

Subscriber access provided by American Chemical Society

Synthesis, halogenolysis, and crystal structure of hypervalent organobismuth compounds (10-Bi-5)

Xiang Chen, Keisuke Ohdoi, Yohsuke Yamamoto, and Kinya Akiba Organometallics, **1993**, 12 (5), 1857-1864• DOI: 10.1021/om00029a047 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00029a047 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Synthesis, Halogenolysis, and Crystal Structure of Hypervalent Organobismuth Compounds (10-Bi-5)

Xiang Chen, Keisuke Ohdoi, Yohsuke Yamamoto, and Kin-ya Akiba*

Department of Chemistry, Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 724, Japan

Received January 4, 1993

The stable 10-Bi-5 compounds ($o-C_6H_4C(CF_3)_2O$)BiAr₂R (3 (Ar, R): 3a, p-CH₃C₆H₄, p-CH₃C₆H₄; 3b, p-CF₃C₆H₄, p-CF₃C₆H₄; 3c, p-FC₆H₄, p-FC₆H₄; 3d, p-CH₃C₆H₄, p-CF₃C₆H₄; 3e, p-CF₃C₆H₄, $p-CH_3C_6H_4$; **3f**, $p-CH_3C_6H_4$, PhC=C; **3g**, $p-CH_3C_6H_4$, Me) were synthesized. The X-ray structures of **3a,f,g** showed distorted-trigonal-bipyramidal geometries, and the electronegative apical PhC=C ligand of 3f made the apical Bi-O bond (2.243(3) Å) shorter than the Bi-O bond of **3a,g** (2.323(4) Å in **3a** and 2.328(7) Å in **3g**). Halogenolysis of **3** with sulfuryl chloride or pyridinium bromide perbromide gave the five-coordinate bismuth compounds (o-C₆H₄C(CF₃)₂O)BiAr¹- $Ar^{2}X$ (6 (Ar^{1}, Ar^{2}, X): 6a, p-CH₃C₆H₄, p-CH₃C₆H₄, Cl; 6b, p-CF₃C₆H₄, p-CF₃C₆H₄, Cl; 6c, p-FC₆H₄, P-CH₆C₆H₄, P-CH₆C₆C₆H₄, P-CH₆C₆C₆C₆ p-FC₆H₄, Cl; 6d, p-CH₃C₆H₄, p-CH₃C₆H₄, Br; 6e, p-CH₃C₆H₄, p-CF₃C₆H₄, Cl; 6f, p-CH₃C₆H₄, $p-CF_3C_6H_4$, Br) in good to quantitative yield with apical covalent Bi-halogen bonds which were clearly shown by the X-ray analysis of 6a,b,d,e. The reactivity order of 3 for the halogenolysis was as follows: $PhC = C - Bi > Me - Bi > p - CH_3C_6H_4 - Bi > p - CF_3C_6H_4 - Bi$. Direct halogenolysis of the bismuth-carbon bond was suggested. The variable-temperature ¹⁹F NMR of unsymmetrically substituted 6e,f did not show coalescence of the CF₃ groups up to 170 °C in a dilute solution of toluene- d_8 , and the energies of inversion at the bismuth atom should be higher than 21 kcal mol⁻¹ at 170 °C.

Introduction

Recently Barton et al. reported a series of phenylations utilizing pentavalent Bi–aryl compounds including Bi- $(C_6H_5)_5$, indicating the uniqueness of the weak bonding of hypervalent bismuth compounds.¹ However, systematic studies for the preparation, structure, and reactivity of 10-Bi-5 type hypervalent organobismuth compounds have not been carried out mostly because of the instability of those compounds.² Especially, the number of hypervalent organobismuth compounds structurally determined by X-ray analysis has been relatively few,³ and to our knowledge the energy barrier of pseudorotation, which is an indication of flexibility characteristic for five-coordinate species,⁴ has not been determined yet. Recently we reported the preparation and some reactions of stable 10-Bi-5 compounds^{5a} by use of a five-membered ligand, the so-called Martin ligand⁶ (1), and also by use of transannular interaction.^{5b} Here we report the preparation of several stable 10-Bi-5 compounds (3 and 6), seven of which were structurally determined by X-ray analysis to show the characteristic shortening of the apical Bi–O bond by increasing the electronegativity of the other apical group. The energy barrier of pseudorotation of 6e,f, bearing five different substituents on the bismuth atom, was estimated.

Results and Discussion

Preparation of Trisubstituted λ^5 -Bismuthanes 3ac. 1,1,1-Trisubstituted 3,3-bis(trifluoromethyl)-3H-2,1benzoxabismoles 3a-c were prepared by the method outlined in Scheme I. The reaction of triarylbismuth dichloride (2a-c) with the dilithiated reagent of bis-(trifluoromethyl) benzyl alcohol $(1)^6$ gave 3a-c in good yield (53-61%). The best yields of **3a-c** were obtained in THF at -78 °C for 4-8 h. Major byproducts of the reaction were cyclic Bi(III) (4) and Ar_3Bi (5), and these products increased remarkably under the conditions of higher temperatures and longer reaction times. The use of (p- $CH_3C_6H_4)_3BiBr_2$ instead of $(p-CH_3C_6H_4)_3BiCl_2$ only slightly increased the yield of 3a to 61%. Compounds 3 are stable to heat (<200 °C) and to atmospheric moisture. They could be purified by flash column chromatography (SiO_2) to give colorless crystals. Related compounds bearing different substituents on the bismuth atom were also isolated from the reaction of lithium reagents with λ^5 -halogenobismuthanes (6) or from the protonolysis of a 12-Bi-6 ate complex (7a) (vide infra).

Reaction of 3a-c with Electrophiles. Compounds 3 were more reactive to electrophilic reagents than the corresponding antimony compounds 8;⁷ thus, **3a** reacted

⁽¹⁾ Abramovitch, R. A.; Barton, D. H. R.; Finte, J.-P. Tetrahedron 1988, 44, 3039. Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1981, 503. Barton, D. H. R.; Bhathagar, N. Y.; Blazejewski, J.-C.; Charpiot, B.; Finet, J.-P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B.; Stanforth, S. P. J. Chem. Soc., Perkin Trans. 1 1985, 2657.

⁽²⁾ Hellwinkel, D. Top. Curr. Chem. 1983, 109, 1. Freedman, L. D.; Doak, G. O. Chem. Rev. 1982, 82, 15. Finet, J.-P. Chem. Rev. 1989, 89, 1487. Poller, R. C. Compr. Org. Chem. 1979, 3, 1111. Wardell, J. L. Compr. Organomet. Chem. 1982, 2, 681. Gmelin Handbuch der Anorganischen Chemie; Wieber, M., Ed.; Springer-Verlag: Berlin, 1977; Vol. 47, Bismuth-Organische Verbindungen.

⁽³⁾ Schmuck, A.; Leopold, D.; Wallenhauer, S.; Seppelt, K. Chem. Ber.
1990, 123, 761. Schmuck, A.; Leopold, D.; Seppelt, K. Chem. Ber. 1989,
122, 803. Schmuck, A.; Pyykko, P.; Seppelt, K. Angew. Chem., Int. Ed.
Engl. 1990, 29, 213. Barton, D. H. R.; Charpiot, B.; Dau, E. T. H.;
Motherwell, W. B.; Pascard, C.; Pichon, C. Helv. Chim. Acta 1984, 67, 586.

⁽⁴⁾ Martin, J. C. Science (Washington, D.C.) 1983, 221, 509. Holmes, R. R. Pentacoordinated Phosphorus: Structure and Spectroscopy; ACS Monograph 175; American Chemical Society: Washington, DC, 1980. Emsley, J.; Hall, D. The Chemistry of Phosphorus; Wiley: New York, 1976; p 82.

 ^{(5) (}a) Akiba, K.; Ohdoi, K.; Yamamoto, Y. Tetrahedron Lett. 1988,
 29, 3817. (b) Ohkata, K.; Takemoto, S.; Ohnishi, M.; Akiba, K. Tetrahedron Lett. 1989, 30, 4841.

⁽⁶⁾ Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H., III; Dess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 7049.

with acid chlorides such as ethyl succinyl chloride or p-methoxybenzoyl chloride in contrast to the inertness of 8a with propionyl chloride. Ethyl succinyl chloride or

p-methoxybenzoyl chloride reacted mainly on the oxygen of 3a to give 9a (84%) or 9b (41%) and tri-p-tolylbismuth (5a) (61% with ethyl succinyl chloride, 38% with p-methoxybenzoyl chloride). In addition to 9a, five-coordinated 6a with an apical Bi-Cl bond was obtained. The probable mechanism for the reaction is illustrated in Scheme II. Thus, electrophiles reacted at the oxygen atom to form the 12-Bi-6 type intermediate 10, and 10 collapsed to give 6a by syn elimination and to 11 to afford 9a and tri-ptolylbismuth (5a) by reductive ligand coupling. The compound 6a could be prepared from the reaction of 3a with sulfuryl chloride in CH₂Cl₂ almost quantitatively (>95%) at room temperature, and the resulting p-chlorotoluene was isolated and quantitatively determined by GLC. Similarly, 6b-d were obtained quantitatively from 3 with sulfuryl chloride or pyridinium bromide perbromide. Compounds 6a-d were stable to atmospheric moisture and silica gel chromatography, could be recrystallized from benzene-ethanol to form colorless crystals, and gave correct elemental analyses.

Preparation of Other Substituted λ^5 -Bismuthanes 3d-g. Methyl-substituted λ^5 -bismuthane 3g could be obtained by protonolysis of the six-coordinated bismuth

3a: Ar=p-CH3C6H4

3b: Ar=p-CF3C6H4 3c: Ar=p-FC6H4

> $Ar = p - CH_3C_6H_4$ 6b: Ar=o-CF3C6H4. X=CI

6a: Ar=p-CH3C6H4, X=CI 6b: Ar=p-CF₃C₆H₄, X=Cl 6c: Ar=p-FC₆H₄, X=Cl 6d: Ar=p-CH₃C₆H₄, X=Br

Bra

3e: Ar=p-CF3C6H4, R=p-CH3C6H4

31: Ar=p-CH₃C₆H₄, R=PhC=C

ate complex 7a (12-Bi-6) (Scheme IV) in a manner similar to that for the corresponding antimony ate complexes.⁷ Thus, reaction of 1 equiv of methyllithium with 3a was carried out at -78 °C and was quenched with aqueous NaCl. Compound 3g was obtained in 86% yield in addition to a small amount (6%) of recovered 3a. However, the method was not useful for the preparation of arylsubstituted compounds. Instead, substitution of λ^5 halogenobismuthanes 6a-d with organolithium reagents was found to be a useful reaction for the preparation of pentavalent bismuth species. For example, compound 6a with 1.1 equiv of (p-(trifluoromethyl)phenyl)lithium in THF at ambient temperature for 18 h afforded a 63% yield of 3d. Similar reaction of 6b with 1 equiv of (pmethylphenyl)lithium in THF for 50 min gave a mixture of 3d (32%) and 3e (16%). Reaction of 6a with 1 equiv of (phenylethynyl)lithium afforded 3f (10%). The structure of 3e should be written so that R and Ar lie at equatorial positions and Ar is at an apical position.

Halogenolysis of Differently Substituted λ^5 -Bismuthanes 3d-g. With λ^5 -bismuthanes 3d-g bearing different carbon substituents in hand, we investigated the selectivity of the Bi-C bonds in the halogenolysis. Chlorination of 3d-g with sulfuryl chloride was carried out to prepare λ^5 -bismuthanes with five different substituents. The results are shown in Scheme VI. From 3d 81% of 6e was isolated with elimination of p-chlorotoluene, in addition to 8% of **6a**. From **3e** 52% of **6b** was isolated in addition to 8% of **6e**. Thus, the elimination of *p*-chlorotoluene was preferred to the elimination of p-chloro-(trifluoromethyl)benzene. Also, from 3f only 6a was obtained quantitatively. It is interesting to note that the reaction of 3g gave 6a as the main product (64%) and a small amount of the trivalent bismuth species (12a, which

⁽⁷⁾ Yamamoto, Y.; Fujikawa, H.; Fujishima, H.; Akiba, K.J. Am. Chem. Soc. 1989, 111, 2276. Akiba, K.; Fujikawa, H.; Sunaguchi, Y.; Yamamoto, Y. J. Am. Chem. Soc. 1987, 109, 1245.

Scheme VII

(i) initial complexation with the oxygen to form a 12-Bi-6 intermediate

(ii) initial complexation with the oxygen to form a 10-Bi-5 intermediate

(iii) initial complexation with the π -electrons of substituted benzene

may be produced via **6g**. We could not isolate **6g**, but the results clearly showed that methyl chloride elimination to give **6a** was preferred to the elimination of *p*-chlorotoluene to give **6g**. Reactions of **3d** and **3g** with pyridinium bromide perbromide gave similar results with better selectivities. Thus, by the reaction of **3d** only **6f** could be isolated (88%) and **6d** was the only isolated product in the reaction of **3g** (70%). Thus, the preferred order of halogenolysis of the Bi-C(substituent) bond was concluded as follows: PhC=C->Me->p-CH_3C_6H_4->p-CF_3C_6H_4-.

The following mechanisms for the halogenolysis depicted in Scheme VII are possible: (i) initial complexation of the electrophiles with the oxygen atom to form the 12-Bi-6 betaine type intermediate 13 and consequent syn elimination to give 6 as in the reaction with acid chlorides (vide supra), (ii) initial complexation of the electrophiles with the oxygen atom to form the 10-Bi-5 oxonium type intermediate 14 and consequent syn elimination to give 6 followed by attack of X-, (iii) initial complexation with the π electrons of substituted benzene, and (iv) direct attack at the Bi-carbon bonds without precomplexation of electrophiles. The 12-Bi-6 intermediate 13 was very similar to the proposed intermediate 15 for the protonolysis

of the corresponding 12-Sb-6 ate complexes 16. The intermediacy of 15 was based on the detailed study of the protonolysis of 16 with a variety of substituents.⁷ The Sb-C(tolyl) bond was much more reactive to protic acids than the Sb-C(methyl) bond, and the protonolysis of the corresponding 12-Bi-6 species 7a provided a result similar to that for 12-Sb-6 as described in the previous section. Hence, the preferred Bi-C(methyl) bond cleavage in the halogenolysis cannot be expected from the 12-Bi-6 type intermediate mechanism i, and clearly it is not consistent with the initial π -complexation mechanism iii. Mechanism ii with 10-Bi-5 intermediate 14 seems not to be probable because the X-ray structural analyses of 3f and 3g showed the phenylethynyl group of 3f was in an apical position and the methyl group of 3g was in an equatorial position (vide infra). In spite of these site preferences, both groups were selectively halogenolyzed. If we can assume that the pseudorotation of the five-coordinated bismuth center of 14 is relatively free due to weakening of the Bi-O bond by halogenation, then the following possibility cannot be neglected.⁸ In mechanism ii, the smallest group (ethynyl) is syn-halogenized first and, next, the most electron-rich one follows among equally sized groups. While we need more information to reach a conclusion on the mechanism. the direct electrophilic attack of halogen at the relatively more electron-rich bond without complexation, i.e., mechanism iv, is the preferred mechanism at present.

X-ray Crystal Structures of 2a, 3a, f,g, and 6a, b, d,e. Crystals of 2a, 3a,f,g, and 6a,b,d,e suitable for X-ray analysis were obtained by recrystallization from acetonitrile for 3a, f,g and from benzene-ethanol for 2a, 6a, b, d, e. The geometry about bismuth in these compounds was a distorted trigonal bipyramid (TBP) with the five-membered ring at the apical-equatorial sites of a TBP. The Bi-Cl or Bi-Br single bonds are slightly longer than the sum of the covalent radii between Bi and Cl atoms or Bi and Br atoms (2.51 Å for Bi-Cl or 2.66 Å for Bi-Br), suggesting that the Bi-X (X = halogen) bonds in these compounds are covalent. The calculated Bi-Cl bond length (2.51 Å) was also slightly shorter than the averaged Bi-Cl bond length (2.59 Å) of $(p-CH_3C_6H_4)_3BiCl_2(2a)$ and the reported averaged Bi-Cl bond length (2.57 Å) of Ph₃-BiCl₂.9 Such a slight lengthening of the apical Bi-Cl bond in these compounds and 6 may be due to three-centerfour-electron bonding of the central bismuth atom. There were no short intermolecular contacts involving the bismuth and the halogen. Positions of substituents were

⁽⁸⁾ We thank a reviewer for the suggestion of this possibility.
(9) Brill, T. B.; Long, G. G. Inorg. Chem. 1970, 9, 1980.

Figure 1. ORTEP diagram (30% probability ellipsoids) for 2a.

Figure 2. ORTEP diagram (30% probability ellipsoids) for 3a.

Figure 3. ORTEP diagram (30 % probability ellipsoids) for 3f.

consistent with electronegativities of substituents, that is, "apicophilicity".¹⁰ Thus, halogens were in apical positions in λ^5 -halogenobismuthanes, and the phenylethynyl group was also in an apical position and the methyl group was in an equatorial position. Figures 1–8 show the crystal structures of 2a, 3a,f,g, and 6a,b,d,e, respectively. Selected bond lengths and bond angles for the structures of 2a, 3a,f,g, and 6a,b,d,e are listed in Table I. It should be noted that the averaged apical Bi–O bond lengths of these compounds were affected only by the electronegativity of another apical group, in contrast to the insen-

Figure 4. ORTEP diagram (30% probability ellipsoids) for 3g.

Figure 5. ORTEP diagram (30% probability ellipsoids) for 6a.

Figure 6. ORTEP diagram (30% probability ellipsoids) for 6b.

sitivity of the property of equatorial substituents. Although an increase in electron donation from the equatorial ligand to an apical three-center-four-electron bond was reported to lead to a longer apical bond length,¹¹ the apical Bi-O bond lengths of **6a,b,d,e** with an apical halogen and different equatorial substituted phenyl groups were very similar (2.179(6), 2.17(1), 2.184(8), 2.186(9) Å). In the ¹H NMR of **6a,e,b** the resonances at 8.73, 8.71, and 8.69 ppm, respectively, due to the proton ortho to the Bi atom in the

⁽¹⁰⁾ McDowell, R. S.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1985, 107, 5849. Deiters, J. A.; Holmes, R. R. J. Am. Chem. Soc. 1987, 109, 1686. Musher, J. I. Angew. Chem., Int. Ed. Engl. 1969, 8, 54.

⁽¹¹⁾ Chopra, S. K.; Martin, J. C. Heteroat. Chem. 1991, 2, 1. Ross, M. R.; Martin, J. C. Phosphorus Chemistry; ACS Symposium Series 171; American Chemical Society: Washington, DC, 1980; p 429. Perrozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1974, 96, 578, 6735.

Figure 7. ORTEP diagram (30% probability ellipsoids) for 6d.

Figure 8. ORTEP diagram (30% probability ellipsoids) for 6**e**.

five-membered ring were considered to be affected by the polarization of the apical Bi-halogen bond.¹² Thus, the upfield shift of this proton with the increasing electronwithdrawing ability of the equatorial substituents indicates that the polarization of the apical Bi-Cl bond is decreased according to the decrease of electron density of the bismuth atom. Although the Bi-Cl bond lengths in the solid state seem to reflect this tendency, the difference of the lengths is too small to be discussed. In contrast, the apical Bi-O bond lengths of 6a,b,d,e (2.17-2.185 Å) with an apical halogen are 0.06 Å shorter than that of **3f** with an apical phenylethynyl group (2.243(3) Å) and are 0.16 Å shorter than those of **3a** and **3g** with an apical tolyl group (2.323-(4), 2.328(7) Å). Thus, the apical Bi–O bond length was found to increase as the electronegativity of the other apical group decreased. The averaged Bi-O bond length (2.29 Å) in the 10-Bi-4 anion 18, which was recently reported

Organometallics, Vol. 12, No. 5, 1993 1861

(2.17-2.18 Å) of 19.¹⁴ such short bond lengths of 18 and 19 were quite consistent with the above conclusion. The large difference in the lengths of the apical Bi-O bonds reflected the polarizable character of the apical threecenter-four-electron hypervalent bond as shown in 10-S-4 sulfuranes and 10-P-5 phosphoranes.¹⁵ The trend can be rationalized by considering the ionic "no-bond" resonance structures.¹⁶ As the electronegativity of X increases compared to that of the other apical ligand, O, the contribution of resonance structure 17a will increase relative to 17b and the Bi-O bond length will decrease (Scheme VIII).

Pseudorotational Barrier of 6e,f. With λ^5 -bismuthanes 6e,f bearing five different substituents in hand, we could measure the pseudorotational barrier of λ^5 -bismuthanes bearing a Martin ligand. As expected, the ¹⁹F NMR of 6e,f showed a pair of quartets (δ -75.10, -75.15 (J = 8 Hz) (split width $(\Delta \nu)$ 20 Hz) in 6e (o-dichlorobenzene); $\delta - 76.40, -76.56 (J = 8 \text{ Hz})$ (split width ($\Delta \nu$) 61 Hz) in 6f (toluene- d_8) for the CF₃ groups at room temperature, showing that these compounds possess stable configurations on this time scale. Coalescence of the two CF_3 groups could be observed at 150 °C (6f) and at 170 °C (6e), but coalescence was not observed up to 170 °C when the samples were diluted to 1/10 concentration. Thus, the exchange observed is probably due to intermolecular halogen exchange. However, it can be concluded that the free energy of activation of the CF_3 exchange by an intramolecular inversion at the bismuth atom should be higher than 21 kcal mol⁻¹, which can be effected by a series of pseudorotations. The strain effected by the diequatorial placement of the five-membered ring 20, which is required for the inversion, should be the reason for the high activation energy.

Experimental Section

Melting points were taken on a Yanagimoto micro melting point apparatus and were uncorrected. ¹H NMR (400-MHz) and ¹⁹F NMR (376-MHz) spectra were recorded on a JEOL EX-400 spectrometer. ¹H NMR (90-MHz) and ¹⁹F NMR (85-MHz) spectra were recorded on a Hitachi R-90H spectrometer. Chemical shifts are reported (δ scale) from internal tetramethylsilane for ¹H or from fluorotrichloromethane for ¹⁹F. Flash column chromatography was carried out on Merck silica gel 9385. Thinlayer chromatography was performed with Merck silica gel GF-254 plates. All reactions were carried out under N_2 or Ar.

Solvents and Reagents. The preparation of lithium 1,1,1,3,3,3-hexafluoro-2-(2-lithiophenyl)-2-propoxide (1) from n-BuLi, 10% N,N,N',N'-tetramethylethylenediamine (TMEDA), and the corresponding alcohol followed the published procedure.⁶ Tris(p-methylphenyl)bismuth dichloride¹⁶ and dibromide¹⁵ were prepared by published procedures. Tris(p-fluorophenyl)bismuth dichloride (mp 134–136 °C) was prepared from the corresponding bismuthine¹⁷ and sulfuryl chloride. Tris(p-(trifluoromethyl)phenyl)bismuth dichloride (mp 140-143 °C) was prepared from bismuth trichloride and (p-(trifluoromethyl)phenyl)magnesium bromide, followed by reaction with excess sulfuryl chloride. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium-benzophenone.

⁽¹³⁾ Chen, X.; Yamamoto, Y.; Akiba, K.; Yoshida, S.; Yasui, M.; Iwasaki, F. Tetrahedron Lett. 1992, 33, 6653.

⁽¹⁴⁾ Chen, X.; Kitano, M.; Ohdoi, K.; Yamamoto, Y.; Akiba, K., unpublished results. (15) Hayes, R. A.; Martin, J. C. In Organic Sulphur Chemistry:

by us^{13} was shorter than those of **3a** and **3g**. Since the Bi–O bond of 18 was lengthened by the anionic character of the compound 18 compared to the Bi-O bond length

⁽¹²⁾ Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 4618. Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 2711.

Theoretical and Experimental Advances; Csizmadia, E. G., Mangini, A., Bernardi, F., Eds.; Elsevier: Amsterdam, 1985; Chapter 8, pp 408–483. (16) Livant, P.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 127.
 (17) Michaelis, A.; Marquardt, A. Justus Liebigs Ann. Chem. 1889,

^{251. 323.}

⁽¹⁸⁾ Gilman, H.; Yanblunky, H. L. J. Am. Chem. Soc. 1941, 63, 207.

		1 able 1	. Selected Bond L	engins and Angles I	or 2a, 3a,1,g, a	ind ba, b, d, e		
			F ₃ C, CF ₃ O Bi b V R 3		$ \begin{array}{c} F_3C, CF_3 \\ O \\ O \\ Bi, O \\ Bi, O \\ Bi, O \\ F_3C, CF_3 \\ O \\ O \\ Bi, O \\ Bi, O \\ F_3C, CF_3 \\ O \\ Bi, O \\ Bi, O \\ F_3C, CF_3 \\ O \\ O$			
	2a	3a : $R = p - CH_3C_6H_4;$ $Y = p - CH_3C_6H_4$	3g: R = p-CH ₃ C ₆ H ₄ ; Y = CH ₃	3f: $R = C \equiv CC_6H_4;$ $Y = p - CH_3C_6H_4$	6a: X = Cl; $R^1 = CH_3;$ $R^2 = CH_3$	6d : X = Br; $R^1 = CH_3;$ $R^2 = CH_3$	6b : X = Cl; $R^1 = CF_3;$ $R^2 = CF_3$	6e : X = Cl; $R^1 = CH_3;$ $R^2 = CF_3$
				Bond Lengths (Å)				
a b	2.590(4) 2.595(4)	2.323(4) 2.266(5)	2.328(7) 2.25(1)	2.243(3) 2.249(6)	2.179(6) 2.562(3)	2.184(8) 2.708(2)	2.17(1) 2.558(4)	2.186(9) 2.547(4)
c d	2.23(2) 2.22(1)	2.194(5)	2.21(1) 2.21(1)	2.196(6)	2.201(8)	2.20(1) 2.21(1)	2.22(1) 2.19(1)	2.21(1) 2.20(1)
e	2.19(1)	2.220(6)	2.19(1)	2.193(6)	2.196(8)	2.21(1)	2.20(1)	2.19(1)
				Bond Angles (deg)				
ab	176.0(1)	169.1(2)	168.2(3)	169.4(2)	170.0(2)	170.1(2)	170.7(2)	171.2(3)
cd	119.1(4)	103.8(2)	109.5(5)	108.2(2)	109.8(3)	109.0(4)	107.0(4)	110.7(5)
de	121.6(5)	115.5(2)	119.4(4)	126.8(2)	124.8(3)	122.6(4)	123.0(5)	124.4(5)
ec	119.2(4)	133.1(2)	124.0(4)	122.3(4)	124.2(3)	126.9(3)	129.1(5)	123.1(5)
ac	91.4(4)	87.4(2)	86.7(3)	89.8(2)	91.6(3)	90.0(3)	91.6(4)	90.5(4)
ad	90.0(4)	84.6(2)	84.2(4)	89.6(2)	91.5(2)	92.1(3)	92.9(4)	90.0(4)
ae	88.7(4)	73.1(2)	73.6(3)	75.9(2)	77.7(2)	77.5(3)	77.9(4)	77.5(4)
bc	92.1(4)	100.6(2)	99.4(4)	95.6(2)	94.4(2)	94.5(2)	92.7(3)	94.8(3)
bd	90.0(4)	100.4(2)	103.0(4)	108.2(2)	93.9(2)	94.8(3)	93.8(4)	94.6(4)
be	87.9(4)	96.6(2)	94.6(4)	93.6(2)	92.3(2)	92.8(3)	92.9(4)	93.7(4)
		Scheme VII	I	(br s. 3	F). Anal. C	alcd for C ₂₇ H ₁	FoOBi: C. 4	4.04: H. 2.19.

Preparation of 3a-c. General Procedure. To a solution of 1 (30 mmol) in THF-*n*-hexane was added a solution of triarylbismuth dichloride (or dibromide) (2; 22 mmol) in 115 mL of THF at -78 °C with stirring under N₂. The mixture was stirred for 4.5-8 h at -78 °C and was quenched with aqueous NaCl. Extraction with ether (3 × 50 mL), drying (MgSO₄), and removal of the ether gave a mixture of 3-5. Flash column chromatography (ethyl acetate-*n*-hexane) followed by recrystallization from ether*n*-hexane gave colorless crystals of 3.

3,3-Bis(trifluoromethyl)-1,1,1-tris(*p*-methylphenyl)-3*H*-**2,1-benzoxabismole (3a)**: yield 55%; mp 206–209 °C; ¹H NMR (CDCl₃) 2.37 (s, 9 H), 7.28 (d, 6 H, J = 8 Hz), 7.64 (d, 6 H, J = 8 Hz), 7.37–7.55 (m, 3 H), 7.91–8.13 (m, 1 H); ¹⁹F NMR (CDCl₃) –73.4 (s, 6 F). Anal. Calcd for C₃₀H₂₅F₆OBi: C, 49.73; H, 3.48. Found: C, 49.80; H, 3.46.

4a: yield 30%; mp >300 °C; ¹H NMR (acetone- d_6) 2.24 (s, 3 H), 7.29–8.14 (m, 8 H); ¹⁹F NMR (acetone- d_6) -74.9 (q, 3 F, J = 8.6 Hz), -77.4 (q, 3 F, J = 8.6 Hz). Anal. Calcd for $C_{16}H_{11}F_6OBi$: C, 35.44; H, 2.04. Found: C, 35.39; H, 1.98.

3,3-Bis(trifluoromethyl)-1,1,1-tris(*p*-(trifluoromethyl)**phenyl)-3***H***-2,1-benzoxabismole (3b)**: yield 53%; mp 199–201 °C; ¹H NMR (CDCl₃) 7.23–8.20 (m, 16 H); ¹⁹F NMR (CDCl₃) -61.9 (s, 9 F), -73.4 (s, 6 F). Anal. Calcd for $C_{30}H_{16}F_{15}OBi$: C, 40.65; H, 1.82. Found: C, 40.88; H, 1.84.

4b: yield 41%; mp 223-225 °C (ether-*n*-hexane); ¹H NMR (acetone- d_6) 6.95-8.40 (m, 8 H); ¹⁹F NMR (acetone- d_6) -63.6 (s, 3 F), -75.1 (q, 3 F, J = 8.6 Hz), -77.6 (q, 3 F, J = 8.6 Hz). Anal. Calcd for C₁₆H₈F₉OBi: C, 32.23; H, 1.35. Found: C, 32.25; H, 1.29.

5b: yield 5%; mp 147-149 °C (ether-*n*-hexane); ¹H NMR (CDCl₃) 7.65 (d, 6 H, J = 8.1 Hz), 7.83 (d, 6 H, J = 8.1 Hz). Anal. Calcd for C₂₁H₁₂F₉Bi: C, 39.15; H, 1.89. Found: C, 39.37; H, 1.88.

3,3-Bis(trifluoromethyl)-1,1,1-tris(*p*-fluorophenyl)-3*H*-**2,1-benzoxabismole (3c)**: yield 61 %; mp 161–163 °C; ¹H NMR (CDCl₃) 7.0–8.3 (m, 16 H); ¹⁹F NMR (CDCl₃) -74.1 (s, 6 F), -108.5

(br s, 3 F). Anal. Calcd for $C_{27}H_{16}F_9OBi$: C, 44.04; H, 2.19. Found: C, 44.13; H, 2.13.

4c: yield 23%; mp 224-227 °C (ether-*n*-hexane); ¹H NMR (acetone- d_6) 7.0-8.2 (m, 8 H); ¹⁹F NMR (acetone- d_6) -75.2 (q, 3 F, J = 8.6 Hz), -77.7 (q, 3 F, J = 8.6 Hz), -113.7 (br s, 1 F). Anal. Calcd for C₁₅H₈F₇OBi: C, 32.99; H, 1.48. Found: C, 33.17; H, 1.49.

Reaction of 3a with Ethyl Succinyl Chloride. To a solution of **3a** (0.314 g, 0.43 mmol) in 2 mL of benzene was added ethyl succinyl chloride (0.080 mL, 0.56 mmol) at room temperature. The reaction mixture was stirred for 8.5 h at 50 °C. The products were separated by TLC (ethyl acetate–n-hexane, 1:5). Compounds **9a** (0.148 g, 84%), **6a** (0.022 g, 8%), and **5a** (0.128 g, 61%) were obtained.

3,3-Bis(trifluoromethyl)-1-chloro-1,1-bis(p-methylphenyl)-3H-2,1-benzoxabismole (6a): mp 186–189 °C (benzene–ethanol); ¹H NMR (CDCl₃) 2.38 (s, 6 H), 7.43 (d, 4 H, J = 8 Hz), 7.60–8.05 (m, 3 H), 8.17 (d, 4 H, J = 8 Hz), 8.73 (d, 1 H, J = 7Hz); ¹⁹F NMR (CDCl₃) -74.1 (s, 6 F). Anal. Calcd for C₂₃H₁₈F₆OClBi: C, 41.30; H, 2.71. Found: C, 41.07; H, 2.70.

9a: ¹H NMR (CDCl₃) 1.24 (t, 3 H, J = 7.0 Hz), 2.50–3.10 (m, 4 H), 4.15 (q, 2 H, J = 7.0 Hz), 7.2–7.7 (m, 4 H).

Reaction of 3a with *p***·Methoxybenzoyl Chloride.** To a solution of **3a** (0.317 g, 0.44 mmol) in 2 mL of benzene was added *p*-methoxybenzoyl chloride (0.075 mL, 0.54 mmol) at room temperature. The reaction mixture was stirred for 10 h under reflux. The products were separated by TLC (ethyl acetate*n*-hexane, 1:5). Compounds **9b** (0.074 g, 41%), recovered **3a** (0.065 g, 21%), and **5a** (0.079 g, 38%) were obtained.

9b: ¹H NMR (acetone- d_6) 3.92 (s, 3 H), 7.13 (d, 2 H, J = 9.0 Hz), 7.72–7.77 (m, 4 H), 8.07 (d, 2 H, J = 9.0 Hz).

Reaction of 3 with Sulfuryl Chloride. General Procedure. To a solution of 3 (2 mmol) in 10 mL of CH_2Cl_2 was added 0.2 mL of sulfuryl chloride (2.5 mmol) at -78 °C with stirring. The solution was warmed to room temperature and stirred for 14 h at this temperature. The mixture was evaporated in vacuo, and the residue was recrystallized to give colorless crystals of 6. 6a: yield 95% from 3a.

3,3-Bis(trifluoromethyl)-1-chloro-1,1-bis(p-(trifluoromethyl)phenyl)-3H-2,1-benzoxabismole (6b): yield 97% (from 3b); mp 145–146 °C (ether–n-hexane); ¹H NMR (CDCl₃) 7.60–8.10 (m, 3 H), 7.90 (d, 4 H, J = 8.4 Hz), 8.51 (d, 4 H, J = 8.4 Hz), 8.69 (dd, 1 H, J = 7.6 Hz, 1.2 Hz); ¹⁹F NMR (CDCl₃) –61.8 (s, 6 F), -73.3 (s, 6 F). Anal. Calcd for C₂₃H₁₂F₁₂OClBi: C, 35.56; H, 1.56. Found: C, 35.79; H, 1.57.

Hypervalent Organobismuth Compounds

	I able II. Crys	iai Dala Ior 2a, 3a,1,8, ar	iu va,v,u,c	
	2a		3f	3g
formula	$C_{21}H_{21}Cl_2Bi$	C ₃₀ H ₂₅ F ₆ OBi	C ₃₁ H ₂₃ F ₆ OBi	C ₂₄ H ₂₁ F ₆ OBi
mol wt	553.28	724.50	734.50	648.40
cryst syst	monoclinic	triclinic	monoclinic	monoclinic
space group	C2/c	PĨ	$P2_1/n$	$P2_1/n$
cryst dimens, mm	$0.40 \times 0.35 \times 0.25$	$0.80 \times 0.45 \times 0.20$	$0.30 \times 0.15 \times 0.15$	$0.80 \times 0.70 \times 0.60$
a, Å	15.406(3)	10.546(1)	13.826(4)	29.026(5)
b, Å	19.741(3)	11.411(2)	19.802(6)	8.362(2)
c, Å	15.384(3)	12.764(2)	10.425(3)	9.568(2)
α , deg	90	91.08(1)	90	90
β , deg	117.37(1)	111.89(1)	103.97(2)	93.62(1)
γ , deg	90	98.90(1)	90	90
V, \mathbf{A}^3	4155(1)	1403.2(4)	2770(1)	2317.6(7)
Z	8	2	4	4
$D_{\rm calc}$, g cm ⁻³	1.77	1.96	1.76	1.86
abs coeff. cm ⁻¹	83.31	61.18	61.64	73.59
F(000)	2040	700	1416	1240
radiation: λ . Å	Μο Κα: 0.710 73	Μο Κα: 0.710 73	Μο Κα: 0.710 73	Mo Kα: 0.710 73
temp. °C	23 ± 1	23 ± 1	23 ± 1	23 ± 1
$2\theta(\max)$, deg	50	55	55	55
scan rate, deg/min	6.0	16.0	12.0	12.0
linear decay %	30	1010	8	8
data collected	$\pm h - k \pm l$	$+h \pm k \pm l$	$\frac{1}{\pm}h - k \pm l$	$\pm h - k \pm l$
total data colled:	4900: 3667, 2436	7052: 6449, 5831	5416: 4880, 3721	6090: 5327, 3510
unique obsd	$(I > 3\sigma(I))$	$(I > 3\sigma(I))$	$(I > 3\sigma(I))$	$(I > 3\sigma(I))$
R(int)	0.18	0.02	0.03	0.07
no of params refined	223	349	358	295
R R S	0.057 0.065 1.15	0 039 0 036 2 14	0.039 0.036 1.17	0.049 0.074 0.70
max shift in final cycle	0.06	0.17	0.14	0.13
final diff map max $e^{\Delta^{-3}}$	1.20	2 53	0.79	2 36
mar ant map max, ere	1.00	2.00	0115	2.20
	69		6d	<u> </u>
formula		6b	6d	6e
formula	6a C ₂₃ H ₁₈ F ₆ ClOBi	6b C ₂₃ H ₁₂ F ₁₂ ClOBi 776.80	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27	6e C ₂₃ H ₁₅ F ₉ ClOBi 722 80
formula mol wt	68 C ₂₃ H ₁₈ F ₆ ClOBi 668.80 triolizio	6b C ₂₃ H ₁₂ F ₁₂ ClOBi 776.80	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80
formula mol wt cryst syst	6a C ₂₃ H ₁₈ F ₆ ClOBi 668.80 triclinic	6b C ₂₃ H ₁₂ F ₁₂ ClOBi 776.80 monoclinic	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27 triclinic	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2 (c
formula mol wt cryst syst space group		6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic C2/c 0.90 × 0.60 × 0.40	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27 triclinic P1 0.66 × 0.55 × 0.42	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.25
formula mol wt cryst syst space group cryst dimens, mm	6a C ₂₃ H ₁₈ F ₆ ClOBi 668.80 triclinic $P\bar{I}$ 0.90 × 0.90 × 0.80 0.202(2)	$\frac{6b}{C_{23}H_{12}F_{12}ClOBi}$ 776.80 monoclinic $\frac{C2}{c}$ 0.80 × 0.60 × 0.40 25.275(7)	$\frac{6d}{C_{23}H_{18}F_6BrOBi}$ 713.27 triclinic $P\bar{1}$ 0.66 × 0.55 × 0.42 0.557(2)	$\frac{6e}{C_{23}H_{15}F_9ClOBi}$ 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(c)
formula mol wt cryst syst space group cryst dimens, mm a, Å	$\begin{array}{c} 6a \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\overline{I} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.672(2) \end{array}$	$\frac{6b}{C_{23}H_{12}F_{12}ClOBi}$ 776.80 monoclinic $\frac{C2}{c}$ 0.80 × 0.60 × 0.40 25.375(7) 12.002(2)	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.42(2) \\ \end{array}$	$\frac{6e}{C_{23}H_{15}F_9ClOBi}$ 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 0.210(2)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å	$\begin{array}{c} 6a \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{I} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.906(2) \end{array}$	$\frac{6b}{C_{23}H_{12}F_{12}ClOBi}$ 776.80 monoclinic $C2/c$ 0.80 × 0.60 × 0.40 25.375(7) 12.092(3) 16.924(4)	$\begin{array}{r} 6d \\ \hline \\ C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 10.964(2) \\ 10.964(2) \\ \end{array}$	$\frac{6e}{C_{23}H_{15}F_{9}ClOBi}$ 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.5(52(4))
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å	$\begin{array}{c} 6a \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\overline{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 00.26(2) \end{array}$	$\begin{array}{c} \textbf{6b} \\ \hline C_{23}H_{13}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 0 \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å c, Å a, deg	$\begin{array}{c} 6a \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 02.73(2) \end{array}$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{13}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 0.251(2) \\ \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å c, Å a, deg β, deg	$\begin{array}{c} 6a \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 02.23(2) \end{array}$	$\begin{array}{c} \textbf{6b} \\ \hline \\ C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 00 \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 07.32(2) \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 00
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg 13	$\begin{array}{c} \textbf{6a} \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \end{array}$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4840(2) \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1160.0(4) \\ \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2303(1)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^3$	$\begin{array}{c} & & \\ \hline & C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ \end{array}$	$\begin{array}{c} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å, a, deg β, deg γ, deg $V, Å^3$ Z	$\begin{array}{r} & \mathbf{6a} \\ \hline C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 102 \end{array}$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.12 \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \end{array}$	6e C ₂₃ H ₁₅ F ₉ ClOBi 722.80 monoclinic P2/a 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^3$ Z $D_{culc}, g cm^{-3}$	$\begin{array}{r} & & \\ \hline & \\ C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\overline{I} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 7510 \end{array}$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.70 \\ \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{l} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 90.67 \end{array}$	$\begin{array}{r} 6e \\ \hline C_{23}H_{15}F_{9}ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.62 \end{array}$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^3$ Z $D_{calc}, g \text{ cm}^{-3}$ abs coeff, cm ⁻¹	$\begin{array}{r} & & \\ \hline & & \\ C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\overline{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 75.19 \\ 151.0(7) \\ 2 \\ 1.95 \\ 75.19 \\ 10.57 \\$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{13}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2028 \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 62 \\ \end{array}$	$\begin{array}{r} 6e \\ \hline C_{23}H_{15}F_{9}ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.52 \\ 1269 \end{array}$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000)	$\begin{array}{c} 6a \\ \hline \\ C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 75.19 \\ 636 \\ M_{\odot} K_{\odot} 0.710.72 \\ \end{array}$	$\begin{array}{c} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2928 \\ 1.8 \\ 1.9 \\ 2928 \\ 1.8 \\ 1.9 \\ 1.0 \\ 710 \\ 72 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 710 \\ 72 \\ 72 \\ 710 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 7$	$\begin{array}{r} \begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{array}{r} 6e \\ \hline C_{23}H_{15}F_{9}ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.52 \\ 1368 \\ M_{2} K < 0.710.72 \\ \end{array}$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$	$\begin{array}{r} & & & \\ \hline & C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 75.19 \\ 636 \\ Mo K\alpha; 0.710 73 \\ 22 \\ 1.91 \\ 1000 \\$	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 $Mo\ K\alpha; 0.710\ 73$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 73 \\ 22.11 \\ 0.1073 \\ 0.10$	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$ temp. °C	$\begin{array}{c} & & \\ \hline & C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{1} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 75.19 \\ 636 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \end{array}$	$\begin{array}{c} \textbf{6b} \\ \hline \\ C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinc \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2928 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \end{array}$	$\begin{array}{c} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 73 \\ 23 \pm 1 \\ 56 \end{array}$	$\begin{array}{c} 6e \\ \hline \\ C_{23}H_{15}F_{9}ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.52 \\ 1368 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \end{array}$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg β, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ $abs coeff, cm^{-1}$ F(000) radiation; $\lambda, Å$ temp, °C $2\theta(max), deg$	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic $P\bar{1}$ 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16 0	$\begin{array}{r} \textbf{6b} \\ \hline \\ C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2928 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 \ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ \end{array}$	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$ temp, °C $2\theta(max), deg$ scan rate, deg/min	$\begin{array}{r} & \mathbf{6a} \\ \hline \\ C_{23}H_{18}F_6ClOBi \\ 668.80 \\ triclinic \\ P\bar{I} \\ 0.90 \times 0.90 \times 0.80 \\ 9.292(3) \\ 10.573(3) \\ 11.996(3) \\ 99.26(2) \\ 92.73(2) \\ 92.32(3) \\ 1151.0(7) \\ 2 \\ 1.93 \\ 75.19 \\ 636 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 16.0 \\ \end{array}$	$\begin{array}{r} \textbf{6b} \\ \hline C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinic \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2928 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ \textbf{6} \end{array}$	$\begin{array}{r} & \textbf{6d} \\ \hline C_{23}H_{18}F_6\textbf{BrOBi} \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo \ K\alpha; \ 0.710 \ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 20 \\ \end{array}$	$\begin{array}{r} 6e \\ \hline \\ C_{23}H_{15}F_{9}ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.52 \\ 1368 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 2 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 2 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 2 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 2 \\ 3 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 3 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 3 \\ 3 \\ 3 \\ 5 \\ 12.0 \\ 1 \\ 5 \\ 1 \\ 5 \\ 1 \\ 2 \\ 1 \\ 5 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å deg β , deg γ , deg V, Å ³ Z D_{calc} , g cm ⁻³ abs coeff, cm ⁻¹ F(000) radiation; λ , Å temp, °C $2\theta(max)$, deg scan rate, deg/min linear decay, %	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic PI 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ 0.80 × 0.60 × 0.40 25.375(7) 12.092(3) 16.834(4) 90 110.15(2) 90 4849(2) 8 2.13 71.79 2928 Mo K α ; 0.710 73 23 ± 1 55 12.0 5	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27 triclinic PI 0.66 × 0.55 × 0.42 9.557(2) 10.426(2) 12.054(3) 100.17(2) 92.51(2) 97.33(2) 1169.9(4) 2 2.02 89.67 672 Mo K α ; 0.710 73 23 ± 1 55 12.0 20 20 2	6e $C_{23}H_{15}F_{9}ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $b + b + b$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ $abs coeff, cm^{-1}$ F(000) radiation; $\lambda, Å$ temp. °C $2\theta(max), deg$ scan rate, deg/min linear decay, % data collected	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic PI 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 + $h, \pm k, \pm l$ 5692: 5272 4508	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic C_{2}/c $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 Mo K α ; 0.710 73 23 ± 1 55 12.0 5 $\pm h, +k, +l$ $6132, 5570, 2870$	6d $C_{23}H_{18}F_6BrOBi$ 713.27 triclinic PI 0.66 × 0.55 × 0.42 9.557(2) 10.426(2) 12.054(3) 100.17(2) 92.51(2) 97.33(2) 1169.9(4) 2 2.02 89.67 672 Mo K α ; 0.710 73 23 ± 1 55 12.0 20 $\pm h, \pm k, \pm l$ f520; 522; 4100	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $h,+k,\pm l$ 6056.5620.4045
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å c, Å c, Å c, Å c, Å c, Å c, Å c	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic PI 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 +h,±k,±l 5692; 5278, 4598	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 Mo K α ; 0.710 55 12.0 5 $\pm h, + k, + l$ $6133; 5579, 3870$ $(L) \geq 2, (D)$	6d $C_{23}H_{18}F_6BrOBi$ 713.27 triclinic PI 0.66 × 0.55 × 0.42 9.557(2) 10.426(2) 12.054(3) 100.17(2) 92.51(2) 97.33(2) 1169.9(4) 2 2.02 89.67 672 Mo K α ; 0.710 73 23 ± 1 55 12.0 20 $\pm h, \pm k, \pm l$ 5822; 5383, 4490 (K) 2.4(D)	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $h, +k, \pm l$ 6050; 5480, 4045 (D)
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$ temp, °C $2\theta(max), deg$ scan rate, deg/min linear decay, % data collected total data colled; unique, obsd	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic $P\bar{1}$ 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 + $h, \pm k, \pm l$ 5692; 5278, 4598 (I > 3 $\sigma(I)$)	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 $Mo K\alpha; 0.710 73$ 23 ± 1 55 12.0 5 $\pm h, +k, +l$ $6133; 5579, 3870$ $(I > 3\sigma(I))$	$\begin{array}{r} & \mathbf{6d} \\ \hline \\ C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 20 \\ \pm h, \pm k, \pm l \\ 5822; 5383, 4490 \\ (I > 3\sigma(I)) \\ 0.05 \end{array}$	$\begin{array}{c} 6e \\ \hline \\ C_{23}H_{15}F_9ClOBi \\ 722.80 \\ monoclinic \\ P2/a \\ 1.00 \times 0.70 \times 0.35 \\ 22.704(6) \\ 9.210(2) \\ 11.562(4) \\ 90 \\ 98.14(2) \\ 90 \\ 98.14(2) \\ 90 \\ 2393(1) \\ 4 \\ 2.01 \\ 72.52 \\ 1368 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 3 \\ h,+k,\pm l \\ 6050; 5480, 4045 \\ (l > 3\sigma(l)) \\ 0.05 \end{array}$
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$ temp, °C $2\theta(max), deg$ scan rate, deg/min linear decay, % data collected total data collect; unique, obsd R(int)	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic $P\bar{1}$ 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 +h,±k,±l 5692; 5278, 4598 (I > 3\sigma(I)) 0.04	$\begin{array}{r} \textbf{6b} \\ \hline \\ C_{23}H_{12}F_{12}ClOBi \\ 776.80 \\ monoclinc \\ C2/c \\ 0.80 \times 0.60 \times 0.40 \\ 25.375(7) \\ 12.092(3) \\ 16.834(4) \\ 90 \\ 110.15(2) \\ 90 \\ 4849(2) \\ 8 \\ 2.13 \\ 71.79 \\ 2928 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 5 \\ \pm h, +k, +l \\ 6133; 5579, 3870 \\ (I > 3\sigma(I)) \\ 0.11 \\ 276 \end{array}$	$\begin{array}{r} & \mathbf{6d} \\ \hline \\ C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\bar{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 20 \\ \pm h, \pm k, \pm l \\ 5822; 5383, 4490 \\ (I > 3\sigma(I)) \\ 0.05 \\ 205 \end{array}$	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $h, +k, \pm l$ 6050; 5480, 4045 $(I > 3\sigma(I))$ 0.05
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg γ, deg $V, Å^3$ Z $D_{calc}, g cm^{-3}$ abs coeff, cm ⁻¹ F(000) radiation; $\lambda, Å$ temp, °C $2\theta(max), deg$ scan rate, deg/min linear decay, $\%$ data collected total data collect; unique, obsd R(int) no of params refined	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic $P\bar{1}$ 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 + $h, \pm k, \pm l$ 5692; 5278, 4598 (I > 3\sigma(I)) 0.04 295 0.040, 0.057, 1.17	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 $Mo K\alpha; 0.710 73$ 23 ± 1 55 12.0 5 $\pm h, +k, +l$ $6133; 5579, 3870$ $(I > 3\sigma(I))$ 0.11 376	$\begin{array}{r} & \mathbf{6d} \\ \hline \\ C_{23}H_{18}F_6BrOBi \\ 713.27 \\ triclinic \\ P\overline{1} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 20 \\ \pm h, \pm k, \pm l \\ 5822; 5383, 4490 \\ (I > 3\sigma(I)) \\ 0.05 \\ 295 \\ 0.964 \\ 0.022 \\ 1.25 \\ $	6e $C_{23}H_{15}F_9ClOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $h, +k, \pm l$ 6050; 5480, 4045 (I > 3 $\sigma(I)$) 0.05 322
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å deg β , deg γ , deg V, Å ³ Z D_{calc} , g cm ⁻³ abs coeff, cm ⁻¹ F(000) radiation; λ , Å temp, °C $2\theta(max)$, deg scan rate, deg/min linear decay, % data collected total data colled; unique, obsd R(int) no of params refined R , R_w , S	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic PI 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 + $h, \pm k, \pm l$ 5692; 5278, 4598 (I > 3 $\sigma(I)$) 0.04 295 0.049, 0.057, 1.17	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic $C_{2/c}$ 0.80 × 0.60 × 0.40 25.375(7) 12.092(3) 16.834(4) 90 4849(2) 8 2.13 71.79 2928 Mo K α ; 0.710 73 23 ± 1 55 12.0 5 ± $h, + k, + l$ 6133; 5579, 3870 (I > 3 $\sigma(I)$) 0.11 376 0.059, 0.103, 0.83	$\begin{array}{r} & \mathbf{6d} \\ \hline \\ C_{23}H_{18}F_6 BrOBi \\ 713.27 \\ triclinic \\ P\bar{l} \\ 0.66 \times 0.55 \times 0.42 \\ 9.557(2) \\ 10.426(2) \\ 12.054(3) \\ 100.17(2) \\ 92.51(2) \\ 97.33(2) \\ 1169.9(4) \\ 2 \\ 2.02 \\ 89.67 \\ 672 \\ Mo K\alpha; 0.710 \\ 73 \\ 23 \pm 1 \\ 55 \\ 12.0 \\ 20 \\ \pm h, \pm k, \pm l \\ 5822; 5383, 4490 \\ (I > 3\sigma(I)) \\ 0.05 \\ 295 \\ 0.064, 0.082, 1.35 \\ 0.11 \\ \end{array}$	6e $C_{23}H_{15}F_9CIOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo K α ; 0.710 73 23 ± 1 55 12.0 3 $h,+k,\pm l$ 6050; 5480, 4045 ($I > 3\sigma(I)$) 0.05 322 0.076, 0.091, 1.51
formula mol wt cryst syst space group cryst dimens, mm a, Å b, Å c, Å c, Å c, Å deg β , deg γ , deg V, Å ³ Z D_{cale} , g cm ⁻³ abs coeff, cm ⁻¹ F(000) radiation; λ , Å temp, °C $2\theta(max)$, deg scan rate, deg/min linear decay, % data collected total data collcd; unique, obsd R(int) no of params refined R, R_w, S max shift in final cycle	6a $C_{23}H_{18}F_6ClOBi$ 668.80 triclinic PI 0.90 × 0.90 × 0.80 9.292(3) 10.573(3) 11.996(3) 99.26(2) 92.73(2) 92.32(3) 1151.0(7) 2 1.93 75.19 636 Mo K α ; 0.710 73 23 ± 1 55 16.0 + $h, \pm k, \pm l$ 5692; 5278, 4598 (I > 3 $\sigma(I)$) 0.04 295 0.049, 0.057, 1.17	6b $C_{23}H_{12}F_{12}ClOBi$ 776.80 monoclinic C_{2}/c $0.80 \times 0.60 \times 0.40$ $25.375(7)$ $12.092(3)$ $16.834(4)$ 90 $110.15(2)$ 90 $4849(2)$ 8 2.13 71.79 2928 Mo K α ; 0.710 $75.512.0$ 5 12.0 5 $\pm h, + k, + l$ $6133; 5579, 3870$ $(I > 3\sigma(I))$ 0.11 376 $0.059, 0.103, 0.83$ 1.42	6d C ₂₃ H ₁₈ F ₆ BrOBi 713.27 triclinic PI 0.66 × 0.55 × 0.42 9.557(2) 10.426(2) 12.054(3) 100.17(2) 92.51(2) 97.33(2) 1169.9(4) 2 2.02 89.67 672 Mo Ka; 0.710 73 23 ± 1 55 12.0 20 $\pm h, \pm k, \pm l$ 5822; 5383, 4490 (I > 3 $\sigma(I)$) 0.05 295 0.064, 0.082, 1.35 0.11 54	6e $C_{23}H_{15}F_9CIOBi$ 722.80 monoclinic $P2/a$ 1.00 × 0.70 × 0.35 22.704(6) 9.210(2) 11.562(4) 90 98.14(2) 90 2393(1) 4 2.01 72.52 1368 Mo Kα; 0.710 73 23 ± 1 55 12.0 3 $h, +k, \pm l$ 6050; 5480, 4045 (I > 3σ(I)) 0.05 322 0.076, 0.091, 1.51 0.07

3,3-Bis(trifluoromethyl)-1-chloro-1,1-bis(*p*-fluorophenyl)-**3H-2,1-benzoxabismole (6c)**: yield 88% (from **2c**); mp 125– 127 °C (ethanol); ¹H NMR (CDCl₃) 7.10–8.70 (m, 12 H); ¹⁹F NMR (CDCl₃) -106.5 (br s, 2 F), -74.6 (s, 6 F). Anal. Calcd for $C_{21}H_{12}F_8OClBi$: C, 37.27; H, 1.79. Found: C, 37.28; H, 1.66.

3,3-Bis(trifluoromethyl)-1-bromo-1,1-bis(*p***-methylphenyl)-3H-2,1-benzoxabismole (6d).** To a solution of **3a** (3.44 g, 4.75 mmol) in 10 mL of CH_2Cl_2 was added a solution of pyridinium bromide perbromide (2.00 g, 6.25 mmol) in 10 mL of CH_2Cl_2 at 0 °C with stirring. The solution was warmed to room temperature and stirred for 2 h at this temperature. The mixture was quenched with saturated NaCl solution, and the products were extracted with ether. After drying over MgSO₄, the solvent was removed in vacuo. The residue was recrystallized from ether to give colorless crystals of **6d. 6d**: yield 2.78 g (82%); mp 182–185 °C; ¹H NMR (CDCl₃) 2.38 (s, 6 H), 7.40 (d, 4 H, J = 8 Hz), 7.5–8.0 (m, 3 H), 8.20 (d, 4 H, J = 8 Hz), 8.77 (d, 1 H, J = 8 Hz); ¹⁹F NMR (CDCl₃) –75.2 (s, 6 F). Anal. Calcd for C₂₃H₁₈F₆OBrBi: C, 38.73; H, 2.54. Found: C, 38.83; H, 2.49.

Reaction of 3a with MeLi. To a solution of **3a** (1.012 g, 1.40 mmol) in 10 mL of THF was added 1 mL of methyllithium (1.43 M ether solution) at -78 °C with stirring under N₂. The reaction mixture was quenched with water, after being stirred for 1.5 h at -78 °C, to give **3a** (0.058 g, 6%) and **3g** (0.783 g, 86%), which were separated by flash column chromatography (ethyl acetate-*n*-hexane, 1:4).

3,3-Bis(trifluoromethyl)-1-methyl-1,1-bis(*p***-methyl-phenyl)-3***H***-2,1-benzoxabismole(3g)**: mp 161–164 °C (ether*n*-hexane); ¹H NMR (CDCl₃) 2.39 (s, 6 H), 2.63 (s, 3 H), 7.30 (d, 4 H, J = 8 Hz), 7.30–7.60 (m, 3 H), 7.58 (d, 4 H, J = 8 Hz), 7.70–8.20 (m, 1 H); ¹⁹F NMR (CDCl₃) –73.4 (s, 6 F). Anal. Calcd for C₂₄H₂₁F₆OBi: C, 44.46; H, 3.26. Found: C, 44.28; H, 3.14.

3,3-Bis(trifluoromethyl)-1-(p-(trifluoromethyl)phenyl)-1,1-bis(p-methylphenyl)-3H-2,1-benzoxabismole (3d). (p-(Trifluoromethyl)phenyl)lithium, prepared from reaction of p-bromobenzotrifluoride (0.43 mL, 3.07 mmol) with n-BuLi (2.05 mL, 3.18 mmol) in THF (8 mL) at –78 °C, was added to a solution of 6a (1.85g, 2.77 mmol) in 12 mL of THF at -78 °C. The solution was warmed to room temperature and stirred for 17.5 h at this temperature. The mixture was quenched with saturated NaCl solution, and the products were extracted with ether. After drying over MgSO₄, the solvent was removed in vacuo. The residue was recrystallized from ether-n-hexane to give colorless crystals of 3d. 3d: yield 1.37 g (63%); mp 182-185 °C; ¹H NMR (CDCl₃) 2.39 (s, 6 H), 7.10-8.20 (m, 16 H); ¹⁹F NMR (CDCl₃) -62.1 (s. 3 F), -73.3 (s, 6 F). Anal. Calcd for C₃₀H₂₂F₉OBi: C, 46.29; H, 2.85. Found: C, 46.39; H, 2.75.

3,3-Bis(trifluoromethyl)-1,1-bis(p-(trifluoromethyl)phenyl)-1-(p-methylphenyl)-3H-2,1-benzoxabismole (3e). To a solution of 6b (1.19 g, 1.54 mmol) in 3 mL of ether was added 1.21 mL of (p-methylphenyl)lithium (1.54 mmol, 1.27 M ether solution) at -78 °C with stirring. The solution was stirred for 50 min at this temperature, and the mixture was quenched with saturated NH₄Cl solution. The products were extracted with ether. After drying over MgSO₄, the solvent was removed in vacuo. The residue was chromatographed (ethyl acetate-nhexane, 1:20) to give colorless crystals of 3e. 3e: yield 0.19 g (16%); mp 164-166 °C (ether-n-hexane); ¹H NMR (CDCl₃) 2.40 (s, 3 H), 7.10-8.20 (m, 16 H); ¹⁹F NMR (CDCl₃) -61.7 (s, 6 F), -72.8 (s, 6 F). Anal. Calcd for C₃₀H₁₉F₁₂OBi: C, 43.28; H, 2.30. Found: C, 43.48; H, 2.26.

Compound 3d was also obtained in 32% yield (0.41 g, 0.49 mmol).

3,3-Bis(trifluoromethyl)-1-(phenylethynyl)-1,1-bis(pmethylphenyl)-3H-2,1-benzoxabismole (3f). To a solution of 6a (1.18 g, 1.76 mmol) in 4.5 mL of THF was added 1.1 equiv of (phenylethynyl)lithium, prepared from phenylacetylene (0.25 mL, 2.28 mmol) and n-BuLi (1.25 mL, 1.94 mmol, 1.55 M n-hexane solution), at -78 °C with stirring. The solution was stirred for 15 min at this temperature. The mixture was quenched with saturated NaCl solution, and the products were extracted with ether. After drying over MgSO₄, the solvent was removed in vacuo. The residue was chromatographed (ethyl acetate-nhexane, 1:10) to give colorless crystals of 3f. 3f: yield 0.13 g (10%); mp 178-181 °C (ether-n-hexane); ¹H NMR (CDCl₃) 2.35 (s, 6 H), 7.2–7.5 (m, 3 H), 7.35 (d, 4 H, J = 8.1 Hz), 7.5–8.1 (m, 5 H), 8.37 (d, 4 H, J = 8.1 Hz), 8.6–8.8 (m, 1 H); ¹⁹F NMR (CDCl₃) -72.5 (s, 6 F). Anal. Calcd for $C_{31}H_{23}F_6OBi$: C, 50.69; H, 3.16. Found: C, 50.93; H, 3.13.

3,3-Bis(trifluoromethyl)-1-chloro-1-(p-(trifluoromethyl)phenyl)-1-(p-methylphenyl)-3H-2,1-benzoxabismole (6e). To a solution of 3d (0.061 g, 0.08 mmol) in 0.5 mL of CDCl₃ was added 0.05 mL of sulfuryl chloride (0.6 mmol) at room temperature. The solution was kept for 50 min at this temperature. The solvent was removed in vacuo, and the residue was subjected to TLC (ethyl acetate-n-hexane, 1:5) to give 6e. 6e: yield 0.041 g (81%); mp 141-142 °C (benzene-ethanol); ¹H NMR (CDCl₃) 2.38 (s, 3 H), 7.46 (d, 2 H, J = 8.4 Hz), 7.50–8.00 (m, 5 H), 8.19 (d, 2 H, J = 8.4 Hz), 8.50 (d, 2 H, J = 8.6 Hz), 8.71 (dd, 1 H, J)= 7.6, 1.4 Hz); ¹⁹F NMR (CDCl₃) –62.9 (s, 3 F), –74.4 (s, 6 F); ¹⁹F NMR (376 MHz, o-dichlorobenzene) -63.60 (s, 3 F), -75.10 (q, 3 F, J = 8 Hz), -75.15 (q, 3 F, J = 8 Hz). Anal. Calcd for C₂₃H₁₅F₉ClOBi: C, 38.22; H, 2.09. Found: C, 38.51; H, 2.12.

Compound 6a was also obtained in 8% yield (0.004 10 g, 0.085 mmol)

3.3-Bis(trifluoromethyl)-1-bromo-1-(p-(trifluoromethyl)phenyl)-1-(p-methylphenyl)-3H-2,1-benzoxabismole (6f). To a solution of 3d (0.076 g, 0.09 mmol) in 0.7 mL of CDCl₃ was added pyridinium bromide perbromide (0.07 g, 0.2 mmol) at room temperature. The solution was kept for 1.5 h at this temperature. The mixture was quenched with saturated NaCl solution, and the products were extracted with ether. After drying over $MgSO_4$, the solvent was removed in vacuo. The residue was subjected to TLC (ethyl acetate-n-hexane, 1:5) to give 6f. 6f: yield 0.066 g (88%); mp 134-136 °C (ether-n-hexane); ¹H NMR (CDCl₃) 2.38 (s, 3H), 7.44 (d, 2 H, J = 7.8 Hz), 7.50–8.00 (m, 5 H), 8.23 (d, 2 H, J = 7.8 Hz), 8.53 (d, 2 H, J = 8.1 Hz), 8.75 (dd, 1 H, J)= 7.7, 1.3 Hz); ¹⁹F NMR (CDCl₃) -61.5 (s, 3 F), -73.1 (s, 6 F); ¹⁹F NMR (376 MHz, toluene- d_8) -65.04 (s, 3 F), -76.40 (q, 3 F, J = 8 Hz), -76.56 (q, 3 F, J = 8 Hz). Anal. Calcd for C₂₃H₁₈F₉OBrBi: C, 36.01; H, 1.97. Found: C, 36.29; H, 1.96.

Reaction of 3f with Sulfuryl Chloride. To a solution of 3f (0.052 g, 0.071 mmol) in 0.65 mL of CDCl₃ was added 0.03 mL of sulfuryl chloride (0.37 mmol) at room temperature. The solution was kept for 6.5 h at this temperature. The mixture was quenched with saturated NaCl solution, and the products were extracted with ether. After drying over MgSO₄, the solvent was removed to give only 6a.

Dynamic NMR Measurement of 6e,f. ¹⁹F NMR (376-MHz) spectra of 6e.f were measured on a JEOL EX-400 spectrometer, and temperatures were calibrated using the chemical shift difference of ethylene glycol.

X-ray Structure Determination of 2a, 3a, f,g, and 6a, b, d, e. Crystal data and numerical details of the structure determinations are given in Table II. Crystals suitable for X-ray structure determination were mounted on a Mac Science MXC3 diffractometer and irradiated with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) for data collection. Lattice parameters were determined by least-squares fitting of 24-33 reflections with $29^{\circ} < 2\theta < 35^{\circ}, 31^{\circ} < 2\theta < 35^{\circ}, 31^{\circ}, 31^{\circ} < 2\theta < 35^{\circ}, 31^{\circ}, 31^{\circ} < 2\theta < 35^{\circ}, 31^{\circ}, 31^{\circ}, 31^{\circ}, 31$ $31^{\circ} < 2\theta < 35^{\circ}, 31^{\circ} < 2\theta < 35^{\circ}, 32^{\circ} < 2\theta < 35^{\circ}, and <math>31^{\circ} < 2\theta$ < 41° for 2a, 3a,f,g, and 6a,b,d,e, respectively. Data were collected with the ω -scan mode. All data were corrected for absorption¹⁹ and extinction;²⁰ in addition data for 2a, 3f,g, and 6b,d,e were corrected for the observed linear decay of the reference reflections. The structures were solved by a direct method with the program Monte Carlo-Multan.²¹ Refinement on F was carried out by full-matrix least squares. All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms in 3a and 6b could be found on a difference Fourier map; these coordinates were included in the refinement with isotropic thermal parameters. The hydrogen atoms in 2a, 3f,g, and 6a,d,e were included in the refinement on calculated positions (C-H = 1.0 A) riding on their carrier atoms with isotropic thermal parameters. All the computations were carried out on a Titan-750 computer.

Acknowledgment. We are indebted for partial support of this research to Grants-in-Aid (Nos. 02247103, 03233104, and 04217105) administered by the Ministry of Education, Science and Culture of the Japanese Government.

Supplementary Material Available: Tables of positional and thermal parameters and complete interatomic distances and angles and additional ORTEP drawings for 2a, 3a, f,g, and 6a, b, d, e (103 pages). Ordering information is given on any current masthead page.

OM930004V

- (20) Katayama, C. Acta Crystallogr. 1986, A42, 19.
 (21) Coppens, P.; Hamilton, W. C. Acta Crystallogr. 1970, A26, 71.

⁽¹⁹⁾ Furusaki, A. Acta Crystallogr. 1979, A35, 220.