Synthesis and Characterization of Triangulo Copper(1) Complexes Containing Mono- and Bicapping Systems of Asymmetric μ_3 - n^1 -Acetylide Ligands: Molecular Structures of $\left[Cu_3(\mu_3-\eta^1-C=CPh)(\mu\text{-}dppm)_3 \right] \left[BF_4 \right]_2$ $\left[\text{Cu}_3(\mu_3-\eta^1-\text{C=CPh})_2(\mu-\text{dppm})_3 \right]$ [BF₄], and $\left[\text{Cu}_3(\mu_3-\eta^1\text{-C}=\text{CPh})(\mu_3\text{-Cl})(\mu\text{-dppm})_3\right]\left[\text{BF}_4\right]\left[\text{dppm}=\right]$ **Bis(dipheny1phosphino)methanel**

Josefina Diez,[†] M. Pilar Gamasa,[†] José Gimeno,^{*,†} Elena Lastra,[†] Angel Aguirre,[†] and Santiago García-Granda*^{,†}

Departamento de Qufmica Organometblica y Departamento de Qufmica F&ica y Anulltica, Facultad de Qufmica, Universidad de Oviedo, 33071 Oviedo, Spain

Received December 17, 1992

Alkynyl-bridged trinuclear copper(I) complexes containing the triangulo framework $Cu₃(\mu$ dppm)₃ [dppm = bis(diphenylphosphino)methane] have been prepared. Complexes [Cu₃(μ ₃- η^1 -C=CR)(μ -dppm)₃] [BF₄]₂ (R = Ph (1), ^tBu (2), CH₂OCH₃ (3)) are obtained by treating [Cu₂(μ dppm)₂(MeCN)₂][BF₄]₂ with LiC=CR in a molar ratio of 3:2. The treatment of $[Cu_2(\mu$ dppm)₂(MeCN)₂][BF₄]₂ with HC=CR/KOH in CH₂Cl₂/MeOH (molar ratio 3:4) yields the complexes $\left[\text{Cu}_3(\mu_3-\eta^1\text{-C=CR})_2(\mu\text{-dppm})_3\right]\left[\text{BF}_4\right]$ $\left(\text{R}=\text{Ph}\left(4\right),\text{^tBu}\left(5\right),\text{CH}_2OCH_3\left(6\right)\right)$. The reaction of $[\text{Cu}_3(\mu_3\text{-}Cl)_2(\mu\text{-}dppm)_3][BF_4]$ with LiC=CR (1:1.5 molar ratio) in THF affords the doublebridged chloride-alkynyl complexes $\left[\text{Cu}_3(\mu_3-\eta^1-\text{C}=\text{CR})(\mu_3-\text{Cl})(\mu-\text{dppm})_3\right]\left[\text{BF}_4\right]$ (R = Ph (7), tBu **(8),** CHzOCHs **(9))** which are **also** formed from dichloromethane solutions of **4-6** containing traces of acid. Complex 4 has also been directly obtained by treatment of $\lceil \text{Cu}_3(\mu_3-\text{Cl})_2(\mu_4-\text{Cl})_4(\mu_5-\text{Cl})_4(\mu_6-\text{Cl})_5(\mu_7-\text{Cl})_6(\mu_8-\text{Cl})_6(\mu_9-\text{Cl})_7(\mu_1-\text{Cl})_8(\mu_1-\text{Cl})_8(\mu_1-\text{Cl})_8(\mu_1-\text{Cl})_8(\mu_1-\text{Cl})_8(\mu_1-\$ dppm)₃][BF₄] with an excess of LiC=CPh. Crystal structures of the complexes 1 $\overline{(CH_2Cl_2)}$ solvate) (space group $P2_1/c$, $Z = 4$, $a = 25.02(1)$ Å, $b = 13.752(1)$ Å, $c = 24.207(1)$ Å, $\beta =$ **93.375(4)^o,** $R = 0.080$ **, 4 (space group** $P2₁/c$ **,** $Z = 4$ **,** $a = 14.61(6)$ **Å,** $b = 21.863(6)$ **Å,** $c = 26.67$ (1) \hat{A} , $\beta = 102.8(1)^\circ$, $R = 0.077$), and 7 (space group $P\bar{1}$, $Z = 2$, $a = 14.55(7)$ \hat{A} , $b = 14.691(4)$ **A**, $c = 21.08(2)$ **A**, $\alpha = 72.27(4)^\circ$, $\beta = 71.29(4)^\circ$, $\gamma = 68.72(8)^\circ$, $R = 0.105$) have been determined by X-ray diffraction methods. The structure determinations show that each cationic complex comists of an isosceles triangle of copper atoms with a dppm ligand bridging each edge to form a roughly planar $\lbrack Cu_3P_6 \rbrack$ core. These triangulo copper(I) complexes contain mono- and bicapping systems of μ_3 - η^1 -acetylide ligands in which each phenylethynyl ligand is C-bonded to the three copper atoms, showing an asymmetric $\mu_3 - \eta^1$ bridging mode with the copper to carbon distances significantly different.

Transition metal alkynyl complexes have been widely studied, both experimentally and theoretically, in the last decade.¹ The interest mainly stems from two chemical aspects: (a) the versatile reactivity of the coordinated acetylide groups2whichhave been used in many complexes for the synthesis of other organometallic species; (b) the ability of the acetylide groups to bond to transition metals, forming a large number of mono- and polynuclear complexes which display **an** unusual variety of bonding modes.3

Acetylides are typical multisite bridging ligands in carbonyl cluster derivatives. Their capacity to bind to polymetallic frameworks probably shows, **as** do the carbonyl groups, a tendency to maximize the electronic backdonation expected for strong π -acceptor ligands. The simultaneous metal-acetylide σ and π bonding modes are now well documented by many structural studies carried out on a large number of homo- and heteropolynuclear derivatives, usually containing metal-metal bonds. Although most of the examples involve electron-rich transition metals, only a few of them contain group **11** metal atoms. Thus, alkynyl derivatives containing heterometallic moieties such as Ru_3 -Cu,⁴ Cu₄-Ir₂,⁵ Mn₂-Cu,⁶ Cu₇-Ag₆,7 Cu₂-Au₃,⁸ Ag-Ru₃,⁹ Ag₂-Rh,¹⁰ Ag₂-Au₂,¹¹ Pt₂-Ag₄,^{12a}

⁺**Departamento de Qulmica Organometdica.**

¹ Departamento de Química Física y Analítica.

(1) For general reviews see: Nast, R. Coord. Chem. Rev. 1982, 47, 89.

Carty, A. J. Pure Appl. Chem. 1982, 54, 113. Bruce, M. I. Pure Appl.

Chem. 1986, 58, 553; Ibid. 1990,

Organometallics 1982, 1, 974.

(2) Braterman, P. S., Ed. Reactions of Coordinated Ligands; Plenum

Press: New York, 1986; Vol. 1. Holton, J.; Lappert, M. F.; Pearce, R.;

Yarrow, P. I. W. Chem. Rev. 1983, 83, 135. Cherkas,

^{1986,65,219.}

⁽⁴⁾ Brice, R. A,; Pearee, S. C.; Saltar, I. D.; Henrick, K. J. *J.* **Chem. SOC., Dalton Trans. 1986, 2181.**

⁽⁵⁾ Churchill, M. R.; Bezman, **5. A.** *Znorg.* **Chem. 1974,13,1418. (6) Carriedo, G. A.; Miguel, D.; Riera, V.;** Solans, **X.** *J.* **Chem.** *Soc.,* **Dalton Trans. 1987, 2867.**

⁽⁷⁾ Abu-Salah, 0. M.; Hussain, M. S.; Schlemper, E. 0. J. Chem. SOC., Chem. Commun. 1988, 212.

⁽⁸⁾ Abu-Salah, 0. M.; Al-Ohely, A. R. A.; Knobler, C. B. J. Chem. SOC., Chem. Commun. 1986,1502.

⁽⁹⁾ **Adatia,T.;McPartlin,M.;Saltar,I.D.** *J.Chem.Soc.,DaltonTrans.* **1989,2889.**

⁽¹⁰⁾ Churchill, M. R.; De Boer, B. G. *Znorg.* **Chem. 1975,14, 2630. (11) Abu-Salah, 0. M.; Knobler, C. B. J.** *Orgonomet.* **Chem. 1986,302, c10.**

Pt₂-Ag₂,^{12b} Au₂-Pt,¹³ Au-Pt₂,¹⁴ Pt-Au₇,¹⁵ Os₃-Au,¹⁶ and $Au_2Fe_2Ir^{17}$ have been described and structurally characterized.

Alkynyl homopolynuclear complexes $[M(C=CR)]_n(M)$ $= Cu, Ag, Au$) have been known for a long time¹⁸ but have received less attention probably due to their insolubility which precludes, in many cases, their structural studies.¹⁹ They have been used **as** starting materials for the preparation of the aforementioned heterometallic derivatives but are not useful precursors for homometallic complexes. In general the polymeric structure can be broken down with donor ligands,²⁰ forming complexes of the type $[M(C=CR)L_n]$, from which only their stoichiometries are known in most cases but not their nuclearity.^{21,22}

The lack of general methods for the synthesis of copper alkynyl derivatives and their low solubility have limited the availability of these types of complexes and hence their related structural information. At present, only the following derivatives have been described and structurally characterized: (i) $\left[\text{Cu}_{4}(\mu_{2} - \eta^{1} - \text{C} \equiv \text{CPh}\right)_{2}(\mu_{3} - \eta^{2} - \text{C} \equiv \text{CPh}\right)_{2}$ $(PMe₃)₄$], prepared by the reaction of the polymer [Cu- $(\mu_3-\eta^2-C=CPh)$ _n with PMe₃;²³ (ii) a mixed aryl/alkynyl derivative $[Cu_6(C_6H_4NMe_2-2)_4(\mu_2-\eta^1-C=C_6H_4Me-4)_2]$, ²⁴ prepared by aryl/arylacetylide exchange reactions between polymeric **[2-(dimethylamino)phenyl]copper(I)** and 4-tolylacetylene;^{24d} (iii) the hexanuclear thiophenolato/

(13) Manojlovic-Muir, L.; Treurnicht, I.; Puddephatt, R. J. Organo- metallics **1989,** 8, **2055.**

(14) Areenauk, **G.** J.; Manojlovic-Muir, L.; **Muir, K.** W.; Treurnicht, I.; Puddephatt, R. J. Angew. Chem., Znt. Ed. Engl. **1987,** *26,* 86. Manojlovic-Muir, L.; Muir, **K.** W.; Treurnicht, I.; Puddephatt, **R.** J.Znorg. Chem. **1987,26,2418.**

(16) Smith, D. E., Welch, A. J.; Treurnicht, I.; Puddephatt, **R.** J. Znorg. Chem. **1986,25,4616.**

(16) Deeming, A. J.; Donovan-Mtunzi, **S.;** Hardcastle, **K.** J. Chem. SOC., Dalton Tram. **1986,543.**

(17) Bruce, M. I.; Corbin, P. E.; Humphrey, P. A,; Kouasantoais, **G.** A.; Liddell, M. J.;Tiekink,E. **R.** T. *J.* Chem. SOC., Chem. Commun. **1990, 674.**

(18) van Koten, G.; Noltes, J. G. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 2, Chapter 14. Gmelin Handbook of

Inorganic Chemistry; Springer-Verlag: Berlin, 1975; Vol. 61, Part B5. (19) The structure of the polymer $[Cu(\mu_3 - \eta^2 - C = CPh)]_n$ has been described: Corfield, P. W. R. H.; Shearer, H. M. M. Abstracts of the American Crystallographic Association Meeting; Bozeman, MT, **1984, American** Crystallographic Association: **Stom,** CT, **1984,** p **96.** Cited **in:** Coates, G. E.; Green, M. L. H.; Wade, **K.** Organometallic Compounds, 3rd. ed.; Methuen: London, **1988;** Vol. **2,** p **274.**

(20) (a) $M = Cu$: Organocopper Compounds. *Gmelin Handbook of Inorganic Chemistry*, 8th ed.; Springer-Verlag: Berlin, 1986; Part 3, p 1-187. Coates, G. E., Parkin, C. J. *Inorg. Nucl. Chem.* 1961, 22, 59. (b) It has been de of donor **lieandstoformmononuclear** complexee [Au(CsrCPh)Ll: Coatea, G. E.; **Parkin,** C. J. Chem. Soc. **1962,3220.**

(21) Only in the case of $\left[\text{Cu}_{4/2-7}\right]$ -C=CPh)₂(μ_3 - n^2 -C=CPh)₂(PMe₃)₄)], prepared by the reaction of the polymer with PMe₃, has the structure been proved by an X-ray diffraction study.²³

been proved by an X-ray diffraction study.²³ (22) For M = Ag, Au the following complexes have been structurally characterized. [Ag(C=CPh)(PMe₃)]_s. Corfield, P. W. R.; Shearer, H. M. M. Acta Crystallogr. 1966, 20, 50

957.

 (24) (a) ten Hoedt, R. W. M.; Noltes, J. G.; van Koten, G.; Spek, A. L.
J. Chem. Soc., Dalton Trans 1978, 1800. (b) van Koten, G.; ten Hoedt, R. W. M.; Noltes, J. G. J. Org. Chem. 1977, 42, 2705. (c) van Koten, G.; ten Hoedt, R. W. M.; Noltes, J. G. J. Organomet. Chem. 1977, 13, 113. (d) An alternative route consists in the interaggregate exchange reaction of the arylcopper derivative with $[Cu(C=CC-p-C₆H₄Me)]_n$.

alkynyl complex $\text{[Cu}_3(\text{SC}_6\text{H}_4(\text{CH}_2\text{NMe}_2)\text{-}2\text{C}_4\mu_3\text{-}n^2\text{-}C^{\text{H}_4})$ B_u]₂ formed unexpectedly from the equimolar reaction of $\text{[Cu$SC}_6\text{H}_4(\text{CH}_2\text{NMe}_2)$ -2}]₃ and LiC=C^tBu;²⁵ (iv) the tetranuclear cationic complex $[Cu_4L_2(\mu_4-\eta^2-C=CPh)]^{3+}$ $(L = C_{18}H_{20}N_4O_2$, macrocyclic ligand) obtained from the reaction of the dinuclear copper(II) complex $[Cu_2(\mu OH₂(L)²⁺$ with PhC= CH in refluxing $CH₃CN/CH₃OH₃$ ²⁸ and (v) a tetrameric phosphino complex, namely $[Cu(\mu_3 \eta^1$ -C $=$ CPh)(PPh₃)]₄, obtained by treatment of [Cu(BH₄)- $(PPh₃)₂$ with PhC= CH and KOH.²⁷ We have also reported²⁸ similar complexes $\left[\text{Cu}(\mu_3-\eta^1-\text{C=CR})(\text{L-L})\right]_4$ (I) (see Chart I) (L-L = **2-(diphenylphosphino)pyridine** (Phz-Ppy), R = tBu, Ph; L-L = **bis(dipheny1phosphino)methane** (dppm), R = Ph) which have **been** prepared by the treatment of $\left[\text{Cu}_{2}(\mu\text{-L-L})_{2}(\text{MeCN})_{2}\right]^{2+}$ with RC=CH and KOH (eq 1). These syntheses represent a systematic method for the preparation of polynuclear alkynylcopper- (I) complexes.

(1) complexes.
\n2[Cu₂(
$$
\mu
$$
-L-L)₂(MeCN)₂]²⁺ + 4HC=CR + 4OH⁻ →
\n[Cu(μ ₃- η ¹-C=CR)(L-L)]₄ + 4MeCN + 4H₂O (1)

 $L-L = Ph₂Ppy$ (P-bonded); $R = Ph$, ^tBu; $L-L =$ $dppm-P; R = Ph$

In continuation of our work, we extended **this** methodology of synthesis **using** different molar ratios of the reactante. In particular, we were interested in finding out whether the copper:acetylide ratioe greater than **1,** i.e. $[Cu₂(\mu-L-L)₂(MeCN)₂]²⁺:HC=CR molar ratios greater$

⁽¹²⁾ (a) Eepinet, P.; **Fornib,** J.; **Martinez,** F.; Tomb, M.; Lalinde, E.; Moreno, M. T.; **Ruiz,** A.; Welch, A. J. J. Chem. SOC., Dalton *Trans.* **1990, 791.** (b) Eapinet, P.; Fornib, J.; **Martinez, F.; Soh,** M.; Lalinde, E.; Moreno, M. T.; **Ruiz,** A.; Welch, A. J. J. Organomet. Chem. **1991,403, 253.**

Commun. 1989, 1738. **(26)** hotter, **D.** M.; **Spek,** *k* **L.; van Koten, G.** J. Chem. **Soc.,** Chem.

Commun. **1982,1347. (26) Drew,** M. **G.** B., Esho, **F. 5.;** Nelson, **S. M.** J. Chem. **Soc.,** Chem.

Zoroddu, **A.** J. Orgonomet. Chem. **1985,279, (242. (28) Gnrnaaa, M.** P.; **Gimeno,** J.; **Lastra, E.;** Solam, **X.** *J.* Organomet. (27) Naldini, L.; Demartin, F.; Manassero, M.; Sansoni, M.; Rassu, G.;

Chem. **1988,346, 277.**

 $4 \text{ In } \text{acetone solution at } 20 \text{ °C } (\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$. $\text{A} \text{ Proton } (300 \text{ MHz})$ and $31 \text{P} \{^1\} \text{ NMR } (79.54 \text{ MHz})$; chemical shifts (δ) in ppm measured in CDCl₃ at room temperature. c ¹H and ³¹P{¹H} in CD₂Cl₂.

than 1:2 (refer to eq 1), would lead to the formation of novel cationic copper-acetylide complexes. This paper deals with the reactions of $\left[\text{Cu}_2(\mu\text{-dppm})_2(\text{MeCN})_2\right]\left[\text{BF}_4\right]_2$ with LiC=CR (molar ratio 3:2) and HC=CR/KOH (molar ratio 3:4) $(R = Ph, 'Bu, CH₂OCH₃)$. Under these conditions, the tetranuclear copper(1) complexes I (see Chart I) are not obtained, but instead novel cationic trinuclear derivatives $\text{[Cu}_3(\text{C=CR})_{3-n}(\mu\text{-dppm})_3\text{][BF}_4]_n$ (n = 1, 2) have been isolated. The molecular structures of $\lbrack Cu_3(\mu_3 \eta^1$ -C=CPh)(μ -dppm)₃][BF₄]₂, [Cu₃(μ ₃- η^1 -C=CPh)₂(μ dppm)₃] [BF₄], and the mixed phenylacetylide-chloride $\left[\text{Cu}_3(\mu_3-\eta^1-\text{C}=C\text{Ph})(\mu_3-\text{Cl})(\mu-\text{dppm})_3\right]\left[\text{BF}_4\right]$ have been established by single-crystal X-ray diffraction studies, showing triangulo copper(1) arrangements I1 and I11 (see Chart I) with unprecedented mono- and bicapping systems of asymmetric μ_3 - n^1 -acetylide ligands. Part of these results were preliminarily communicated.29

Experimental Section

The reactions were carried out under dry nitrogen using Schlenk techniques. *All* solventa were dried by standard methods and distilled under nitrogen before use. Infrared spectra were recorded **(4000-200** cm-1) on a Perkin-Elmer **1720-X** FT spectrometer using KBr pellets. The C and H analyses were carried out with a Perkin-Elmer **240-B** microanalyzer. Conductivities of acetone solutions in ca. 5×10^{-4} mol dm⁻³ were measured with a Jenway PCM3 conductimeter. NMR spectra were recorded on aBruker AC300 at **300** MHz (IH) or **121.5** MHz (alp) using SiMe4 or 85% H₃PO₄ as standards. The complexes $\left[\text{Cu}_2(\mu-\text{H}_1)\right]$ $dppm)_2(MeCN)_2[(BF_4]_2^{30}$ and $[Cu_3(\mu_3-Cl)_2(\mu-dppm)_3][BF_4]^{31}$ were prepared **as** previously described. Conductivity, infrared, and NMR spectral data for all the new alkynyl complexes are collected in Table I.

Synthesis of $\left[\text{Cu}_3(\mu_3-\eta^1-\text{C}=\text{CR})(\mu-\text{dppm})_3\right]\left[\text{BF}_4\right]_2$. R = Ph **(l),tBu** (2),CHzOCH, (3). General **Procedure.** To a solution of **0.5** mmol of LiC=CR in THF **(40** mL) (prepared in situ by treating the corresponding alkyne with 1.90 M ^aBuLi at -20 °C) was added at room temperature $\text{[Cu}_2(\mu\text{-dppm})_2(\text{MeCN})_2\text{][BF}_4]_2$ **(0.75mmol;** 0.86 **g).** The mixture was stirred at room temperature and evaporated to dryness giving a solid residue which was extracted with dichloromethane **(30 mL).** The addition of diethyl ether **(30 mL)** to the concentrated solution led to the precipitation of a white solid which was washed with diethyl ether $(3 \times 10 \text{ mL})$ and vacuum dried. Analytically pure samples were obtained by recrystallization fromTHF/hexane. Reaction times, yields (%), and analytical data follow. **(1) 24** h; **82.** Anal. Calcd for **7 h; 76.** Calcd for $C_{81}H_{75}B_2Cu_3F_8P_6$: C, 60.9; **H**, 4.7. Found: C, **60.3;** H, **5.25. (3) 20 h;** *80.* Calcd for C78H71BzCt@sOPa: C, **59.8;** H, 4.5. Found: C, 61.7; H, 4.9. IR spectra (KBr), ν (C=C) and v(B-F) (cm-I): **(1)** absent, **1056** *(8,* br); (2) **1980 (wv), 1055 (e,** br); **(3) 2038** (w), **1055** (8, br). $C_{83}H_{71}B_2Cu_3F_8P_6$: C, 61.6; H, 4.4. Found: C, 61.5; H, 4.5. (2)

Synthesis of $\left[\text{Cu}_3(\mu_3-\eta^1\text{-C=CR})_2(\mu\text{-dppm})_3\right]\left[\text{BF}_4\right]$. $R = Ph$ **(4),'Bu** (S),CHiOCH, **(6).** (a) GeneralProcedure. Asolution of $\left[\text{Cu}_2(\mu\text{-dppm})_2(\text{MeCN})_2\right]\left[\text{BF}_4\right]_2(0.5 \text{ mmol}; 0.575 \text{ g})$ in $\text{CH}_2\text{Cl}_2/\sqrt{2}$ MeOH (3:1, 60 mL) was treated with HC=CR (0.67 mmol) and an excess of KOH, and the mixture was stirred at room temperature. After evaporating to dryness, the resulting solid residue was extracted with CH_2Cl_2 (3 \times 5 mL) and the solution partially concentrated. The addition of hexane **(30 mL)** gave by precipitation the corresponding complexes **as** cream **(5** and **6)** or yellowish **(4)** solids which were recrystallized from THF/hexane. Reaction times, yields (%), and analytical data follow. **(4) 24 h;** 90. Anal. Calcd for C₉₁H₇₆BCu₃F₄P₆: C, 67.0; H, 4.7. Found: C_1 , **66.85; H**, **4.8. (5)** 20 **h**; **85.** Calcd for C₈₇H₈₄BCu₃F₄P₆: C, **65.6**; H, **5.3.** Found: C, **65.0;** H, **5.5. (6) 20** h; **75.** Calcd for spectra (KBr), v(C=C) and v(B-F) (cm-9: **(41,2027** (w), **1056 (e,** br); **(5) 2018 (vw), 1057** *(8,* br); **(6) 2038** (w), **1050** *(8,* br). CasH7sBCt@4OzPs: C, **63.6;** H, **4.85.** Found C, **63.0;** H, **5.0.** IR

(b) Direct Synthesis of 4. A mixture of LiC=CPh (2.5 mmol) and $\left[\text{Cu}_3(\mu_3\text{-}Cl)_2(\mu\text{-}dppm)_3\right]$ [BF₄] (0.5 mmol; 1.25 g) in THF (40 **mL)** was stirred at room temperature for **24** h. The resulting solution was evaporated to dryness to give a solid residue which was washed with Et_2O (5×50 mL) and extracted with THF. The addition of hexane to the partially evaporated THF solution yielded 4 by precipitation as a yellowish solid (yield: 77%).

Synthesis of $[Cu_3(\mu_1-\eta_1-C=C_1(\mu_1-C_1)(\mu_1-dppm)_3][BF_4]$. R = Ph (7), ***Bu(8)**, CH₂OCH₃ (9). (a) General Procedure. To a solution of $LiC=CR$ ($R = Ph$, Bu , 3 mmol; $R = CH₂OCH₃$, 1.5 mmol) in THF (40 mL) (prepared in situ by treating the corresponding alkyne with **1.90** M *BuLi at **-20** "C) was added at room temperature $[Cu_2(\mu_3\text{-}Cl)_2(\mu\text{-}dppm)_2][BF_4]$ (1 mol; 1.50 **g).** The mixture was stirred at room temperature and evaporated to dryness giving a solid residue which was washed with diethyl ether $(3 \times 30 \text{ mL})$. The resulting solid was extracted with THF (3 **X 15** mL) and the solution partially concentrated. The addition of diethyl ether **(30** mL) led to the precipitation of a yellowish solid which was washed with diethyl ether $(3 \times 10 \text{ mL})$ and vacuum

^{(29) (}a) Gam-, M. P.; Gimeno, J.; **Laetra, E.;** *Aguirre,* **A.;** Gnrcla-Granda, S. J. *Organomet. Chem.* **1989,378, C11. (b)** Diez, **J.; Gamasa, M. P.;** Gimeno, **J.; Aguirre, A.;** Garcfa-Grada, S. *Organometallics* **1991,** 10, 380.

(30) Diez, J.; Gamasa, M. P.; Gimeno, J.; Tiripicchio, A.; Tiripicchio

Camellini, M. J. Chem. Soc., Dalton Trans. 1987, 1275.
(31) Marsich, N.; Camus, A.; Cebulec, E. Inorg. Nucl. Chem. 1972, 34, **933.**

Table II. Crystallographic Data for Complexes 1, 4, and 7

	1	4	7					
(a) Crystal Parameters								
formula	$C_{83}H_{71}B_2Cu_3F_8P_6$	$C_{91}H_{76}B -$	C_8 , $H_{71}B$ -					
	CH_2Cl_2	$Cu3F4P6$	$ClCu3F4P6$					
fw	1703.5	1632.9	1567.2					
cryst syst	monoclinic	monoclinic	triclinic					
space	P2 ₁ /c	P2 ₁ /c	ΡĪ					
group								
a, A	25.02(1)	14.613(1)	14.55(7)					
b, Å	13.752(1)	21.863(1)	14.691(4)					
c. Å	24.207(1)	26.672(1)	21.08(2)					
α , deg			72.27(4)					
β , deg	93.375(4)	102.8(1)	71.29(4)					
γ , deg			68.72(8)					
V, A ³	8315(3)	8307(2)	3887(21)					
Z	4	4	2					
$d_{\rm calcd}$ g -cm ⁻³	1.36	1.31	1.34					
F_{000}	3480	3368	1610					
μ(Mo Kα), cm^{-1}	9.99	9.28	10.22					
cryst size,	0.50×0.50	0.30×0.20	0.40×0.40					
mm	$\times 0.10$	$\times 0.13$	$\times 0.20$					
(b) Data Collection								
temp, K	293	293	293					
2θ range,	50	50	46					
deg								
data collcd	$+h, +k, \pm l$	$\pm h, +k, +l$	$+h, \pm k, \pm l$					
no. of colled	15 666	12486	14758					
rficns								
no. of unique rflcns	14 616	11 440	13 666					
no. of obsd	5751 (I >	4814 $(I >$	8121 $(I >$					
rflens	$3\sigma(I)$	$3\sigma(I)$	$3\sigma(I)$					
(c) Refinement								
Rª	0.080	0.077	0.105					
weight	unit weight	unit weight	unit weight					
no. of variables	865	910	785					
$\Delta(\rho)$, e Å ⁻³	1.50	0.76	1.15					

 $R(F) = \sum (|F_0| - |F_0|)/\sum |F_0|$.

dried. Reaction times, yields (%), and analytical data follow. **(7)** 24 **h**; 80. Anal. Calcd for $C_{83}H_{71}BCu_3CIF_4P_6$: C, 63.7; H, 4.5. Found: C, 63.7; H, 4.9. (8) 15 h; 71. Calcd for C₈₁H₇₅BCu_s-Calcd for C₇₉H₇₁BCu₃ClF₄OP₆: C, 61.8; H, 4.7. Found: C, 61.9; **H**, 4.5. **IR spectra (KBr)**, ν (C=C) and ν (B-F) (cm⁻¹): (7) absent, **1049** (8, br); **(8)** absent, **1049 (e,** br); **(9) 2027 (vw), 1060 (8,** br). ClFpe: C, **62.9;** H, **4.85.** Found: C, **63.0;** H, **5.3. (9) 21 h; 75.**

(b) A solution of complex 4, 5, or 6 in CH_2Cl_2 (containing traces of HC1) was stirred at room temperature for **2** h. The addition of hexane to the concentrated solution led to the precipitation of solids which were identified **as** complexes **7-9** by comparison of the spectroscopic data with those of original samples.

X-ray Diffraction **Studies** of 1,4, and **7.** Data collection, crystal, and refinement parameters are collected in Table 11. Diffraction measurements were made on a Enraf-Nonius **CAD4** diffractometer by using graphite-monochromated Mo K_{α} radiation $(\lambda = 0.71073 \text{ Å})$. The unit cell parameters were obtained from a least-squares fit of 25 reflections $(20^{\circ} < \theta < 25^{\circ})$. Data were collected with the **u-26** *scan* technique and a variable **scan** rate with a maximum **scan** time of **60** slreflection. **Three** standard reflections were monitored at every **3600 s.** In the reduction of data, profile analysis^{32,33} drift and Lorentz and polarization corrections were performed; an empirical absorption correction (DIFABS) was applied.³⁴ The structures were solved by using SHELXS86³⁵ and expanded by using DIRDIF.³⁶ The structures were refiied by least squares using a local version of the program

SHELX76.8' During the refinement of the structure of **7** the *AF* maps showed a partial occupancy with molecules of $\lceil \text{Cu}_3(\mu_3 - \mu_4) \rceil$ $\text{Cl}_{2}(\mu\text{-dppm})_{3}$ [BF₄] (ca. 30%) probably arising by the cleavage of the copper-alkynyl bond during the crystallization of **7** (CH&lrEhO). The structure was refiied by assuming **this** fact **as** a statistical crystallographic disorder.

All non-hydrogen atoms were anisotropically refined except those of the phenylacetylide group in **7;** that was refiied **as** a rigid group with a common thermal parameter. All hydrogen atoms were located at the ideal positions and were refined riding on their parents atoms. Geometrical calculations were made with PARST.% All calculations were made on a MicroVAX **3300** at the Centro de Cdlculo Cientffico of the University of Oviedo.

Results and Discussion

Synthesis and Characterization of $\left[Cu_3(C=C\right]$ $(\mu$ dppm)₃][BF₄]₂ (1-3), [Cu₃(C=CR)₂(μ -dppm)₃][BF₄] (4-6), and [Cu₃(C=CR)(μ ₃-Cl)(μ -dppm)₃][BF₄] (7-9) $(R = Ph, 'Bu, CH_2OCH_3)$. We have found that the binuclear copper(I) complex $[Cu_2(\mu \text{dppm})_2(\text{MeCN})_2[\text{BF}_4]_2$ is a useful precursor for novel biand tetranuclear copper(1) complexes. Thus, their reactions with bidentate anionic nucleophiles such **as** acetate, pyrazolate, pyridin-2-olate, or triazenide yield cationic $\left[\text{Cu}_2(\mu\text{-dppm})_2(\mu\text{-}L\text{-}L)\right]$ [BF₄] and neutral $\left[\text{Cu}_2(\mu\text{-dppm})(\mu\text{-}L\text{-}L)\right]$ $[L-L)_2]$ binuclear copper(I) complexes.³⁹ Similarly, the treatment with $HC=CPh/KOH$ (1:2 molar ratio) yields the tetranuclear complex $\left[\text{Cu}(\mu_3-\eta^1-\text{C}=C\text{Ph})(\text{dppm-P})\right]_4$ where dppm is acting as a monodentate ligand.²⁸ Since we were interested in extending the series of the scarceIy **known** copper(1) acetylides, we explored the reactions by using different molar ratios of the reactants with the **aim** of preparing cationic derivatives. Synthesis and transformations of the novel complexes are summarized in Scheme I.

A mixture in THF of $\left[\text{Cu}_2(\mu\text{-dppm})_2(\text{MeCN})_2\right]\left[\text{BF}_4\right]_2$ and LiC=CR (prepared "in situ" from HC=CR and "BuLi), in a molar ratio of **31,** reacts to give a solution from which trinuclear cationic complexes **1-3** can be isolated **as** tetrafluoroborate salts (Scheme I, eq *ii).* By using an excess of the lithium salt, the reactions lead to the formation of **similar** trinuclear bis(acetylide) complexes **4-6** which can also be obtained stepwise from the mono(acety1ide) derivatives **1-3** (Scheme I, eq *iu).* However, complexes **4-6** are obtained in better yields by two direct routes: (a) treatment of the precursor complex with the alkyne and an excess of KOH, in a mixture of CH_2Cl_2 MeOH (Scheme I, eq *iii);* (b) alkynyl substitution of two chloride groups in the dichloride complex $[Cu_3(\mu_3-Cl)_2(\mu$ dppm)₃] [BF₄] (Scheme I, eq *v*). In the latter case a large excess of lithium salt is required to have better yields; otherwise, if molar ratios of *ca.* **1:1.5** or **1:3** are **used,** mixed chloride/acetylide trinuclear complexes 7-9 are obtained in **good** yields (Scheme I, eq *uii).* Alternatively, these complexes are also isolated after recrystallization of bis(acetylide) complexes 4-6 with CH₂Cl₂ containing traces of HC1, probably via cleavage of one copper-carbon bond by the acid (Scheme I, eq *vi).*

⁽³²⁾ Lehman, **M. 5.; Lareen, F. A. Acta Crystallogr., Sect. A 1974,30,** *680.*

⁽³³⁾ Grant, D. F.; Gabe, E. J. *J.* **Appl. Crystallogr. 1978,11, 114. (34) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39,168.**

⁽³⁶⁾ Sheldrick, G. M., Kruger, C., Goddard, R., Ede. Crystallographic Computmg; Clarendon Press: Oxford, 1985; p 175.

⁽³⁶⁾ Beurskens, P. T.; Admiraal, G.; eurskens, 0.; Boaman, **W. P.; Garcla-Granda, 5.; Gould, R. 0.; Smite** J. *a.* **M.; Smykalla, C. The DIRDIF program system. Technical Report of the Cryetallographic Laboratory; University of Nijmegen, The Netherlands, 1992.**

⁽³⁷⁾ She!drick, *G.* **M. SHELX76, program for** -tal **etructure** $der Malelen, J. F. Ph.D. Thesis, Universidad de Oviedo, 1991.$

⁽³⁸⁾ Nardelli, M. Comput. Chem. 1988,7,96. (39) Diez, J.; Gamasa, M. P.; Gimeno, J.; Ladranchi, **M.; Tiripicchio,** A. *J.* **Chem.** *Soc.,* **Dalton Trans. 1990, 1027.**

^{*a}* (*i*) Reference (28): +HC=CR (molar ratio 1/2) in the presence of KOH (excess). CH₂Cl₂/MeOH. *(ii)* +LiC=CR (molar ratio 3:2).</sup> **THF.** (iii) +HC=CR (molar ratio 3:4) + KOH (excess). CH₂Cl₂/MeOH. (iv) +LiC=CR. THF. (v) +LiC=CR (excess). (vi) +CH₂Cl₂ $+ H^+$ (traces). $(vii) + LiC = CR$. THF.

The complexes are air stable in the solid state and have been characterized by elemental analysis, conductance measurements, and ${}^{1}\text{H}$ and ${}^{31}\text{P}{}_{1}{}^{1}\text{H}$ NMR spectroscopy. The conductivity and selected spectroscopic data are given in Table I. In addition, the structures of complexes **1,4,** and **7** have been determined by X-ray diffraction methods (see below).

Conductivity data (in Me₂CO) show that 1-3 and 4-9 behave **as** typical 2/1 and 1/1 electrolytes, respectively. The IR spectra **(KBr)** exhibit the expected **v(B-F)** broad and strong absorptions **as** well **as** those characteristic for dppm and ν (C $=$ C), though the latter are very weak and not observed for **1, 7,** and **8** (see Experimental Section). The ³¹P{¹H} NMR spectra at room temperature exhibit a single resonance (Table I), showing that all phosphorus atoms in each molecule are chemically equivalent. The chemical shifts, -5.3 to **-9.4** ppm, are in the range of those exhibited by other dinuclear copper(1) complexes bridged by dppm ligands, $30,39-41$ indicating the bridging coordination mode of the diphosphine. The room temperature ¹H NMR spectra exhibit aromatic, methylene $(CH₂P₂)$ and R signals of the ligands and alkynyl groups (Table I) in accord with the trinuclear nature of the complexes. Significantly, the spectra of the bis(acetylide) complexes **4-6 show methylene resonances (CH₂P₂) at** δ **ca. 3.1 ppm as** a triplet (or nonresolved multiplet), indicating an effective equivalence of the CH_2P_2 protons. The corresponding resonances in the spectra of the mono(acetylide)

copper-aryl-xpper bridge by van Koten *et* **al., nee for instance: van Koten, G.** *J.* **Organomet. Chem. 1990,400,283 and references therein.**

complexes **1-3** and 8 appear **as** two unresolved multiplets (observed **as** one multiplet for **7** and **9)** typical of the **ABXz** or AA'XX' spin systems due to the inequivalence of the corresponding protons $Cu₂P₂CH_AH_B$. These spectroscopic data are consistent with a triangular arrangement of the copper atoms bridged by three dppm ligands so that the metal and the phosphorus atoms are lying approximately in a plane. Thus, the presence on each side of the triangle of two capping acetylide ligands defines in the complexes $4-6$ a formal plane of symmetry containing the $Cu₂P₂C$ frameworks, giving rise to the typical A_2X_2 spin system for the methylene protons observed in the lH **NMR** spectra. It is **also** in accordance with the inequivalence of the corresponding methylene protons in mono(acetylide) complexes **1-3** and the mixed chloride-acetylide complexes **7-9** in which there is no plane of symmtry (see I1 and I11 in Chart I).

Solid State Structures of $\left[Cu_3(\mu_3-\eta^1-C=CPh)(\mu-\eta^2)\right]$ $\frac{dppm}{a}$ [BF₄]₂ (1), $\left[Cu_3(\mu_3-\eta^1-C=CPh)_{2}(\mu\text{-}dppm)_{3}\right]$ [BF₄] (4), and $\left[Cu_3(\mu_3-\eta^1-C=CPh)(\mu_3-Cl)(\mu\text{-dppm})_3\right]\left[BF_4\right]$ **(7).** The structures of complexes **1,4,** and **7** have been determined by singh crystal X-ray diffraction **(see** Table I1 and Experimental Section). The crystal structure determinations revealed that **1** (CH2C12 solvate) and **4** crystalliie in a monoclinic cell containing four unique discrete molecules whereas **7** crystallizes in a triclinic cell which contains two discrete molecules. However, each of these two molecules is a randomly distributed mixture of ca. **70% 7** and the rest are molecules of the **known** isomorphous complex $[Cu_3(\mu_3-Cl)_2(\mu\text{-dppm})_3][BF_4]$.^{31,44} This fact may be treated **as** a statistical crystallographic disorder, and this model was assumed during the refmement.

The complete molecular structures are shown in Figures 1-3. Selected bond and interatomic distances and bond angles are **listed** in Table III. The structure determinations show that each cationic complex consists of an isosceles

⁽⁴⁰⁾ Mauotti-Lanfredi, A M.; Ugozzoli, F.; Camue, A. M.; Mareich, N. Znorg. Chim. Acta 1985,99,111. (41) Ho,.D. M.; Bau, R. Znorg. Chem. 1983,22,4079.

^{(42) (}a) Ferguaon, G.; Lloyd, B. R.; Puddephatt, R. J. **Organometallics 1986, 5, 344. (b) Manojlovic-Muir, L.** J.; **Muir, K. W.; Lloyd, B. R.;** Puddephatt, R. J. *J. Chem. Soc., Chem. Commun.* 1983, 1336. (c)
Bradford, A. M.; Jennings, M. C.; Puddephatt, R. J. *Organometallics*
1988, 7, 792. (d) Ratliff, K. S.; Broeker, G. K.; Fanwick, P. E.; Kubiak,
C. P. *Angew. 102,406.* **(e) Lloyd, B. R.; Bradford, A. M.; Puddephatt, R. J. Organo- metallics 1987,6,424.** *(f)* **Manojlovic-Muir, L. J.; Muir, K. W.; Mirza, H. A; Puddephatt, R. J. Organometallics 1992,11,3440. (43) A eimilar bonding description hae been propoaed for the 3c-2e**

⁽⁴⁴⁾ Bresciani, N.; Marsich, G.; Nardin, G.; Randaccio, L. *Inorg. Chim.* **Acta 1974,** *10,* **L5.**

Figure I. View of the structure of 1 in which for clarity the carbon atoms of the phenyl rings are not labeled.

Figure 2. View of the structure of 4 in which for clarity the carbon atoms of the phenyl rings are not labeled.

triangle of copper atoms with a dppm ligand bridging each edge to form a roughly planar $\left[Cu_3P_6\right]$ core. The deviations of the P atoms from the Cu₃ plane are collected in Table IV. The Cu-P distances, in the range $2.254(5)-2.292(5)$ **A,** are similar to those shown by homologous polynuclear copper(1) complexes (Table **V)** and shorter than the estimated value of 2.45 **A** for a single covalent bond. The $Cu₂P₂C$ rings adopt envelope conformations with the methylene carbon atoms on the flap, one of them folded toward one of the faces of the triangle, and the other two folded away from it. This seems to be the typical disposition of the three bridging dppm ligands in analogous $triangular-M₃ clusters (M = Ni, Pd, Pt).⁴² In all complexes$ each phenylethynyl ligand is C-bonded to the three copper atoms, showing an asymmetric μ_3 - η ¹ bridging mode with the copper to carbon distances significantly different. The

Figure 3. View of the structure of 7 in which the $\mu_3 - \eta^1$ - $C = C\text{Ph}$ ligand is shown in the arrangement with occupancy factor 0.7. The chloride ligand (occupancy factor of (0.3) is not shown. For clarity the carbon atoms of the phenyl rings are not labeled.

Figure 4. Skeletal view of complex 1 illustrating the asymmetry of the Cu₃(μ_3 - η ¹-C=CPh) core with Cu--C, Cu -Cu, and C =C distances. Cu -C7 interatomic distances **(A):** Cul, 2.91(2); Cu2, 2.99(2); Cu3, 2.58(1).

linearity of each phenylacetylide group $(176(2)-178(2)°)$ and the $C=$ distances $(1.21(2)-1.22(2)$ Å) *(Table III)* are consistent with typical metal-acetylide σ -bonding and, hence, show electron deficient bonding systems (4c-2e for 1 and 5c-4e for **4).** This is shown in more detail for the monocapped 1 and bicapped 4 trigonal complexes in Figures 4 and 5, respectively.

Table V collects structural data of several alkynyl polynuclear copper(1) complexes including for comparison other trinuclear copper(1) derivatives **also** bearing three dppm bridging ligands. The $Cu₃$ -C bond lengths (average) are 2.03(1) (1),2.21(2) (for C4) and 2.19(2) (for C12) **(4),** and 2.17(2) **A (7).** The shorter Cu-C bond lengths in 1 are comparable to those of μ_2 - η ¹-bonded alkynyl groups (see Table V) while the values in the last two complexes may be compared with those found in the tetranuclear complexes $\left[\text{Cu}(\mu_3-\eta^1-\text{C=CPh})(\text{Ph}_2\text{Ppy-}P)\right]_4^{28}$ and $\left[\text{Cu}(\mu_3-\eta^1-\text{C=CPh})(\text{Ph}_2\text{Ppy-}P)\right]_4^{28}$ n^1 -C=CPh)(PPh₃)]₄²⁷ (2.1708(8) and 2.185(4) Å, respectively) where the alkynyl groups are **also** bridging three copper atoms of the triangular skeletal faces. The Cu-Cu

distances, although shorter than metallic copper are consistent with nonbonding interactions (cf. 1, 2.997(3); **4,** 2.594(3); **7,** 2.819(3) A (average)). It is interesting to note that the monocapped alkynyl complex **1** shows among the three complexes the larger Cu-Cu distances but the shortest Cu-C. Apparently, the presence of one additional chloride or acetylide bridging ligand to form a bicapped system leads to the shortening of the copper-copper distances while the copper-carbon bond lengths are increased.

Although the rationalization of the electron deficient copper-alkynyl bonding **aa** 4c-2e and 5c-4e **systems**

Figure 5. View of the $Cu_3(\mu_3-\eta^1-C)=CPh_2$ core in complex **4** with Cu-C and C=C bond distances **(A).** Cu-Cu interatomic distances **(A):** Cul-Cu2, 2.70(3); Cul-Cu3, 2.598(3); Cu2-Cu3, 2.615(3).

requires theoretical calculations, a description based on a simple molecular orbital model, such **as** that shown in Chart 11, may be suggested.4s Thus, the copper-carbon and copper-copper distances seem to reflect that the bonding combinations between the copper orbitals and that of the bridging ligands are more localized at the metallic system in the bicapped $Cu₃-C₂$ or $Cu₃-$ (C)Cl systems than in the monocapped $Cu₃C$ core. In contrast, the analogous capped trinuclear complexes $\left[\text{Cu}_3(\mu_3-\text{Cl})_2(\mu-\text{Cl})_3(\mu-\text{Cl})_4(\mu-\text{Cl})_4(\mu-\text{Cl})_5(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl})_6(\mu-\text{Cl$ dppm)₃][Cl]⁴⁴ and [Cu₃(μ ₃-OH)(μ -dppm)₃][BF₄]₂⁴¹ show the largest Cu-Cu distances (3.210(3) and 3.189(2) A (average), respectively), probably revealing the different electronic influence due to the presence of the chloride or hydroxide bridging ligands.⁴⁵ The influence of the electronic properties of the μ_3 - η ¹ ligands in the bicapped complexes 4 and **7** on the Cu-Cu distances is also apparent (d(Cu-Cu): **(7)** 2.819(3) vs **(4)** 2.594(3) **A** (average)).

As expected for the qualitative bonding model described above, the Cu-Cu distances in these μ_3 - η^1 electron deficient systems are larger than those found in other polynuclear $copper(I) complexes bearing 3c-2e systems of alkynyl (see)$ Table V) or other organyl μ_2 - η ¹ bridging groups.⁴⁶

An interesting structural feature is the significant asymmetry of the skeletal cores $Cu₃ - C$, $Cu₃ - C₂$, and Cu3-(Cl)C (see Figures 4 and *5).* When the structural parameters of the cores in **1** and 4 are compared, the following features are evident: (i) The longest difference between the intermetallic Cu-Cu distances in complex **1** $(0.461 \text{ Å}; Cu(1), Cu(3) - Cu(1), Cu(2))$ is larger than that found in complex **4** (0.045 **A; Cu(2),Cu(3)-Cu(l),Cu(2)),** indicating that the triangular arrangement is more asymmetric in 1. (ii) In contrast, the opposite is found for the differences between Cu-C distances, being smaller (0.12 \hat{A} ; $Cu(3)$, $C(6)$ - $Cu(2)$, $C(6)$) in 1 and larger (0.28 \hat{A} ; $Cu(1),C(4)$ — $Cu(1),C(12)$ in 4, so that in the latter complex the asymmetry is mainly located in the bicapping system. (iii) A remarkable difference is observed in the acetylide orientations with respect to the trimetallic plane; the Cu-C= \overline{C} angles are in the range 100(1)-138(1) and $126(2)-146(2)$ ^o for 1 and 4, respectively. (iv) As a consequence of the latter consideration, the $C=CC-CL$ linkages

⁽⁴⁵⁾ The Cu-Cu distances in benzoate- or bromide-bridged systems are also larger than those bridged by organyl groups, e.g. $[Cu_3(\mu_2\cdot\eta^{1-C_6}H_2Me_3\cdot2,4,6)(\mu-O_2CC_6H_5)_2]$: Cu-Cu (benzoato-bridged), 2.888 (2) Å; Cu-Cu (m G.; Goubitz, K.; **Stam,** C. H. *Organometallics* 1989,10,2293.

⁽⁴⁶⁾ For aryl groups, see for instance: (a) $[Cu_3(\mu_2 \cdot \eta \cdot - C_5H_2Me_3\cdot 2, 4, 6)(\mu - C_2C_6H_8)$ ² Cu-Cu 2.421(2) Å; Cu-C 1.957 (6) Å. (See ref 45.) (b) $[Cu(\mu_2 \cdot \eta \cdot - C_4\cdot 2, 4, 2)]$ (40) For aryl groups, see for instance: (a) [Cu₃(μ_2 - η -C₆H₂Me₃-2,4,6)(μ - O_2 C₆H₃₂)] Cu-Cu 2.421(2) Å; Cu-Ci 1.957 (6) Å. (See ref 45.) (b) [Cu₄(η -C₆H₂Me₃-2,4,6)]₅ Cu-Cu: 2.437(8)-2.469 h Knottar, D. M.; Smeete, W. J. J.; **Spek,** A. L.; van Koten G. J. *Am. Chem. Soc.* 1990, *112*, 5895. Knotter, D. M.; Grove, D. M.; Smeets, W.
J. J.; Spek, A. L.; van Koten, G. J. *Am. Chem. Soc.* 1992, 114, 3400. (d)
For alkyl groups, see for instance: [Cu(CH₂SiMe₃)], Cu–Cu, 2.417 Å; For alkyl groups, see for instance: [Cu(CH₂SiMe₉)]₄ Cu-Cu, 2.417 Å; Cu-C, 2.02 Å. Jarvis, J. A. J; Pearce, R.; Lappert, M. F. J. *Chem. Soc.*, *Dalton Trans.* 1977, 999.

Table **V.** Selected Atomic **and** Bond **Distances (A)** of Several Relevant **Alkyaylcopper(1) and** Related **Complexes**

		Cu…Cu			
complex	$Cu-P$	X-bridged	alkynyl-bridged	$Cu-C$	ref
$[Cu3(\mu3-\eta1-C=CPh)(\mu-dppm)3][BF4]2$	$2.257(4)-2.279(4)$		$2.813(3) - 3.274(3)$	$1.96(1) - 2.08(1)$	
$[Cu_3(\mu_3-\eta^1-C=CPh)_2(\mu\text{-}dppm)_3][BF_4]$	$2.265(5)-2.292(5)$		$2.570(3)-2.615(3)$	$2.06(2)-2.34(2)$	
$[Cu_{3}(\mu_{3} - \eta^{1} - C = CPh)(\mu_{3} - Cl)(\mu - dppm)_{3}] [BF_{4}]$	$2.254(5)-2.288(4)$	$2.785(3)-2.871(3)^{q}$		$1.98(2) - 2.34(2)$	
$[Cu3(\mu3-Cl)2(\mu$ -dppm) ₃][Cl]	$2.257(4)^c$	$3.175(4) - 3.281(3)^{d}$			44
$[Cu3(\mu3-OH)(\mu-dppm)3][BF4]$ ₂	$2.226(3)-2.244(3)$	$3.120(2) - 3.322(2)$ ^b			41
$[Cu(\mu_3-\eta^1-C=CPh)(Ph_2Ppy-P)]_4$	$2.220(2)-2.241(2)$		$2.525(1)-2.686(1)$	$2.053(8)-2.345(8)$	28
$[Cu(\mu_3-\eta^1-C=CPh)(PPh_3)]_4$	$2.221(1) - 2.234(1)$		$2.523(1) - 2.676(1)$	$2.072(4)-2.380(4)$	27
$[Cu_{4}(\mu_{2}\cdot\eta^{1}-C=CPh)_{2}(\mu_{3}\cdot\eta^{2}-C=CPh)_{2}(PMe_{3})_{4}]$	$2.222(5)-2.238(5)$		$2.450(3)^d$	1.957(16)–2.223(17) ^d	23
$[Cu3(C=CtBu)[SC6H4(CH2NMe2)-2]2]$ ₂			$2.458(2)-2.587(2)$	$1.96(1)-2.13(1)$	25
$[Cu_{6}(\mu_{2}\text{-}\eta^{1}\text{-}C\text{=CC}_{6}H_{4}Me\text{-}4)_{2}(C_{6}H_{4}NMe_{2}\text{-}2)_{4}]$			2.474(4)	1.984(2)-2.130(6)	24

^{*a*} **X** = Cl. ^{*b*} **X** = OH. ^{*c*} Average. ^{*d*} μ_2 - η ¹ bridge. *^{<i>e*} This paper.

in both complexes are not perpendicular to the trimetallic plane $(69.2(4)°$ and $82.5(6)$, $82.4(5)°$ in 1 and 4, respectively), giving rise to a bent disposition of the acetylide groups with respect to the metallic plane.

Reasons for the occurrence and the structural differences of the mono- and bicapping systems of one or two asymmetric $\mu_3 - \eta^1$ -acetylide ligands are difficult to discern. It could be proposed that, probably due to the presence of different anionic ligands and the steric crowding **(as** a consequence of the phenyl groups), neither electronic nor steric effects can be discarded. Presumably, the presence of the three "small bite" dppm bridging ligands could enforce the irregular arrangement of the Cu₃ triangle but apparently there does not exist any localized electronic effect to induce the observed asymmetry in the copperacetylide triple bridge of each complex.

Finally, the structure of complex **1** deserves a further comment. As has been discussed above, the acetylide group shows a remarkable bent orientation which notably reduces the formal distance of the acetylene $C\beta$ atom ($C(7)$) to the Cu₃ plane (Figure 4). In fact, the shortest Cu-C distance found in 1 $(Cu(3) - C(7), 2.58(1)$ Å), although substantially longer than the length of the $Cu-C_{\alpha}$ (acetylide) σ bonds, is too short to be considered a nonbonding contact. This distance is comparable with those found in $[N^nBu_4][Au_3Cu_2(C_2Ph)_6]$ (Cu-C_b, 2.35-2.65(3) **A)"** and even shorter than the value found in $[Cu_3{SC}_6H_4(CH_2NMe_2)-2]_2(C=CEu)]_2(Cu-C_6, 2.84(1)$ A), in which an asymmetric $\sigma-\pi$ interaction is proposed

for the copper-acetylide bonding.% Nevertheless it is yet longer than the values of Cu-acetylide "side-on" **sym**metrical bonding, e.g. $[Cu(C=CPh)(PMe_3)]_4$ (Cu-C_a,C_b, 2.06-2.09 Å),²³ $[Ir_2Cu_4(C=CPh)_8(PPh_3)_2]$ $(Cu-C_\alpha,C_\beta,$ 1.99(7) and 2.19(4) Å),⁵ $[Mn_2Cu(C=Cl^tBu)_2-d1]$ $(CO)_{6}$ (dppe)₂] [PF₆] (Cu- $-C_{\alpha}C_{\beta}$, 2.08(1)-2.09(1) Å).⁶ Since the alkynyl bending and the $C=$ C bond lengthening typical of η^2 interactions are not observed, we consider that complex **1** is better described **as** an asymmetric case of a μ_3 - n^1 acetylide bonding mode.

Conclusions

In **this** work we have developed efficient syntheses of novel cationic trinuclear copper(1) complexes containing asymmetric $\mu_3 - \eta^2$ -acetylide groups. These complexes consist of *triangulo*-Cu₃ frameworks stabilized by three bridging dppm ligands which appear to be appropriate supports for mono- and bicapping systems of μ_3 - η^1 acetylide groups. These peculiar complexes are structurally related to similar triangulo- $M_3(\mu-P-P)_3$ clusters, namely $[M_3 (\mu_3\text{-CO})(\mu\text{-dppm})_3]^{2+}$ (M = Pd, Pt),^{42a-c} [Ni₃($\mu_3\text{-CO})(\mu\text{-dppm})_3]^{2+}$,^{42d} and [M₃($\mu_3\text{-X})(\mu_3\text{-CO})(\mu\text{-dppm})_3]^{2+}$ (M = Ni, Pd, Pt),^{42e,f} with triply bridging carbonyl ligands. We and others had previously reported $27,28$ tetranuclear copper(I) complexes exhibiting the unprecedented μ_3 - n^1 coordination mode of the acetylide groups which is well**known** in the coordination chemistry of carbon monoxide. The new Cu₃ complexes here described offer an unusual opportunity to show eimultaneously examples of bonding modes and structural analogies between metal acetylide and carbonyl complexes.

Finally, it is apparent that the qualitative molecular orbital description of these electron deficient copperalkynyl bonding systems does not account for the observed asymmetry of the cores and further theoretical calculations should be undertaken.

Acknowledgment. We thank the Dirección General de Investigación Científica y Técnica (DGICYT) for support of this research (Ptoject PB 90-384) and the Ministerio de Educaci6n y Ciencia for a scholarship grant **(to** E.L.).

Supplementary Material Available: Figures with complete atom **labeling** and **tables** of atomic coordinates, thermal parameters, **bond** distances and angles, torsion **angles,** and angles between least-squares planes **(57** pages). Ordering information is given **on** any current masthead page.

OM920803Y

Soc., *Chem. Commun.* **1985,1502. (47) Abu-Salah,** *0.* **M.; Al-Ohaly, A. A. R.; Knobler, C. B.** *J. Chem.*