# An Unusual Electron-Rich Carbido Platinum-Ruthenium **Cluster from the Reaction of Diphenylacetylene with** $PtRu_5(CO)_{16}(\mu_6-C)$ . Synthesis and Crystallographic **Characterizations of** $PtRu_{5}(CO)_{13}(\mu-PhC_{2}Ph)(\mu_{3}-PhC_{2}Ph)(\mu_{5}-C)$ and $Ru_{6}(CO)_{13}(\mu_{3}-PhC_{2}Ph)_{2}(\mu_{6}-C)$

# Richard D. Adams<sup>\*</sup> and Wengan Wu

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208

Received November 6, 1992

The new compound  $PtRu_5(CO)_{13}(\mu-PhC_2Ph)(\mu_3-PhC_2Ph)(\mu_5-C)$ , 2, was isolated in 37% yield from the reaction of  $PtRu_5(CO)_{16}(\mu_6-C)$ , 1, with diphenylacetylene in the presence of UV irradiation. A minor product  $Ru_6(CO)_{13}(\mu_3-PhC_2Ph)_2(\mu_6-C)$ , 3, was also obtained in 7% yield. Compound 3 was obtained in a better yield (35%) from the reaction of  $Ru_6(CO)_{15}(\mu_3-PhC_2 Ph)(\mu_6-C)$  with  $PhC_2Ph$ . Compounds 2 and 3 were characterized by single crystal X-ray diffraction analyses. In 2, the five ruthenium atoms are arranged in the form of a square pyramid with the carbido carbon atom located in the center of the square face. The platinum atom caps one  $Ru_3$  triangle. There is a triply bridging  $PhC_2Ph$  ligand on one of the  $PtRu_2$  triangular groupings and an edge bridging  $PhC_2Ph$  ligand across the bond between the platinum atom and the ruthenium atom at the apex of the square pyramid. The molecule contains a total of 88 valence electrons which is two more than predicted for a capped square pyramidal cluster. Two of the ruthenium-ruthenium bonds in the cluster were found to be unusually long ( $\geq$  3.00 Å). Compound 3 contains an octahedral cluster of six ruthenium atoms with the two diphenylacetylene ligands bridging two triruthenium triangles. The carbido carbon atom is located in the center of the octahedron. When treated with CO, 2 was converted back to 1 in 36% yield. Crystal data for 2: space group  $P_{2_1/n}$ , a = 19.586 (5) Å, b = 12.073 (2) Å, c = 36.467 (6) Å,  $\beta = 97.26$  (2)°, Z = 10008, 5664 reflections, R = 0.031; for 3: space group  $P\overline{1}$ , a = 11.2374 (6) Å, b = 19.962 (2) Å, c = 10.0319.782 (1) Å,  $\alpha = 96.532$  (8)°,  $\beta = 99.470$  (7)°,  $\gamma = 96.770$  (6)°, Z = 2, 3194 reflections, R = 0.025.

# Introduction

Alkynes are effective and widely utilized ligands in metal carbonyl cluster complexes.<sup>1</sup> They typically adopt triply bridging coordinations at trinuclear metal centers. To date, there have been only a few examples of cluster complexes that contain both carbido ligands and alkyne ligands.<sup>2,3</sup> We have recently prepared the new carbidecontaining mixed metal complex  $PtRu_5(CO)_{16}(\mu_6-C)$ , 1,<sup>4</sup> and have now investigated its reaction with  $PhC_2Ph$  in the presence of UV irradiation. We have found a pattern of multiple substitution that is combined with a transformation of the octahedral cluster of 1 into a square pyramidal platinum-capped pentaruthenium cluster in the major product.

#### **Experimental Section**

General Procedures. All reactions were performed under a dry nitrogen atmosphere. Reagent grade solvents were dried over molecular sieves and deoxygenated by purging with nitrogen prior to use. IR spectra were recorded on a Nicolet 5DXB FT-IR

spectrophotometer. A Brüker AM-300 FT-NMR spectrometer was used to obtain <sup>1</sup>H NMR spectra. Elemental microanalyses were performed by Desert Analytics, Tucson, AZ. TLC separations were performed by using silica gel (60 Å,  $F_{254}$ ) on plates (Whatman 0.25 mm) under air.  $PtRu_5(CO)_{16}(\mu_6-C)$ ,<sup>4</sup> and  $Ru_6 (CO)_{17}(\mu_6-C)^5$  were prepared by previously reported procedures. PhC<sub>2</sub>Ph was purchased from Aldrich and was used without further purification. UV irradiations were performed externally on reaction solutions in Pyrex glassware by using a high pressure mercury lamp (360 W) purchased from Gates Co., Hempstend, NY.

Reaction of  $PtRu_5(CO)_{16}(\mu_6-C)$ , 1, with Diphenylacetylene, PhC<sub>2</sub>Ph. A 16.6-mg amount of 1 (0.0143 mmol) and a 5.1-mg amount of PhC<sub>2</sub>Ph (0.029 mmol) were dissolved in 60 mL of CH<sub>2</sub>Cl<sub>2</sub>. The solution was irradiated with a slow purge of nitrogen at 25 °C for 14 h. The solvent was removed by rotary evaporation. The residue was redissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> and separated by TLC using a  $CH_2Cl_2$ /hexane (1/4) elution solvent mixture. This yielded in the order of elution: 1.5 mg of unreacted 1, a trace amount of  $Ru_6(CO)_{15}(\mu_3 - PhC_2Ph)(\mu_6 - C)$ , <sup>3</sup> 1.3 mg of redbrown  $Ru_6(CO)_{13}(\mu_3-PhC_2Ph)_2(\mu_6-C)$ , 3, 7% yield, and 7.5 mg of purple  $PtRu_5(CO)_{13}(\mu-PhC_2Ph)(\mu_3-PhC_2Ph)(\mu_5-C)$ , 2, 37% yield. IR (vCO cm<sup>-1</sup> in hexane) for 2: 2087(s), 2061(s), 2055(vs), 2033(s), 2027(m), 2016(w), 2002(w), 1983(w), 1979(w), 1948(vw); and for 3: 2081(m), 2049(s), 2030(vs), 1998(w), 1986(w), 1979(sh). <sup>1</sup>H NMR ( $\delta$  in CDCl<sub>3</sub>) for 2: 7.06–7.37 (m, Ph); for 3: 7.02–7.20 (m, Ph). Anal. Calcd (found) for 2: C%, 35.20 (34.39), H%, 1.41 (1.31); for 3: C%, 37.67 (37.49), H%, 1.51 (1.46).

 <sup>(1) (</sup>a) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, 83,
 203. (b) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. Radiochem. 1985, 29, 169.

<sup>(2) (</sup>a) Tachikawa, M.; Muetterties, E. L. Prog. Inorg. Chem. 1981, 28,
(2) (a) Tachikawa, M.; Muetterties, E. L. Prog. Inorg. Chem. 1981, 28,
(3) Bradley, J. R. Adv. Organomet. Chem. 1983, 22, 1.
(3) Drake, S. R.; Johnson, B. F. G.; Lewis, J.; Conole, G.; McPartlin,
M. J. Chem. Soc., Dalton Trans. 1990, 995.

<sup>(4)</sup> Adams, R. D.; Wu, W. J. Cluster Sci. 1991, 2, 271.

<sup>(5)</sup> Nicholls, J. N.; Vargas, M. D.; Hriljac, J.; Sailor, M. Inorg. Synth. 1989, 26, 280.

## Electron-Rich Carbido Platinum-Ruthenium Cluster

Synthesis of  $\operatorname{Ru}_6(\operatorname{CO})_{15}(\mu_3\operatorname{-PhC}_2\operatorname{Ph})(\mu_6\operatorname{-C})$ . A 30.0-mg amount of  $\operatorname{Ru}_6(\operatorname{CO})_{17}(\mu_6\operatorname{-C})$  (0.0258 mmol) and a 9.1-mg amount of  $\operatorname{PhC}_2\operatorname{Ph}$  (0.051 mmol) were dissolved in 80 mL of  $\operatorname{CH}_2\operatorname{Cl}_2$ . This solution was then irradiated under a slow purge of nitrogen at 25 °C for 13 h. The solvent was removed by rotary evaporation and the residue was separated by TLC. This yielded 15.6 mg of  $\operatorname{Ru}_6(\operatorname{CO})_{15}(\mu_3\operatorname{-PhC}_2\operatorname{Ph})(\mu_6\operatorname{-C})$ , 46%. This compound was spectroscopically (IR and <sup>1</sup>H NMR) identical to a compound with the same formula reported by Drake, et al.<sup>3</sup> prepared by different method. Compound 3 was also obtained from this reaction in 12% yield.

Synthesis of  $\operatorname{Ru}_6(\operatorname{CO})_{13}(\mu_3-\operatorname{PhC}_2\operatorname{Ph})_2(\mu_6-\operatorname{C})$ , 3. A 15.0-mg amount of  $\operatorname{Ru}_6(\operatorname{CO})_{15}(\mu_3-\operatorname{PhC}_2\operatorname{Ph})(\mu_6-\operatorname{C})$  (0.0120 mmol) and a 5.0mg amount of  $\operatorname{PhC}_2\operatorname{Ph}$  (0.028 mmol) were dissolved in 70 mL  $\operatorname{CH}_2\operatorname{Cl}_2$ . This solution was irradiated for 20 h at 25 °C. After separation by TLC, 5.7 mg of 3, 35% yield, was obtained, and 3.6 mg of unreacted 2 was recovered in the order of elution.

**Reaction of 2 with Carbon Monoxide.** A 10.0-mg amount of 2 (0.00862 mmol) was dissolved in 20 mL of hexane. This solution was then heated to reflux (68 °C) under a slow purge of CO for 1 h. The solvent was removed in vacuum and the residue was separated by TLC by using a  $CH_2Cl_2$ /hexane (3/7) solvent mixture to elute 2.9 mg of 1, 36%, and 0.6 mg of unreacted 2 in the order of elution.

Crystallographic Analysis. Crystals of 2 suitable for diffraction analysis were grown by slow evaporation of solvent from a solution in hexane at 10 °C. Crystals of 3 were grown by slow evaporation of solvent from a solution in CH<sub>2</sub>Cl<sub>2</sub>/hexane (4/1) solvent at 10 °C. The crystals used for data collection were mounted in thin-walled glass capillaries. Diffraction measurements were made on a Rigaku AFC6S fully automated fourcircle diffractometer using graphite-monochromated Mo K $\alpha$ radiation. The unit cells were determined and refined from 15 randomly selected reflections obtained through the AFC6 automatic search, center, index, and least-squares routines. All data processing was performed on a Digital Equipment Corp. VAX station 3520 computer by using the TEXSAN structure solving program library (version 5.0) obtained from Molecular Structure Corp., The Woodlands, TX. Neutral atom scattering factors were calculated by the standard procedures.<sup>6a</sup> Anomalous dispersion corrections were applied to all non-hydrogen atoms.<sup>6b</sup> Lorentz/polarization (Lp) and absorption corrections were applied to the data for each analysis. Full-matrix least-squares refinements minimized the function  $\sum_{hkl} w(|F_0| - |F_c|)^2$  where w =  $1/\sigma(F_0)^2$ ,  $\sigma(F_0) = \sigma(F_0^2)/2F_0$ , and  $\sigma(F_0^2) = [\sigma(I_{raw})^2 +$  $(0.02I_{\text{net}})^2]^{1/2}/\text{Lp.}$ 

Compound 2 crystallized in the monoclinic crystal system. The space group  $P2_1/n$  for 2 was identified uniquely based on the systematic absences observed during the collection of data. Compound 3 crystallized in the triclinic crystal system. The space group of PI was assumed and confirmed by the successful solution and refinement of the structure. Each structure was solved by a combination of direct methods (MITHRIL) and difference Fourier syntheses. The positions of the hydrogen atoms in both structures were calculated by using idealized geometries. Their contributions were added to the structure factor calculations, but their positions were not refined.

Compound 2 crystallized with two independent molecules in the asymmetric unit. All non-hydrogen atoms were refined with anisotropic thermal parameters. For compound 3, the carbon atoms on the phenyl ring were refined with isotropic thermal parameters. All the other non-hydrogen atoms were refined anisotropically. Crystallographic data are listed in Table I for both structural analyses.

### **Results and Discussion**

When a solution of compound 1 and PhC<sub>2</sub>Ph in hexane solvent was irradiated, the compound  $PtRu_5(CO)_{13}(\mu$ -

Table I. Crystal Data for Compounds 2 and 3

|                                          | 2                                                                 | 3                                                               |
|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| formula                                  | PtRu <sub>5</sub> O <sub>13</sub> C <sub>42</sub> H <sub>20</sub> | Ru <sub>6</sub> O <sub>13</sub> C <sub>42</sub> H <sub>20</sub> |
| fw                                       | 1433.05                                                           | 1339.03                                                         |
| crystal system                           | monoclinic                                                        | triclinic                                                       |
| lattice parameters:                      |                                                                   |                                                                 |
| a (Å)                                    | 19.586(5)                                                         | 11.2374(6)                                                      |
| b (Å)                                    | 12.073(2)                                                         | 19.962(2)                                                       |
| c (Å)                                    | 36.467(6)                                                         | 9.782(1)                                                        |
| $\alpha$ (deg)                           | 90.0                                                              | 96.532(8)                                                       |
| $\beta$ (deg)                            | 97.26(2)                                                          | 99.470(7)                                                       |
| $\gamma$ (deg)                           | 90.0                                                              | 96.770(6)                                                       |
| $V(\mathbf{A}^3)$                        | 8554(5)                                                           | 2129.3(3)                                                       |
| space group                              | $P2_1/n$ (No. 14)                                                 | P1 (No. 2)                                                      |
| Ż value                                  | 8                                                                 | 2                                                               |
| $\rho$ calcd (g/cm <sup>3</sup> )        | 2.23                                                              | 2.09                                                            |
| $\mu$ (Mo K $\alpha$ ) (cm <sup>-1</sup> | 50.44                                                             | 20.98                                                           |
| temp (°C)                                | 20                                                                | 20                                                              |
| no, of obsd rflns $(I > 3\sigma)$        | 5664                                                              | 3194                                                            |
| residuals: R. R.                         | 0.031, 0.030                                                      | 0.025, 0.031                                                    |



Figure 1. An ORTEP drawing of  $PtRu_5(CO)_{13}(\mu-PhC_2Ph)-(\mu_3-PhC_2Ph)(\mu_5-C)$ , 2.

 $PhC_2Ph$ )( $\mu_3$ - $PhC_2Ph$ )( $\mu_5$ -C), 2, was formed in 37% yield. A minor product  $\operatorname{Ru}_6(CO)_{13}(\mu_3 \operatorname{PhC}_2\operatorname{Ph})_2(\mu_6 \operatorname{-C})$ , 3, was also obtained in 7% yield. Compound 3 was subsequently obtained in a better yield (35%) from the reaction of  $Ru_6(CO)_{15}(\mu_3-PhC_2Ph)(\mu_6-C)$  with  $PhC_2Ph$  in the presence of UV irradiation. Compounds 2 and 3 were characterized by X-ray diffraction analyses. Crystals of 2 contain two structurally similar independent molecules in the asymmetric crystal unit. An ORTEP drawing of one of these is shown in Figure 1. Selected final atomic positional parameters are listed in Table II. Selected interatomic bond distances and angles are listed in Tables III and IV. The molecule consists of square pyramidal cluster of five ruthenium atoms with the platinum carbonyl group capping a triangular triruthenium grouping, Ru(1)-Ru-(2)-Ru(5). The carbido ligand occupies an interstitial position in the base of the square pyramid as found in other pentametallic carbido carbonyl cluster complexes.<sup>2</sup> A triply bridging  $PhC_2Ph$  ligand occupies the Pt(1)-Ru-(1)-Ru(2) triangular grouping, and an edge bridging PhC<sub>2</sub>-Ph ligand bridges the Pt(1)-Ru(5) bond between the platinum atom and the apex of the square pyramid. The latter has the commonly observed perpendicular bridging

<sup>(6) (</sup>a) International Tables for X-ray Crystallography, Vol. IV; Kynoch Press: Birmingham, England, 1975; Table 2.2B, pp 99-101. (b) Ibid., Table 2.3.1, pp 149-150.

Table II. Positional Parameters and  $B_{eq}$  Values for PtRu<sub>5</sub>C(CO)<sub>13</sub>(PhC<sub>2</sub>Ph)<sub>2</sub>, 2

|               |             | Table II. FUSI | uonai Farameter | s and Deq v                            | anues tot i | rinusc(CO)13( | ruc <sub>2</sub> ru/2, <i>4</i> |            |                                               |
|---------------|-------------|----------------|-----------------|----------------------------------------|-------------|---------------|---------------------------------|------------|-----------------------------------------------|
| atom          | x           | У              | Z               | $B_{eq}$ , <sup>a</sup> Å <sup>2</sup> | atom        | x             | у                               | Z          | $B_{eq}$ , <sup><i>a</i></sup> Å <sup>2</sup> |
| Pt(1A)        | 0.04478(03) | 0.08216(05)    | 0.379808(15)    | 2.73(3)                                | O(52B)      | 1.1172(06)    | 0.1464(09)                      | 0.1151(03) | 6.3(7)                                        |
| Pt(1B)        | 0.84866(03) | 0.07646(05)    | 0.127600(15)    | 3.10(3)                                | C(1A)       | 0.1244(06)    | 0.1867(11)                      | 0.4091(04) | 2.9(7)                                        |
| Ru(1A)        | 0.07734(05) | -0.14148(09)   | 0.40231(03)     | 2.67(5)                                | C(1B)       | 0.9448(06)    | 0.1841(10)                      | 0.1332(04) | 2.5(7)                                        |
| <b>Ru(1B)</b> | 0.86935(05) | -0.14185(09)   | 0.10091(03)     | 2.80(5)                                | C(2A)       | 0.1386(06)    | 0.1860(10)                      | 0.3747(03) | 2.2(6)                                        |
| Ru(2A)        | 0.10047(05) | -0.08566(10)   | 0.33372(03)     | 2.85(5)                                | C(2B)       | 0.9161(06)    | 0.1821(11)                      | 0.0994(03) | 2.6 (7)                                       |
| Ru(2B)        | 0.92667(05) | -0.10178(10)   | 0.17010(03)     | 2.85(5)                                | C(3A)       | 0.0048(07)    | -0.1313(12)                     | 0.3499(04) | 3.5(7)                                        |
| Ru(3A)        | 0.25098(06) | -0.10579(10)   | 0.35508(03)     | 3.13(6)                                | C(3B)       | 0.8234(06)    | -0.1418(12)                     | 0.1540(04) | 3.3(7)                                        |
| Ru(3B)        | 1.06793(05) | -0.11665(09)   | 0.14603(03)     | 2.90(5)                                | C(4A)       | -0.0153(07)   | 0.0580(10)                      | 0.3754(04) | 2.8(7)                                        |
| Ru(4A)        | 0.22164(06) | -0.16705(10)   | 0.42858(03)     | 3.20(6)                                | C(4B)       | 0.7896(06)    | -0.0626(12)                     | 0.1301(04) | 3.6(7)                                        |
| Ru(4B)        | 0.99889(06) | -0.16090(10)   | 0.07243(03)     | 3.02(6)                                | C(10A)      | -0.0188(08)   | 0.1895(13)                      | 0.3577(04) | 4.0(9)                                        |
| Ru(5A)        | 0.18221(05) | 0.04097(09)    | 0.39930(03)     | 2.61(5)                                | C(10B)      | 0.7951(08)    | 0.1848(15)                      | 0.1484(05) | 6(1)                                          |
| Ru(5B)        | 0.97744(05) | 0.03858(09)    | 0.10807(03)     | 2.57(5)                                | C(11A)      | 0.0674(07)    | -0.2936(13)                     | 0.4093(04) | 3.6(8)                                        |
| O(10A)        | -0.0517(06) | 0.2490(10)     | 0.3408(03)      | 6.5(7)                                 | C(11B)      | 0.8170(07)    | -0.1013(13)                     | 0.0537(05) | 4.3(8)                                        |
| O(10B)        | 0.7717(07)  | 0.2504(11)     | 0.1641(04)      | 9(1)                                   | C(12A)      | 0.0514(07)    | -0.1091(13)                     | 0.4498(04) | 4.3(8)                                        |
| O(11A)        | 0.0612(06)  | -0.3861(09)    | 0.4141(03)      | 6.8(7)                                 | C(12B)      | 0.8553(08)    | -0.2935(14)                     | 0.0895(05) | 4.7(9)                                        |
| O(11B)        | 0.7870(06)  | -0.0725(11)    | 0.0274(03)      | 7.3(7)                                 | C(20A)      | 0.1652(06)    | -0.1232(11)                     | 0.3793(03) | 2.8(6)                                        |
| O(12A)        | 0.0368(06)  | -0.0892(10)    | 0.4785(03)      | 6.8(7)                                 | C(20B)      | 0.9709(06)    | -0.1280(10)                     | 0.1232(03) | 2.4(6)                                        |
| O(12B)        | 0.8476(06)  | -0.3833(10)    | 0.0840(04)      | 8.0(8)                                 | C(21A)      | 0.0695(07)    | 0.0223(14)                      | 0.2974(04) | 4.5(9)                                        |
| O(21A)        | 0.0470(06)  | 0.0913(10)     | 0.2785(03)      | 6.7(7)                                 | C(21B)      | 0.9148(08)    | -0.0109(14)                     | 0.2113(05) | 4.4(9)                                        |
| O(21B)        | 0.9047(07)  | 0.0456(12)     | 0.2347(03)      | 8.4(8)                                 | C(22A)      | 0.1017(07)    | -0.1923(12)                     | 0.2970(04) | 3.5(8)                                        |
| O(22A)        | 0.1049(06)  | -0.2567(10)    | 0.2749(03)      | 6.7(7)                                 | C(22B)      | 0.9471(07)    | -0.2220(14)                     | 0.2023(04) | 3.7(8)                                        |
| O(22B)        | 0.9632(06)  | -0.2939(10)    | 0.2208(03)      | 6.7(7)                                 | C(31A)      | 0.2572(08)    | -0.2491(14)                     | 0.3342(05) | 4.9(9)                                        |
| O(31A)        | 0.2613(06)  | -0.3332(10)    | 0.3206(04)      | 8.1(8)                                 | C(31B)      | 1.1606(08)    | -0.0990(12)                     | 0.1331(04) | 4.1(8)                                        |
| O(31B)        | 1.2130(05)  | -0.918(09)     | 0.1243(03)      | 5.5(6)                                 | C(32A)      | 0.2440(08)    | -0.0349(13)                     | 0.3087(05) | 4.7(9)                                        |
| O(32A)        | 0.2440(06)  | 0.0032(11)     | 0.2798(03)      | 6.9(7)                                 | C(32B)      | 1.0930(07)    | 0.0521(13)                      | 0.1922(05) | 4.7(9)                                        |
| O(32B)        | 1.1130(07)  | -0.0151(12)    | 0.2208(03)      | 8.3(8)                                 | C(33A)      | 0.3512(08)    | -0.0885(12)                     | 0.3642(04) | 4.1(8)                                        |
| O(33A)        | 0.4083(06)  | -0.0794(10)    | 0.3690(03)      | 6.9(7)                                 | C(33B)      | 1.0866(08)    | -0.2613(15)                     | 0.1645(05) | 5(1)                                          |
| O(33B)        | 1.0968(07)  | -0.3475(10)    | 0.1761(03)      | 7.3(8)                                 | C(41A)      | 0.2305(08)    | -0.3205(15)                     | 0.4190(04) | 4.7(9)                                        |
| O(41A)        | 0.2340(07)  | -0.4113(10)    | 0.4117(04)      | 10(1)                                  | C(41B)      | 1.0132(08)    | -0.3152(14)                     | 0.0785(04) | 4.1(8)                                        |
| O(41B)        | 1.0211(06)  | -0.4089(10)    | 0.0826(04)      | 8.0(8)                                 | C(42A)      | 0.3180(08)    | -0.1416(12)                     | 0.4425(04) | 4.5(8)                                        |
| O(42A)        | 0.3746(06)  | -0.1231(10)    | 0.4510(03)      | 7.4(7)                                 | C(42B)      | 1.0850(08)    | -0.1344(12)                     | 0.0552(04) | 3.7(8)                                        |
| O(42B)        | 1.1366(06)  | -0.1111(10)    | 0.0452(03)      | 6.4(7)                                 | C(43A)      | 0.1994(09)    | -0.1960(13)                     | 0.4778(05) | 5(1)                                          |
| O(43A)        | 0.1867(07)  | -0.2143(12)    | 0.5064(04)      | 8.8(9)                                 | C(43B)      | 0.9467(08)    | 0.1812(14)                      | 0.0256(05) | 4.9(9)                                        |
| O(43B)        | 0.9157(07)  | -0.1916(12)    | -0.0034(03)     | 8.4(8)                                 | C(51A)      | 0.1996(07)    | 0.0223(12)                      | 0.4517(04) | 3.6(8)                                        |
| O(51A)        | 0.2011(05)  | 0.0487(08)     | 0.4827(03)      | 5.2(6)                                 | C(51B)      | 0.9738(07)    | 0.0302(12)                      | 0.0545(04) | 3.6(8)                                        |
| O(51B)        | 0.9647(06)  | 0.0666(09)     | 0.0256(03)      | 6.3(6)                                 | C(52A)      | 0.2697(07)    | 0.0958(12)                      | 0.3953(04) | 3.4(7)                                        |
| O(52A)        | 0.3204(05)  | 0.1445(08)     | 0.3962(03)      | 5.1(6)                                 | C(52B)      | 1.0675(08)    | 0.0949(13)                      | 0.1150(05) | 4.8(9)                                        |
|               |             |                |                 |                                        |             |               |                                 |            |                                               |

 $^{a}B_{eq} = (8\pi^{2}/3)\sum_{i=1}^{3}\sum_{j=1}^{3}U_{ij}a_{i}^{*}a_{j}^{*}a_{i}a_{j}$ , see Fischer, R. X.; Tillmanns, E., Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1988, C44, 775.

Table III. Intramolecular Distances for 2<sup>a</sup>

| atom          | atom   | distance | atom   | atom   | distance |
|---------------|--------|----------|--------|--------|----------|
| Pt(1A)        | Ru(1A) | 2.870(1) | Ru(2A) | C(3A)  | 2.11(1)  |
| Pt(1A)        | Ru(2A) | 2.930(1) | Ru(2A) | C(20A) | 2.01(1)  |
| Pt(1A)        | Ru(5A) | 2.741(1) | Ru(2B) | Ru(3B) | 3.012(2) |
| Pt(1A)        | C(IA)  | 2.18(1)  | Ru(2B) | Ru(5B) | 3.090(2) |
| <b>Pt(1A)</b> | C(2A)  | 2.25(1)  | Ru(2B) | C(3B)  | 2.09(1)  |
| Pt(1A)        | C(4A)  | 2.06(1)  | Ru(2B) | C(20B) | 2.04(1)  |
| Pt(1B)        | Ru(1B) | 2.856(1) | Ru(3A) | Ru(4A) | 2.907(2) |
| Pt(1B)        | Ru(2B) | 2.961(1) | Ru(3A) | Ru(5A) | 2.847(2) |
| Pt(1B)        | Ru(5B) | 2.745(1) | Ru(3A) | C(20A) | 2.00(1)  |
| <b>Pt(1B)</b> | C(1B)  | 2.28(1)  | Ru(3B) | Ru(4B) | 2.898(2) |
| Pt(1B)        | C(2B)  | 2.18(1)  | Ru(3B) | Ru(5B) | 2.820(2) |
| Pt(1B)        | C(4B)  | 2.05(1)  | Ru(3B) | C(20B) | 1.98(1)  |
| Ru(1A)        | Ru(2A) | 2.684(2) | Ru(4A) | Ru(5A) | 2.799(2) |
| Ru(1A)        | Ru(4A) | 2.884(2) | Ru(4A) | C(20A) | 2.06(1)  |
| Ru(1A)        | Ru(5A) | 3.023(2) | Ru(4B) | Ru(5B) | 2.793(2) |
| Ru(1A)        | C(3A)  | 2.24(1)  | Ru(4B) | C(20B) | 2.04(1)  |
| Ru(1A)        | C(4A)  | 2.20(1)  | Ru(5A) | C(1A)  | 2.15(1)  |
| Ru(1A)        | C(20A) | 2.02(1)  | Ru(5A) | C(2A)  | 2.10(1)  |
| Ru(1B)        | Ru(2B) | 2.673(2) | Ru(5A) | C(20A) | 2.12(1)  |
| Ru(1B)        | Ru(4B) | 2.870(2) | Ru(5B) | C(1B)  | 2.12(1)  |
| Ru(1B)        | Ru(5B) | 3.026(2) | Ru(5B) | C(2B)  | 2.11(1)  |
| Ru(1B)        | C(3B)  | 2.23(1)  | Ru(5B) | C(20B) | 2.09(1)  |
| Ru(1B)        | C(4B)  | 2.21(1)  | C(1A)  | C(2A)  | 1.32(2)  |
| Ru(1B)        | C(20B) | 2.06(1)  | C(1B)  | C(2B)  | 1.29(2)  |
| Ru(2A)        | Ru(3A) | 2.962(2) | C(3A)  | C(4A)  | 1.38(2)  |
| Ru(2A)        | Ru(5A) | 3.107(2) | C(3B)  | C(4B)  | 1.40(2)  |
|               |        |          | 0      | C(av)  | 1.13(2)  |

 $^a$  Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

mode,<sup>7</sup> while the former exhibits the usual  $\mu_3$ - $\parallel$  coordination mode.<sup>1</sup> The molecule contains thirteen linear, terminal carbonyl ligands distributed among the six metal atoms



Figure 2. An ORTEP diagram of  $Ru_6(CO)_{13}(\mu_3-PhC_2Ph)_2-(\mu_6-C)$ , 3.

as shown in Figure 1. Interestingly, compound 2 contains a total of 88 valence electrons which is two more than that predicted for a capped square pyramidal cluster according to the skeletal electron pair theory.<sup>8</sup> It was observed that two ruthenium-ruthenium bonds in each cluster in the crystal are unusually long, Ru(1A)-Ru(5A) = 3.023 (2) Å,

<sup>(7) (</sup>a) Hoffman, D. M.; Hoffmann, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858, and references therein. (b) Hoffman, D. M.; Hoffmann, R. J. Chem. Soc., Dalton Trans. 1982, 1471. (c) Dickson, R. S.; Fraser, P. J. Adv. Organomet. Chem. 1973, 12, 323.

<sup>(8)</sup> Mingos, D. M. P.; May, A. S. In *The Chemistry of Metal Cluster Complexes*; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH Publishers: New York, 1990; Chapt. 2.

| Table 1 v. Intramolecular Bond Angles for 2* |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| atom                                         | atom                                                                                                                                                                                            | angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | atom                                                                                                                                                                                                                                                                                                                                                                      | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Ru(1A)                                       | Ru(4A)                                                                                                                                                                                          | 111.64(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(4A)                                                                                                                                                                                                                                                                                                                                                                    | Ru(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86.71(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>Ru</b> (1A)                               | Ru(4A)                                                                                                                                                                                          | 93.60(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                    | Ru(3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(2B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86.71(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>Ru</b> (1 <b>B</b> )                      | Ru(4B)                                                                                                                                                                                          | 111.55(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(4B)                                                                                                                                                                                                                                                                                                                                                                    | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(2B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.08(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ru(1B)                                       | Ru(4B)                                                                                                                                                                                          | 94.07(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(1A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(2A)                                       | Ru(3A)                                                                                                                                                                                          | 109.65(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(1A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.0(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(2A)                                       | Ru(3A)                                                                                                                                                                                          | 90.80(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(1A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.6(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(3A)                                       | Ru(4A)                                                                                                                                                                                          | 87.55(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(2A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(4A)                                       | Ru(3A)                                                                                                                                                                                          | 88.05(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(2A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(4B)                                       | Ru(3B)                                                                                                                                                                                          | 88.88(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(3A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Ru(4A)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5A)                                       | <b>Ru(3A)</b>                                                                                                                                                                                   | 119.03(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(3A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5A)                                       | Ru(4A)                                                                                                                                                                                          | 118.44(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(4A)                                                                                                                                                                                                                                                                                                                                                                    | C(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.0(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5B)                                       | Ru(3B)                                                                                                                                                                                          | 121.64(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(1B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(2B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5B)                                       | Ru(4B)                                                                                                                                                                                          | 117.49(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ru(1B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(4B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.0(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C(1A)                                        | Ru(5A)                                                                                                                                                                                          | 78.6(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Ru(1B)</b>                                                                                                                                                                                                                                                                                                                                                             | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.6(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C(1B)                                        | Ru(5B)                                                                                                                                                                                          | 77.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ru(2B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C92A)                                        | Ru(5A)                                                                                                                                                                                          | 78.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ru(2B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.8(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C(2B)                                        | Ru(5B)                                                                                                                                                                                          | 79.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ru(3B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(4B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(2B)                                       | Ru(3B)                                                                                                                                                                                          | 90.34(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(3B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5A)                                       | Ru(1A)                                                                                                                                                                                          | 86.52(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ru(4B)                                                                                                                                                                                                                                                                                                                                                                    | C(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ru(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ru(5B)                                       | Ru(1B)                                                                                                                                                                                          | 87.33(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Μ                                                                                                                                                                                                                                                                                                                                                                         | C(av)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                              | atom<br>Ru(1A)<br>Ru(1A)<br>Ru(1B)<br>Ru(2A)<br>Ru(2A)<br>Ru(2A)<br>Ru(3A)<br>Ru(4A)<br>Ru(4B)<br>Ru(5A)<br>Ru(5B)<br>Ru(5B)<br>C(1A)<br>C(1B)<br>C(2B)<br>Ru(2B)<br>Ru(2B)<br>Ru(2B)<br>Ru(2B) | atom         atom           Ru(1A)         Ru(4A)           Ru(1A)         Ru(4A)           Ru(1B)         Ru(4B)           Ru(1B)         Ru(4B)           Ru(2A)         Ru(3A)           Ru(2A)         Ru(3A)           Ru(4A)         Ru(3A)           Ru(4B)         Ru(3A)           Ru(4B)         Ru(3A)           Ru(5A)         Ru(3B)           Ru(5B)         Ru(3B)           Ru(5B)         Ru(4B)           C(1A)         Ru(5A)           C(2B)         Ru(5B)           Ru(5B)         Ru(5A)           C(2B)         Ru(5B)           Ru(2B)         Ru(3B)           Ru(5A)         Ru(1A)           Ru(5B)         Ru(1A)           Ru(5B)         Ru(1B) | atomatomangleatomatomangleRu(1A)Ru(4A)111.64(4)Ru(1A)Ru(4A)93.60(5)Ru(1B)Ru(4B)111.55(5)Ru(1B)Ru(4B)94.07(5)Ru(2A)Ru(3A)109.65(4)Ru(2A)Ru(3A)90.80(5)Ru(4A)87.55(5)Ru(4A)Ru(3A)88.05(5)Ru(4A)Ru(3B)88.88(5)Ru(5A)Ru(3B)119.03(5)Ru(5B)Ru(4B)117.49(5)C(1A)Ru(5B)77.2(4)C92A)Ru(5B)79.5(4)Ru(2B)Ru(3B)90.34(5)Ru(5A)Ru(3B)90.34(5)Ru(5B)Ru(1A)86.52(5)Ru(5B)Ru(1B)87.33(5) | atomatomangleatomatomatomangleatomRu(1A)Ru(4A)111.64(4)Ru(4A)Ru(1A)Ru(4A)93.60(5)Ru(5B)Ru(1B)Ru(4B)111.55(5)Ru(4B)Ru(1B)Ru(4B)94.07(5)Ru(1A)Ru(2A)Ru(3A)109.65(4)Ru(1A)Ru(2A)Ru(3A)90.80(5)Ru(1A)Ru(2A)Ru(3A)90.80(5)Ru(2A)Ru(4A)Ru(3A)88.05(5)Ru(2A)Ru(4A)Ru(3B)88.88(5)Ru(3A)Ru(5A)Ru(3B)119.03(5)Ru(3A)Ru(5B)Ru(3B)121.64(5)Ru(1B)Ru(5B)Ru(4B)117.49(5)Ru(1B)C(1A)Ru(5A)78.6(4)Ru(2B)C(2B)Ru(5B)79.5(4)Ru(2B)C(2B)Ru(5B)79.5(4)Ru(3B)Ru(2B)Ru(3B)90.34(5)Ru(3B)Ru(5A)Ru(1A)86.52(5)Ru(4B)Ru(5B)Ru(1B)87.33(5)M | Table 1V. Intramolecular Bond Angles for 2"atomatomangleatomatomRu(1A)Ru(4A)111.64(4)Ru(4A)Ru(5A)Ru(1A)Ru(4A)93.60(5)Ru(5B)Ru(3B)Ru(1B)Ru(4B)111.55(5)Ru(4B)Ru(5B)Ru(1B)Ru(4B)94.07(5)Ru(1A)C(20A)Ru(2A)Ru(3A)109.65(4)Ru(1A)C(20A)Ru(2A)Ru(3A)90.80(5)Ru(1A)C(20A)Ru(2A)Ru(3A)80.5(5)Ru(2A)C(20A)Ru(4A)Ru(3A)88.05(5)Ru(2A)C(20A)Ru(4A)Ru(3B)88.88(5)Ru(3A)C(20A)Ru(5A)Ru(3A)119.03(5)Ru(3A)C(20A)Ru(5B)Ru(3B)121.64(5)Ru(1B)C(20B)Ru(5B)Ru(4B)117.49(5)Ru(1B)C(20B)C(1A)Ru(5A)78.6(4)Ru(1B)C(20B)C(1B)Ru(5B)77.2(4)Ru(2B)C(20B)C(2B)Ru(5B)79.5(4)Ru(3B)C(20B)C(2B)Ru(5B)79.5(4)Ru(3B)C(20B)Ru(2B)Ru(3B)90.34(5)Ru(4B)C(20B)Ru(5A)Ru(3B)90.34(5)Ru(4B)C(20B)Ru(5A)Ru(1A)86.52(5)Ru(4B)C(20B)Ru(5B)Ru(1B)87.33(5)MC(av) | Table TV. Intranioecular Bond Angles for 2*atomatomangleatomatomatomRu(1A)Ru(4A)111.64(4)Ru(4A)Ru(5A)Ru(2A)Ru(1A)Ru(4A)93.60(5)Ru(5B)Ru(3B)Ru(2B)Ru(1B)Ru(4B)111.55(5)Ru(4B)Ru(5B)Ru(2B)Ru(1B)Ru(4B)94.07(5)Ru(1A)C(20A)Ru(2A)Ru(2A)Ru(3A)109.65(4)Ru(1A)C(20A)Ru(4A)Ru(2A)Ru(3A)90.80(5)Ru(1A)C(20A)Ru(5A)Ru(3A)Ru(3A)90.80(5)Ru(1A)C(20A)Ru(5A)Ru(3A)Ru(3A)90.80(5)Ru(2A)C(20A)Ru(5A)Ru(4A)Ru(3A)88.05(5)Ru(2A)C(20A)Ru(5A)Ru(4B)Ru(3A)88.85(5)Ru(3A)C(20A)Ru(5A)Ru(4B)Ru(3B)88.88(5)Ru(3A)C(20A)Ru(5A)Ru(5A)Ru(3A)119.03(5)Ru(3A)C(20A)Ru(5A)Ru(5B)Ru(3B)121.64(5)Ru(1B)C(20B)Ru(5A)Ru(5B)Ru(3B)117.49(5)Ru(1B)C(20B)Ru(5B)C(1A)Ru(5B)77.2(4)Ru(2B)C(20B)Ru(3B)C(2B)Ru(5B)79.5(4)Ru(3B)C(20B)Ru(5B)C(2B)Ru(5B)79.5(4)Ru(3B)C(20B)Ru(5B)C(2B)Ru(3B)90.34(5)Ru(3B)C(20B)Ru(5B)Ru(5A)Ru(1A)86.52(5)Ru(4 |  |

<sup>a</sup> Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

Table V. Positional Parameters and  $B_{eq}$  Values for  $Ru_6C(CO)_{13}(\mu_3\text{-PhC}_2\text{Ph})$ , 3

| atom          | <b>x</b> '   | У           | Z           | B(eq), <sup>a</sup> Å <sup>2</sup> |
|---------------|--------------|-------------|-------------|------------------------------------|
| <b>Ru</b> (1) | -0.05075(05) | 0.29327(03) | 0.18869(06) | 2.47(2)                            |
| Ru(2)         | -0.18321(05) | 0.20324(03) | 0.32410(06) | 2.84(3)                            |
| Ru(3)         | 0.04520(05)  | 0.28741(03) | 0.47262(06) | 2.55(3)                            |
| Ru(4)         | 0.16878(05)  | 0.24371(03) | 0.26351(06) | 2.59(3)                            |
| Ru(5)         | -0.05907(05) | 0.15160(03) | 0.11898(06) | 2.83(3)                            |
| Ru(6)         | 0.05106(06)  | 0.13987(03) | 0.39959(06) | 3.17(3)                            |
| O(11)         | -0.0654(06)  | 0.3114(03)  | -0.1183(07) | 5.9(3)                             |
| O(12)         | -0.1268(05)  | 0.4312(03)  | 0.2810(06)  | 5.4(3)                             |
| O(21)         | -0.2915(06)  | 0.2936(03)  | 0.5268(07)  | 6.7(3)                             |
| O(22)         | -0.3618(06)  | 0.0910(03)  | 0.3901(07)  | 6.9(3)                             |
| O(31)         | 0.2079(06)   | 0.2877(03)  | 0.7506(06)  | 6.7(3)                             |
| O(32)         | -0.0601(06)  | 0.4063(03)  | 0.6029(07)  | 6.7(3)                             |
| O(41)         | 0.2641(06)   | 0.2146(03)  | -0.0078(07) | 6.0(3)                             |
| O(42)         | 0.4014(06)   | 0.2017(03)  | 0.4107(08)  | 7.4(4)                             |
| O(51)         | -0.1298(06)  | -0.0016(03) | 0.0803(07)  | 6.0(3)                             |
| O(52)         | -0.0159(07)  | 0.1474(04)  | -0.1795(07) | 7.7(4)                             |
| O(61)         | 0.2241(08)   | 0.1371(04)  | 0.6693(08)  | 8.9(4)                             |
| O(62)         | 0.1806(07)   | 0.0360(04)  | 0.2560(07)  | 7.7(4)                             |
| O(63)         | -0.1263(07)  | 0.0341(04)  | 0.4852(10)  | 11.0(5)                            |
| C(1)          | -0.0042(06)  | 0.2174(03)  | 0.2970(07)  | 2.8(3)                             |
| C(2)          | 0.1397(06)   | 0.3488(03)  | 0.2556(07)  | 2.4(3)                             |
| C(3)          | 0.1801(06)   | 0.3433(03)  | 0.3947(07)  | 2.5(3)                             |
| C(4)          | -0.2387(06)  | 0.2415(04)  | 0.1310(07)  | 2.8(3)                             |
| C(5)          | 0.2369(06)   | 0.1724(04)  | 0.0910(07)  | 3.0(3)                             |
| C(11)         | -0.0584(07)  | 0.3058(04)  | -0.0038(09) | 3.7(4)                             |
| C(12)         | -0.1013(07)  | 0.3796(04)  | 0.2445(08)  | 3.5(4)                             |
| C(21)         | -0.2438(07)  | 0.2613(04)  | 0.4543(09)  | 4.2(4)                             |
| C(22)         | -0.2940(08)  | 0.1331(05)  | 0.3637(09)  | 4.5(4)                             |
| C(31)         | 0.1452(08)   | 0.2866(04)  | 0.6468(09)  | 3.9(4)                             |
| C(32)         | -0.0228(07)  | 0.3598(04)  | 0.5566(08)  | 3.8(4)                             |
| C(41)         | 0.2266(07)   | 0.2259(04)  | 0.0933(09)  | 4.0(4)                             |
| C(42)         | 0.3113(08)   | 0.2165(04)  | 0.3562(09)  | 4.3(4)                             |
| C(51)         | -0.1014(07)  | 0.0563(05)  | 0.0939(08)  | 3.9(4)                             |
| C(52)         | -0.0304(08)  | 0.1493(04)  | -0.0671(10) | 4.8(4)                             |
| C(61)         | 0.1582(10)   | 0.1395(04)  | 0.5685(10)  | 5.4(4)                             |
| C(62)         | 0.1310(09)   | 0.0756(05)  | 0.3055(09)  | 5.2(4)                             |
| C(63)         | -0.0639(09)  | 0.0768(05)  | 0.4534(11)  | 6.3(5)                             |

<sup>a</sup> See footnote a, Table II.

Ru(2A)-Ru(5A) = 3.107 (2) Å, Ru(1B)-Ru(5B) = 3.026 (2) Å, Ru(2B)-Ru(5B) = 3.090 (2) Å. The Ru – Ru bond distances in the parent molecule Ru<sub>5</sub>(CO)<sub>15</sub>( $\mu_5$ -C) all lie in the range 2.800 (2)–2.882 (2) Å.<sup>9</sup> These long distances in 2 could be a consequence of bond weakening due to the presence of two excess electrons in the complex. We are unaware of any previous reports of 88 electron cluster complexes having the capped square pyramidal geometry.<sup>8</sup> When 2 was treated with CO (1 atm/68 °C), the alkyne

Table VI. Intramolecular Distances for 3<sup>s</sup>

|               |       |           |       |       | <u> </u>  |
|---------------|-------|-----------|-------|-------|-----------|
| atom          | atóm  | distance  | atom  | atom  | distance  |
| Ru(1)         | Ru(2) | 2.7857(8) | Ru(3) | C(1)  | 2.043(7)  |
| <b>Ru</b> (1) | Ru(3) | 2.8299(9) | Ru(3) | Č(3)  | 2.073(6)  |
| Ru(1)         | Ru(4) | 2.7832(8) | Ru(4) | Ru(5) | 3.0071(9) |
| Ru(1)         | Ru(5) | 2.8195(8) | Ru(4) | Ru(6) | 2.8946(9) |
| Ru(1)         | C(1)  | 2.015(7)  | Ru(4) | C(1)  | 2.042(7)  |
| <b>Ru(1)</b>  | C(2)  | 2.248(7)  | Ru(4) | C(2)  | 2.170(6)  |
| Ru(1)         | C(4)  | 2.193(7)  | Ru(4) | C(3)  | 2.219(7)  |
| Ru(2)         | Ru(3) | 2.9534(9) | Ru(5) | Ru(6) | 2.8666(9) |
| Ru(2)         | Ru(5) | 2.7971(9) | Ru(5) | C(1)  | 2.017(7)  |
| Ru(2)         | Ru(6) | 3.0714(8) | Ru(5) | C(5)  | 2.069(7)  |
| Ru(2)         | C(1)  | 2.062(7)  | Ru(6) | C(1)  | 2.040(7)  |
| Ru(2)         | C(4)  | 2.143(7)  | C(2)  | C(3)  | 1.38(1)   |
| Ru(2)         | C(5)  | 2.254(7)  | C(4)  | C(5)  | 1.39(1)   |
| Ru(3)         | Ru(4) | 2.7726(8) | 0     | C(av) | 1.14(1)   |
| Ru(3)         | Ru(6) | 2.9616(8) |       |       |           |

 $^{a}$  Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

ligands were displaced and the platinum atom was shifted back to its original position capping the  $Ru_4(C)$  face to reform 1 in 35% yield.

An ORTEP drawing of the molecular structure of the minor product 3 is shown in Figure 2. Selected final atomic positional parameters are listed in Table V. Selected interatomic bond distances and angles are listed in Tables VI and VII. This molecule consists of an octahedral cluster of six ruthenium atoms with an interstitial carbido ligand and two triply bridging PhC<sub>2</sub>Ph ligands on two of the triangular triruthenium faces. If it were not for presence of three carbonyl ligands on the metal atom Ru(6), the complex 3 would contain a 2-fold rotation axis that would pass along the Ru(1)-Ru(6) vector. The cluster of compound 3 is structurally very similar to the clusters of the two monoalkyne  $Ru_6(C)$  cluster complexes,  $Ru_6$ - $(CO)_{15}(\mu_3-HC_2Ph)(\mu_6-C)$  and  $Ru_6(CO)_{15}(\mu_3-MeC_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_6-C_2Ph)(\mu_$ C), that were recently reported.<sup>3</sup> It seemed likely that a monoalkyne complex would provide a more efficient synthetic route to 3, and this was independently confirmed through the reaction of  $Ru_6(CO)_{15}(\mu_3-PhC_2Ph)(\mu_6-C)$  with PhC<sub>2</sub>Ph. Recently, a series of monoalkyne complexes, Ru<sub>6</sub>- $(CO)_{15}(\mu_3-RC_2R')(\mu_6-C), R = R' = H; R = R' = Me; R =$ 

<sup>(9)</sup> Johnson, B. F. G.; Lewis, J.; Nicholls, J. N.; Puga, J.; Raithby, P. R.; Rosales, M. J.; McPartlin, M.; Clegg, W. J. Chem. Soc., Dalton Trans. 1983, 277.

Table VII. Intramolecular Bond Angles for 3<sup>st</sup>

| atom  | atom          | atom          | angle    | atom          | atom  | atom  | angle   |
|-------|---------------|---------------|----------|---------------|-------|-------|---------|
| Ru(2) | Ru(1)         | Ru(4)         | 94.70(2) | <b>Ru</b> (1) | C(1)  | Ru(4) | 86.6(3) |
| Ru(3) | <b>Ru</b> (1) | Ru(5)         | 91.85(3) | Ru(1)         | C(1)  | Ru(5) | 88.7(3) |
| Ru(3) | Ru(2)         | Ru(5)         | 89.74(2) | Ru(2)         | C(1)  | Ru(3) | 92.0(3) |
| Ru(1) | Ru(3)         | Ru(6)         | 88.80(2) | Ru(2)         | C(1)  | Ru(5) | 86.6(3) |
| Ru(2) | Ru(3)         | Ru(4)         | 91.28(2) | Ru(2)         | C(1)  | Ru(6) | 97.0(3) |
| Ru(1) | <b>Ru</b> (4) | <b>Ru(6)</b>  | 91.08(2) | <b>Ru(3)</b>  | C(1)  | Ru(4) | 85.5(3) |
| Ru(3) | Ru(4)         | Ru(5)         | 89.11(2) | Ru(3)         | C(1)  | Ru(6) | 93.0(3) |
| Ru(1) | Ru(5)         | Ru(6)         | 90.93(3) | Ru(4)         | C(1)  | Ru(5) | 95.6(3) |
| Ru(2) | Ru(5)         | <b>Ru(4)</b>  | 89.69(2) | <b>Ru</b> (4) | C(1)  | Ru(6) | 90.3(3) |
| Ru(3) | <b>Ru(6</b> ) | Ru(5)         | 88.26(2) | Ru(5)         | C(1)  | Ru(6) | 89.9(3) |
| Ru(1) | C(Ì)          | <b>Ru</b> (2) | 86.2(3)  | Ru            | C(av) | 0     | 177(1)  |
| Ru(1) | C(1)          | Ru(3)         | 88.4(3)  |               | . ,   |       | ()      |
|       |               |               |          |               |       |       |         |

<sup>a</sup> Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

 $\mathbf{R}' = \mathbf{Et}; \mathbf{R} = \mathbf{R}' = \mathbf{Ph}; \mathbf{R}, \mathbf{R}' = \mathbf{H}, \mathbf{Ph}; \mathbf{R}, \mathbf{R}' = \mathbf{Me}, \mathbf{Ph} \text{ were reported.}^{5}$ 

A summary of the results of this study are shown in Scheme I. Irradiation of 1 in the presence of  $PhC_2Ph$  led to the loss of three carbonyl ligands, the addition of two  $PhC_{2}Ph$  ligands, and a shift of the Pt(CO) grouping to form the compound 2. The cluster was transformed into a capped square pyramid. Johnson and Lewis have reported that the addition of alkynes to  $Os_6(CO)_{17}(NCMe)$ also causes rearrangements of the cluster geometry to that of capped square pyramids.<sup>10</sup> In 2 the PhC<sub>2</sub>Ph ligands serve as four electron donors, and there is an increase by two in the number of valence electrons to 88. Structurally, it was observed that two of the ruthenium-ruthenium bonds in the cluster are unusually long. This could be a consequence of selective bond weakening due to the presence of the two excess electrons in the complex. When 2 was treated with CO, the alkyne ligands were displaced



and the platinum atom was shifted back to the position across the  $Ru_4(C)$  square face to reform 1.

A small amount of the hexaruthenium complex 3 was also formed in the reaction of 1 with PhC<sub>2</sub>Ph. Evidently, the UV irradiation caused some cluster fragmentation and the stable product 3 was subsequently assembled. In view of the obvious stability of 3, we devised a more efficient route to it via the reaction of  $\operatorname{Ru}_6(\operatorname{CO})_{15}(\mu_3\operatorname{-PhC}_2\operatorname{Ph})(\mu_6\operatorname{-C})$  with PhC<sub>2</sub>Ph. Compounds 2 and 3 are the first examples of carbide containing metal carbonyl cluster complexes that have two alkyne ligands.

Acknowledgment. These studies were supported by the National Science Foundation under Grant No. CHE-8919786.

Supplementary Material Available: Tables of phenyl ring and hydrogen atom parameters and anisotropic thermal parameters (17 pages). Ordering information is given on any current masthead page.

OM920705C

<sup>(10)</sup> Gomez-Sal, M. P.; Johnson, B. F. G.; Kamarudin, R. A.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1985, 1622.