## **Reversible Intramolecular Base Stabilization in Silylene** (Silanediyl) Complexes: Surprising Reactivity for Silylene Coordination Compounds with a Dynamic N...Si...N Bond<sup>§</sup>

Hermann Handwerker, Christian Leis, Reiner Probst, Peter Bissinger,<sup>‡</sup> Andreas Grohmann,<sup>‡</sup> Pavlo Kiprof,<sup>‡</sup> Eberhardt Herdtweck,<sup>‡</sup> Janet Blümel,<sup>†</sup> Norbert Auner,\* and Christian Zybill\*

Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Federal Republic of Germany

Received November 18, 1992

The silane [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>SiCl<sub>2</sub> (7) shows a new dynamic N···Si···N "flip-flop" coordination mode below  $T_c = 233$  K ( $\Delta G^* = 46.5$  ( $\pm 0.5$ ) kJ mol<sup>-1</sup>) with both amine donors displacing each other. 7 is pentacoordinated in the solid state; crystal data: orthorhombic,  $P_{bca}$ , a = 13.802(1)Å, b = 17.908(1) Å, c = 15.544(2) Å, Z = 8. Reaction of the silanes  $C_6H_5[2-(Me_2NCH_2)C_6H_4]SiCl_2$ (6), 7, and  $[2-(Me_2NCH_2)-5-(t-C_4H_9)C_6H_3]_2SiCl_2$  (8) with chromiumpentacarbonylmetallate yields the silanediyl complexes [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]C<sub>6</sub>H<sub>5</sub>Si=Cr(CO)<sub>5</sub> (11), [2-(Me<sub>2</sub>- $NCH_2$ )C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>Si=Cr(CO)<sub>5</sub>(12), and [2-(Me<sub>2</sub>NCH<sub>2</sub>)-5-(t-C<sub>4</sub>H<sub>9</sub>)C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>Si=Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>Si=Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>(13); [2-(Me<sub>2</sub>-1))C<sub>6</sub>Cr(CO)<sub>5</sub>Cr(C  $NCH_2)C_6H_4]HSi=Cr(CO)_5$  (14) was obtained by photolytic methods. Silanediyl complexes with one chelating donor show a rigid coordination of the donor to silicon which can be lifted at higher temperatures (95 °C for 11,  $\Delta G^* = 80.4$  (±0.5) kJ mol<sup>-1</sup>). A single crystal X-ray structure determination of 11 reveals a CrSi bond distance of 2.409(1) Å and a N $\rightarrow$ Si bond length of 1.991(2) Å. Crystal data: triclinic,  $P\bar{1}$ , a = 9.401(1) Å, b = 10.207(1) Å, c = 11.586(1)Å, Z = 2. Silanediyl complexes with two intramolecular donor functions feature a dynamic "flip-flop" coordination of the amine groups to silicon. Both (dimethylamino)phenyl groups in 12 and 13 can be detached from silicon under liberation of a three-coordinate silicon atom at  $T_{\rm c} = 58 \,{\rm ^{\circ}C}$  (VT-<sup>1</sup>H-NMR),  $\Delta G^* = 67.1 \, (\pm 0.5) \, \rm kJ \, mol^{-1}$  for 12 and  $T_{\rm c} = 61 \,{\rm ^{\circ}C}$ ,  $\Delta G^* = 70.1 \, (\pm 0.5)$ kJ mol<sup>-1</sup> for 13. A single crystal X-ray structure determination of 12 gives 2.408(1) Å for the Si-Cr bond length and 2.046(2) Å for the N1-Si dative bond (the second contact N2-Si has a nonbonding distance of 3.309 Å; the sum of bond angles at silicon amounts to 351.3°). Crystal data: triclinic,  $P\bar{1}$ , a = 9.531(1) Å, b = 10.339(1) Å, c = 11.676(1) Å, Z = 2. The donor in 12 has been functionalized at the nitrogen atom by protonation or complexation with  $BF_3$ . Photolysis of 12 and 13 leads to a 1,2-amine shift of one donor from silicon to the metal with loss of CO.

The product  $[2-(Me_2NCH_2)C_6H_3][2-(Me_2NCH_2)C_6H_3]Si=Cr(CO)_4$  (20) has been characterized by a single crystal X-ray structure determination and has a bond distance Cr-Si 2.3610(4) Å and N1-Si 1.981(1) Å. Crystal data: monoclinic,  $P2_1/c$ , a = 10.344(5) Å, b = 11.761(3) Å, c = 10.344(5)18.96(1) Å, Z = 4. Furthermore, the silanediyl complex 12 has been immobilized on silica gel. IR and UV spectroscopy and <sup>13</sup>C CPMAS NMR provide evidence for the fixation of (silica-O-)[2-(HNMe<sub>2</sub>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>][2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]Si=Cr(CO)<sub>5</sub> (22) to the surface via the silicon atom. Reaction of 13 with  $H_2O$  leads to  $(HO)[2-(HNMe_2CH_2)C_6H_4][2-(Me_2NCH_2)C_6H_4]Si Cr(CO)_5$  (23) which has a structure similar to 22 with a Cr–Si bond length of 2.469(2) Å. The dimethylamino or dimethylammonium substituent is pointing away from the silicon atom forming hydrogen bridges between N1...HO...HN2; crystal data: monoclinic,  $P2_1/n$ , a = 13.198(2) Å, b = 17.017(2) Å, c = 17.066(1) Å, Z = 4.

## Introduction

An increasing variety of coordination compounds with subvalent silicon ligands has recently been introduced<sup>1</sup> including complexes of disilaethenes<sup>2</sup> and silaethenes,<sup>3</sup> silanediyls (silylenes),<sup>4-6</sup> cyclic silylenes<sup>7</sup> and metallasilaallenes,<sup>8</sup> as well as silatrimethylenemethane<sup>9</sup> and cationic

- <sup>‡</sup> Dr. Eberhardt Herdtweck, Dr. Pavlo Kiprof, Dr. Andreas Grohmann,
- and Dr. Peter Bissinger: X-ray structure determination. In honor of Professor R. West on the occasion of his 65th birthday. (1) (a) Zybill, C. Top. Curr. Chem. 1991, 160, 1. (b) Tilley, T. D. In
- The Silicon Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991.
- (2) (a) Pham, E. K., West, R. J. Am. Chem. Soc. 1989, 111, 7667. (b) Berry, D. H., Chey, J. H., Zipin, H. S., Carroll, P. J. J. Am. Chem. Soc. 1990, 112, 452.

 $\mu$ -silanetriyl complexes.<sup>10</sup> All examples have been characterized by single-crystal X-ray structure determination

<sup>\*</sup> Dr. Christian Zybill: corresponding author.

<sup>&</sup>lt;sup>†</sup> Dr. Janet Blümel: solid state NMR

<sup>(3) (</sup>a) Randolph, C. L., Wrighton, M. S. Organometallics 1987, 6, 365.
(b) Campion, B. K., Heyn, R. H., Tilley, T. D. J. Chem. Soc., Chem. Commun. 1988, 278. (c) Campion, B. K., Heyn, R. H., Tilley, T. D. J. Am. Chem. Soc. 1988, 110, 7558. (d) Koloski, T. S., Carroll, P. J., Berry, D. H., J. Am. Chem. Soc. 1990, 112, 6405. (e) Berry, D. H., Chey, J., Zipin, U. S. Carroll, P. J. Polyhedran 1901, 10, 1159.

<sup>D. H., J. Am. Chem. Soc. 1990, 112, 6405. (e) Berry, D. H., Chey, J., Zipin,
H. S., Carroll, P. J. Polyhedron 1991, 10, 1189.
(4) (a) Zybill, C., Müller, G. Angew. Chem. 1987, 99, 683. Angew. Chem.
Int. Ed. Engl. 1987, 26, 669. (b) Zybill, C., Müller, G. Organometallics
1988, 8, 1368. (c) Zybill, C. Nachr. Chem. Tech. Lab. 1989, 37, 248. (d)
Zybill, C., Wilkinson, D. L., Leis, C., Müller, G. Angew. Chem. 1989, 28, 203; Angew. Chem., Int. Ed. Engl. 1989, 101, 206. (e) Leis, C., Zybill, C., Lachmann, J., Müller, G. Polyhedron 1991, 10, 1163. (f) Leis, C., Wilkinson, D. L., Handwerker, H., Zybill, C., Müller, G. Organometallics
1992, 11, 514. (g) Handwerker, H., Leis, Christian, Gamper, S., Zybill, C., Inorg. Chim. Acta 1992, 200, 763.</sup> C., Inorg. Chim. Acta 1992, 200, 763.
 (5) Jutzi, Z., Möhrke, A. Angew. Chem. 1990, 102, 913. Angew. Chem.

Int. Ed. Engl. 1990, 29, 893.



and feature a more or less distorted tetrahedral environment at the silicon atom due to the coordination of additional solvent molecules. Examples with a threecoordinated silicon atom either in solution or in the solid state have been obtained only recently.<sup>11,12</sup> (Chart I). Basefree silvlene complexes have been proven to play a key role as intermediates of various stoichiometric, and in some cases even catalytic, silanediyl transfer reactions such as the Pannell reaction,<sup>13</sup> the hydrosilation process,<sup>14</sup> silane polymerization,<sup>15</sup> and possibly also in crosslinking reactions of polysilanes with late transition metal catalysts.<sup>16</sup> Recent results from the work of Hengge et al. provide clear evidence for the involvement of highly reactive silanediyl complexes 1 in the dehydrogenative coupling reaction of disilanes.<sup>17</sup>

1

However, besides reactions in the homogeneous phase. molecular coordination compounds can also mimick the coordination mode and reactivity of silicon ligands on (metal) surfaces of heterogeneous systems. Surface-bound

- (6) (a) Straus, D. A., Tilley, T. D., Rheingold, A. L., Geib, S. J. J. Am. Chem. Soc. 1987, 109, 5872. (b) Straus, D. A., Zhang, C., Quimbita, G. E., Grumbine, S. D., Heyn, R. H., Tilley, T. D., Rheingold, A. L., Geib,
- S. J. J. Am. Chem. Soc. 1990, 112, 2673.
   (7) (a) Ueno, K., Tobita, H., Shimoi, M., Ogino, H. J. Am. Chem. Soc. 1988, 110, 4092. (b) Tobita, H., Ueno, K., Shimoi, M., Ogino, H. J. Am.
- Chem. Soc. 1990, 112, 3415.
  (8) Zybill, C., Wilkinson, D. L., Müller, G. Angew. Chem. 1988, 100, 574. Angew. Chem. Int. Ed. Engl. 1988, 27, 583.
  (9) Ando, W., Yamamoto, T., Saso, H., Kabe, Y. J. Am. Chem. Soc.
- 1991, 113, 2791.
- (10) Tobita, H., Kawano, Y., Ogino, H. Angew. Chem. 1991, 103, 877.
- (10) 105113, H., Rawano, I., Ogino, H. Angew. Chem. 1991, 105, 817.
   Angew. Chem. Int. Ed. Engl. 1991, 30, 843.
   (11) Probst, R., Leis, C., Gamper, S., Herdtweck, E., Zybill, C., Auner, N. Angew. Chem. 1991, 103, 1155. Angew. Chem. Int. Ed. Engl. 1991, 30, 1132.
- (12) Tilley, T. D., Rheingold, A., *private communication*: Cp\*(PMe<sub>3</sub>)<sub>2</sub>-RuSi(STol)—Os(CO)<sub>4</sub> was characterized recently by a single crystal X-ray structure determination.
- structure determination.
  (13) (a) Pannell, K. H., Cervantes, J., Hernandez, C., Cassias, J.,
  Vincenti, S. Organometallics 1986, 5, 1056. (b) Pannell, K. H., Rozell,
  J. M., Hernandez, C. J. Am. Chem. Soc. 1989, 111, 4482. (c) Tobita, H.,
  Ueno, K., Ogino, H. Chem. Lett. 1986, 1777.
  (14) Brown-Wensley, K. A. Organometallics 1987, 6, 1590.
  (15) Harrod, J. F., Mu, Y., Samuel, E. Polyhedron 1991, 10, 1239.
  (16) Seyferth, D. Münchner Silicontage 1992, plenary closing lecture.
  (17) Harron W. Weinberger, L. Organometa Chen, 1992, 442, 167.

  - (17) Hengge, E., Weinberger, J. J. Organomet. Chem. 1993, 443, 167.





methylchlorosilanediyl 2 has recently been shown to be a key intermediate in the *direct process* of the selective generation of dichlorodimethylsilane  $Me_2SiCl_2$  (3)<sup>18</sup> by trapping with butadiene (eq 1).

$$\begin{bmatrix} MeSiCl \end{bmatrix}_{a} \xrightarrow{MeCl} & Me_{2}SiCl_{2} \\ 2 & 3 \\ \begin{bmatrix} MeSiCl \end{bmatrix}_{a} \xrightarrow{} & MeSiCl + \begin{bmatrix} \\ \end{bmatrix}_{a} \\ \\ MeSiCl + C_{4}H_{a} \xrightarrow{} & C_{4}H_{a}SiMeCl \\ (1) \end{bmatrix}$$

Electronic and coordinative saturation of divalent silicon(II) ligands is most effectively accomplished by a reversible coordination of an intramolecular base. Examples so far known include intramolecular base stabilization of tetravalent silicon with monodentate and bidentate donor functions in the silanes A and B (Chart II) and the silanediyl complexes C and D (Chart III).

Related silanediyl complexes of iron and manganese have been introduced by Lanneau and Corriu by photochemical reaction of silvl dihydrides with 16-electron metal complexes and have been studied extensively  $^{19,20}$  (eq 2).

In this paper a reversible intramolecular base stabilization of tetravalent and divalent silicon is described for the first time for silanes of type B and silanediyl complexes of type D of chromium. The reversible coordination of the donor in D by a "flip-flop" mechanism is investigated

<sup>(18)</sup> Clarke, M. P., Davidson, I. M. T., J. Organomet. Chem. 1991, 408, 149.

<sup>(19)</sup> Corriu, R. J. P., Lanneau, G., Priou, C. Angew. Chem. 1991, 103, 1153; Angew. Chem. Int. Ed. Engl. 1991, 30, 1130.
(20) Corriu, R. J. P., Priou, C. Litth International Symposium on Silicon

Chemistry, Edinburgh, 1990; p 2-25.



by VT <sup>1</sup>H and <sup>29</sup>Si NMR spectroscopy. The dynamical N...Si...N interaction is the basis for a variety of unexpected reactions at the silicon atom, of which some selected examples are reported, as well as the crystal structures of the silane 7 and the silanediyl complexes 11, 12, and 20. Furthermore, the immobilization of silylene complexes on a silica gel surface is presented as a most efficient method for anchoring transition metal complexes on a solid support. 22 has been characterized by IR and <sup>13</sup>C CPMAS NMR spectroscopy. The structure of 22 was also mimicked with the model complex 23 which has been characterized by single crystal X-ray structure determination. A preliminary communication on the structures of 7 and 12 has already appeared.<sup>11</sup>

## **Results and Discussion**

Silanes: Fluxionality and Penta- and Hexacoordination. Silanes with intramolecular donor functions have been investigated extensively by Corriu et al.<sup>21</sup> and related stannanes by van Koten et al.<sup>22</sup> The synthetic procedures given there are straightforward and can readily be applied to synthesize the dichlorosilanes 6-9 in satisfactory yields.

$$R' = H, R' = H$$

$$R' = -CH_2 - NMe_2, R' = H$$

$$R' = -CH_2 - NMe_2, R' = H$$

$$R = -CH_2 - Ce_1 + Sic_1 + Sic_2$$

10  $(2-Me_2HN^+CH_2-C_6H_4)(2-Me_2NCH_2-C_6H_4)SiCl_2 Cl$ 

An investigation of the molecular dynamics of 6-9 provides insight into the mechanism of intramolecular donor coordination at the silicon atom (Table I). Both silanes 6 and 9 with one intramolecular donor group show a rigid pentaccordination of silicon at low temperatures.<sup>23</sup> However, for silane 7 with two symmetry equivalent donor

Organotin Chemistry, Ph.D. Thesis, Rijksuniversiteit te Utrecht, 1991. (b) Jastrzebski, J. T. B. H., van der Schaaf, P. A., Boersma, J., van Koten, G., Zoutberg, M. C., Heijdenrijk, D. Organometallics 1989, 8, 1373–1375. (c) Jastrzebski, J. T. B. H., van der Schaaf, P. A., Boersma, J., van Koten,

G., de Ridder, D. J. A., Heijdenreijk, D., *Organometallice* **1992**, *11*, 1521. (23) According to <sup>29</sup>Si NMR data (-58.2 ppm), **9** has a pentacoordinate silicon atom (CDCl<sub>3</sub>) at 22 °C.

Table I. Coalescence Temperatures, Gibbs Free Energies of Activation for Detachment of the Amine Donors from Silicon and Selected <sup>1</sup>H and <sup>29</sup>Si NMR Data for the Silanes 6 and 7, and the Silanediyl Complexes 11 and 12

|    |                                            | $T_{\rm c}$ (°C)                                               | G (kJ mol <sup>-1</sup> ) |
|----|--------------------------------------------|----------------------------------------------------------------|---------------------------|
|    | 6                                          | -60.0                                                          | 40.74                     |
|    | 7                                          | -40.3                                                          | 46.50                     |
|    | 11                                         | 95.1                                                           | 80.4°                     |
|    | 12                                         | 58.0                                                           | 67.1 <sup>d</sup>         |
|    | 1]                                         | H and <sup>29</sup> Si NMR Data                                |                           |
|    | <sup>1</sup> H                             | H NMR                                                          |                           |
|    | δ CH <sub>3</sub>                          | δ CH <sub>2</sub>                                              | <br>29Si NMR δ            |
| 6  | (CD <sub>2</sub> Cl <sub>2</sub> , 22 °C)  | 3.72 (s)                                                       | -27.5                     |
|    | 1.95 (s)                                   |                                                                |                           |
|    | (CD <sub>2</sub> Cl <sub>2</sub> , -70 °C) | 2.82, 3.41 (AB,                                                | -51.2                     |
|    | 1.25, 2.21 (2 s)                           | ${}^{2}J({}^{1}\mathrm{H}{}^{1}\mathrm{H}) = 12.2 \mathrm{Hz}$ | )                         |
| 7  | (CDCl <sub>3</sub> , 22 °C)                | 3.56 (s)                                                       | (23 °C) -30.1             |
|    | 1. <b>94 (s)</b>                           |                                                                |                           |
|    | $(d_8$ -toluene,                           | 2.79, 3.38 (AB,                                                | (-70.1 °C) -54.5          |
|    | –75.0 °C) 1.94                             | $^{2}J(^{1}\mathrm{H}^{1}\mathrm{H}) = 12.0 \mathrm{Hz}$       | )                         |
| 11 | $(d_8$ -toluene, 22 °C)                    | 2.62, 3.04 (AB,                                                | 121.2                     |
|    | 1.83, 2.08 (2 s)                           | $^{2}J(^{1}\mathrm{H}^{1}\mathrm{H}) = 14.0 \mathrm{Hz}$       |                           |
| 12 | $(d_8$ -toluene,                           | 3.81, 4.11 (AB,                                                | 120.9                     |
|    | –40.0 °C)                                  | $^{2}J(^{1}\mathrm{H}^{1}\mathrm{H}) = 12.2 \mathrm{Hz}$       | )                         |
|    | 2.02, 2.23 (2 s),                          | 2.62, 3.04 (AB,                                                |                           |
|    | 2.61 (1 s)                                 | $^{2}J(^{1}\mathrm{H}^{1}\mathrm{H}) = 14.0 \mathrm{Hz}$       | )                         |
|    | (22.0 °C) 2.57 (s)                         | 3.80, 4.09 (AB,<br>${}^{2}J({}^{1}H{}^{1}H) = 14.0 \text{ Hz}$ | 124.9<br>)                |
|    | (62 °C) 2.57 (s)                           | 3.90 (s)                                                       | 138.8                     |

<sup>a</sup> CDCl<sub>3</sub>, rigid pentacoordination below T<sub>c</sub>. <sup>b</sup> d<sub>8</sub>-Toluene, dynamic hexacoordination below  $T_c$ . <sup>c</sup>  $d_8$ -Toluene, rigid tetracoordination below  $T_c$ . <sup>d</sup> d<sub>8</sub>-Toluene, dynamic pentacoordination below  $T_c$ .

groups, a new dynamic coordination mode is observed at lower temperatures involving both dimethylamino substituents simultaneously. For 7, coalescence of the singlet for both CH<sub>2</sub> groups occurs at 233 K; one well-defined AB pattern (<sup>1</sup>H NMR 2.79, 3.38,  ${}^{2}J({}^{1}H{}^{1}H) = 12.0$  Hz, 4 H, 2  $\times$  CH<sub>2</sub>) and one singlet (1.94, s, 12 H, 4  $\times$  NCH<sub>3</sub>) for all four methyl groups at the nitrogen atoms is seen at lower temperatures (Figure 1). The signals of the N-methyl groups remain singlets because of fast exchange between both methyl substituents at each nitrogen atom by Si-N bond cleavage, rotation around the N-C bond, and inversion at nitrogen.

An estimation of the Gibbs free energy of activation from the coalescence temperature for this process gives  $\Delta G^* = 46.5 (\pm .5) \text{ kJ mol}^{-1} \text{ for 7.}$  The following conclusions can be drawn from the spectroscopic data:<sup>24</sup>

(a) Both (dimethylamino)methylene units remain magnetically equivalent below the coalescence temperature.<sup>25</sup>

(b) The methyl groups at each nitrogen are interconverted rapidly by a mutual displacement reaction of both amine donors which induces Si-N bond rupture concomitant with rotation around the CH2-N bond and inversion at one nitrogen atom. The data from VT<sup>1</sup>H NMR spectra clearly show a dissociative pathway via Si-N bond cleavage and exclude an intramolecular mechanism like Bailar twist, etc.<sup>26</sup>

<sup>(21)</sup> Carré, F., Cerveau, G., Chuit, C., Corriu, R. J. P., Réyé, C. Angew. Chem. 1989, 101, 474. Angew. Chem. Int. Ed. Engl. 1989, 28, 489. (22) (a) Jastrzebski, J. T. B. H. Intramolecular Coordination in

<sup>(24)</sup> We are indebted to one of the referees for valuable comments. (25) The lowest measured temperature was 183 K.

<sup>(26)</sup> Hexacoordination has been established in silicon chemistry by Corriu and co-workers. For hexacoordinated silanes with naphthylami-Corni and coworkers. For new construction of the second matter status with a printy same nosilanes, an intramolecular rearrangement has been observed: (a) Brelière, C., Carré, F., Corriu, R. J. P., Poirier, M., Royo, G., Zwecker, J. Organometallics 1989, 8, 1831–1833. (b) Brelière, C., Corriu, R. J. P., Royo, G., Zwecker, J. Organometallics 1989, 8, 1834. (c) For a summary see: Corriu, R. J. P., Pure Appl. Chem. 1988, 60, 99.



3.4 3.0 2.6 ppm Figure 1. VT <sup>1</sup>H NMR spectrum of 7 (CDCl<sub>3</sub>, 400 MHz). The star denotes an impurity.

(c) This process does not require any hindered rotation, since the protons of the  $CH_2$  groups remain diastereotopic as long as one donor is still coordinated to silicon.

(d) The process proceeds under retention of configuration at silicon.

(e) The exchange involves a *hexacoordinate transition* state with each nitrogen atom in trans position to chlorine (dato-captive interaction) as the energetically favorable most situation; conformational isomers have not been observed.<sup>26</sup>

These results are interpreted in the sense of a dynamic coordination of both dimethylamino substituents at silicon, one displacing the other rapidly through a hexacoordinate  $C_2$ -symmetric transition state. This pathway transforms the pentacoordinate isomer A of the silane into A again under retention of configuration (Chart IV). The pentacoordinate ground state of A has been confirmed for the solid state by a single crystal X-ray structure determination.

The exchange mechanism can be described starting from the ground state by attack of the terminal dimethylamino group on silicon (pathway a) through the edge of the trigonal bipyramid to form a  $C_2$ -symmetric hexacoordinate transition state and subsequently again A by displacement



 Table II.
 Selected Interatomic Distances (Å) and Angles (deg) in the Crystal Structure of 7<sup>a</sup>

| and the second sec |           |            |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------|
| Si-Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.081(1)  | Si-Cl1     | 1.869(1) |
| Si-Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.181(1)  | Si-C21     | 1.870(1) |
| Si-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.291(2)  | Si-N1      | 4.493(2) |
| C11-Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132.16(6) | Cl1-Si-Cl2 | 94.46(3) |
| Cl1-Si-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.22(5) | Cl1-Si-N2  | 86.72(3) |
| Cl1-Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.53(4) | Cl2-Si-N2  | 86.72(3) |

<sup>a</sup> ESD's in units of the last significant figure in parentheses.

of the coordinated dimethylamino group from silicon and vice versa. Entrance of the dimethylamino unit through pathway **b** also leads to a hexacoordinate transition state with  $C_2$ -symmetry which, however, forces both dimethylamino substituents in trans position to each other which apparently is higher in energy. Finally coordination of the amine donor along pathway **c** leads to a non  $C_2$ - $(C_3)$ symmetric hexacoordinate transition state, which can be ruled out on the basis of the spectroscopic data.

The exchange of both amine and methylene groups has also been proven by a 2D-EXSY exchange spectrum at -52 °C. The <sup>29</sup>Si NMR shift of 7 is strongly temperaturedependent, varying from -30.1 ppm at room temperature to -54.5 ppm at -70 °C. A single-crystal X-ray structure determination of 7 shows a trigonal bipyramidal coordination geometry at the silicon atom with one dimethylamino group coordinated to the central silicon atom at an apical position of the polyhedron through N2 (Si-N2 2.291-(2) Å) (Figure 2, Table II). The amine donor is located in a trans position to the apical chlorine substituent (Si-Cl2 2.181(1) Å). The second chlorine occupies an equatorial position with a bond length Si-Cl1 of 2.081(1) Å. Owing to the relatively weak N-Si contact, the coordination geometry at silicon is slightly pyramidalized (equatorial sum of bond angles 356.9°). The two Si-C bond lengths are Si-C11 1.869(1) Å and Si-C21 1.870(1) Å. The second dimethylamino unit is directed away from the central silicon atom (Si-N 4.493(2) Å nonbonding distance) and shows no intermolecular bonding interactions. From this ground state conformation A, a direct pathway leads through a hexacoordinated  $C_2$ -symmetric transition state to A again by inversion at nitrogen N2, coordination of N2, and displacement of N1 from silicon and vice versa. A related exchange mechanism has been proposed recently for the dynamic donor coordination in hexacoordinated silanes.<sup>27</sup>

Blocking One Nitrogen Donor by Electrophiles. Titration of silane 7 with hydrochloric acid allows the



**Figure 2.** Molecular structure of  $[2-(Me_2NCH_2)C_6H_4]_2SiCl_2$ (7) and the crystal numbering scheme used (ORTEP, displacement ellipsoids at the 50% probability level; hydrogen atoms omitted for clarity).

selective functionalization of one amine donor and formation of the hydrochloride 10. According to spectroscopic



data, 10 has a pentacoordinate structure in solution at room temperature. However, <sup>1</sup>H-NMR data of 10 in CDCl<sub>3</sub> at 22 °C show significant line broadening due to coalescence of the NCH<sub>3</sub> signals (22 °C,  $\Delta G^* = 60.2 ~ (\pm 5) ~ \text{kJ mol}^{-1}$ ). Heating of the sample results in line sharpening and observation of distinct signals for the dimethylamino and the protonated dimethylamino group (2.46 ppm, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 16.9 Hz) indicating the localization of the proton at one nitrogen atom.

A single crystal X-ray structure determination of the hydrochloride 10 reveals a TBP pentacoordinate silicon atom in the crystal with one dimethylamine donor coordinated to an apical coordination site of a trigonal bipyramid similar to 7. Details of this structure determination (see Experimental Section) will be published elsewhere.<sup>28</sup>

Silanediyl Coordination Compounds Stabilized by Intramolecular Interaction with a Base. The silanediyl complexes 11, 12, and 13 are available by a straightforward coupling reaction of chlorosilanes with anionic metalates, which has proven to be the most effective one-step access to silanediyl coordination compounds. The discussed complexes 11, 12, and 13 have been obtained as described and are air-sensitive, crystalline materials (eq 3).

A valuable alternative for the generation of formal metal-silicon double bonds is the reaction of intermediate 16-electron metal complexes with dihydrosilanes.<sup>29</sup> This



method was originally introduced by Corriu and Colomer and has been applied for the synthesis of 14 (eq 4).<sup>30</sup>

The determination of the structures of 11 and 12 in the solid state as well as an investigation into the molecular dynamics of the complexes in solution allows a detailed description of the mechanism of donor interaction between the base and the silicon atom. Depending on the substitution pattern (one or two donor groups) and the temperature range, either a rigid  $N \rightarrow Si$  coordination or a dynamic  $N \cdots Si \cdots N$  ("flip-flop") coordination are observed in solution. These features are illustrated with the following examples.

Silanediyl Complexes with One Donor: Rigid Coordination. Silanediyl complexes with one intramolecular donor generally show in solution a rigid coordination of the base to silicon at 22 °C. The Gibbs free energies for the dissociation of the donor are relatively high with coalescence temperatures abovert. For example, 11 shows simultaneous coalescence of both signals of the diastereotopic Me<sub>2</sub>N and the AB system of the CH<sub>2</sub> group at 95 °C ( $\Delta G^* = 80.4 (\pm 0.5)$  kJ mol<sup>-1</sup>) (a reversible process). However, the N-Si bond can be cleaved by strong donor solvents like THF which leads to a static equilibrium

<sup>(27)</sup> Corriu, R. Münchner Silicontage, Aug 4,5 1992, plenary lecture no. 1.

<sup>(28) (</sup>a) Auner, N., manuscript in preparation. (b) For details see; Müller, G., Gamper, S. *Diplomarbeit*, Technische Universität München, 1990.

<sup>(29)</sup> Corriu, R. J. P., Lanneau, G. F., Chauhan, B. P. Organometallics, in press. (We thank Professor Corriu for providing us this information before publication).

 <sup>(30) (</sup>a) Colomer, E., Corriu, R. J. P. Top. Curr. Chem. 1981, 26–55.
 (b) Colomer, E., Corriu, R. J. P., Lheureux, M. Chem. Rev. 1990, 90, 265.



Figure 3. Molecular structure of [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]C<sub>6</sub>H<sub>5</sub>-Si=Cr(CO)<sub>5</sub> (11) (ORTEP; displacement ellipsoids at 50% probability level).

between 11 and the THF adduct 11a with the equilibrium constant  $K_{298} = 1.91 \times 10^{-1} \text{ L mol}^{-1}$ . From such solutions a five-coordinated donor adduct 11a (with THF and NMe<sub>2</sub> at silicon) can be frozen out below -45 °C.

A single-crystal X-ray structure analysis of 11 shows the silanediyl ligand coordinated to the octahedral [Cr-(CO)<sub>5</sub>] fragment with a bond distance Cr-Si 2.409(1) Å (Figure 3). This bond length is indicative for a significant degree of multiple bonding for (t-BuO)<sub>2</sub>(HMPA)Si=Cr- $(CO)_5 2.431(1) \text{ Å}, \text{Me}_2(\text{HMPA}) \text{Si} = Cr(CO)_5 2.410(1) \text{ Å}, \text{ and}$  $Cl_2(HMPA)Si=Cr(CO)_5 2.343(1) Å (cf. 1).$  Representative Cr-Si single bond lengths are 2.4-2.7 Å.<sup>1b</sup> An ab initio calculation by Nakatsuji et al. for H(HO)Si=Cr(CO)5 gives 2.40 Å for a Cr-Si double bond;<sup>31</sup> an *ab initio* calculation recently performed by Gordon et al. yields 2.45 Å for the system  $[Cr=SiH_2]^{+.32}$  In agreement with this description a CrSi bond distance of 2.409(1) Å and a N-Si bond distance of 1.991(2) Å are found which is fairly long and out of the range of covalent bonding (1.65-1.85 Å<sup>33</sup>). A further indicator for the magnitude of interaction of the base with the "silanediyl" silicon atom is the sum of bond angles of the three covalently bonded substituents at silicon, which amounts to 347.8°. Both angles Cr-Si-C11 of 120.2(1)° and Cr-Si-C21 of 121.3(1)° are close to 120°, whereas the angle C11-Si-C21 of 106.3(1)° between the phenyl rings is similar to the one calculated for the free silanediyl.<sup>4f,34</sup> A complete list of bond distances and angles is given in Tables III and IV.

Silanediyl Coordination Compounds with Two Nitrogen Donors at Silicon: Dynamic "Flip-Flop" Coordination. Introduction of two dimethylamino donors results in dramatic changes of the coordination mode, coordination geometry, and molecular dynamics of the complexes. Data from VT<sup>1</sup>H NMR spectroscopy in CDCl<sub>3</sub> give clear evidence for three different coordination forms in different temperature ranges.<sup>35</sup> Below -21 °C, an asymmetric coordination of one dimethylamino substituent to silicon is observed for 12. Above -21 °C (coalescence) a dynamic coordination of both amine donors to the silicon atom occurs which is indicated in the <sup>1</sup>H-NMR spectra by a singlet for all four methyl substituents

Table III. Selected Interatomic Distances (Å) and Angles (deg) in the Crystal Structure of 11<sup>a</sup>

| ueg, mene erje |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interatomic    | Distances (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.878(2)       | Cr–C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.889(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.877(2)       | Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.884(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.865(2)       | Cr-Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.409(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.142(2)       | C2O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.141(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.145(2)       | C404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.147(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.144(3)       | Si–N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.991(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.895(2)       | Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.897(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.507(2)       | N-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.496(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.491(2)       | C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.394(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.396(3)       | C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.391(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.375(4)       | C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.372(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.390(3)       | C21–C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.390(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.398(3)       | C22C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.385(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.387(3)       | C24-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.388(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.388(3)       | C26-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.502(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bond A         | ngles (deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 85.5(1)        | C1–Cr–C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 173.6(1)       | C1CrC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 175.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 91.2(1)        | C3-Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 92.5(1)        | $C^{2}-C_{7}-C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 90.9(1)        | C4-Cr-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 87.6(1)        | $C_{2}$ - $C_{r}$ -Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 85.7(1)        | C4-Cr-Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 176.7(1)       | Cr-C1-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 175.8(2)       | Cr-C3-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 179.5(1)       | CrC5O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.0(1)       | Cr-Si-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 97.0(1)        | Cr-Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 85.7(1)        | C11-Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 104.7(1)       | Si-N-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.6(1)       | Si-N-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109 3(1)       | C7-N-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108 2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.3(1)       | Si-C11-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1170(2)        | C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 119 5(2)     | C13_C14_C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14 119.3(2)    | C11_C16_C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(2)<br>121.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120.4(2)       | Si_C21_C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 129.7(1)       | $C_{21} - C_{22} - C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.2(2)       | C21-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110 0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.3(2)       | $C_{23} - C_{24} - C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121 4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 117.¶(2)       | $C_{21} - C_{20} - C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 113.3(2)       | C23-C20-C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107.5(1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | Interatomic<br>1.878(2)<br>1.877(2)<br>1.865(2)<br>1.142(2)<br>1.142(2)<br>1.145(2)<br>1.145(2)<br>1.145(2)<br>1.145(2)<br>1.145(2)<br>1.1491(2)<br>1.396(3)<br>1.396(3)<br>1.375(4)<br>1.390(3)<br>1.398(3)<br>1.387(3)<br>1.388(3)<br>Bond Ai<br>85.5(1)<br>173.6(1)<br>91.2(1)<br>92.5(1)<br>90.9(1)<br>87.6(1)<br>85.7(1)<br>175.8(2)<br>179.5(1)<br>179.5(1)<br>119.0(1)<br>97.0(1)<br>85.7(1)<br>104.7(1)<br>104.7(1)<br>108.6(1)<br>109.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>120.3(1)<br>1 | Interatomic Distances (Å)1.878(2)Cr-C21.877(2)Cr-C41.865(2)Cr-Si1.142(2)C2-O21.145(2)C4-O41.145(2)C4-O41.145(2)C1-C121.395(2)Si-C211.507(2)N-C71.491(2)C11-C121.396(3)C12-C131.375(4)C14-C151.390(3)C21-C221.388(3)C22-C231.387(3)C24-C251.388(3)C26-C6Bond Angles (deg) $85.5(1)$ C1-Cr-C3173.6(1)C1-Cr-C491.2(1)C3-Cr-C492.5(1)C2-Cr-Si85.7(1)C4-Cr-C587.6(1)C2-Cr-Si176.7(1)Cr-C1-O1175.8(2)Cr-C3-O3179.5(1)Cr-C5-O5119.0(1)Cr-Si-C1197.0(1)Cr-Si-C1197.0(1)Cr-Si-C2185.7(1)C11-Si-C21104.7(1)Si-N-C7108.6(1)Si-N-C8109.3(1)C7-N-C8109.3(1)C7-N-C8120.3(1)Si-C11-C1616117.0(2)11-C12-C1314119.5(2)120.3(2)C23-C24-C2524120.3(2)23-C24-C2525115.5(2)26119.4(2)21-C26-C2526119.4(2)21-C26-C2526119.4(2)21-C26-C2626119.4(2)21-C26-C25 <td< td=""></td<> |

" ESD's in units of the last significant figure in parentheses.

at nitrogen and an AB pattern for the methylene CH<sub>2</sub> groups. The dynamic coordination of both nitrogen donors displacing each other rapidly on the <sup>1</sup>H-NMR time scale takes place in a temperature range between -21 °C and 58 °C and proceeds through a pentacoordinate  $C_2$ symmetrical transition state at silicon. The Gibbs free energy of activation for this process is  $\Delta G^* = 54.4 \ (\pm 0.5)$ kJ mol<sup>-1</sup>. Inversion at nitrogen and rotation around the C-N bond leads to the chemical equivalence of both methyl groups at N. Also in this case, the assumption of a hindered rotation of the (dimethylamino)phenyl substituents is possible, but a priori not necessary, since the protons  $H_{\rm A}$ and  $H_{\rm B}$  of the  $CH_{\rm A}H_{\rm B}$  groups remain diastereotopic as long as one donor still has contact to the (asymmetric) silicon atom. However, detachment of all donor→silicon contacts is achieved above 58 °C (coalescence of the AB system of the  $CH_2$  groups; <sup>29</sup>Si NMR low-field shift to 138.8 ppm) under N-Si bond scission and formation of an essentially three-coordinated silicon atom.<sup>36</sup>

The <sup>29</sup>Si-NMR signals for 12 vary strongly with temperature from  $\delta$  120.9 ppm at -40.0 °C for the rigidly tetracoordinated form, through  $\delta$  124.9 ppm at 22.0 °C for

<sup>(31)</sup> Nakatsuji, H., Ushio, J., Yonezawa, T. J. Organomet. Chem. 1983, 258, C1.

 <sup>(32)</sup> Cundari, T. R., Gordon, M. S., J. Phys. Chem. 1992, 96, 631.
 (33) Covalent bond length N-Si as quoted in ref 11.

<sup>(34)</sup> Maier, G., Reisenauer, H. P., Schöttler, K., Wessolek-Kraus, U. J. Organomet. Chem. 1989, 366, 25.

<sup>(35)</sup> In toluene as solvent 12 has no  $N \rightarrow Si$  donor contact and the silicon atom is three-coordinate at rt (<sup>1</sup>H NMR, <sup>29</sup>Si NMR  $\delta$  138.8 ppm).

<sup>(36)</sup> A  $C_2$ -symmetrical conformer may also be a local minimum (or saddle point) on the energy hypersurface; however, a solution of this problem so far can only be obtained by extended ab initio calculations.

Table IV.Fractional Atomic Coordinates and EquivalentIsotropic Displacement Parameters (Å2) for 11\*

|      | 4 <u> </u>  |             | 、 <i>i</i>  |                   |
|------|-------------|-------------|-------------|-------------------|
| atom | x/a         | y/b         | z/c         | $U_{\mathrm{eq}}$ |
| Cr   | -0.41000(3) | -0.05360(3) | -0.26356(3) | 0.021             |
| C1   | -0.5662(2)  | -0.2080(2)  | -0.3788(2)  | 0.027             |
| C2   | -0.5066(3)  | -0.1386(2)  | -0.1478(2)  | 0.032             |
| C3   | -0.3298(2)  | 0.0128(2)   | -0.3918(2)  | 0.028             |
| C4   | -0.2513(2)  | 0.0896(2)   | -0.1425(2)  | 0.028             |
| C5   | -0.5237(2)  | 0.0676(2)   | -0.2389(2)  | 0.030             |
| 01   | -0.6654(2)  | -0.3000(2)  | -0.4464(2)  | 0.040             |
| O2   | -0.5732(2)  | -0.1919(2)  | -0.0820(2)  | 0.049             |
| O3   | -0.2875(2)  | 0.0498(2)   | -0.4732(2)  | 0.042             |
| O4   | -0.1554(2)  | 0.1773(2)   | -0.0684(2)  | 0.043             |
| O5   | -0.5929(2)  | 0.1423(2)   | -0.2228(2)  | 0.042             |
| Si   | -0.25665(5) | -0.20382(5) | 0.30426(4)  | 0.019             |
| Ν    | -0.0301(2)  | -0.1067(2)  | -0.2819(1)  | 0.022             |
| C11  | -0.2638(2)  | -0.3340(2)  | -0.2140(2)  | 0.022             |
| C12  | -0.2797(2)  | -0.2949(2)  | -0.0911(2)  | 0.030             |
| C13  | -0.2837(3)  | -0.3868(3)  | -0.0216(2)  | 0.038             |
| C14  | -0.2742(4)  | -0.5216(3)  | -0.0755(3)  | 0.043             |
| C15  | -0.2585(3)  | -0.5635(3)  | -0.1963(2)  | 0.040             |
| C16  | -0.2538(2)  | -0.4712(2)  | -0.2655(2)  | 0.029             |
| C21  | -0.2384(2)  | -0.3010(2)  | -0.4656(2)  | 0.022             |
| C22  | -0.3473(2)  | -0.3683(2)  | -0.5690(2)  | 0.028             |
| C23  | -0.3097(3)  | 0.4313(2)   | -0.6803(2)  | 0.033             |
| C24  | -0.1618(3)  | -0.4272(3)  | 0.6904(2)   | 0.035             |
| C25  | -0.0507(3)  | -0.3592(2)  | -0.5888(2)  | 0.031             |
| C26  | -0.0894(2)  | -0.2960(2)  | 0.4776(2)   | 0.025             |
| C6   | 0.0232(2)   | -0.2196(2)  | -0.3629(2)  | 0.026             |
| C7   | 0.0152(2)   | 0.0251(2)   | -0.3248(2)  | 0.027             |
| C8   | 0.0475(2)   | -0.0609(3)  | -0.1550(2)  | 0.028             |
|      |             |             |             |                   |

 ${}^{a}U_{eq} = (U_1U_2U_3)^{1/3}$  where  $U_1, U_2$ , and  $U_3$  are the characteristic values of the  $U_{ij}$  matrix. ESD's are in parentheses.

the dynamic "flip-flop" coordination, to  $\delta$  138.8 ppm above 58.0 °C for the three-coordinate system (Figure 4).

A further example of a silanediyl complex with a dynamical reversible intramolecular base (flip-flop) coordination is provided by the *tert*-butyl compound 13. The complex shows analogous temperature dependent behavior of the VT <sup>1</sup>H-NMR spectrum with a singlet for the dimethylamino substituents at 22 °C and an AB system for the CH<sub>2</sub> bridge at 22 °C, with  ${}^{2}J({}^{1}H^{1}H) = 12.2$  Hz (C<sub>2</sub>Cl<sub>2</sub>). Coalescence of the AB system is observed at 61 °C, which represents a Gibbs free energy of activation of  $\Delta G^{*} = 70.1 ~ (\pm 0.5)$  kJ mol<sup>-1</sup>.

A single crystal X-ray structure determination of the silanediyl complex 12 confirms the results obtained spectroscopically and provides information on the molecular structure of 12 in the solid state (Figure 5, Table V). The complex is monomeric and the silanediyl ligand is coordinated to the octahedral chromium fragment with a short Cr–Si bond length of 2.408(1) Å, which is similar to the one observed for 11, indicating a considerable degree of multiple bonding. An ab initio calculation for (CO)<sub>5</sub>Cr=Si(OH)H gives 2.40 Å for the Cr-Si bond length; an estimation on the grounds of covalent radii leads to 2.30 Å for a Cr(0)=Si double and 2.70 Å for a Cr(0)-Si single bond. The N1-Si bond distance 2.046(2) Å is typical for a partially covalent interaction and somewhat shorter than in the pentacoordinated silane (2.291(2) Å, 7), but clearly much longer than in any comparable silanediyl complex and out of the range of a full covalent bond.

The partially covalent nature of this bond is confirmed by the relatively small Gibbs free energy of activation for the dissociation of the Si-N1 bond ( $\Delta G^* = 67.1 (\pm 0.5)$  kJ mol<sup>-1</sup>). Furthermore, the UV spectra of 12 also show an unprecedented large bathochromic shift of  $\lambda_{max} = 274$  nm compared to the absorption of known HMPA adducts of



Figure 4. VT <sup>29</sup>Si NMR spectra of 12 ( $d_8$ -THF, 73.3 MHz): (a)  $\delta$  120.9 ppm (-40.0 °C); (b)  $\delta$  124.9 ppm (22 °C); (c)  $\delta$  138.8 ppm (58 °C).



Figure 5. Molecular structure of  $[2-(Me_2NCH_2)C_6H_4]_2$ -Si=Cr(CO)<sub>5</sub> (12) (ORTEP; displacement ellipsoids at 50% probability level).

silanediyl complexes. This band is assigned to the  $\pi \rightarrow \pi^*$  transition of the Cr—Si double bond.

The environment around the silicon atom is only slightly pyramidalized, with a sum of bond angles of the three covalently bonded substituents around Si of 351.3° which is close to 360°. This geometry points toward planarization at silicon, particularly considering the fact that similar

Table V.Selected Interatomic Distances (Å) and Angles<br/>(deg) in the Crystal Structure of 12

|                           | Interatomic | Distances (Å)         |                |
|---------------------------|-------------|-----------------------|----------------|
| Cr-Si                     | 2.408(1)    | CrCOÍ                 | 1.887(2)       |
| Cr-CO2                    | 1.884(2)    | Cr–CO3                | 1.864(2)       |
| Cr-CO4                    | 1.892(2)    | Cr-CO5                | 1.877(2)       |
| Si-N1                     | 2.046(2)    | Si-C1                 | 1.898(2)       |
| Si-C2                     | 1.908(2)    | N1-C1N1               | 1.500(2)       |
| N1-C1N2                   | 1.484(2)    | N1-C111               | 1.503(3)       |
| N2-C1N2                   | 1.457(3)    | N2-C2N2               | 1.465(3)       |
| N2-C222                   | 1.465(3)    | 01-001                | 1.147(3)       |
| $0^{2}-0^{2}$             | 1 145(2)    | 03-003                | 1 146(3)       |
| 04-004                    | 1 138(3)    | 05-005                | 1.140(3)       |
| C111_C11                  | 1.503(3)    | C1_C11                | 1 206(2)       |
|                           | 1 299(2)    |                       | 1.396(3)       |
|                           | 1.300(3)    | C12-C12               | 1.300(3)       |
| C12-C13                   | 1.377(3)    | C13-C14<br>C132 C14   | 1.502(5)       |
|                           | 1.392(3)    | $C_{222} = C_{23}$    | 1.502(3)       |
| $C_2 = C_2 I$             | 1.399(3)    | 02-025                | 1.406(3)       |
| C21-C22                   | 1.385(3)    | C22-C23               | 1.370(3)       |
| C23–C24                   | 1.380(3)    | C24-C25               | 1.399(3)       |
|                           | Bond An     | gles (deg)            |                |
| Si-Cr-CO1                 | 86.7(1)     | Si-Cr-CO2             | 87.2(1)        |
| CO1-Cr-CO2                | 89.6(1)     | Si-Cr-CO3             | 177.5(1)       |
| CO1-Cr-CO3                | 93.5(1)     | CO2-Cr-CO3            | 90.3(1)        |
| Si-Cr-CO4                 | 92.0(1)     | CO1-Cr-CO4            | 87 3(1)        |
| $C_{02} - C_{1} - C_{04}$ | 176 8(1)    | $CO_{3}-C_{7}-CO_{4}$ | 90 5(1)        |
| Si-Cr-COS                 | 88 6(1)     | C01 - Cr - C05        | 1737(1)        |
| CO2_CCO3                  | 04.4(1)     | CO3-Cr-CO5            | 91 A(1)        |
| CO4-Cr-CO5                | 88 6(1)     | Cr_Si_N1              | 118 2(1)       |
| $C_{2} \in C_{1}$         | 120 3(1)    |                       | 92 6(1)        |
| $C_{1} = S_{1} = C_{1}$   | 120.3(1)    |                       | 05.0(1)        |
| $C_1 = C_2$               | 110.9(1)    | SUL CINI              | <b>90.0(1)</b> |
| $C_1 - 3_1 - C_2$         | 114.1(1)    | OINI NI CINO          | 109.4(1)       |
| SI-NI-CINZ                | 119.0(1)    | CINI-NI-CINZ          | 107.3(2)       |
| SI-NI-CIII                | 102.9(1)    | CINI-NI-CIII          | 108.7(2)       |
| CIN2-NI-CIII              | 108.6(2)    | CIN2-N2-C2N2          | 109.9(2)       |
| CIN2N2C222                | 109.5(2)    | C2N2-N2-C222          | 111.6(2)       |
| Cr-C01-01                 | 178.2(2)    | CrCO2O2               | 178.0(2)       |
| CrCO3O3                   | 179.6(1)    | Cr-CO4-O4             | 177.6(2)       |
| Cr-CO5-O5                 | 178.3(2)    | N1-C111-C11           | 107.0(2)       |
| SiC1C11                   | 113.2(1)    | SiC1C15               | 128.2(1)       |
| C11-C1-C15                | 118.2(2)    | C111-C11-C1           | 114.6(2)       |
| C111-C11-C12              | 123.7(2)    | C1-C11-C12            | 121.6(2)       |
| C11-C12-C13               | 119.1(2)    | C12-C13-C14           | 120.5(2)       |
| C13C14C15                 | 120.1(2)    | C1-C15-C14            | 120.4(2)       |
| N2-C222-C25               | 111.7(2)    | Si-C2-C21             | 115.4(1)       |
| SiC2C25                   | 127.5(1)    | C21-C2-C25            | 117.0(2)       |
| C2-C21-C22                | 122.9(2)    | C21-C22-C23           | 119.0(2)       |
| C22-C23-C24               | 120.1(2)    | C23-C24-C25           | 121.3(2)       |
| C222-C25-C2               | 121.2(2)    | C222-C25-C24          | 119.1(2)       |
| C2-C25-C24                | 119.6(2)    |                       | (-)            |
|                           | ******      |                       |                |

<sup>a</sup> ESD's in units of the last significant figure in parentheses.

pyramidalization effects are observed for three-coordinated silicon in the crystal structures of various disilaethenes.<sup>37</sup>

The second dimethylamino unit in 12 is also directed toward the silicon atom, with a bond distance of 3.309 Å being representative of only a weak van der Waals contact. This interaction has no significant structural influence on the coordination geometry at the silicon atom.

A recent *ab initio* CASSCF calculation by Márquez and Sanz provides valuable data on the electronic structure of transition metal complexes  $(CO)_5Mo - MH_2$ , M = C, Si, Ge, and Sn. The bond structure assumed corresponds to the so-called Fischer-type complexes which are 18-electron species and generally feature the metal in a low oxidation state (0). The Mo-M bond can be understood as a singlet carbene (silylene) donating the electron pair to the metal fragment with a corresponding amount of  $\pi$  back-donation from the metal to a vacant p-orbital of methylene of appropriate symmetry. Some selected geometrical data



| Table VI.         | Selected Structural Parameters for                                          |
|-------------------|-----------------------------------------------------------------------------|
| $(CO)_5Mo=MH_2$ : | Bond Distance $R$ (Å), Dissociation Energy                                  |
| DE (kcal mol      | <sup>-1</sup> ), and Force Constant f (mdyn Å <sup>-1</sup> ) <sup>38</sup> |

С Μ Si Ge Sn R<sub>Mo=M</sub> 2.02 2.48 2.56 2.65 DE<sub>M-M</sub> 47.22 76.53 40.64 40.83 1.132 3.234 1.270 0.898 ∫мо<del>—</del>м Chart V



obtained by CASSCF calculations are summarized in Table VI.<sup>38</sup>

The SCF-Mulliken population analysis for (OC)5-Mo=SiH<sub>2</sub> gives a total of 5.206 valence electrons for Mo and 3.583 for Si (C: 4.222, Ge: 3.557, Sn: 3.271). The calculated electron population justifies a description in the sense of a highly electrophilic silicon atom. Furthermore, a detailed analysis shows a decrease in  $\pi$ -electron density of the Mo=M double bond going from M = C to Sn which is in accordance with a reduced  $\pi$ -backbonding due to the diffuse orbitals of the heavier elements M. The same trend is also found for the bond energies DE<sub>Mo-M</sub> and the force constants  $f_{MO-M}$ . In particular, the small force constant  $f_{Mo-Si} = 1.270$  mdyn Å<sup>-1</sup> allows the assumption of a predominantly donative interaction H<sub>2</sub>- $Si \rightarrow Mo(CO)_5$  with a highly dipolar contribution which seems to be mainly responsible for the significant bond shortening in silylene complexes.

"Flip-Flop" Coordination. General Comments. "Flip-flop" coordination describes the dynamic coordination mode of two symmetry equivalent donor ligands to an electron deficient central atom. A prerequisite for a dynamic "flip-flop" coordination mode is a geometry of two identical donor ligands which allows mutual displacement reactions. In both cases 7 and 12, the dynamic displacement process proceeds through a  $C_2$ -symmetrical transition state transforming two degenerate ground states into each other (Chart V). The Gibbs free energy for the activation of the "flip-flop" process for 12 is 54.4 kJ mol<sup>-1</sup> (13.0 kcal mol<sup>-1</sup>). The conformation of the respective ground state is precisely known from the results of the single crystal X-ray structure determinations of 7 and 12.

In the investigated cases, "flip-flop" coordination occurs in a temperature range near rt, which clearly allows inversion at the nitrogen atom. Thus, a mechanism is

<sup>(38)</sup> Márquez, A., Sanz, J. F. J. Am. Chem. Soc. 1992, 114, 2903.



proposed whereby a simultaneous N…Si…N bond formation and rupture process occurs which is coupled with the inversion at nitrogen.<sup>11,39</sup>

A similar observation has been made recently by van Koten and Jastrzebski for the Sn(IV) cation in [2,5-bis-[(dimethylamino)methyl]phenyl]methylphenyltin chloride (15). Also in this case, a separation between the Sn–N bond cleavage process (which leads to inversion of the geometry at Sn) and rotation around the C–C bond was possible. This process of Sn–N bond formation and rupture occurs in the temperature range up to 70 °C and may also be described by a dynamic bond with a "flipflop" coordination mode.<sup>22</sup> Further cases seem to be present in the systems [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>Sn=W(CO)<sub>5</sub> (16) and [2-(Ph<sub>2</sub>PCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>Sn=W(CO)<sub>5</sub> (17).<sup>40</sup>

**Donor-Functionalization Reactions in Silanediyl Complexes.** The derivatization of 12 with electrophiles E (either  $H^+$  or  $BF_3$ ) allows the selective blocking of one amine unit. Both compounds 18 and 19 have been characterized by spectroscopic methods. Notably the protonation reaction is reversible and allows switching on and off of the dynamic "flip-flop" coordination in 12 (Chart VI).

Photochemical Activation of the Donor: 1,2-Amine Shift. Besides the discussed chemical derivatization reactions, the amine donor in 12 and 13 can also be activated by a highly selective photolysis reaction of the complex 12 at 254 nm which induces loss of CO and a 1,2-shift of one amine donor-substituent from silicon to the metal (eq 5). This process also takes place in a



<sup>(39)</sup> An investigation of the system by molecular dynamics methods will provide further information.

topochemical solid state reaction simply by UV irradiation of crystals of 12 or 13.

Both coordination compounds 20 and 21 have been fully characterized by spectroscopic methods (20, 21 <sup>1</sup>H NMR: two signal sets for the two diastereotopic CH<sub>2</sub>NCH<sub>3</sub> substituents). The results from an X-ray structure analysis of 21 are depicted in Figure 6 and in the Tables VII and VIII. A Cr–Si bond length of 2.3610(4) Å is found which is the shortest observed so far for silanediyl complexes of chromium. This effect of bond shortening does not occur, however, for 11 and reflects the increased electron density at chromium due to the amine ligand which leads to a stronger metal–silicon bonding interaction by covalent and dipolar contributions.

The N-donor ligand is slightly stronger coordinated to the silicon atom than in complex 11, which is indicated by a shorter N1-Si bond of 1.981(1) Å (21) compared to 11. The sum of bond angles at silicon amounts to  $342.9^{\circ}$ . The N-Cr bond length (2.291(1) Å) lies in the expected range for N-Cr bonds in amine complexes as well as the Cr-C (1.815(2)-1.869(2) Å) bonds of the carbonyl ligands. As expected, the Cr-C3 bond of the CO ligand *trans* to nitrogen is shortened (1.815(2) Å) compared to the *cis*-CO's, although, this effect is only marginally above standard deviations.

Fixation of Silylene Complexes on a Silica Surface. A method of particular interest is the anchoring of silylene complexes on a silica gel surface. The fixation of 12 and 13 occurs quantitatively at rt within a few minutes and gives immobilized silylchromium complexes. IR spectroscopy of 22 shows bonding of the complex to the support by a Si–O linkage ( $\nu_{\rm CO}$  1082 cm<sup>-1</sup>) and protonation of the amine function ( $\nu_{\rm NH}$  2610 cm<sup>-1</sup>) as well as an intact Cr-(CO)<sub>5</sub> unit.



<sup>(40)</sup> Abicht, H. P., Jurkschat, K., Tzschach, A., Peters, K., Peters, E. M., von Schnering, H. G., J. Organomet. Chem. 1987, 326, 357.



Figure 6. Molecular structure of  $[2-(Me_2NCH_2)C_6H_4][2-(Me_2NCH_2)C_6H_4]Si=Cr(CO)_4$  (20) (ORTEP; displacement ellipsoids at 50% probability level).

The  ${}^{13}$ C CPMAS NMR spectrum of 22 provides further evidence for the binding of 12 to the silica surface (Figure 7). The resonances of the methyl and methylene carbon atoms are clearly visible and their chemical shifts correspond well to the values measured in solution. All signals of the phenyl-C atoms are overlapped and show the typical shift anisotropy observed for aromatic ring systems, whereas the signals of aliphatic C atoms do not possess any side bands. The resonances for the carbonyl substituents cannot be assigned unambiguously due to superimposed rotational sidebands.

Detachment of Both Dimethylamine Groups by Coordination of a Strong Oxygen Donor to Silicon. The silylene complexes 12 and 13 are particularly susceptible to reactions with nucleophiles. Reaction of 13 with 1 equiv of water, for instance, leads to displacement of both nitrogen donors, protonation of one nitrogen atom, and formation of a hydroxysilyl complex (23). The spectroscopic parameters of 23 show a close similarity to



the surface bound complex 22 (23 IR:  $\nu_{CO}$  2019, 1938, 1892 cm<sup>-1</sup>,  $\nu_{NH}$  2615,  $\nu_{SiO-H}$  2700 cm<sup>-1</sup>) which allows the assumption of a strong structural similarity between 22 and 23.

A single crystal structure analysis of 23 gives a Cr–Si bond distance of 2.469(2) Å, which is still short in comparison to bond lengths of base-stabilized silylene complexes (Figure 8, Tables IX and X). This bond shortening is presumably owing to relative strong dipolar effects. The Si–O6 bond distance is clearly in the range of covalent bonding (1.695(3) Å) and the distortion from an ideal tetrahedral geometry at silicon is only slight (sum of bond angles Cr–Si–C101, Cr–Si–C201, C101–Si–C201: 334.4°) compared to the above discussed cases. Both nitrogen atoms of the dimethylamino units are directed toward oxygen O6 by hydrogen bonding (N2-H61-O6 and N1-H62-O6). On the basis of the similarity of spectroscopic data, it can be assumed that the structure of 23 shows a close analogy to the structure of the immobilized complex 22.

## **Experimental Section**

All experiments have been performed in an atmosphere of dry argon; air-sensitive materials were handled by standard Schlenk techniques. 22 was filled into the rotor in a glove box and dry nitrogen was used as bearing and drive gas for the solid state NMR measurement. All solvents were dried by distillation from NaK alloy or  $P_4O_{10}$ . Residual water content was determined by K. Fischer titration and was generally below 3.5 ppm. The preparation of di-*tert*-butyldichlorosilane, disodium pentacarbonyl chromidepentacarbonylate has been described in the literature;<sup>41</sup> all further chemicals were commercially available.

Spectra. IR spectra were recorded on a Nicolet FT 5DX instrument as KBr pellets, a Nujol suspension, or as a solution in 0.1-mm KBr cells.  $\,^1\text{H}, ^{13}\text{C},$  and  $^{29}\text{Si}\,\text{NMR}$  spectra were recorded on the spectrometers JEOL GX 400 at 400.0, 100.4, and 73.3 MHz and on a JEOL FX 270 instrument at 270.1 MHz. The <sup>29</sup>Si NMR spectra were partially recorded with DEPT and INEPT pulse programs. <sup>1</sup>H and <sup>13</sup>C chemical shifts were measured using the solvent as standard; <sup>29</sup>Si chemical shifts were referenced to external Me<sub>4</sub>Si in the same solvent. The solid state <sup>13</sup>C NMR spectrum was recorded on a Bruker MSL 400 P spectrometer (75.47 MHz). High-power <sup>1</sup>H decoupling, cross polarization (CP), and magic angle spinning (MAS, 4000 Hz) of the 7-mm zirconia rotor were employed for the measurement. The recycle time was 4 s, the contact time 5 ms, and the number of scans 5000. A line broadening of 100 Hz was applied for the processing of the spectrum, and it was referenced to external adamantane ( $\delta$  of the high-field resonance: 29.472 ppm).42 UV-VIS spectra were recorded on a Hewlett-Packard 8452A diode array spectrophotometer. Mass spectra were measured on a Varian MAT311A instrument by either EI ionization at 70 eV, CI, or FD techniques by Ms. M. Dumitrescu and Professor F. R. Kreissl. GC MS separation was performed on a Hewlett-Packard (5890 A/5970 B) instrument equipped with a CP SIL 5CB column. Microanalyses were done by Mikroanalytisches Laboratorium der Technischen Universität München by Mss. I. Liss, A. Fuss, and M. Barth.

 $(C_6H_8)$ [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]SiCl<sub>2</sub>(6), 2-[(Dimethylamino)methyl]phenyl(phenyl)dichlorosilane, and [2-(Me<sub>2</sub>-NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>SiCl<sub>2</sub>(7), Bis[2-[(dimethylamino)methyl]phenyl]dichlorosilane. To a solution of 22.9 mL (0.2 mol) of SiCl<sub>4</sub>, distilled from CaH<sub>2</sub> (0.2 mol C<sub>6</sub>H<sub>5</sub>SiCl<sub>3</sub> for 6) and dissolved in 250 mL of diethyl ether was added 0.4 mol of 2-[(N,Ndimethylamino)methyl]phenyllithium (0.2 mol for the formation of 6)<sup>43</sup> portionwise. The color of the reaction mixture turned yellow during the addition and the solvent started to boil. After completion of the addition of the lithium reagent, the mixture was refluxed for further 2 h and filtered, and all volatile components were removed in the vacuum. The crude product was recrystallized from diethyl ether: yield 50.0 g (68%) (6); 82% mp 104 °C (7).

6: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22 °C)  $\delta$  1.95 (s, 6 H, 2 × NCH<sub>3</sub>), 3.72 (s, 2H, NCH<sub>2</sub>) 7.48, 7.55, 7.60, 7.73, 8.70 (5 × m, 9 H, C<sub>6</sub>H<sub>4</sub>, C<sub>6</sub>H<sub>6</sub>); <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, -70 °C) 1.25, 2.21 (2 × s, NCH<sub>3</sub>) 3.41, 2.82 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.2 Hz, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 22 °C)  $\delta$  45.1 (s, NCH<sub>3</sub>) 62.2 (s, CH<sub>2</sub>) 126.2, 127.3, 127.6, 128.3, 129.0, 129.7, 130.2, 131.5, 132.7, 137.1, 139.4, 144.7 (s, C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>4</sub>); <sup>29</sup>Si NMR  $\delta$  (CDCl<sub>3</sub>, 22 °C, TMS) -27.5, (-70.0 °C) -51.2; MS (EI, 70 eV;

<sup>(41)</sup> Brauer, G. Handbuch der präparativen Chemie; Enke Publishers: Stuttgart, 1984; Vol. 3.

<sup>(42)</sup> Hayashi, S., Hayamizu, K., Bull. Chem. Soc. Jpn. 1991, 64, 685-687.

<sup>(43)</sup> Manzer, L. E. J. Am. Chem. Soc. 1978, 100, 8068.

| Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ble VII. | Selected I | iteratomic | : Distances (Å                | ) and An   | gles (deg) | in the Crystal Structure of 20 <sup>a</sup> |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|------------|-------------------------------|------------|------------|---------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |            | Interatomic                   | Distances  | (Å)        |                                             |          |
| Cr-Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.       | .3610(4)   | (          | C11 <b>-C12</b>               |            | 1.402(3)   | C21–C22                                     | 1.394(2) |
| Cr–N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.       | .291(1)    | (          | C11–C16                       |            | 1.408(2)   | C21–C26                                     | 1.401(2) |
| Cr-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.       | .869(2)    | 1          | C12-C13                       |            | 1.390(2)   | C22–C23                                     | 1.389(2) |
| Cr–C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.       | .855(2)    |            | C12-H121                      |            | 0.95(1)    | C22-H221                                    | 0.95(1)  |
| Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.       | .860(2)    |            | C13-C14                       |            | 1.373(3)   | C23-C24                                     | 1.376(3) |
| Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | .815(2)    |            | C13-H131                      |            | 0.91(2)    | C23-H231                                    | 1.00(3)  |
| Si-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | .981(1)    |            | C14-C15                       |            | 1.375(2)   | C24-C25                                     | 1.380(3) |
| Si-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .891(1)    |            | C14-H141                      |            | 1.02(2)    | C24-H241                                    | 0.98(2)  |
| Si-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .881(2)    | (          | C15-C16                       |            | 1.394(3)   | C25-C26                                     | 1.373(2) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | 160(2)     | (          | C15-H151                      |            | 1.03(2)    | C25-H251                                    | 0.89(2)  |
| $\tilde{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | 150(2)     | ć          | C16-C17                       |            | 1.513(3)   | C26-C27                                     | 1.495(2) |
| 04-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 155(2)     | ć          | C17-H171                      |            | 1 03(1)    | C27-H271                                    | 1.05(2)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | 167(2)     | (          | C17_H172                      |            | 1 02(1)    | C27-H272                                    | 0.90(1)  |
| 03-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 504(2)     |            | C19_U191                      |            | 0.02(1)    | C28-H281                                    | 1.05(2)  |
| NI-CI7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .304(2)    |            | C10-H101                      |            | 1.02(2)    | C28-11281                                   | 0.05(2)  |
| NI-CIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .460(3)    |            | C10-H102                      |            | 1.05(2)    | C19 U292                                    | 0.95(2)  |
| NI-CI9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .488(2)    |            | C10-H103                      |            | 0.93(2)    | C20-H20J                                    | 1.00(2)  |
| N2-C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .504(2)    |            | C19-H191                      |            | 0.97(2)    | C29-H291                                    | 1.00(2)  |
| N2-C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .509(3)    |            | C19-H192                      |            | 0.88(2)    | C29-H292                                    | 1.08(2)  |
| N2-C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | .486(2)    | (          | C19–H193                      |            | 1.10(2)    | C29–H293                                    | 0.94(2)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |            | Bond A                        | ngles (deg | )          |                                             |          |
| Si–Cr–N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 90.71(3)   | (          | Cr-N1-C19                     |            | 109.1(1)   | C13-C14-C15                                 | 119.6(2) |
| Si–Cr–C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 93.90(5)   | (          | C17-N1-C18                    |            | 108.7(1)   | C13C14H141                                  | 118(1)   |
| SiCrC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 169.84(5)  |            | C17-N1-C19                    |            | 105.0(1)   | C15-C14-H141                                | 123(1)   |
| Si-Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 81.86(5)   | (          | C18-N1-C19                    |            | 106.0(2)   | C14-C15-C16                                 | 121.4(2) |
| Si-Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 87.31(5)   | 5          | Si-N2-C27                     |            | 105.2(1)   | C14-C15-H151                                | 124.3(9) |
| N1-Cr-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 89.48(6)   | 5          | Si-N2-C28                     |            | 109.6(2)   | C16C15H151                                  | 114.3(9) |
| N1CrC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 94.42(6)   | 5          | Si-N2-C29                     |            | 114.6(2)   | C11-C16-C15                                 | 119.9(2) |
| N1-Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 92.13(6)   |            | C27-N2-C28                    |            | 108.0(1)   | C11-C16-C17                                 | 123.0(1) |
| N1-Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 176.75(6)  | (          | C27-N2-C29                    |            | 110.5(1)   | C15-C16-C17                                 | 117.2(1) |
| C1CrC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 94.92(7)   | (          | C28-N2-C29                    |            | 108.7(1)   | N1-C17-C16                                  | 115.5(1) |
| C1CrC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 175.48(7)  | (          | Cr-C1-O1                      |            | 176.3(1)   | N1-C17-H171                                 | 106.7(7) |
| C1-Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 88.07(7)   | (          | CrC2O2                        |            | 171.8(2)   | N1-C17-H172                                 | 106.8(7) |
| C2-Cr-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 89.18(7)   | (          | CrC4O4                        |            | 177.2(2)   | C16-C17-H171                                | 112.0(8) |
| C2-Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 87.94(8)   | (          | CrC3O3                        |            | 178.5(1)   | C16-C17-H172                                | 109.0(8) |
| C4-Cr-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 90.15(7)   | 5          | Si-C11-C12                    |            | 121.9(1)   | H171-C17-H172                               | 106(2)   |
| Cr_Si_N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 123.06(4)  | Ē          | Si-C11-C16                    |            | 120.2(1)   | N1-C18-H181                                 | 109(2)   |
| Cr_Si_C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 113.08(5)  | č          | C12-C11-C16                   |            | 117.6(1)   | N1-C18-H182                                 | 107.7(9) |
| $Cr_Si_C21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 125 16(5)  | Ċ          | C11-C12-C13                   |            | 121.5(2)   | N1-C18-H183                                 | 109(1)   |
| N2_Si_C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 100.00(6)  |            | C11_C12_H121                  |            | 118 6(9)   | H181-C18-H182                               | 110(1)   |
| N2_Si_C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 85 60(6)   |            | C13_C12_H121                  |            | 120.0(9)   | H181-C18-H183                               | 112(1)   |
| C11 S: C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 104 66(6)  |            | C12 - C12 - C14               |            | 120.0(2)   | H182_C18_H183                               | 110(1)   |
| $\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} $ |          | 104.00(0)  |            | C12-C13-C14                   |            | 110(2)     | NO COR HORI                                 | 105 5(0) |
| N1-C19-H193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •        | 107(1)     |            | C25-C24-H241                  |            | 117(2)     | NO COS 1000                                 | 110(1)   |
| H191-C19-H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | 103(2)     |            | $C_{23} - C_{24} - \Pi_{241}$ |            | 122(2)     | NO COP 11202                                | 109(2)   |
| H191-C19-H19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        | 114(1)     |            | $C_{24} - C_{25} - C_{26}$    |            | 120.0(2)   | 112 - C20 - F1203                           | 100(2)   |
| H192-C19-H193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        | 115(2)     |            | C24-C25-H251                  |            | 123(2)     | H281-C28-H282                               | 120(1)   |
| Si-C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 129.7(1)   | C C        | C26-C25-H251                  |            | 118(2)     | H281-C28-H283                               | 10/(1)   |
| Si-C21-C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 112.8(1)   | (          | C21-C26-C25                   |            | 121.6(2)   | H282-C28-H283                               | 10/(1)   |
| C22-C21-C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 117.5(2)   | (          | C21-C26-C27                   |            | 114.9(1)   | N2-C29-H291                                 | 109(1)   |
| C21C22C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 120.6(2)   | (          | C25-C26-C27                   |            | 123.6(2)   | N2-C29-H292                                 | 105(1)   |
| C21-C22-H221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 119(2)     | ]          | N2-C27-C26                    |            | 108.0(1)   | N2-C29-H293                                 | 110(2)   |
| C23-C22-H221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 121(2)     | J          | N2-C27-H271                   |            | 107.0(8)   | H291-C29-H292                               | 111(1)   |
| C22-C23-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 120.6(2)   | ]          | N2-C27-H272                   |            | 105.6(9)   | H291–C29–H293                               | 104(1)   |
| C22-C23-H231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 122(1)     | (          | C26-C27-H271                  |            | 115.1(9)   | H292–C29–H293                               | 117(1)   |
| C24-C23-H231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 118(1)     | 1          | C26-C27-H272                  |            | 111.1(9)   |                                             |          |
| C23-C24-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 119.7(2)   | J          | H271-C27-H27                  | 2          | 109(1)     |                                             |          |

" Numbers in parentheses are estimated standard deviations in the least significant digits.

m/e (relinten)) 310 (M<sup>+</sup>, 6%, correct isotope distribution). Anal. Calcd C<sub>18</sub>H<sub>19</sub>NSiCl<sub>2</sub> ( $M_w = 309.74$ ) C, 58.10; H, 5.48; N, 4.52; Cl, 22.90. Found: C, 57.79; H, 5.86; N, 4.18; Cl, 22.22.

7: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 22 °C, TMS)  $\delta$  1.94 (s, 12 H, 4 × CH<sub>3</sub>), 3.56 (s, 4 H, 2 × CH<sub>2</sub>), 7.32–7.36, 8.19 (m, 8 H, 2 × C<sub>6</sub>H<sub>4</sub>); <sup>1</sup>H-NMR (d<sub>8</sub>-toluene, -75 °C)  $\delta$  1.94 (s, 12 H, 4 × CH<sub>3</sub>), 2.79, 3.38 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.0 Hz, 4 H, 2 × CH<sub>2</sub>) 7.32– 7.36, 8.19 (m, 8 H, 2 × C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 22 °C)  $\delta$  45.0 (CH<sub>3</sub>), 63.12 (CH<sub>2</sub>), 126.60, 127.19, 130.11, 134.72, 134.85, 142.79 (C<sub>6</sub>H<sub>4</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>, 23 °C)  $\delta$  -30.1 (CDCl<sub>3</sub>, -70.1 °C) -54.5; MS (EI, 70 eV; *m/e* (rel inten)) 367 (M + 1, 5%, correct isotope distribution). Anal. Calcd for C<sub>18</sub>H<sub>24</sub>Cl<sub>2</sub>N<sub>2</sub>Si (M<sub>w</sub> 367.396): C, 58.85; H, 6.58; N, 7.63; Cl, 19.30. Found: C, 60.16; H, 7.23; N, 7.76; Cl, 20.25.

X-Ray Structure Determinations. Suitable single crystals were grown from THF solutions. The crystals were sealed into glass capillaries under argon at dry ice temperatures. A summary of the crystal data and important figures pertinent to data collection and structure refinement is given in the experimental part. Exact cell dimensions were obtained by least-squares refinement on the Bragg angles of 15 selected reflections centered on the diffractometer. The integrated intensities were collected on a Syntex-P2<sub>1</sub> diffractometer with graphite monochromator for Mo K<sub>a</sub> radiation, for details see Experimental Section. Repeated measurement of three standard reflexions did not indicate significant crystal decay nor misalignment during the data collection. Atomic form factors for neutral isolated atoms were those of Cromer and Waber,<sup>44</sup> those for hydrogen based on the bonded spherical model of Stewart, Davidson, and Simpson.<sup>45</sup> The programs used include SHELXS-86<sup>46</sup> (structure solution), SHELX-76<sup>47</sup> (refinement), ORTEP<sup>48</sup> (molecular drawings), Tables II-V and VII-X contain the atomic coordinates and

<sup>(44)</sup> Cromer, D. T., Waber, J. T. Acta Crystallogr. 1965, 18, 104.
(45) Stewart, R. F., Davidson, E. R., Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.

Table VIII. Fractional Atomic Coordinates and Equivalent **Isotropic Displacement Parameters for 20** 

|      | -                      | -          |                        |            |
|------|------------------------|------------|------------------------|------------|
| atom | x                      | У          | z                      | $B(Å^2)^a$ |
| Cr   | 0.09517(4)             | 0.20221(3) | 0.16789(2)             | 2.515(7)   |
| Si   | 0.23410(6)             | 0.28211(5) | 0.09937(3)             | 2.31(1)    |
| 01   | -0.1026(2)             | 0.1072(2)  | 0.0356(1)              | 5.50(5)    |
| 02   | -0.0681(2)             | 0.1490(2)  | 0.27381(9)             | 5.68(5)    |
| 04   | 0.2910(2)              | 0.3172(2)  | 0.2921(1)              | 7.13(6)    |
| 03   | -0.0658(2)             | 0.4152(2)  | 0.1401(1)              | 5.19(5)    |
| N1   | 0.2156(2)              | 0.0367(2)  | 0.1817(1)              | 2.99(5)    |
| N2   | 0.1806(2)              | 0.2948(2)  | -0.00821(9)            | 3.00(4)    |
| CI   | -0.0244(2)             | 0.1402(2)  | 0.0864(1)              | 3.23(6)    |
| C2   | -0.0040(2)             | 0.1609(2)  | 0.2329(1)              | 3.49(6)    |
| C4   | 0.2186(3)              | 0.2717(2)  | 0.2441(1)              | 3.94(6)    |
| C3   | -0.0013(2)             | 0.3327(2)  | 0.1514(1)              | 3,23(6)    |
| CII  | 0.3984(2)              | 0.2045(2)  | 0.1117(1)              | 2.74(5)    |
| C12  | 0.5190(2)              | 0.2626(2)  | 0.1174(1)              | 3 58(6)    |
| C13  | 0.6400(2)              | 0.2020(2)  | 0.1300(2)              | 5.09(7)    |
| C14  | 0.6439(3)              | 0.0890(3)  | 0.1385(2)              | 5 22(8)    |
| CIS  | 0.5275(3)              | 0.0303(2)  | 0.1303(2)<br>0.1347(2) | 4 34(7)    |
| C16  | 0.3275(3)              | 0.0303(2)  | 0.1347(2)<br>0.1231(1) | 2 92(5)    |
| C17  | 0.2834(2)              | 0.0139(2)  | 0.1216(1)              | 3 20(6)    |
| C18  | 0.2054(2)<br>0.3161(3) | 0.0285(3)  | 0.2525(1)              | 4 67(7)    |
| C10  | 0.1233(3)              | -0.0610(2) | 0.1795(2)              | 4.82(7)    |
| C21  | 0.1233(3)<br>0.2788(2) | 0.4370(2)  | 0.0984(1)              | 2.71(5)    |
| C22  | 0.2982(2)              | 0.5174(2)  | 0 1541(1)              | 3.69(6)    |
| C23  | 0.3348(3)              | 0.6281(2)  | 0 1425(2)              | 4 81(8)    |
| C24  | 0.3501(3)              | 0.6608(2)  | 0.0754(2)              | 5 42(8)    |
| C25  | 0.3293(3)              | 0.5828(2)  | 0.0193(2)              | 4 67(7)    |
| C26  | 0.3235(3)              | 0.4730(2)  | 0.0306(1)              | 3.19(6)    |
| C27  | 0.2723(2)              | 0.3828(2)  | -0.0267(1)             | 3.72(6)    |
| C28  | 0.0397(3)              | 0.3394(2)  | -0.0322(1)             | 413(7)     |
| C29  | 0.1894(3)              | 0.1869(2)  | -0.0476(1)             | 4 44(7)    |
| H121 | 0.483(2)               | 0.657(2)   | 0.887(1)               | 0.3(5)*    |
| H131 | 0.284(2)               | 0.746(2)   | 0.363(1)               | 2.5(6)*    |
| H141 | 0.266(2)               | 0.550(2)   | 0.353(1)               | 2.8(6)*    |
| H151 | 0.478(2)               | 0.444(2)   | 0.360(1)               | 1.6(6)*    |
| H171 | 0.212(2)               | 0.478(2)   | 0.573(1)               | 0.4(5)*    |
| H172 | 0.311(2)               | 0.570(2)   | 0.626(1)               | 0.5(5)*    |
| H181 | 0.271(2)               | 0.466(2)   | 0.791(1)               | 2.3(6)*    |
| H182 | 0.362(2)               | 0.549(2)   | 0.754(1)               | 2.0(6)*    |
| H183 | 0.380(2)               | 0.413(2)   | 0.756(1)               | 1.3(5)*    |
| H191 | 0.070(2)               | 0.544(2)   | 0.713(1)               | 3.7(7)*    |
| H192 | 0.066(2)               | 0.563(2)   | 0.637(1)               | 2.8(6)*    |
| H193 | 0.185(2)               | 0.638(2)   | 0.694(1)               | 3.5(7)*    |
| H221 | 0.292(2)               | 0.493(2)   | 0.201(1)               | 1.9(6)*    |
| H231 | 0.352(3)               | 0.686(3)   | 0.182(1)               | 5.2(8)*    |
| H241 | 0.374(2)               | 0.760(2)   | 0.569(1)               | 3.6(7)*    |
| H251 | 0.336(2)               | 0.601(2)   | 0.975(1)               | 1.5(6)*    |
| H271 | 0.228(2)               | 0.411(2)   | 0.920(1)               | 2.0(6)*    |
| H272 | 0.349(2)               | 0.346(2)   | -1.026(1)              | 0.3(5)*    |
| H281 | 0.973(2)               | 0.635(2)   | 0.087(1)               | 3.0(7)*    |
| H282 | 0.020(2)               | 0.715(2)   | 0.020(1)               | 2.1(6)*    |
| H283 | 0.034(2)               | 0.408(2)   | -0.004(1)              | 2.6(6)*    |
| H291 | 0.283(2)               | 0.342(2)   | 0.468(1)               | 2.3(6)*    |
| H292 | 0.164(2)               | 0.290(2)   | 0.395(1)               | 3.6(7)*    |
| H293 | 0.138(2)               | 0.370(2)   | 0.467(1)               | 2.7(6)*    |

<sup>a</sup> Asterisks designate atoms that were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as  $\frac{4}{3}[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(\cos a)]$  $\gamma B_{12} + ac(\cos \beta)B_{13} + bc(\cos \alpha)B_{23}]$ 

equivalent isotropic displacement parameters. Figures 2, 3, 5, 6, and 8 show the molecular structures and the crystallographic numbering scheme adopted. Further data of the structure determinations are available as supplementary material (see note at the end of the paper).

7: crystal data,  $C_{18}H_{24}Cl_2N_2Si$ , colorless crystals (0.77 × 0.64  $\times 0.64$  mm);  $M_r = 367.4$ , orthorhombic,  $P_{bca}$  (No. 61), a = 13.80(1)Å, b = 17.908(2) Å, c = 15.544(2) Å, V = 3842 Å<sup>3</sup>, Z = 8,  $d_{\text{ber}} =$ 

(47) Sheldrick, G. M., SHELX-76, Program for Crystal Structure

Determination, University of Cambridge; Cambridge, England, 1976. (48) Johnson, C. K., ORTEP-II, Report ORNL-5138, Oak Ridge Laboratory; Oak Ridge, TN, 1976.







Figure 8. Molecular structure of [2-(Me<sub>2</sub>HNCH<sub>2</sub>) 5-(t-C<sub>4</sub>H<sub>9</sub>)- $C_6H_3]_2(HO)SiCr(CO)_5$  (23) (SCHAKAL).

1.270 g cm<sup>-1</sup>,  $\mu$ [Mo K $\alpha$ ] = 4.0 cm<sup>-1</sup>, F(000) = 1552. Measurement: Enraf-Nonius CAD4, T = 294 K, 3750 measured reflections  $(\theta_{\text{max}} = 25^\circ; +h, +k, +l), 422$  extinguished reflections and 312 reflections suppressed with negative intensity, 3016 independent reflections (I > 0.0) used for refinement. Correction for decay (52.2 h, -14.9%), empirical absorption correction (0.914 < T <1.000), extinction correction  $[F_{c(corr)}] = F_c/(1 + \epsilon F c^2 L p); \epsilon = 0.415$  $\times 10^{-7}$ ]. Structure solution: direct methods (MULTAN 11/82, difference Fourier technique), 303 parameters. Refinement: full matrix, least squares (STRUX-III; SDP), R = 0.060,  $R_w = 0.039$ ; all heavy atoms with anisotropic and all hydrogen atoms with isotropic displacement parameters (hydrogen atoms at C17 and C18 with one collective value). Residual electron density +0.39. -0.42 e<sub>0</sub> Å-3.

[2-(Me<sub>2</sub>NCH<sub>2</sub>)-5-(t-C<sub>4</sub>H<sub>9</sub>)C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>SiCl<sub>2</sub> (8), Bis[2-[(dimethylamino)methyl]-5-tert-butylphenyl]dichlorosilane. To a solution of 6.52 mL (57.6 mmol) of SiCl<sub>4</sub> in 200 mL of diethyl ether was added 22.7 g (115.2 mmol) of [2-[(dimethylamino)methyl]-5-tert-butyl]phenyllithium portionwise at -30 °C and the mixture was stirred for further 12 h at rt. After filtration from precipitated LiCl, 8 was isolated as a white solid in 63% yield: mp 117 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 22 °C) 1.8 (s, 18 H, 2 × t-Bu), 1.95 (s, 12 H,  $4 \times CH_3$ ), 3.6 (s, 4 H,  $2 \times CH_2$ ), 7.1–7.7, 8.1–8.3 (m,  $4 H + 2 H, 2 \times C_6 H_3$ ; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 22 °C) 31.37 (s, C(CH<sub>3</sub>)), 34.75 (s, C(CH<sub>3</sub>)), 45.28 (s, NCH<sub>3</sub>), 62.93 (s, NCH<sub>2</sub>), 126.88, 127.5, 132.17, 134.22, 140.22, 149.32 (s, C6H3); 29Si NMR (CDCl3, 22 °C) -28.5 ppm; MS (CI, 70 eV; m/e (rel inten)) 479 (M<sup>+</sup>, 5%, correct isotope distribution)). Anal. Calcd for C28H40Cl2N2Si (Mw 479.61): C, 65.11; H, 8.41; Cl, 14.78; N, 5.84. Found: C, 65.40; H, 8.40; Cl 14.81; N, 5.80.

 $[2-(Me_2NCH_2)C_6H_4]SiCl_3$  (9), [2-[(Dimethylamino)methyl]phenyl]trichlorosilane. The synthesis of 9 was done in analogy to the reaction described for 7 by reaction of 1 equiv

<sup>(46)</sup> Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: Oxford, England, 1985.

Table IX. Selected Interatomic Distances (Å) and Angles (deg) in the Crystal Structure of 23<sup>a</sup>

| Table X. | Fractional  | Atomic  | Coordinate | sand | l Equivalent |
|----------|-------------|---------|------------|------|--------------|
| Isotro   | pic Displac | ement P | arameters  | (Ų)  | for 23ª      |

|               | •           |                                         |                      |
|---------------|-------------|-----------------------------------------|----------------------|
|               | Interatomic | Distances (Å)                           |                      |
| C+ C1         | 1 990(4)    |                                         | 1 472(7)             |
|               | 1.000(0)    | C101-C102                               | 1.423(7)             |
| Cr-C2         | 1.809(0)    |                                         | 1.400(7)             |
| Cr–C3         | 1.880(6)    | C102-C103                               | 1.369(7)             |
| Cr–C4         | 1.889(6)    | C102–C107                               | 1.513(7)             |
| Cr-C5         | 1.850(6)    | C103-C104                               | 1.382(7)             |
| Cr-Si         | 2 469(2)    | C104-C105                               | 1 383(7)             |
|               | 1 1 20(6)   | C105 C106                               | 1 285(7)             |
|               | 1.139(0)    | 0105-0110                               | 1.363(7)             |
| 02-02         | 1.150(0)    | C105-C110                               | 1.51/(7)             |
| C3O3          | 1.147(6)    | C110-C111                               | 1.40(1)              |
| C404          | 1.131(6)    | C110-C112                               | 1.48(1)              |
| C505          | 1.159(6)    | C110-C113                               | 1.34(1)              |
| Si_C101       | 1 912(5)    | C201-C202                               | 1 412(7)             |
| Si C201       | 1 027(5)    | C201 C205                               | 1 404(6)             |
| SI-C201       | 1.927(3)    | C201-C200                               | 1.404(0)             |
| S1-00         | 1.095(3)    | $C_{202} = C_{203}$                     | 1.380(7)             |
| N1-C107       | 1.470(7)    | C202-C207                               | 1.509(7)             |
| N1-C108       | 1.467(7)    | C203–C204                               | 1.389(8)             |
| N1-C109       | 1.471(7)    | C204-C205                               | 1.384(7)             |
| N2-C207       | 1 498(7)    | C205-C206                               | 1 392(7)             |
| N2_C207       | 1.490(7)    | C205-C200                               | 1.572(7)             |
| N2-C208       | 1.489(7)    | C203-C210                               | 1.555(7)             |
| N2-C209       | 1.487(7)    | C210-C211                               | 1.462(9)             |
|               |             | C210–C212                               | 1.480(9)             |
|               |             | C210-C213                               | 1.488(9)             |
|               |             |                                         |                      |
|               | Bond Ar     | igles (deg)                             |                      |
| C1-Cr-C2      | 168.5(2)    | C102-C101-C106                          | 116.9(4)             |
| C1-Cr-C3      | 88.7(2)     | C101-C102-C103                          | 118.7(5)             |
| C2-C1-C3      | 87 7(2)     | C101 - C102 - C107                      | 121 4(4)             |
| $C_1 C_2 C_4$ | 00 4 (2)    | C102 C102 C107                          | 110.0(5)             |
|               | 00.0(2)     |                                         | 119.9(3)             |
| C2-Cr-C4      | 95.2(2)     | C102-C103-C104                          | 122.7(5)             |
| C3CrC4        | 177.0(2)    | C103-C104-C103                          | 120.7(5)             |
| C1CrC5        | 95.6(2)     | C104-C105-C106                          | 117.0(5)             |
| C2-Cr-C5      | 95.2(2)     | C104-C105-C110                          | 122.4(5)             |
| C3_Cr_C5      | 88 4(2)     | C106-C105-C110                          | 120 6(5)             |
|               | 00.4(2)     | C101 C105 C105                          | 124.0(5)             |
|               | 90.0(2)     | C101-C100-C103                          | 124.0(3)             |
| CI-Cr-Si      | 85.0(2)     | N1-C107-C102                            | 114.3(4)             |
| C2CrSi        | 84.2(2)     | C105-C110-C111                          | 116.3(6)             |
| C3-Cr-Si      | 92.8(2)     | C105-C110-C112                          | 109.2(5)             |
| C4-Cr-Si      | 88.3(1)     | C111-C110-C112                          | 91.9(8)              |
| CS-Cr-Si      | 178 7(2)    | C105_C110_C113                          | 114.9(6)             |
|               | 170 4(5)    |                                         | 115 2(9)             |
|               | 170.4(5)    |                                         | 105.0(0)             |
| Cr-C2-02      | 1/0.8(5)    | CH2-CH0-CH3                             | 105.9(9)             |
| CrC3O3        | 176.1(5)    | Si-C201-C202                            | 124.9(4)             |
| CrC4O4        | 177.6(4)    | Si-C201-C206                            | 119.3(4)             |
| Cr-C5-O5      | 178.7(5)    | C202-C201-C206                          | 115.7(4)             |
| Cr-Si-C101    | 114.4(2)    | C201-C202-C203                          | 120.3(5)             |
| Cr-Si-C201    | 1178(2)     | C201_C202_C207                          | 122 5(5)             |
|               | 102 2(2)    | $C_{201} - C_{202} - C_{207}$           | 122.3(5)<br>117.1(5) |
| C101-S1-C201  | 102.2(2)    | C203-C202-C207                          | 117.1(5)             |
| Cr-Si06       | 116.3(1)    | C202-C203-C204                          | 121.6(5)             |
| C101–Si–O6    | 102.8(2)    | C203–C204–C205                          | 120.3(5)             |
| C201-Si-O6    | 101.1(2)    | C204-C205-C206                          | 117.2(5)             |
| C107-N1-C108  | 109 9(4)    | C204-C205-C210                          | 122 4(5)             |
| C107_N1_C100  | 100 1(5)    | C206_C205_C210                          | 120 4(5)             |
| C109 N1 C109  | 109.1(3)    | 0200 - 0200 - 0210                      | 120.7(3)             |
| C108-INI-C109 | 109.9(4)    | C201-C200-C205                          | 124.8(5)             |
| C207-N2-C208  | 112.8(4)    | N2-C207-C202                            | 113.1(4)             |
| C207-N2-C209  | 110.2(4)    | C205-C210-C211                          | 110.4(5)             |
| C208-N2-C209  | 110.3(4)    | C205-C210-C212                          | 110.7(5)             |
| Si-C101-C102  | 124 6(4)    | C211-C210-C212                          | 107.1(7)             |
| SLC101 C106   | 118 4(4)    | C205_C210_C212                          | 113 1(5)             |
| 51-0101-0100  | 110.3(4)    | $C_{200} = C_{210} = C_{210} = C_{210}$ | 109 4/4              |
|               |             | C211-C210-C213                          | 108.4(0)             |
|               |             | C212-C210-C213                          | 107.0(6)             |

<sup>a</sup> Estimated standard deviations in units of the last significant figure are given in parentheses.

of 2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Li with SiCl<sub>4</sub>, yield 63%: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 22 °C) 1.84 (s, 6 H, CH<sub>3</sub>) 3.06 (s, 2 H, CH<sub>2</sub>) 6.68, 7.13, 8.67 (3 × s, 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) 45.4 (s, NCH<sub>8</sub>) 61.6 (s, CH<sub>2</sub>) 132.1, 133.6, 140.1, 142.7, 125.5, 127.2 (6 s, C<sub>6</sub>H<sub>4</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>) -58.2 ppm.

[[2-(Me<sub>2</sub>NHCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>][2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>5</sub>]SiCl<sub>2</sub>]<sup>+</sup>Cl<sup>-</sup>(10), [2-[(Dimethylammonio)methyl]phenyl]-2-[(dimethylamino)methyl]phenyldichlorosilane Chloride. To a solution of 367 mg (1 mmol) of 7 in 20 mL of THF, 1 mmol HCl  $\times$  Et<sub>2</sub>O was slowly added. On cooling of the solution to -20 °C, 10 crystallized as colorless needles: 23% yield, mp 173 °C; <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 22 °C) 2.3 (br, 12 H, CH<sub>3</sub>) 3.6 (s, 4 H, CH<sub>2</sub>), 7.3-8.1 (br, 10 H, C<sub>6</sub>H<sub>5</sub>);

| atom       | x/a        | y/b        | z/c        | $U_{\rm eq}{}^a$ |
|------------|------------|------------|------------|------------------|
| Cr         | 0.02736(6) | 0.72671(5) | 0.27835(5) | 0.031            |
| C1         | 0.0488(4)  | 0.7713(3)  | 0.1796(3)  | 0.037            |
| C2         | 0.0205(4)  | 0.6794(3)  | 0.3685(3)  | 0.043            |
| C3         | 0.0202(4)  | 0.6274(3)  | 0.2301(3)  | 0.036            |
| C4         | 0.0388(4)  | 0.8282(3)  | 0.3225(3)  | 0.032            |
| C5         | 0.1628(4)  | 0.7074(3)  | 0.3030(3)  | 0.046            |
| <b>O</b> 1 | 0.0611(3)  | 0.7967(2)  | 0.1189(2)  | 0.056            |
| O2         | -0.0513(4) | 0.6470(3)  | 0.4223(3)  | 0.063            |
| O3         | 0.0217(3)  | 0.5666(2)  | 0.2012(3)  | 0.051            |
| O4         | 0.0492(3)  | 0.8890(2)  | 0.3484(2)  | 0.049            |
| O5         | 0.2478(3)  | 0.6946(3)  | 0.3171(3)  | 0.062            |
| Si         | -0.1536(1) | 0.75442(8) | 0.24810(8) | 0.027            |
| N1         | -0.2065(4) | 0.7016(3)  | 0.0466(3)  | 0.043            |
| N2         | -0.3569(3) | 0.8809(3)  | 0.1732(3)  | 0.040            |
| C101       | -0.2359(4) | 0.6629(3)  | 0.2322(3)  | 0.027            |
| C102       | -0.2389(4) | 0.6164(3)  | 0.1628(3)  | 0.031            |
| C103       | -0.3030(4) | 0.5532(3)  | 0.1583(3)  | 0.037            |
| C104       | -0.3667(4) | 0.5337(3)  | 0.2176(3)  | 0.039            |
| C105       | -0.3668(4) | 0.5772(3)  | 0.2860(3)  | 0.035            |
| C106       | -0.2997(4) | 0.6398(3)  | 0.2922(3)  | 0.030            |
| C107       | -0.1718(4) | 0.6348(3)  | 0.0953(3)  | 0.039            |
| C108       | -0.3040(5) | 0.6828(4)  | 0.0068(3)  | 0.050            |
| C109       | -0.1302(5) | 0.7185(4)  | -0.0116(4) | 0.062            |
| C110       | -0.4374(4) | 0.5591(3)  | 0.3517(4)  | 0.045            |
| C111       | -0.4924(9) | 0.4889(7)  | 0.3448(6)  | 0.137            |
| C112       | -0.3771(8) | 0.5291(8)  | 0.4204(6)  | 0.154            |
| C113       | -0.4893(9) | 0.6210(6)  | 0.3777(8)  | 0.106            |
| C201       | -0.2274(4) | 0.8120(3)  | 0.3246(3)  | 0.029            |
| C202       | -0.3280(4) | 0.8393(3)  | 0.3133(3)  | 0.037            |
| C203       | -0.3770(4) | 0.8750(4)  | 0.3743(4)  | 0.045            |
| C204       | -0.3304(4) | 0.8834(3)  | 0.4482(3)  | 0.045            |
| C205       | -0.2318(4) | 0.8579(3)  | 0.4622(3)  | 0.032            |
| C206       | -0.1830(4) | 0.8242(3)  | 0.3997(3)  | 0.030            |
| C207       | -0.3886(4) | 0.8274(3)  | 0.2375(3)  | 0.041            |
| C208       | -0.3724(5) | 0.9654(3)  | 0.1918(4)  | 0.053            |
| C209       | -0.4115(5) | 0.8601(4)  | 0.0982(4)  | 0.053            |
| C210       | -0.1766(4) | 0.8665(3)  | 0.5424(3)  | 0.041            |
| C211       | -0.0885(7) | 0.9179(6)  | 0.5366(4)  | 0.093            |
| C212       | -0.1388(8) | 0.7894(5)  | 0.5711(4)  | 0.095            |
| C213       | -0.2424(6) | 0.8987(7)  | 0.6036(4)  | 0.101            |
| O6         | -0.1802(2) | 0.8079(2)  | 0.1661(2)  | 0.033            |
| 07         | -0.6411(4) | 0.9137(3)  | 0.1659(3)  | 0.083            |
|            |            |            |            |                  |

<sup>a</sup>  $U_{eq} = (U_1 U_2 U_3)^{1/3}$  where  $U_1, U_2$ , and  $U_3$  are the characteristic values of the  $\dot{U}_{ij}$  matrix. ESD's are in parentheses.

 $(CDCl_3, 42 \ ^{\circ}C) \ 2.31 \ (s, 6 \ H, CH_3) \ 2.46 \ (d, \ ^3J(^1H^1H) = 16.9 \ Hz,$ 6 H, CH<sub>3</sub>), 5.41 (br, 1 H, NH), 7.35–7.41, 8.52 (m, 2 × C<sub>6</sub>H<sub>4</sub>). Anal. Calcd for C<sub>18</sub>H<sub>25</sub>Cl<sub>3</sub>N<sub>2</sub>Si (M<sub>w</sub> 403.86): C, 53.53; H, 6.24; N, 6.94. Found: C, 53.49; H, 6.21; N, 6.90. Crystal data C18H25Cl3N2Si × CHCl<sub>3</sub>,  $M_r$  523.2, orthorhombic,  $P_{bca}$  (No. 61), a = 16.949(2) Å, b = 11.617(2) Å, c = 25.017(3) Å, V = 4925.8 Å<sup>3</sup>, Z = 8,  $d_{calc} = 1000$ 1.41,  $\mu$ [Mo K $\alpha$ ] = 7.58, 3879 measured reflections, 3434 independent reflections used for refinement, 309 parameters refined: R = 0.0444,  $R_w = 0.0349$ . Residual electron density +0.33 eÅ-3/-0.29 eÅ-3. Si-N1 2.163(2) Å, Si-Cl1 2.086(1) Å, Si-Cl2 2.219(2) Å, equatorial sum of bond angles 358.9°.

 $[2-(Me_2NCH_2)C_4H_4]C_4H_5Si=Cr(CO)_5(11), [2-[(Dimethyl$ amino)methyl]phenyl]phenylsilanediylchromium(0) Pentacarbonyl, [2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]<sub>2</sub>Si=Cr(CO)<sub>5</sub> (12), Bis[2-[(dimethylamino)methyl]phenyl]silanediylchromium(0) Pentacarbonyl, and [2-(Me2NCH2)-5-(t-C4H9)C6H3]2Si=Cr-(CO)<sub>5</sub> (13), Bis[2-[(dimethylamino)methyl]-5-tert-butylphenyl]silanediylchromium(0) Pentacarbonyl. An amount of 2.31 g (9.71 mmol) of Na<sub>2</sub>Cr(CO)<sub>5</sub> was dissolved in 100 mL of THF by ultrasonification. The yellowish brown solution was cooled to-40 °C and 9.71 mmol of the dichlorosilane (6, 7, or 8) dissolved in 20 mL of THF was added dropwise over a period of ca. 30 min. The reaction mixture was allowed to warm up to rt and was stirred for another 3 h. The mixture was filtered and concentrated to 10 mL in the vacuum (10<sup>-2</sup> torr). 11, 12, and 13 crystallized at -20 °C as beige yellow crystals: yield (32-63%); mp 170 °C (11), mp 121 °C (12), mp 155 °C (13). 12 and 13 are thermochromic (yellow  $\rightarrow$  red).

11: <sup>1</sup>H NMR ( $d_{\theta}$ -toluene, 22 °C)  $\delta$  1.83, 2.08 (s, 6 H, 2 × NCH<sub>3</sub>), 2.62, 3.04 (dd, AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 14.0 Hz, 2 H, NCH<sub>2</sub>), 6.04, (d, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 10.1 Hz, 1 H), 7.02 (t, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 10.0 Hz, 1 H), 7.04 (d, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 10.1 Hz, 1 H), 8.08 (d, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 10.1 Hz, 1 H; C<sub>0</sub>H<sub>4</sub>CH<sub>2</sub>NMe<sub>2</sub>), 6.97, (s, 2 H), 7.04 (d, <sup>3</sup>J(<sup>1</sup>H<sup>1</sup>H) = 8.9 Hz, 3 H, C<sub>6</sub>H<sub>5</sub>); <sup>29</sup>Si-NMR (53.5 MHz,  $d_8$ -toluene, 22 °C)  $\delta$  121.2; MS (EI, 70 eV; *m/e* (rel. inten)) 431 (M<sup>+</sup>, 9%, correct isotope distribution). IR (cm<sup>-1</sup>, THF, difference spectrum): 2037 (vs), 2020 (m), 1905 cm<sup>-1</sup> (vs, br) ( $\nu_{CO}$ ). Anal. Calcd for C<sub>20</sub>H<sub>17</sub>CrO<sub>5</sub>-NSi ( $M_{\pi}$  431.44): C, 55.68; H, 3.97; N, 3.25. Found: C, 55.50; H, 3.21.

11: crystal data C<sub>20</sub>H<sub>17</sub>CrNO<sub>5</sub>Si, yellow crystals (0.2 × 0.45 × 0.5 mm)  $M_r$  = 431.4, triclinic,  $P\bar{1}$  (No. 2), A = 9.404(1) Å, b = 10.207(1) Å, c = 11.586(1) Å,  $\alpha$  = 106.39(1),  $\beta$  = 91.79(1),  $\tau$  = 110.04(1)°, V = 992.16 Å<sup>3</sup>, Z = 2,  $d_{calc}$  = 1.444 g cm<sup>3</sup>,  $\mu$ [Mo K $\alpha$ ] = 6.50 cm<sup>-1</sup>, F(000) = 404. Measurement: Syntex  $P2_1$ , T = 223 K, 3489 measured reflections (2° >  $\theta \ge 25^{\circ}$ ), 3489 independent reflections of which 3289 with  $F_0 > 4(F_0)$  were used for refinement (weighing factor:  $w = 1/\sigma^2$ , l = 2.0716), empirical absorption correction (0.76 < T < 1.00). Structure solution: direct methods (MULTAN 11/82, difference Fourier technique), 321 parameters. Refinement: full matrix, least squares (SHELX-76), R = 0.031,  $R_w = 0.037$ , all non-hydrogen atoms with anisotropical and all hydrogen atoms with isotropical displacement parameters refined. Residual electron density +0.31/-0.28 e\_0 Å^{-3}.

11a: (<sup>1</sup>H NMR, CDCl<sub>3</sub>, 22 °C) 1.72, 3.62 (m,  $2 \times 4$  H, THF), 2.70 (br, 6 H, CH<sub>3</sub>), 4.05 (s, 2 H, CH<sub>2</sub>) 6.04–8.08 (m, 9 H, C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>4</sub>) (<sup>1</sup>H NMR, CDCl<sub>3</sub>, -65 °C) 1.71, 6.63 (m,  $2 \times 4$  H, THF), 2.85, 2.97 ( $2 \times s$ ,  $2 \times 3$  H,  $2 \times CH_3$ ), 4.01, 4.13 (AB, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 7.1 Hz, 2 H, CH<sub>2</sub>), 6.05–8.01 (m, 9 H, C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>4</sub>).

12: <sup>1</sup>H NMR ( $d_8$ -toluene, 22 °C)  $\delta$  2.57 (s, 2 × 6 H, NCH<sub>3</sub>), 3.80, 4.09 (dd, AB system, <sup>2</sup>J(<sup>1</sup>H,<sup>1</sup>H) = 12.2 Hz, 2 × 2H, CH<sub>2</sub>), 7.18–7.27, 7.61–7.71 (m, 2 × 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>1</sup>H-NMR ( $d_8$ -toluene, 62 °C) 3.90 (s, 2 × 2H, CH<sub>2</sub>), (-40.0 °C): 2.02, 2.23 (2 s, 6 H, NCH<sub>3</sub>), 2.61 (s, 6 H, NCH<sub>3</sub>), 3.81, 4.11 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.2 Hz, 2 H, CH<sub>2</sub>, 2.62, 3.04 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 14.0 Hz, 2 H, CH<sub>2</sub>); <sup>13</sup>C-NMR ( $d_6$ -acetone, 22 °C)  $\delta$  43.44 (CH<sub>3</sub>), 64.68 (CH<sub>2</sub>), 128.3, 128.6, 132.8, 137.1, 149.3, 150.1 (C<sub>6</sub>H<sub>4</sub>), 212.8, 227.2 (CO); <sup>29</sup>Si-NMR ( $d_8$ -THF, 22 °C)  $\delta$  124.9; <sup>29</sup>Si-NMR ( $d_8$ -THF, -40.0 °C)  $\delta$ 120.9; <sup>29</sup>Si-NMR ( $d_8$ -THF, 62 °C): 138.8; MS (EI, 70 eV; *m/e* (rel inten)) 488 (M<sup>+</sup>, 10%, correct isotope distribution); IR (cm<sup>-1</sup>, Nujol) 2036 (m), 1916 (ss) 1884 (22) ( $\nu_{CO}$ ); UV/vis (cyclohexane)  $\lambda_{max} = 274$  nm,  $\epsilon = 2700$ . Anal. Calcd for C<sub>23</sub>H<sub>24</sub>CrN<sub>2</sub>O<sub>5</sub>Si ( $M_{w}$ 488.536): C, 56.55; H, 4.95; N, 5.73. Found: C, 55.84; H, 5.23; N, 5.40.

12: crystal data:  $C_{23}H_{24}CrN_2O_6Si$ ,  $M_r = 488.5$ , triclinic,  $P\bar{1}$ (No. 2),  $\alpha = 9.531(1)$  Å, b = 10.339(1) Å, c = 11.676(1) Å,  $\alpha = 94.47(1)$ ,  $\beta = 88.09(1)$ ,  $\tau = 96.68(1)^\circ$ , V = 5115 Å<sup>3</sup>, Z = 2,  $d_{calcd} = 1.42$  g cm<sup>-1</sup>,  $\mu$ [Mo K $\alpha$ ] = 5.7 cm<sup>-1</sup>, F(000) = 508. Measurement: Syntex  $P2_1$ , T = 218 K, 4035 measured reflections ( $\theta_{max} = 25^\circ$ ;  $\pm h$ ,  $\pm k$ ,  $\pm l$ ), 4035 independent reflections (I > 0.0) used for refinement, empirical absorption correction. Structure solution: Patterson (SHELX 86, difference Fourier technique), 385 parameters. Refinement: full matrix, least squares (SHELX-76), R = 0.040,  $R_w = 0.032$ , all heavy atoms anisotropically, all hydrogen atoms with isotropic displacement parameters refined. Residual electron density +0.27; -0.28 e\_0 Å^{-3}.

13: <sup>1</sup>H-NMR (270 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 22 °C)  $\delta$  1.20 (s, 2 × 9 H, t-Bu), 2.46 (s, 12 H; 4 × CH<sub>3</sub>), 3.66, 3.87 (dd, 2 × 2 H, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.2 Hz; NCH<sub>2</sub>), 7.0–7.64 (m, 6 H; 2 × C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C-{<sup>1</sup>H}-NMR (67.8 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 22 °C)  $\delta$  31.08 (C(CH<sub>3</sub>)), 34.16 (C(CH<sub>3</sub>)<sub>3</sub>), 44.03 (NCH<sub>3</sub>), 64.30 (NCH<sub>2</sub>), 126.26, 130.97, 132.95, 138.41, 139.23, 149.61 (C<sub>6</sub>H<sub>3</sub>), 211.4, 221.0 (CO); <sup>29</sup>Si-NMR (53.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 21 °C)  $\delta$  127.1; IR (cm<sup>-1</sup>, THF, difference spectrum) 2018 (w), 1938 (w), 1893 (vs) ( $\nu_{CO}$ ). Anal. Calcd for C<sub>31</sub>H<sub>40</sub>CrN<sub>2</sub>O<sub>5</sub>Si (M<sub>r</sub> 600.752: C, 61.98; H, 6.71; N, 4.66. Found: C, 61.88; H, 6.70; N, 4.67.

[2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>5</sub>H<sub>4</sub>]HSi $\rightarrow$ Cr(CO)<sub>5</sub> (14), 2-[(Dimethylamino)methyl]phenylsilanediylchromium(0) Pentacarbonyl. An amount of 0.88 g (5.3 mmol) of 2-[(dimethylamino)methyl]phenylsilane and 1.17 g (5.3 mmol) of Cr(CO)<sub>6</sub> suspended in 20 mL of pentane were photolyzed at rt with a Hg high pressure immersion lamp. The reaction mixture turned yellow. After 7 h photolysis, 14 was obtained in 63% yield, mp 165 °C: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  2.17 (s, 3 H, NCH<sub>3</sub>), 2.28 (s, 3 H, NCH<sub>3</sub>), 2.85, 3.52 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 13.5 Hz, 2 H, NCH<sub>2</sub>) 6.08 (s, 1 H, SiH), 6.8– 8.3 (m, 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) 45.02 (NCH<sub>3</sub>), 46.19 (NCH<sub>3</sub>), 69.11 (NCH<sub>2</sub>), 123.25, 128.79, 134.73, 134.89, 140.51, 144.76 (C<sub>6</sub>H<sub>4</sub>); IR (cm<sup>-1</sup>, THF) 2023.0 (w), 1935.2 (s), 1899.8 (s) ( $\nu_{CO}$ ). Anal. Calcd for C<sub>14</sub>H<sub>13</sub>CrNO<sub>6</sub>Si ( $M_w$  355.34): C, 47.32; H, 3.69; N, 3.94. Found: C, 47.21; H, 3.68; N, 3.90.

[[2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>][2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>]Si=Cr-(CO)<sub>5</sub>]Cl<sup>-</sup>(18), [2-[(Dimethylamino)methyl]phenyl][2-[(dimethylammonio)methyl]phenyl]silanediylchromium(0) Pentacarbonyl Chloride. 488 mg (1 mmol) of 12 dissolved in 20 mL of THF was treated with 1 mmol of anhydrous HCl × Et<sub>2</sub>O. 18 was formed as a white precipitate: yield 58%, mp 251 °C dec; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 22 °C) 1.82, 2.04 (s, 6 H, 2 × NCH<sub>3</sub>, 2.61, 3.05 (dd, AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 14.0 Hz, 2 H, CH<sub>2</sub>), 3.52 (s, 6 H, NCH<sub>3</sub>), 5.41 (s, 1 H, NH), 6.12-7.95 (m, 2 × 4 H, C<sub>6</sub>H<sub>4</sub>). Anal. Calcd for C<sub>23</sub>H<sub>25</sub>ClCrN<sub>2</sub>O<sub>5</sub>Si (525.00): C, 52.62; H, 4.80; N, 5.34; Cl, 6.75. Found: C, 52.55; H, 4.81; N, 5.34; Cl, 6.77.

 $[2-[Me_2N(BF_3)CH_2]C_6H_4][2-(Me_2NCH_2)C_6H_4]Si=Cr-$ (CO)<sub>5</sub>(19),[2-[[Dimethyl(trifluoroboranyl)amino]methyl]phenyl][2-[(dimethylamino)methyl]phenyl]silanediylchromium(0) Pentacarbonyl. An amount of 3.61 g (7.4 mmol) of 12 dissolved in 50 mL of  $Et_2O$  were reacted with 0.9 mL (7.3 mmol) of  $BF_3 \times Et_2O$  at -40 °C. The reaction mixture was allowed to warm to rt and stirred for 24 h and concentrated subsequently to 10 mL in the vacuum. 19 was isolated from a THF solution as pale yellow crystals upon cooling: yield 2.0 g (49%); <sup>1</sup>H NMR (400 MHz, d<sub>8</sub>-toluene, 22 °C) 2.41, 2.60 (s, 6 H, CH<sub>8</sub>), 3.10, (m,  ${}^{4}J({}^{19}F^{1}H) = 2 \text{ Hz}, 6 \text{ H}, CH_{3}), 3.82, 4.11 (dd, AB system, {}^{2}J({}^{1}H^{1}H))$ = 12 Hz, 2 H,  $CH_2$ ), 3.88 (s, 2 H,  $CH_2$ ), 7.20–7.29, 7.60–7.70 (m, 8 H,  $2 \times C_6 H_4$ ); <sup>29</sup>Si NMR ( $d_8$ -toluene, 22 °C) 119.7 ppm; <sup>11</sup>B NMR (d<sub>8</sub>-toluene, 22 °C) 7.9 (s); IR (cm<sup>-1</sup>, Nujol) 2043 (s), 1958 (s), 1892 (s) ( $\nu_{CO}$ ), 1124 (m) (BF); MS (EI, 70 eV; m/e (rel inten)) 488 (M<sup>+</sup>, 1.6%, correct isotope distribution). Anal. Calcd for C23H24BCrF3N2O5Si (Mw 556.34): C, 49.66; H, 4.35; N, 5.04; F, 10.24. Found: C, 49.94; H, 4.38; N, 4.99; F, 10.14.

 $[2-(Me_2NCH_2)C_6H_4][2-(Me_2NCH_2)C_6H_4]Si=Cr(CO)_4(20),$ [2-[(dimethylamino)methyl]phenyl][2-[(dimethylamino)methyl]phenyl]silanediylchromium(0) Tetracarbonyl. A suspension of 1.0 g (2.0 mmol) of 12 was photolyzed with a 100-W high-pressure Hg immersion lamp for 12 h during which an orange-colored suspension was formed. After filtration and removal of the THF, 20 was obtained as a pure product: 100% yield, mp 280 °C dec. The reaction can be monitored by IR spectroscopy. 20: <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 22 °C) δ 2.05 (s, 3 H), 2.71 (s, 3 H), 2.93 (s, 6 H; NCH<sub>3</sub>), 3.14, 4.12 (AB system,  ${}^{2}J({}^{1}H^{1}H) = 12.2 \text{ Hz}, 2 \text{ H}; CH_{2}NSi), 3.85, 4.44 \text{ (AB system, } {}^{2}J({}^{1}H^{1}H)$ = 13.6 Hz, 2 H; CH<sub>2</sub>NCr), 6.7–8.2 (m,  $2 \times 4$  H; C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>, 22 °C) & 45.35, 47.85, 54.0, 62.44 (NCH<sub>3</sub>), 67.91, 74.52 (NCH<sub>2</sub>), 123.7, 128.58, 129.12, 129.71, 130.13, 131.13, 132.68, 133.3, 134.9, 140.89, 142.9, 144.3 ( $2 \times C_6H_4$ ), 221.6, 228.6, 228.9, 229.1 (CO); <sup>29</sup>Si-NMR (53.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 25 °C) δ 143.2; (-35 °C): 124.6; MS (EI, 70 eV; m/e (rel. inten) 460 (M<sup>+</sup>, 5%, correct isotope distribution); IR (cm<sup>-1</sup>, THF, difference spectrum) 1977 (w), 1851 (s), 1834 (m) ( $\nu_{CO}$ ); UV/vis (cyclohexane)  $\lambda_{max} = 310$  nm,  $\epsilon_0 =$ 3200. Anal. Calcd for  $C_{22}H_{24}CrN_2O_4Si (M_w 460.53)$ : C, 57.38; H, 5.25; N, 6.08. Found: C, 57.30; H, 5.26; N, 6.10.

20: crystal data  $C_{22}H_{24}CrN_2O_4Si$ , orange crystals,  $(0.21 \times 0.42 \times 0.22 \text{ mm}) M_w = 460.5$ , monoclinic,  $P2_1/c$  (No. 14), a = 10.344(5)Å, b = 11.761(3) Å, c = 18.96(1) Å,  $\beta = 111.2^\circ$ , V = 2233 Å<sup>3</sup>, Z = 4,  $d_{calc} = 1.37$  g cm<sup>-3</sup>,  $\mu$ [Mo K $\alpha$ ] = 1.5418 Å, F(000) = 960. Measurement: Enraf-Nonius CAD4, T = 296 K, 4150 measured reflections (1° <  $\theta$  < 65°, h(-12/12; k(0/13); l(-22/0), 213 reflections systematically absent and 160 reflections with negative intensity suppressed; 3539 independent reflections with  $(I > 0.0 \sigma(I))$  used for refinement. Empirical absorption correction with seven reflections at angles >80°,  $\mu$ [Cu K $\alpha$ ] = 50.5 cm<sup>-1</sup>. Structure solution: direct methods (STRUX-III; SDP), R = 0.041; all heavy atoms anisotropically and all hydrogen atoms isotropically refined. Residual electron density  $+0.62 e_0 Å^{-3}$ ,  $-0.37 e_0 Å^{-3}$ .

 $[2-(Me_2NCH_2)-5-(t-C_4H_9)C_9H_3][2-(Me_2NCH_2)-5-(t-C_4H_9)-$ 

 $C_{eH_3}[Si \rightarrow Cr(CO)_4(21), [2-[(Dimethylamino)methyl]-5-tert$ butylphenyl][2-[(dimethylamino)methyl]-5-tert-butylphenyl]silanediylchromium(0) Pentacarbonyl. The synthesis followed the description given for 20.

21: <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 22 °C)  $\delta$  0.98 (s, 9 H, t-Bu), 1.23 (s, 9 H, t-Bu), 1.97 (s, 3 H), 2.17 (s, 3 H), 2.62 (s, 3 H), 2.88 (s, 3 H, NCH<sub>3</sub>), 3.01, 3.98 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.5 Hz, 2 H, CH<sub>2</sub>NSi), 3.8, 4.23 (AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 13.7 Hz, 2 H, CH<sub>2</sub>-NCr), 6.5–8.2 (m, 2 × 3 H, C<sub>6</sub>H<sub>3</sub>); MS (EI, 70 eV; *m/e* (rel. inten) 572 (M<sup>+</sup>, 5%, correct isotope distribution); IR (cm<sup>-1</sup>, THF, difference spectrum) 1976 (w), 1875 (w), 1849 (s), 1834 (m) ( $\nu$ <sub>CO</sub>). Anal. Calcd for C<sub>30</sub>H<sub>40</sub>N<sub>2</sub>CrO<sub>4</sub>Si (572.74): C, 62.91; H, 7.04; N, 4.89. Found: C, 62.89; H, 7.01; N, 4.91.

22: Fixation of 13 on Silica Gel. Approximately 500 mg of rigorously dried silica gel (Gilman titration with *n*-BuLi gave one OH group per 7 Å<sup>2</sup>) was mixed with a sample of ca. 100 mg of 13 in 20 mL of THF. The THF solution turned colorless within several minutes. The dark yellow silica gel suspension was purified by filtration, washed with THF, and dried in the vacuum (10<sup>-2</sup> bar): yield 600 mg (100%); <sup>13</sup>C CPMAS NMR (75.47 MHz)  $\delta$  44.3 (s, CH<sub>3</sub>) 63.5 (s, CH<sub>2</sub>) 129.0–137.6 (br, C<sub>6</sub>H<sub>5</sub>, overlapped); IR (cm<sup>-1</sup>, KBr) 3062 (w), 2961 (w) ( $\nu_{CH}$ ); 2700 (w, br) ( $\nu_{SiO-H}$ ); 2610 (w, br) ( $\nu_{NH}$ ); 2025 (s), 1977 (w), 1940 (s), 1900 (ss) ( $\nu_{CO}$ )); 1082 (ss) ( $\nu_{Si-O}$ ). UV/vis (reflection)  $\lambda_{max}$  285 nm,  $\epsilon_0$  = 3100.

[2-(Me<sub>2</sub>NHCH<sub>2</sub>)-5-(t-C<sub>4</sub>H<sub>9</sub>)C<sub>6</sub>H<sub>3</sub>][2-(Me<sub>2</sub>NCH<sub>2</sub>)-5-(t-C<sub>4</sub>H<sub>9</sub>)-C<sub>6</sub>H<sub>3</sub>](HO)SiCr(CO)<sub>5</sub> (23), [2-[(Dimethylammonio)methyl]-5-tert-butylphenyl][2-[(dimethylamino)methyl]-5-tert-butylphenyl]hydroxysilylchromium(-2) Pentacarbonyl. An amount of 600 mg (1 mmol) of 13 was mixed with 18 mg (1 mmol) of H<sub>2</sub>O in 20 mL of THF. 23 cyrstallized from the crude reaction mixture as colorless cubes, yield 23%: <sup>1</sup>H-NMR (200 MHz, d<sub>6</sub>acetone, 22 °C) 1.21 (s, 18 H, t-Bu) 2.48 (br, 12 H, NCH<sub>3</sub>) 3.69, 3.97 (d, AB system, <sup>2</sup>J(<sup>1</sup>H<sup>1</sup>H) = 12.1 Hz, 4 H, NCH<sub>2</sub>) 6.12, (s, 1 H, OH), 6.52 (s, 1 H, NH), 7.10–8.21 (m, 2 × 3) H, C<sub>6</sub>H<sub>3</sub>); IR (cm<sup>-1</sup>, THF) 2019 (s), 1938 (ss), 1892 (ss) ( $\nu_{CO}$ ), 2615 (w) ( $\nu_{NH}$ ), 2700 (w) ( $\nu_{OH}$ ); UV/vis (cyclohexane)  $\lambda_{max} = 285$  nm,  $\epsilon_0 = 3100$ . Anal. Calcd for C<sub>28</sub>H<sub>28</sub>CrN<sub>2</sub>O<sub>6</sub>Si ( $M_w$  506.55) C, 54.54; H, 5.17; N, 5.53. Found: C, 54.45; H, 5.20; N, 5.40.

23: crystal data  $C_{23}H_{26}CrN_2O_6Si \times 2C_4H_8O$ , colorless cyrstals  $(0.20 \times 0.45 \times 0.50 \text{ mm}) M_w = 650.8$ , monoclinic,  $P2_1/n$  (No. 14), a = 13.198(2) Å, b = 17.017(2) Å, c = 17.066(1) Å,  $\beta = 92.23(1)^{\circ}$ ,  $V = 3830.0 \text{ Å}^3$ , Z = 4,  $d_{\text{calc}} = 1.129 \text{ g cm}^{-3}$ ,  $\mu[\text{Mo K}\alpha] = 3.64 \text{ cm}^{-1}$ , F(000) = 1480. Measurement: Syntex  $P2_1$ , T = 223 K, 5860 measured reflections, 5332 independent reflections of which 3922 with  $F_0 > 4(F_0)$  were used for refinement. Structure solution: direct methods (SHELXS-86) 410 parameters. Refinement: disordered Et<sub>2</sub>O molecule, C-coordinates refined with split-model in several positions. All non-hydrogen atoms anisotropically and all hydrogen atoms isotropically refined with fixed  $(U_{iso/fix} = 0.05)$ Å<sup>2</sup>) isotropic displacement parameters. The positions of the hydrogen bridges have been located by difference Fourier analysis. The R factor has been found with  $R(R_w) = 0.069(0.067)$  with a residual electron density of  $+0.88/-0.56 e_0 Å^{-3}$ . Further data of the structure determination are available as supplementary material.

Acknowledgment. This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. Furthermore, we are indebted to Professor W. A. Herrmann and Professor H. Schmidbaur for their continued interest in our investigations.

Supplementary Material Available: Tables of hydrogen atom coordinates, isotropic displacement parameters, and bond distances and angles for 7, 11, 12, 21, and 23 (19 pages). Ordering information is given on any current masthead page. The data for the structures of 7 and 11 have been deposited at Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, D-W-7514 Eggenstein-Leopoldshafen 2, Germany, under the CSD-number 55494.

OM920731A