Methane Adducts of do Transition Metal Imido Complexes

Thomas **R. Cundaril**

Department of Chemistry, Memphis State University, Memphis, Tennessee 38152

Received March 8, 1993

Summary: Ab-initio results are presented for a series of methane adducts of do, three-coordinate imido complexes. The presence of weakly bound adducts on the reaction coordinate for CH activation has been inferred from kinetic and spectroscopic data, although their role, if any, in CH activation is not clear. Methane adducts of $pyramidal M(NH₂)(=NH)₂ (M = Nb, Ta) and M(=NH)₃$ *(M* = *Mo,* **W)** *have appreciable calculated binding enthalpies (-11-16 kcal mol-'), comparable to values measured forKubas'H2complex. However, planar imidos* $((NH_2)_2M=NH, M = Ti, Zr; (OH)_2Ti=NH)$ have much *smaller binding enthalpies. The calculations suggest a significant covalent contribution to the bonding between substrate and the formally do complex. Upon coordination there is weakening of methane CH bonds, charge transfer from methane to metal, and increased Cb-H8+ polarization, all indicative of a role for the adduct in the all-important CHscissionstep to follow. The calculations suggest that a methane adduct of Ta* $(=NR)_{2}(NHR)$ *or W(=NR)3 affords the best opportunity to have an appreciable lifetime and form in concentrations large enough to facilitate characterization, perhaps by methods similar to those used in agostic complexes, e.g. IR and NMR analyses of shifts in* v_{CH} *and* $^{1}J_{CH}$ *, respectively.*

A detailed understanding of transition metal-mediated CH activation reaction surfaces is crucial to processes like catalytic methane conversion.2 A growing body of data is available for hydrocarbon interaction with low-valent complexes.36 However, CH activation is **also** effected by d^0 complexes.^{6,7} Kinetic data for alkane activation by d^0 **Zr-** and Ta-imidos can be interpreted in favor of formation of weakly-bound alkane adducts. $8-10$ We report here ab-initio¹¹⁻¹⁴ results for methane adducts of d^0 imido

(1) e-mail: cundarit@memstvxl.memst.edu.

(5) Burkey, T. J. In Energetics *of* Organometallic Species; **Sim&s,** J. A. M., Ed.; Kluwer: Dordrecht, **1992;** p **75.**

(6) Rothwell, I. P. In ref. 2, p 151.

(7) (a) Goddard, W. A.; Steigerwald, M. L. J. Am. Chem. Soc. 1984,

106, 308. (b) Hoffmann, R.; Saillard, J. Y.; Rabaâ, H. J. Am. Chem. Soc.

1986, 108, 4327. (c) Cundari, T. R. J. Am

204th National Meeting of **the** American Chemical Society, Waehington, DC, Fall **1992;** American Chemical Society: Washington, DC, **1992;** INOR

453. (9)Methane activation by bis(imido)amido Ta: Schaller, C. P.; Wolczamki, P. T. Znorg. Chem., in press. **(10)** (a) Perhaps **the** best "proof of the viability of do **alkane** adducts

lies in isolation of intramolecular analoguea, i.e. agostic complexes. Green, M. L. H.; Brookhart, M.; Wong, L. K. Prog. Znorg. Chem. **1988,36,1.** (b) Adducts between transition metal ions and methane have been studied
in the gas phase. Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem.
1988, 92, 92.

(11) GAMESS (General Atomic and Molecular Electronic Structure Syetem): Schmidt, M. W.; Baldridge, K. **K.;** Boatz, J. A.; Jensen, J. H.; **Koseki, S.;** Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. **1990, 10, 52.**

complexes. Adducts of group VB and VIB imidos have sizable binding enthalpies $(>11 \text{ kcal mol}^{-1})$. Marked shifts in methane CH stretching frequencies occur upon adduct formation, suggesting potential experimental probes to elucidate their role in CH activation.

Target imidos are models of putative methane activators and related congeners, Figure 1.9,15 Imido and methane are first optimized individually at the restricted Hartree-Fock (RHF) level. As found previously,^{7c,14} agreement between calculated and experimental geometries is excellent at this level.12 Optimized reactants are placed with a M \cdots C distance of \approx 2.75 Å, and the adduct is completely geometry optimized at the RHF level. Reactant fragments in adduct minima change little from isolated optimized geometries. Group IVB imidos distort slightly from trigonal planar (TP3) to pyramidal (PY3) upon methane coordination; group VB and VIB imidos, PY3 when isolated, maintain this geometry.16 Coordination results in transfer of $\approx 0.1-0.3$ electrons from substrate to metal and increased $C^{b}-H^{b+}$ polarization¹⁷ (calculated from Mulliken population analyses).

Enthalpies of adduct formation (ΔH_{add}) , calculated at RHF optimized geometries using MP2 energies, are given in Table I. Larger ΔH_{add} correlate with pyramidal geometries and greater charge transfer. Burkey⁵ has measured alkane binding enthalpies for low-valent complexes as high as 17 kcal mol^{-1,5} the estimated value for CpIr(CO) is 10 kcal mol^{-1.4a} A ΔH_{add} of *at least* 10 kcal/ mol is estimated^{10b} for Zn⁺ and Mn⁺. Thus, calculated ΔH_{add} values are in accord with experimental estimates. *Group VB and VIB imidos have* $\Delta H_{add} > 11$ *kcal mol⁻¹*, *values which suggest that adduct formation may be exergonic even with an unfavorable TAS term.* Using

Molecular Orbital Theory; Wdey: New York, **1986. (14)** (a) Cundari, T. R. J. Am. Chem. Soc. **1992,114,7879.** (b) Cundari,

⁽²⁾ Actiuation ana' Functionalization *of* Alkanes; Hill, C. L., Ed.; Wdey: New York, **1989.**

⁽³⁾ (a) Graham, M. A.; Perutz, R. N.; Poliakoff, M.; Turner, J. J. J. Organomet. Chem. **1972,34, C34.** (b) Perutz, R.; Turner, J. J. J. Am. Chem. Soc. **1976,97,4791.**

⁽⁴⁾ (a) Waaeerman, **E.** P.; Moore, C. B.; Bergman, R. G. Science **1992,** 255, 315. (b) Parkin, G.; Bercaw, J. E. *Organometallics* 1989, 8, 1172. (c) Could, G. L.; Heinekey, D. M. *J. Am. Chem. Soc.* 1989, *111*, 5502.

⁽¹²⁾ *As* in previous work,?c14 we have employed relativistic effective core potentiale (Krauss, M.; Stevens, **W.** J.; Baech, H.; Jaeien, P. G. Can. J. Chem. **1992, 70, 612)** for heavy atoms (double- and triple-(valence basis sets for main group and transition metal atoms, respectively) and
a -31G basis for H. Main group basis sets are augmented with d
polarization functions.¹³ Addition of polarization functions ($\xi_p = 1.1$) to H and **diffuse** functions to **all** ligand atoms13 *affects* **the** geometry and binding enthalpy of W(=NH)_S--CH₄ only slightly.

(13) Pople, J. A.; Hehre, W. J.; Radom, L.; Schleyer, P. v. R. Ab-*Initio*

T. R. Znt. J. Quuntum *Chem., Roc.* Sanibel Symp. **1992,26,793.** (c) Cundari, T. R.; Gordon, M. S. J. Am. Chem. SOC. **1991,113,5231.** (d) Cundari, T. R.; Gordon, M. **S.** Organometallics **1992,11,55. (e)** Cundari, T. R.; Gordon, M. S. J. Am. Chem. SOC. **1992,114,539. (0** Cundari, T. R.; Gordon, M. **S.** *J.Phys.* Chem. **1992,96,631.** (9) Cundari,T. R.; **Gordon,** M. S. Organometallics **1992,11, 3122.**

^{(15) (}a) Methane activation by (amido)₂Zr-imido: Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. *J.* Am. Chem. SOC. **1988,110,8731.** (b) Methane activation by a (alkoxy)₂Ti-imido: Wolczanski, P. T. Personal communication. (c) Wigley **(Arizona) has observed** CH activation by a W(=NR)s.PMea adduct (pereonal communication).

communication. (c) Wigley (Arizona) has observed CH activation by a
W(=NR)₃-PMe₃ adduct (personal communication).
(16) When methane coordinates through a tetrahedral face, imaginary
frequencies are found leading to $\$ RHF level).

⁽¹⁷⁾ Increaeed polarization of CH **ia** in line **with** the conclusions of Crabtree regarding increased acidityof the H in the CH bond upon adduct This process should facilitate what is (in a formal sense) concerted, heterolytic CH cleavage. Crabtree, R. H. Chem. Reu. **1985,86, 245** (in particular **eq 49** and the attendant discussion).

Figure 1. Pertinent metric data (bond lengths in Å; angles in deg) for calculated minima. Group IVB (Ti, Zr), group **VB** (Nb, Ta), and group VIB (Mo, W) metals are prepresented by circles with horizontal, meshed, and diagonal lines, respectively. Carbon, hydrogen, nitrogen, and oxygen are the shaded, open, cross-hatched, and speckled circles, respectively.

^a Enthalpies (ΔH_{add}) and free energies (ΔG_{add}) of adduct formation relative to separated reactants were calculated using MP2 energies at RHF optimized geometries and are corrected to 298.15 K and for the zero point energy using methods outlined in ref 13 (pp 251-259). b These</sup> are the calculated Mulliken atomic charges for the metal in the reactant complex, Le. beforeadduct formation. *e* Theseare thecalculated Mulliken charges on the methane fragment in the adduct.

RHF vibrational frequencies to determine $T\Delta S_{\text{add}}$ shows that methane coordination is indeed exergonic for group **VB** bis(imido) and group VIB tris(imid0) species, Table I.

We contend that methane-imido interaction is more than simply electrostatic or ion-dipole but that there is substantial covalency. If the bonding were primarily electrostatic or ion-dipole, one would expect better correlation between calculated metal charges and ΔH_{add} , which is not the case, Table I. More convincingly, d^2 electrophiles $(W(OH)_2(=NH)^{18a}$ and $Os(=NH)_3^{18b}$ should

Figure 2. Calculated ν_{CH} (in cm⁻¹) and intensities (in D^2 amu⁻¹ Å⁻²) for methane adducts of $Zr(NH_2)_2(=NH)$, Ta- $(=\text{NH}_2(\text{NH}_2), \text{and } \text{W}(=\text{NH})_3.$ The arrow at 2908 cm⁻¹ and the dark, vertical bar at 3037 cm^{-1} signify the calculated a_1 (intensity = 0) and t_2 stretches (intensity = 1.29) of free methane. One of the CH modes for the $W(=\mathrm{NH})_{3}$...CH₄ adduct (at **2972** cm-1) has **a** calculated intensity of **0.003.**

have substantial ΔH_{add} values if methane-imido interaction were predominantly electrostatic or ion-dipole. This is clearly not so, **as** revealed by geometry optimization of d² adducts, which do not "converge" until M---C distances are >4 Å, and $\Delta H_{\text{add}} = 0$ kcal mol⁻¹, indicative of repulsive substrate-complex interaction.

The origin of the repulsive interaction in d^2 adducts is between the filled, metal-based MO (a_1) and σ_{CH} , 1. Conversely, a_1 is a low-energy acceptor orbital in the formally d^0 complexes,¹⁹ available for bonding with σ_{CH} .

Perturbation from TP3 to PY3 will lower a_1 in energy as ligand σ donor orbitals move away from the d_{z^2} torus, making the complex a better Lewis acid.^{20,21} Two interactions can arise in metal/CH bonding: donation from **UCH** to a vacant metal MO and back-donation from **an** occupied metal MO to σ^* _{CH}.²² The latter is nonexistent for \overline{d}^0 complexes. The present results argue that if $\sigma_{CH}^2 \rightarrow \sigma_M^0$ donation is sizable, there can be an appreciable stabilizing interaction and significant ΔH_{add} values.

Do calculations suggest an experimental probe for study of methane adducts? Agostic CH displays reduced IR

(21) **Optimization of a W(=NH)₃--CH₄ adduct in which W is constrained to remain TP3 results in a binding energy of 10 kcal mol⁻¹, 5 kcal** strained to remain TP3 results in a binding energy of 10 kcal mol⁻¹, 5 kcal
mol⁻¹ less exothermic than for the PY3 minimum. Group IIIB tris(amido) complexes $(D_{3h}$ minima) have $\Delta H_{\text{add}} \approx 2$ kcal mol⁻¹

(22) Saillard, J. **Y.;** Hoffman, R. J. *Am. Chem. SOC.* **1984,106,2006.**

⁽¹⁸⁾ (a) Eppley, D. F.; Wolczanski, P. T.; Van Duyne, *G.* D. *Angew.* Chem., *Int. Ed. Engl.* **1991,30,584-585.** (b) Anhaus, J. T.; Kee, T. P.; Schofield, M. H.; Schrock, R. R. J. *Am. Chem.* Soc. **1990,112,1642.**

⁽¹⁹⁾ Covert, K. J.; Neithamer, D. R.; Zonevylle, M. C.; LaF'ointa, R. E.; Schaller, C. P.; Wolczanski,P.T. *Inorg.* Chem. **1991,30,2494.** Covert, K. J.; Wolczanski, P. T.; Hill, S. A.; Krusic, P. J. *Inorg.* Chem. **1992,31,** *666.*

⁽²⁰⁾ Pyramidalization is due to increased competition among the strongly π -bonding imido ligands for the vacant $d\pi$ orbitals on the metal.
Similar arguments have been forwarded for the related polyoxo complexes. **Similar** arguments have been forwarded for the related polyoxo complexes. **Holm,** R. H. Chem. Reu. **1987, 1401.**

2000 *Organometallics,* Vol. *12, No. 6, 1993*

stretching frequencies (ν_{CH}) and NMR coupling constants (V_{CH}) versus "normal" CH bonds, indicating bond weakening.²³ Calculations using the present scheme reproduce ν_{CH} shifts for agostic versus normal CH in Ta-alkylidenes.^{14e} The ν_{CH} shifts were calculated at the RHF level and scaled in the usual manner.²⁴ Calculated v_{CH} values for a group IVB, **VB,** and **VIB** do complex are plotted in Figure 2. Peaks derived from the methane t_2 stretch will probably be obscured by those from the free substrate. Adduct bands derived from the a_1 stretch (\approx 2800-2900 cm-l, Figure **2)** are shifted significantly to lower values, have appreciable intensities, and will clearly be more intense than the IR inactive a_1 stretch of free CH₄.

Methane adducts with large enough ΔH_{add} values to result in appreciable lifetimes and concentrations may be amenable to IR characterization of *VCH* **shifta** (or NMR analysis of ${}^{1}J_{\text{CH}}$). The experimental H₂ binding energy for Kubas' complex (stable enough to be characterized by neutron diffraction) is \approx 11 kcal mol⁻¹.²⁵ Calculations indicate a pyramidal, d^0 , three-coordinate bis(imido)amido Ta^9 or tris(imido) W^{15c} provides the best opportunity for isolation of a methane adduct of a d^0 complex and further elucidation of their importance in CH activation.

Acknowledgment. Helpful discussions with Profs. Pete Wolczanski (Cornell), Dave Wigley (Arizona), and **Ted** Burkey (MSU) are acknowledged. Calculations were made feasible by use of parallel-GAMESS and access to iPSC/860 *(Oak* Ridge) and Cray *Y-MP* (National Center for Supercomputing Applications, CHE920027N) supercomputers.

OM930142K

⁽²³⁾ Schrock, R. R. Acc. *Chem. Res.* **1979,12,98.**

 (24) (a) Vibrational frequencies for main group bonds can be accurately predicted at the RHF level (when scaled by ≈ 0.9 to account for electron correlation effects). Pople, J. **A,;** Schlegel, H. B.; Kriehnan, R.; DeFrees, D. F.; Binkley, J. **5.;** Frisch, M. J.; Whiteside, R.; Hout, R. F.; Hehre, W. $J.$ *Int. J. Quantum Chem., Proc. Sanibel Symp. 1981, 15, 269.* (b) Calculated ν_{CH} shifts for methane are 3144 cm^{-1} (a_1) and 3283 cm^{-1} (t_2) using effective core potential methods outlined in the text, comparing favorably with all-electron values, e.g. 3197 cm⁻¹ (a₁) and 3302 cm⁻¹ (t₂) for RHF **6-31G*.** Scaling the ECP results by **0.925** qves *VCH* **shift8** of **2908** cm-1 (al) and **3037** cm-1 **(t2),** compared with experimental values of **2917** cm^{-1} (a₁) and 3019 cm^{-1} (t₂).¹³ All ν _{CH} values for adducts are scaled by **0.925.**

⁽²⁵⁾ Kubas, **G.** J.; Burns, C. J.; Khalsa, **G.** R. K.; Van Der Sluys, L. **5.;** Kiss, G. *Organometallics* **1992**, 11, 3390. Hay has calculated an H₂ binding energy of 17 kcal mol⁻¹ for $W({\rm CO})_3({\rm PH}_3)_2({\rm H}_2)$. Hay, P. J. J. Am. Chem. SOC. **1987,109, 705.**