol) dissolved in CDCl₃ was slowly added to 2a (0.020 g, 0.04×10^{-3} mol). After 45 min at 40 °C, NMR analysis confirmed the formation of $1a^{10}$ while the germanimine had completely disappeared.

(16) Synthesis of **3a** and **5a**. Aqueous $CDCl_3$ was added gradually to **2a** (0.073 g, 0.16 × 10⁻³ mol) dissolved in 2 mL of $CDCl_3$, and the mixture was heated to 50 °C. After 15 min there were 19% of **3a** and 81% of **2a**. After 90 min, addition of 3a to 2a gave 5a (72%) and 28% of 3a remained. After 2 h and evaporation of solvents, a residue of pure 5a remained After 2 h and evaporation of solvents, a residue of pure sa remained which was recrystallized from pentane (0.10 g, 67% yield): mp 185 °C. IR (CDCl₂): 3357 (ν (NH)), 1689 (ν (C=O)), 789 cm⁻¹. (ν (GeOGe)). ¹H NMR (CDCl₃, 80 MHz): δ 2.30 (s, 12H, o-Me), 2.16 (s, 6H, p-Me), 6.59 (s, 4H, C₆H₂), 3.77 (s, 3H, OMe), 8.10 (s, 1H, NH); C₆H₄, 7.37 (ddd, 1 H, H₂), 6.37 (ddd, 1H, H₄), 6.68–6.77 (m, 2H, H₅, H₆) (J(3–4) = 8 Hz, J(3–6) = 0.5 Hz, J(4–6) = 2.3 Hz, J(3–5) = 1.4 Hz; J(4–5) = 6 Hz). ¹³C NMR (CDCl₄, 52 ML₃), 5.124 24 (C₄), 142 95 (C₃), 129 26 (C₃), 138.84 (C₄). = 0.5 Hz, J(4-6) = 2.3 Hz, J(3-6) = 1.4 Hz; J(4-6) = 6 Hz). ¹⁵C NMR (CDCl₃, 50.3 MHz): δ 134.34 (C₁·), 142.95 (C₂·), 129.26 (C₃·), 138.48 (C₄·), 23.13 (o-Me), 20.97 (p-Me), 152.07 (C₁), 112.55 (C₂), 130.90 (C₃), 118.64 (C₄), 132.55 (C₅), 115.19 (C₆), 168.64 (C₇·), 51.31 (C₈). MS (DCl, CH₄): m/z 967 (M⁺ + 29, 1), 939 (M⁺ + 1, 20), 937 (M⁺ - 1, 19). MS (EI, 70 eV): m/z 788 (M⁺ - NHAE, 9). Anal. Calcd for C₅₂H₆₀Ge₂N₂O₅: C, 66.57; H, 644; N, 2.98. Found: C, 66.84; H, 6.49; N, 2.87. Compound **3a** was disting the merican circle state identified by comparison with an authentic sample prepared by hydrolysis to the mixture was heated for 18 h at 50 °C in a sealed tube. After Et₃GeCl the mixture was heated for 18 h at 50 °C in a sealed tube. After Et₃(JeCl and C₆H₆ were pumped away, pure Mes₂Ge(NMe₂)NHAE remained as a viscous liquid (0.387 g, 96% yield). IR (CDCl₃): 3324 (ν (NH)), 1679 (ν (C==O)), 1219 cm⁻(ν (COC)). ¹H NMR (CDCl₃, 80 MHz): δ 2.23 (s, 6H, p-Me), 2.38 (s, 12H, o-Me), 6.80 (s, 4H, C₆H₂), 2.54 (s, 6H, NMe₂), 3.79 (s, 3H, OMe), 7.83 (s, 1H, NH); C₆H₄, 7.86 (ddd, 1H, H₃), 6.51 (ddd, 1 H, H₄), 7.12 (ddd, 1H, H₅), 6.59 (ddd, 1 H, H₆) (J(3-4) = 8 Hz, J(3-6) = 0.5Let J(4-2) = 1.0 Hz, J(3-6) = 1.0 Hz, J(4-5) = 0.0 Hz, J(3-6) = 0.5 J Let H₄), 7.12 (ddd, 1H, H₃), 6.59 (ddd, 1 H, H₆) (J(3-4) = 8 Hz, J(3-6) = 0.5 Hz, J(4-6) = 1.2 Hz, J(3-5) = 1.8 Hz, J(4-5) = 6.8 Hz, J(5-6) = 8.7 Hz). ¹³C NMR (CDCl₃, 50.3 MHz): δ 133.66 (C₁), 143.29 (C₂), 129.48 (C₃), 138.92 (C₄), 22.44 (o-Me), 21.01 (p-Me), 39.67 (NMe₂), 153.60 (C₁), 112.32 (C₂), 131.38 (C₃), 118.30 (C₄), 133.51 (C₅), 114.88 (C₆), 169.20 (C₇), 51.40 (C₈). MS (EI, 70 eV): m/z 507 (M⁺ + 1, 1), 491 (M⁺ - Me, 67), 355 (M⁺ - AENH₂, 17). Mes₂Ge(NMe₂) NHAE (0.700 g, 1.38 × 10⁻³ mol) in benzene (5 mL) was exposed to moist air until white needles of 3a appeared. Evaporation of benzene left 3a, which was reprecipitated in pentane (0.25 g, 38% yield): mp 82 °C. IR (CDCl₃): 3316 (ν (NH)), 3632 (ν (OH)), 1682 cm⁻¹ (ν (C=O)), ⁻¹H NMR (CDCl₃, 80 MHz: δ 2.43 (s, 12H, o-Me), 2.26 g, 0-10 (μ(C=O)). ¹H NMR (CDCl₃, 80 MHz; δ 2.43 (s, 12H, o-Me), 2.26 (s, 6H, p-Me), 6.84 (s, 4H, C₆H₂), 2.61 (s, 1H, OH), 3.81 (s, 3H, OMe), 8.01 (s, 1H, NH), 7.90 (dd, 1H, H₃), 6.59 (ddd, 1H, H₄), 7.17 (ddd, 1H, H₅), 6.99 (ddd, 1H, H₆), (J(3-4) = 8 Hz, J(3-6) = 0.6 Hz, J(4-6) = 1.7 Hz, J(4-6) = 6.5 Hz, J(5-6) = 8.4 Hz, J(3-6) = 0.6 Hz, J(4-6) = 1.7 Hz, J(4-6) = 6.5 Hz, J(5-6) = 8.4 Hz, J(3-6) = 0.6 Hz, J(4-6), 21.10 (p-Me), 152.61 (C₁), 112.75 (C₂), 131.64 (C₃), 117.80 (C₄), 134.15 (C₅), 116.08 (C₆), 169.21 (C₇), 51.51 (C₈). MS (EI, 70 eV): m/z 479 (M⁺, 9), 462 (M⁺ − OH, 4), 447 (M⁺ − MeOH, 3), 360 (M⁺ − Mes, 7), 329 (M⁺ − NHAE, 38). Anal. Calcd for C₂₆H₃₁MGeO₃: C, 65.31; H, 6.53; N, 2.93. Found: C, 65.44; H, 6.62; N, 3.03. (17) Synthesis of 4a. To 2a (0.150 g, 0.32 × 10⁻³ mol) dissolved in 2 mL of C₆H₆ was added 1 mL of a solution of CH₃OH (10 g L⁻¹) in C₆H₆ (0.32 mol), and the mixture was agitated for 1 h at 50 °C. After the solvents were evaporated, the viscous residue was identified as 4a (0.16


(0.52 mol), and the mixture was agriculated for 1 matrix 10^{-1} of 10^{-1} mixture was solvents were evaporated, the viscous residue was identified as 4a (0.16 g, 99% yield). IR (CDCl₃): 3319 (ν (NH)), 1681 (ν (C=O)), 1221 cm⁻¹ (ν (COC)). ¹H NMR (CDCl₃, 80 MHz): δ 2.48 (s, 12H, o-Me), 2.25 (s, 6H, Me) (ν) (λ) ((μ (COC)). If NMR (CDC)₃₃ 50 MH2): 92.43 (s, 12H, 0-MB), 2.25 (s, 6H, p-Me), 6.83 (s, 4H, C₆H₂), 3.54 (s, 3H, GeOMe), 3.84 (s, 3H, COOMe), 8.23 (s, 1H, NH), 7.87 (ddd, 1H, H₃), 6.55 (ddd, 1H, H₄), 7.14 (ddd, 1H, H₅), 6.94 (ddd, 1H, H₆) (J(3-4) = 8 Hz, J(3-6) = 0.5 Hz, J(4-6) = 1.7 Hz, J(4-5) = 6.5 Hz; J(5-6) = 8.5 Hz, J(3-5) = 1.7 Hz). 13 C NMR (CDC)₃, 50.3 MH2): δ 131.77 (C₁), 143.49 (C₂), 129.57 (C₃), 139.76 (C₄), 23.15 (o-Me), 21.07 (p-Me), 51.67 (GeOMe), 153.01 (C1), 112.59 (C2), 131.41 $\begin{array}{l} (C_{1}), 115.96 \ (C_{4}), 133.96 \ (C_{5}), 117.97 \ (C_{6}), 169.31 \ (C_{7}), 51.50 \ (C_{5}). \ MS \ (EI, 70 \ eV): \ m/z \ 493 \ (M^+, 10), 374 \ (M^+ - Mes, 5), 342 \ (M^+ - AENH_2, 64). \ To \ 2b \ (0.302 \ g, 0.64 \times 10^{-3} \ mol) \ was added a solution of ethanol \ (0.029 \ g, 0.64 \ (0.029 \ g, 0.64$ \times 10⁻³ mol) in 2 mL of chloroform. After evaporation of the solvents, the \times 10⁻³ mol) in 2 mL of chloroform. After evaporation of the solvents, the residual white powder was washed with pentane, dried, and identified as 4b (0.29 g, 88% yield): mp 172 °C. IR (CDCl₃): 3384 (ν (NH)), 1619 cm⁻¹ (ν (C=O)). ¹H NMR (CDCl₃, 80 MHz): δ 2.46 (s, 12H, o-Me), 2.23 (s, 6H, p-Me), 6.79 (s, 4H, C_6H₂), 3.73 (q, 2H, CH₂), 1.17 (t, 3H, CH₃, J(CH₂CH₃) = 7 Hz), 5.62 (s, 11H, NH), 2.99 (s, 6H, NMe₂), 6.50–7.00 (m, 4H, C₆H₄). ¹³C NMR (CDCl₃, 50.3 MHz): δ 132.04 (C₁), 143.41 (C₂), 129.53 (C₃), 139.55 (C₄), 130.15 (C₅), 116.64 (C₆), 171.83 (C₇), 19.03 (CH₃), 59.43 (CH₂). MS (EI, 70 eV): m/z 520 (M⁺, 12), 475 (M⁺ – OEt, 25), 357 (M⁺ – NHAA, 58). Anal. Calcd for C₂₉H₃₈GeN₂O₂: C, 67.08; H, 7.37; N, 5.39. Found: C, 66.87; H, 7.42; N, 5.30.

The reactivities of 2a and 2b were examined in protic dipolar addition reactions, which yielded the expected¹⁴ compounds 1,¹⁵ 3,¹⁶ and 4¹⁷ (Scheme II). New addition reactions across the germanium-nitrogen double bond gave the new adducts 5,¹⁶ 6,¹⁸ and 7,¹⁹ which have interesting

⁽¹⁸⁾ Synthesis of 6a. In a sealed tube, 2a (0.15 g, 0.32×10^{-3} mol) was dissolved in 1 mL of CHCl₃ and the mixture was heated for 4 h at 50 °C,

⁽¹⁸⁾ Synthesis of 6a. In a sealed tube, 2a (0.15 g, 0.32×10^{-3} mol) was dissolved in 1 mL of CHCl₃ and the mixture was heated for 4 h at 50 °C, resulting in 6a (0.16 g, 90% yield) as a viscous liquid. IR (CDCl₃): 3341 (ν (NH)), 1689 (ν (C=O)), 1227 cm⁻¹ (ν (COC)). ¹H NMR (CDCl₃, 80 MHz): δ 2.49 (s, 12H, o-Me), 2.25 (s, 6H, p-Me), 6.83 (s, 4H, C₆H₂), 8.08 (s, 1H, NH), 3.87 (s, 3H, OCH₃), 7.85 (ddd, 1H, H₃), 6.51 (ddd, 1H, H₄), 6.89 (ddd, 1H, H₄), 6.60 (ddd, 1H, H₆) (J(3-4) = 7.6 Hz, J(3-6) = 0.8 Hz, J(4-6) = 1.6 Hz, J(3-5) = 1.8 Hz, J(4-5) = 6.7 Hz, J(5-6) = 8.5 Hz). ¹³², J(4-6) = 1.6 Hz, J(3-5) = 1.8 Hz, J(4-5) = 6.7 Hz, J(5-6) = 8.5 Hz). ¹³², J(4-6) = 1.6 Hz, J(3-5) = 1.8 Hz, J(4-5) = 6.7 Hz, J(5-6) = 8.5 Hz). ¹³², O(p-Me), 24.70 (o-Me), 77.63 (CCl₃), 154.76 (C₁), 131.40 (C₃), 117.95 (C₄), 133.25 (C₅), 116.35 (C₆), 51.66 (OCH₃), 172.55 (C₇). MS (DCI, CH₄): m/z 580 (M⁺, 13), 462 (M⁺ - CCl₃, 19), 608 (M⁺ + 29, 3). MS (EI, 70 eV): m/z 497 (M⁺ - CCl₂, 7), 461 (M⁺ - CHCl₃, 5). (19) Synthesis of 7a. In a sealed tube, 2a (0.120 g, 0.26 × 10⁻³ mol) and PhC=CH (0.026 g, 0.26 × 10⁻³ mol) dissolved in 1 mL of C₆D₆ were heated for 14 h at 100 C, after which an amorphous white powder of 7a was recovered (0.09 g, 61% yield): mp 65 °C. IR (CDCl₃): 3316 (ν (NH)), 1679 (ν (C=O)), 1221 (ν (COC)), 2160 cm⁻¹ (ν (C=C)). ¹H NMR (CDCl₃, 80 MHz): δ 2.53 (s, 12H, o-Me), 2.29 (s, 6H, p-Me), 6.88 (s, 4H, C₆H₂), 7.79 (s, 1H, NH), 3.82 (s, 3H, OCH₃), 7.93 (ddd, 1H, H₃), 6.60 (ddd, 1H, H₄), 6.90-7.50 (m, 7H, C₆H₅, H₅, H₆) (J(3-4) = 8 Hz, J(3-6) = 0.7 Hz, J(4-6) = 2 Hz, J(3-5) = 1.6 Hz, J(4-5) = 6.2 Hz). ¹³C NMR (CDCl₃, 50.3 MHz): δ 132.64 (C₁), 143.98 (C₂), 129.90 (C₃), 139.79 (C₄), 21.21 (p-Me), 23.57 (o-Me), 153.22 (C₁), 129.90 (C₃), 139.79 (C₄), 21.21 (p-Me), 23.57 (o-Me), 153.22 (C₁), 129.90 (C₃), 139.79 (C₄), 21.21 (p-Me), 23.57 (o-Me), 153.22 (C₁), 129.37 (CPh), 106.57 (CGe). MS (C₄), 133.7 \times 10⁻³ mol) dissolved in a mixture of benzene (3 mL) and pentane (1 mL). Synthesis of 7b. A mixture of 2b (0.255 g, $0.54 \times 10^{-3} \text{ mol}$) and PhC=CH (0.055 g, $0.54 \times 10^{-3} \text{ mol}$) and PhC=CH (0.055 g, $0.54 \times 10^{-3} \text{ mol}$) in 3 mL of C₆H₆ was heated for 14 h at 100 °C in a sealed tube. After evaporation of the solvent, the residual white powder (0.28 g, 90% yield) was identified as 7b: mp 52 °C. IR (CDCl₃): 3383 (ν (NH)), 1620 (ν (CO)), 2160 (ν (C \equiv C)). ¹H NMR (CDCl₃, 80 MHz): δ 2.50 (s, 12H, o-Me), 2.27 (s, 6H, p-Me), 6.85 (s, 4H, C₆H₂), 6.50-7.50 (m) H, C₆H₅, C₆H₄), 4.86 (s, 1H, NH), 2.99 (s, 6H, NMe₂). ¹³C NMR (CDCl₃, 50.3 MHz): δ 131.87 (C₁), 143.85 (C₂), 129.72 (C₃), 139.62 (C₄), 21.09 (p-Me), 23.37 (o-Me), 146.95 (C₁), 122.50 (C₂), 127.88 (C₃), 117.74 (C₄), 129.98 (C₅), 116.16 (C₆), 171.73 (C₇); PhC=C, 123.46 (C₁), 131.59 (C₂), 128.21 (C₃), 128.44 (C₄); 106.22 (GeC), 93.97 (CPh). MS (EI, 70 eV): m/z 576 (M⁺, 3), 532 (M⁺ - NMe, 4), 457 (M⁺ - Mes, 8), 475 (M⁺ - PhC=C, 7), 413 (M⁺ - NHAA, 53). Anal. Calcd for C₃₅H₃₆GeN₂O: C, 73.08; H, 6.65; N, 4.87. Found: C, 73.16; H, 6.68; N, 4.89. 7b (0.46 g, 80% yield) was also prepared from 1b (0.53 g, 1 × 10⁻³ mol) and PhC=CLi (1 × 10⁻³ mol) powder (0.28 g, 90% yield) was identified as 7b: mp 52 °C. IR (CDCl₃): mol).

functional groups attached to germanium.

These reactions confirm beyond doubt that compounds **2a** and **2b** are Ge—N doubly bonded molecules and cannot be dimeric as in cyclodigermazanes; otherwise they would not form^{20,21} the observed compounds 3–7. Unfortunately, molecular weights of **2a** and **2b** could not be determined because they are not soluble enough in suitable cryoscopic solvents.

Further evidence of the high reactivity of 2a and 2b is provided by their (2 + 3) cycloaddition reactions with nitrones 8 and 9 (Scheme III). The resulting adducts 8a,²² 8b,²³ and 9a²⁴ are the first thermally stable 1-oxa-2,4-diaza-5-germolane rings (unstable when R = Me, Ph, Mes^{7,25}). Apparently, the anthranilamide and anthranilate groups of 2b and 2a, respectively, stabilize the heterocyclic ring,

(22) Synthesis of 8a. In a sealed tube, 2a (0.142 g, 0.3×10^{-3} mol) and 8 (0.061 g, 0.3×10^{-3} mol) in benzene (3 mL) were heated for 3 days at 100 °C. After evaporation of solvents and extraction of the residue with pentane, a yellow powder of 8a (0.19 g, 95% yield) was obtained: mp 210 °C. IR (CDCl₃): 1656 (ν (C==O)), 1240 cm⁻¹ (ν (COC)). ¹H NMR (CDCl₃, 80 MH2): δ 2.60 (s, 6H, o-Me), 2.29 (s, 3H, p-Me), 6.86 (s, 2H, C₆H₂), 2.46 (s, 6H, o-Me), 2.20 (s, 3H, p-Me), 6.73 (s, 2H; C₆H₂), 5.45 (s, 1H, CH), 3.71 (s, 3H, OCH₃), 7.71 (ddd, 1H, H₃), 6.52 (ddd, 1H, H₄), 6.78-7.47 (m, 12H, C₆H₅, H₆, H₆) (J(3-4) = 8 Hz, J(3-6) = 0.5 Hz, J(4-6) = 1.3 Hz, J(3-5) = 1.8 Hz, J(4-5) = 6.7 Hz). ¹³C NMR (CDCl₃), 50.3 MH2): δ 153.02 (C₁), 110.90 (C₂), 131.99 (C₃), 118.51 (C₄), 135.25 (C₅), 116.08 (C₆), 171.09 (C₇), 52.75 (C₈), 134.88 (C₁₂), 143.61, 142.79 (C₂₂), 129.44, 129.38 (C₃₃), 138.57, 137.77 (C₄), 21.13, 20.97 (p-Me), 24.51, 23.47 (o-Me); CHPh, 150.34 (C₁₂₂), 122.77 (C₂₂₂), 130.34 (C₃₂₂), 127.59 (C₄₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.77 (C₂₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.77 (C₂₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.77 (C₂₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.77 (C₂₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.77 (C₂₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.75 (C₁₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 122.75 (C₁₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 124.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 125.75 (C₁₂₂₂), 127.81 (C₃₂₂₂), 24.14 (Ca₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 124.14 (Ca₄₂₂₂), 127.81 (Ca₄₂₂₂), 127.59 (C₄₂₂₂); 85.58 (CH); NPh, 150.34 (C₁₂₂₂), 125.75 (C₁₂₂₂), 127.81 (Ca₁₂₂₂₂), 124.14 (Ca₄₂₂₂), 1 perhaps by their electron-withdrawing effects. The possibility of intramolecular $O \rightarrow Ge$ bonding between the oxygen of the carbonyl group and the germanium atom of **2a** or **2b** is suggested by decreases in $\nu(CO)$ on formation of the adducts in Scheme II. Single-crystal X-ray diffraction data are necessary to test this suggestion.

To summarize, the novel germanimines 2a and 2b are not only stable compounds but are also very reactive toward protic reagents and cycloaddition reactions with nitrones. The dehydrohalogenation reaction is shown to be a very effective way of preparing germanimines, provided the precursor has a reactive germanium-halogen bond. We continue to explore this reaction in order to obtain a wider range of N-substituted germanimines.

OM920813Z

(23) Synthesis of 8b. Similarly, 8b (0.31 g, 94% yield) was obtained from 2b (0.227 g, 0.48 × 10⁻³ mol) and 8 (0.095 g, 0.48 × 10⁻³ mol) at 100 °C for 18 h: mp 125 °C. IR (CDCl₃): 1607 cm⁻¹ (ν (C-O)). ¹H NMR (CDCl₃, 80 MH2): δ 2.52 (s, 6H, o-Me), 2.28 (s, 3H, p-Me), 6.83 (s, 2H, C₆H₂), 2.42 (s, 6H, o-Me), 2.17 (s, 3H, p-Me), 6.68 (s, 2H, C₆H₂), 2.83 (s, 6H, NMe₂), 5.82 (s, 1H, CH), 6.80–7.15 (m, 14H, C₈H₅, C₆H₄). ¹³C NMR (CDCl₃, 50.3 MH2): δ 136.47 (C₁), 122.87, 143.31 (C₂), 130.11, 29.26 (C₃), 138.20 (C₄), 20.99, 21.13 (p-Me), 2.34 (6, 23.89 (o-Me), 150.33 (C₁), 119.68 (C₂), 129.37 (C₃), 120.82 (C₄), 131.47 (C₅), 117.22 (C₆), 127.77 (C₄°); 83.49 (CH); NPh, 149.71 (C₁°), 120.52 (C₂°°), 128.98 (C₃°), 122.58 (C₄°). MS (EI, 70 eV): m/z 671 (M⁺, 45), 419 (M⁺ – PhCHNAA, 83). Anal. Calcd for C4₄(H₃GeN₃O₂: C, 71.66; H, 6.46; N, 6.26. Found: C, 71.04; H, 6.68; N, 5.92.

(24) Synthesis of 9a. 9a (0.18 g, 95% yield) was prepared by heating for 3 days at 100 °C a mixture of 2a (0.14 g, 0.3 × 10⁻³ mol) and 9 (0.054 g, 0.3 × 10⁻³ mol) and benzene (2 mL) in a sealed tube. IR (CDCl₃): 1660 (ν (C=O)), 1240 cm⁻¹ (ν (COC)). ¹H NMR (CDCl₃, 80 MHz): δ 2.60 (s, 6H, o-Me), 2.32 (s, 3H, p-Me), 6.88 (s, 2H, C₆H₂), 2.39 (s, 6H, o-Me), 2.16 (s, 3H, p-Me), 6.67 (s, 2H, C₆H₂), 0.74 (s, 9H, tBu), 5.39 (s, 1H, CH), 3.66 (s, 3H, OCH₃), 6.43 (ddd, 1H, H₄) (J(3-4) = 8.2 Hz, J(4-6) = 2.4 Hz, J(4-5) = 5.6 Hz), 7.14-7.76 (m, 8H, C₆H₅, H₃, H₅, H₄). ¹³C NMR (CDCl₃, 50.3 MHz): δ 153.16 (C₁), 110.70 (C₂), 131.87 (C₃), 115.45 (C₄), 134.64 (C₆), 118.45 (C₆), 170.65 (C₇), 52.46 (C₈), 133.96 (C₁·), 142.60, 140.86 (C₂·), 129.30, 129.10 (C₃·), 138.28, 137.39 (C₄·), 21.19, 20.95 (p-Me), 24.34, 23.35 (o-Me); CHPh, 140.21 (C₁·), 127.93 (C₂·), 131.04 (C₃·), 127.51 (C₄·); 80.04 (CH); NtBu, 58.35 (CH₃), 27.26 (C). MS (EI, 70 eV): m/z 638 (M⁺, 15), 399 (M⁺ - PhCHNAE, 84). Anal. Calcd for C₃₇H₄₄GeN₂O₃: C, 69.72; H, 6.95; N, 4.39. Found: C, 69.37; H, 6.90; N, 4.26.

(25) Rivière-Baudet, M.; Satgé, J.; Morère, A. J. Organomet. Chem. 1990, 386, C7.

(26) Rivière-Baudet, M.; Morère, A.; Dias, M. Tetrahedron Lett. 1992, 33, 6453.

⁽²⁰⁾ Khallaayoun, A.; Morère, A.; Rivière-Baudet, M. Main Group Met. Chem. 1991, 14, 89.

⁽²¹⁾ Rivière-Baudet, M.; Morère, A. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 62, 211.