Mechanistic Study on Cp- and Cp*Ru+-Mediated Cycloaddition between Conjugated Dienes and Acetylene

Katauyuki Masuda, Hironobu Ohkita, Shigeru Kurumatani, **and** Kenji **Itoh'**

Department *of* Materials Science, Toyohashi University *of* Technology, Tenpaku-cho, Toyohashi, Aichi *441,* Japan

Received December *14, 1992*

When $Cp*RuCl(\eta^4\text{-diene})$, where diene = butadiene **(1a)** or 1,3-pentadiene **(1b)**, was treated with excess acetylene in the presence of silver triflate, $[Cp^*Ru\{n^2,n^4-C_6H_7(CH=-CH_2)\}]^+$ (3a) and $[Cp^*Ru\{m^2,m^4-C_6H_6(CH_3)(CH=CH_2)\}]^+$ (3b) were formed as predominant products in 84 and 71% yields, respectively. On the basis of the distribution patterns of the deuteration experiments with C_2D_2 , the new hydrocarbon ligand was found to be generated by the following sequence of steps; **(1)** [4 + **21** cycloaddition of acetylene and the coordinated diene ligand, **(2)** $C-H$ activation to form a $Ru(IV)$ cyclohexadienyl-hydride intermediate, (3) insertion of the second acetylene molecule into the formed Ru(1V)-H bond, and **(4)** the resultant vinyl ligand coupling with the cyclohexadienyl ligand. Dehydrogenation or methane elimination from the [4 + **21** cycloadduds, 1,4-cyclohexadiene intermediate, **as** well **as** cyclic trimerization of acetylene, resulted in the formation of stable $[Cp^*Ru(\eta^6\text{-}arene)]$ OTf (2a and 2b) as minor products (10-**22** %). Alternatively, the formation of the cationic arene complexes **(2a** and **2b, 2d** or **28)** became predominant, and that of **1:2** adducts was completely suppressed, when Cp*RuCl(q'-isoprene) **(1c)** or $\text{CpRuCl}(\eta^4\text{-diene})$ complexes, diene \equiv butadiene **(1d)** and isoprene **(1e)**, were employed.

Introduction

Coordinated alkynes have been reported to show a wide range of reactivities in organoruthenium complex chemistry.¹ Terminal alkynes involving alkyl, aryl, or alkoxycarbonyl substituents have been found to induce insertion reactions in a variety of chloro- or hydrido-ruthenium- **(11)** complexes.2b*ca The other two characteristic reactions of terminal alkynes are acetylide formation via C-H bond activation $4,5$ and the generation of vinylidene species by way of the 1,2-hydrogen shift.^{5,6} The latter recently proved to play the most important role in **Yamazaki's** unusual ruthenium-catalyzed dimerization of tert-butylacetylene,' which had been reported several years ago, to furnish the corresponding 1,2,3-butatriene.8 Internal alkynes have also been reported to undergo insertion reactions.^{2b,c,9}

(1) Dab, S. G.; *McNally,* **J. P.; Smallridge, A. J.** *Adu. Organomet. Chem.* **1990,30,1.**

(2) (a) Tom, M. R.; Santa, A.; Ros, J.; Soh, X. *Orgonometallice* 1987, 6, 1091. (b) Torres, M. R.; Vegas, A.; Santos, A. J. Organomet.
Chem.1987,*326*,413. (c)Torres,M.R.;Vegas,A.;Santos,A.*J.Organomet.*
Chem. 1986, *309*, 169.

(3) Xue, Z.; Sieber, W. J.; Knobler, C. B.; Kaeaz, H. D. *J. Am. Chem.* **SOC. 19W,112,1826.**

(4) Bruce, M. I.; Gardner, R. C. F.; Howard, J. A. K.; Stone, F. G. A.;
Welling, M.; Woodward, P.*J. Chem. Soc., Dalton Trans.* 1977, 621. Bruce,
M. I.; Hameister, C.; Swincer, A. G.; Wallis, R. C. *Inorg. Synth.* 1982, 21 **78.**

(5) (a) Bozec, H. L.; Ouzzine, K.; Dixneuf, P. H. Organometallics 1991, 10, 2768. (b) Bray, J. M.; Mawby, R. J. J. Chem. Soc., Dalton Trans.
1989, 589. (c) Werner, H.; Esteruelas, M. A.; Otto, H. Organometallics
1986, 5, 2

(6) Devanne, D.; Dixneuf, P. H. *J. Chem.* **SOC.,** *Chem. Commun.* **1990, 641.**

(7) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. **Y.** *J. Am. Chem.* **SOC. 1991,113,9804.** *(8)* **Ylmalalri.H.** *J. Chem.Soc.,Chem. Commun.* **1976,541. Wakateuki,**

Y.; Satoh, Y.; Yamazaki, H. *Chem. Lett.* 1989, 1585.
(9) Bruce, M. I.; Gardner, C. F.; Stone, F. G. A. J. *Chem. Soc., Dalton*
Trans. 1979, 906. Blackmore, T.; Bruce, M. I.; Stone, F. G. A. J. *Chem.*
Soc., *Dalton Tran* **A.** *J. Chem. SOC., Chem. Commun.* **1971,862.**

Another representative transformation of coordinated alkynes is the formation of metallacycle complexes with other unsaturated substrates.^{2a,b,9} The reaction has been applied to a ruthenium-catalyzed codimerization between internal acetylenes and methyl acrylate by Mitsudo and co-workers.1°

There have been, however, a few studies in organoruthenium chemistry of C_2H_2 itself, expecting examples of insertion reactions.^{2b,5c,11} Recently, Lomprey and Selegue reported the formation of a vinylidene complex from coordinated acetylene.12 We describe herein a new type of ruthenium-mediated cotrimerization between a coordinated diene and two acetylene molecules by means of the $(C_5Me_5)Ru^+$ fragment and $[4 + 2]$ cyclodimerization **as** an extension of our previous work on the oligomerization of conjugated dienes.13

Results and Discussion

(1) Reaction of Coordinated Dienes with Alkynes. $Cp^*RuCl(\eta^4\text{-}butadiene)$ (1a) was treated with silver triflate (trifluoromethanesulfonate; TfO) at -78 °C in dichloromethane, and an excess of acetylene (1 atm) was introduced at this temperature. Two products were detected in the ¹H-NMR spectra which showed the presence of two Cp* **peaks** at **6** 1.86 and 2.03 ppm. One of the products was identified as the known $[Cp^*Ru(\eta^6$ benzene)lOTf **(2a)** by comparing its spectral data with independently prepared authetic material.¹⁴ The forma-

⁽¹⁰⁾ Mitaudo, T.; Zhang, **S.;** *Nagao,* **M.; Wabbe,** *Y. J. Chem.* **SOC.,** *Chem. Commun.* **1991,698.**

⁽¹¹⁾ Bullock, R. M. J. Chem. Soc., Chem. Commun. 1989, 165.
(12) Lomprey, J. R.; Selegue, J. P. J. Am. Chem. Soc. 1992, 114, 5518.
(13) Masuda, K.; Nakano, K.; Fukahori, T.; Nagashima, H.; Itoh, K.
J. Organomet. Chem. 1992

⁽¹⁴⁾Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Momoka, Y. *Organometallics* **1986,7,2243. Fagan, P. J.; Ward,** *M.* **D.; Calabreae, J. C.** *J. Am. Chem.* **Soc. 1991,113,6671.**

tion of $2a$ is explained by way of $[4 + 2]$ cycloaddition followed by the elimination of a hydrogen molecule from the intermediate 1,4cyclohexadiene complex.16 The other major product was found to be **a5-vinyl-l,3-cyclohexadiene** complex **(3a)** on the basis of ita elemental analysis and the following spectroscopic evidence.

The 'H-NMR spectrum of **3a** exhibited one terminal vinyl (δ 3.03, 3.16, 3.35 ppm), four olefin (3.41, 3.62, 5.07, 5.12 ppm), the methyne adjacent to the vinyl unit (3.54 ppm), and one methylene (0.69, 0.82 ppm) proton resonances. In addition, ¹³C-NMR spectra indicated one methylene (47.0 ppm) and five methyne olefin carbon signals (42.3, 47.5, 70.1, 81.5, **85.5** ppm) and methylene (13.9 ppm) and methyne (27.6 ppm) alicyclic carbon signals, together with the Cp* peaks at 9.86 and 96.6 ppm. The ligand framework of **3a, 6-vinyl-l,3-cyclohexadiene,** is composed of two acetylene and one butadiene molecules.

The relative ratio of these two products was estimated to be $2a:3a = 11:89$ from the relative intensity of Cp^* signals in the 'H-NMR spectra. At higher initial temperatures (above -40 "C), the relative amount of **3a was** decreased, although the total yield of **3a and2a** was slightly increased (Table I).

The reaction between **Cp*RuCl(v4-1,3-pentadiene) (lb)** and acetylene in the presence of AgOTfat -20 "C furnished a mixture of the 1:2 cycloaddition complex **(3b;** 71%), the

toluene complex **2b,** and the benzene complex **2a** in the ratio 6.8:1.0:1.1. The formation of 2a was surprising. In order to shed light on the mechanistic aspects of the formation of the benzene complex **2a,** the reaction of $[Cp*Ru(\eta^4\text{-isoprene})]^+$ with acetylene was studied. When Cp*RuC1(q4-isoprene) **(IC) was** sequentially treated with AgOTf and with acetylene $(1 atm)$ between -20 °C and ambient temperature, the only products were cationic benzene complexes **2a** and a toluene complex **2b** in a 1.0 1.3 molar ratio. However, the 1:2 cycloaddition product,

the vinylcyclohexadiene complex, was never found in the product. Alternatively, $[Cp*Ru(n^4-butadiene)]^+$ selectively afforded the o -xylene complex $[Cp*Ru(n^6-o-xylene)]$ -OTf (2c) in the reaction with 2-butyne (94%).

Changing the C_5Me_5 (Cp^{*}) ligand to C_5H_5 (Cp) also inhibited completely the formation of a 5-vinyl-1,3 cyclohexadiene complex such **as 3a** or **3b.** For instance, when CpRuC1(q4-butadiene) **(la)** was treated with silver

triflate followed by introduction of acetylene **(5** equiv at 1 atm) at -20 °C, only the benzene complex 2d was isolated in 95 % yield. Similarly, the reaction of the coordinated isoprene in $CpRuCl(\eta^4{\text{-}}isoprene)$ (2e) with acetylene afforded only the toluene complex **28** (53 % **1.**

(2) Mechanistic Study. 5-Vinyl-1,3-cyclohexadiene complex **3a,** a 1:2 adduct of the butadiene complex and acetylene, can be produced by way of two possible routes **as** depicted in Scheme I.

The first mechanism involves a $((1-5-\eta)-\text{cyclohexadi} - \text{cyclohexadi})$ enyl)ruthenium(IV) hydride **as** the key intermediate (path a). That is, a ruthenium-mediated $[4 + 2]$ cycloaddition between the coordinated diene and acetylene furnishes a 1,4-cyclohexadiene complex (A), which is converted to a 1-5-v-cyclohexadienyl hydride intermediate **(B).** Insertion of the second acetylene **into** the Ru-H bond to give C followed by the reductive coupling between the vinyl group and the terminal position of the η^5 -cyclohexadienyl ligand

⁽¹⁵⁾ Rondon, D.; Chaudret,B.; He,Xmo-D.; Labroue, D. J. Am. *Chem.* **Soc., 1991,** *113,* **6671.**

*Diene and Acetylene CplCp*Ru+-Mediated Cycloaddition*

					Table I. Conversion of 2a and 3a at Various Temperatures
--	--	--	--	--	--

from the resultant Ru(1V) intermediate gives the final vinylcyclohexadiene framework.

Alternatively, a key intermediate of the second mechanistic possibility is a $1,3,5$ -hexatriene complex (path b, E). **This** intermediate is formed by the coupling both ends of the coordinated butadiene and an entering alkyne to give a metallacycle intermediate (D) , which gives a η^6 -1,3,5-hexatriene intermediate (E) by a 1,3-hydrogen migration. A coordinatively unsaturated site can be generated by dissociation of one vinyl part of the η^6 -hexatriene ligand, and this site is occupied by the second acetylene molecule to furnish $[Cp^*Ru(\eta^4-C_6H_8)(\eta^2-C_2H_2)]^+$. $[4 +$ 2] cycloaddition between coordinated η^4 and η^2 ligands gave a 3-vinyl- 1,4-cyclohexadiene intermediate (F), which can isomerize to **3a.**

In order to distinguish between the above two pathways for formation of the particular 1:2 adduct complex **(3a** and **3b),** the following deuterium-labeled experiments were undertaken with C_2D_2 . The distribution of the deuterium atoms of the resultant vinylcyclohexadiene complex is shown in eq 6. When deuterated acetylene was employed,

the relative intensity of the resonances of the 5-vinyl-1,3-hexadiene ligand in **3a** waa four protons less in **total** than in the C_2H_2 product, measured relative to the Cp^* peak intensity. **Two** detuerium atoms were specifically introduced at the pendant vinyl unit. The proton resonances at δ 3.03 and 3.16 in **3a** disappeared when C_2D_2 was used. In addition the vinyl doublet at 6 3.35 in **3a** turned to a broad singlet by loss of a trans coupling $(J = 12.7 \text{ Hz})$. This result suggests two deuterium atoms were introduced in $1,2$ -cis positions in the pendant vinyl group. The remaining two deuterium atoms were scrambled among the six-membered-ring carbons in the cyclohexadienyl moiety $(33 \pm 3\% \text{ D} \text{ for six-membered-ring carbons).}$ This is consistent with ²D NMR measurements which indicated the appearance of signals corresponding to the disappeared proton resonance positions. Such deuterium distribution strongly supports that the cyclohexadienyl hydride intermediate **(B)** is a key intermediate, **as** shown in path a in Scheme I. Furthermore, the specific introduction of two deuterium atoms in the pendant vinyl group is not consistent with the intermediate **E** in path b, because its symmetric structure should result in incorporation of **50%** deuterium atoms in the vinyl group of the final product. Consequently, this fiiding is **also** indicative of path a being predominant for the formation **3a.**

From these facta, Scheme 11 summarizes the mechanism of the deuterium scrambling patterns in these ligands. Scrambling of the deuterium in the six-membered ring was due to rapid and reversible isomerization of the $(n^5$ **cyclohexadienyl)ruthenium(IV)** hydride and the (1,3 **cyclohexadiene)ruthenium(II)** intermediates. It is noteworthy that the methylene proton at C6 which faces the Cp*Ru moiety in the six-membered ring was not deuterated in the complexes. These results indicate that prototropic isomerization takes place not by deuterium migration but by hydrogen migration. During reversible C-H bond activation, the deuterium atoms were not activated. The pendant vinyl substituent of the 5-vinyll,&cyclohexadiene ligands in the 1:2 adducts **(3a)** was formed at the final step by the hydride insertion of the second acetylene molecule into the cyclohexadienyl **hy**dride Ru(IV) intermediate. **This** may be the first example of the insertion of a Ru(IV)-H bond to our knowledge. Subsequent reductive coupling between the vinyl group and either hexadienyl ends furnished the final 1:2 adducts.¹⁶

⁽¹⁶⁾ Review of insertion reactions: Otauka, **9.; Nhura, A.** *Adu. Organomet. Chem.* **1986, SOS, 169.**

In the case of the 1,3-pentadiene analogue (3b), whereas two deuterium atoms were similarly introduced in the vinyl unit, the remaining two deuterium atoms were selectively introduced only at the 1,2,4,5-positions of the six-membered ring $(49 \pm 9\% \text{ D})$. This deuterium scrambling pattern (eq 6) in **3b** was explained by reductive coupling between the vinyl and the cyclohexadienyl ligand taking place in equal probability only in both terminals. In the case of **3b,** however, prototropic isomerization was inhibited because of severe steric interaction of the methyl group with the Cp^{*} ligand (Scheme III).

On the other hand, the reaction of coordinated isoprene with acetylene in the Cp system and coordinated butadiene with dimethylacetylene in 1c yielded selectively the toluene **20** and the o-xylene **2c** complexes, respectively. Thus cyclotrimerization of three acetylene molecules to the benzene complex **2a** did not occur in these cases. It is reasonable to conclude that $CpRu(\eta^6\text{-}arene)^+$ complexes $(2d, 2e)$ and $Cp^*Ru(\eta^6 - o - xylene)^+$ $(2c)$ were produced by **[4** + **21** cycloaddition of the coordinated diene and the alkynes followed by elimination of a hydrogen molecule.

Reactions of the Cp*Ru derivatives of the methylsubstituted dienes, **lb** and **IC,** gave a mixture of the benzene **2a** and the toluene **2b** complexes. It is necessary to consider alternative pathways to explain in particular the formation of **2a.** There are two plausible candidates; (1) simple cyclotrimerization of acetylenes and (2) elimination of methane from a methylcyclohexadienyl intermediate. The latter type of **C-C** bond activation has already been reported by Chaudret and co-workers in the case of a methylcyclohexadiene complex of "Cp $*Ru^{+7}$.¹⁵

In order to discriminate between these two mechanisms and the above mentioned $[4 + 2]$ pathway, experiments using $Cp^*RuCl(\eta^4$ -diene) and deuterated acetylene (99.8%) D) were undertaken. The results are summarized in Table II. In the reaction of $[Cp^*Ru(\eta^4\text{-}butadiene-d_0)]^+$ with C_2D_2 (entry 1), the relative intensity of the $C_6D_{6-n}H_n$ ligand was estimated to be $n = 1.47$ based on the Cp^* methyl groups. The above value suggests that **2a** should be formed by way of either $[4 + 2]$ cycloaddition (37%) of C_4H_6 and C_2D_2 or cyclotrimerization (63%) of three C_2D_2 molecules,

*⁰*Relative ratios **were** determined by **1H-NMR** spectra: the relative intensity of each aromatic signal to the methyl proton signals of the Cp* ligands.

if one postulates the arene complex was composed of only $[Cp*Ru(C_6H_4D_2)]^+$ and $[Cp*Ru(C_6D_6)]^+$.

Trimerization of acetylene **also** took place in the case of the coordinated 1,3-pentadiene to give a benzene- d_6 complex. In this case, however, the benzene- d_2 complex was **also** formed by the methane elimination, with a benzene- d_6 :benzene- d_2 ratio of 5:1. Surprisingly, no methane elimination was observed in the isoprene complex to give only benzene- d_6 (acetylene trimerization) and toluene- d_2 ($[4 + 2]$ cycloaddition) complexes.

These results indicate that the selectivity of methaneforming C-C activation is determined by the position of the methyl group in the $[4 + 2]$ cycloaddition products. In the case of $1,3$ -pentadiene complex 1b, C-C bond activation occurred with elimination of methane only from a minor **[4** + 21 cycloadduct with the methyl group oriented toward the metal center, **as** shown in the bottom of the Scheme 111. Alternatively, the methyl group of l-methyl-1,4-cyclohexadiene intermediates formed in the case of isoprene was not located at the position to be activated, **as** shown in Scheme IV. The elimination of a hydrogen molecule from the directly produced 1- or 2-methylcyclohexadienyl hydride intermediates takes place much faster than the prototropic isomerization by reversible C-H bond activation. Consequently, the hydride insertion of the acetylene becomes impossible.

Experimental Section

General Remarks. All reactions with organometallic compounds were carried out in an argon atmosphere. Ruthenium trichloride hydrate was purchased from **NE** Chemcat Corp. Dichloromethane was distilled from P_2O_5 and stored under an argon atmosphere. Other organic reagents were obtained commercially and wed without further purification. The following spectrometers were used: NMR JEOL GX-2700 (270 MHz for ¹H and 67.8 MHz for ¹³C, FT), Varian VXR-500S (500 MHz for 1H); **lR** Japan Spectroscopic Co. A-3. Elemental analyses were carried out by the Microanalysis Center of Kyoto University. Deuterated acetylene, C_2D_2 , was prepared by the hydration of $CaC₂$ with an excess of D₂O. Preparation of Cp*RuCl(η ⁴-diene) complexes were made by modification of methods reported by us^{13} and others. 17

Preparation of $(\eta^5$ -Pentamethylcyclopentadienyl) $(\eta^4$ -di**ene)chlororuthenium(II). Into** a 30-mL round-bottomed flask was placed 21.3 mg of zinc powder (0.33 mmol) and $[Cp*RuCl₂]₂¹⁸$ (100 mg, 0.33 mmol). After the flask was cooled to ice temperature, methanol (10 mL) and diene (10 mmol) were added, and the reaction mixture was stirred for 20 **min** at this temperature. The reaction solution was filtered through Celite under dinitrogen and concentrated under reduced pressure. Chromatographic purification of the residue (SiO_2/CH_2Cl_2) gave the title complex **as** pale yellow crystals.

 $1a$ (diene = butadiene): ¹H-NMR (270 MHz, CDCl₃, TMS) δ 1.51 (2H, dd, $J = 1.71$, 10.25 Hz), 1.65 (15H, s), 3.28 (2H, dd, $J = 8.55$), 4.49 (2H, m).

1b (diene = isoprene): 1 H-NMR (270 MHz, CDCl₃, TMS) δ 1.38 (lH, dd, *J=* 1.95,10.26 *Hz),* 1.51 (lH, **e),** 1.65 (15H, **e),** 2.00 $(3H, s), 3.24$ (1H, dd, $J = 7.56$), 3.34 (1H, s), 4.43 (1H, dd, $J =$ 7.56, 10.26). Anal. Calcd for C₁₅H₂₃ClRu: C, 53.01; H, 6.82. Found: C, 53.07, H, 6.93.

 $1c$ (diene = 1,3-pentadiene): $1H-NMR$ (270 MHz, CDCl₃, TMS) δ 1.40 (1H, dd, $J = 1.96$, 10.25 Hz), 1.62 (15H, s), 1.65 (3H, d, $J = 0.97$), 2.22 (1H, dt, $J = 0.97$, 10.26), 3.04 (1H, dd, $J = 1.96$, 6.84), 4.43 (1H, m), 4.57 (1H, dd, $J = 5.37, 10.26$). Anal. Calcd for $C_{15}H_{23}CIRu$: C, 53.01; H, 6.82. Found: C, 53.07; H, 6.83.

Reaction of $(\eta^5$ -Pentamethylcyclopentadienyl)(η^4 -1,3**butadiene)chlororuthenium(II)** and Acetylene. **Into** a 100 mL round-bottomed flask was placed 100 mg of Cp*RuCl- (butadiene) (la; 0.307 mmol) and dichloromethane (44.8 mL). The flask was cooled to -70 °C in a dry-ice acetone bath, and 1.86 mL of an acetone solution $(0.2 N)$ of silver triflate $(0.37 mmol)$ was added. An argon atmosphere in the flask was changed to atmospheric pressure of acetylene. After **this** temperature was kept for 5 h, the temperature of the bath was raised to room temperature over period of 3 h. The reaction mixture was fiitered through a Celite column under a dinitrogen stream, and then the filtrate was concentrated under reduced pressure. Recrystallization $(CH₂Cl₂/Et₂O)$ gave the mixture of two complexes **(3a and 28).** 'H-NMR analysis indicated that the yields of **3a** and **2a** were 84.4 and 9.7%, respectively.

CDCl₃, TMS) δ 0.69 (1H, dd, $J = 3.91$, 14.16 Hz, C6-H inside), 0.82 (lH, dd, *J=* 5.86,14.16, C6-H outside), 1.86 (15H, **s,** Cp*), $= 7.81$, cis vinyl), 3.35 (1H, d, $J = 12.7$, trans vinyl), 3.41 (1H, m, C4-H), 3.54 (1H, m, C5-H), 3.62 (1H, ddd, J = 1.95, 5.86, $[Cp*Ru\{m^2, m^4-C_6H_7(CH=CH_2)\}]OTT(3a):$ ¹H-NMR (500 MHz, 3.03 (1H, ddd, $J = 2.93, 7.81, 12.7, -CH = CH₂$), 3.16 (1H, d, J 7.33, C1-H), 5.07 (1H, ddd, $J = 1.46, 4.89, 6.84, C3$ -H), 5.12

⁽¹⁷⁾ BFh, **H. W.; Huud, Ham-U.;** Nietliapach, **D.; Salzer, A.** *Orga- nometallrcs 1992,11,* **2087.**

⁽¹⁸⁾ Oehima, N.; *Suzuki,* **H.; Mor-oh, Y.** *Chem. Lett.* **1984, 1161. Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E.** *Organometallics* **1984,3,274.**

(1H, dd, $J = 4.89, 7.33, C2-H$); ¹³C NMR (67.8 MHz, CDCl₃) δ **9.86(q,J=129.1Hz),13.9(t,J=133.0),27.6(d,J=150.6),42.3** $(d, J = 170.2), 47.0$ $(t, J = 164.3), 47.5$ $(d, J = 170.2), 70.1$ (d, J) $= 164.3$), 81.5(d, $J = 172.2$), 85.5(d, 174.1), 96.6(s); IR 3050 cm⁻¹ (w), 2900 (w), 1460 (m), 1380 (m), 1260 **(a),** 1220 (m), 1140 **(a),** 1020 **(s),** 730 (w), 635 **(e),** 570 (w), 515 (w). Anal. Calcd for $C_{19}H_{25}O_3SF_3Ru$: C, 46.43, H, 5.13. Found: C, 46.51; H, 5.01.

 $[Cp*Ru(\eta^6\text{-benzene})]$ OTf (2a): ¹H-NMR (270 MHz, CDCl₃, δ 10.8 (q, $J = 129.1$ Hz), 87.2 (d, $J = 176.0$), 97.0 (s). Anal. Calcd for C₁₇H₂₁O₃SF₃Ru: C, 44.05; H, 4.57. Found: C, 44.12; H, 4.46. TMS) δ 2.03 (15H, s), 5.86 (6H, s); ¹³C-NMR (67.8 MHz, CDCl₃):

Reaction of $(\eta^5$ -Pentamethylcyclopentadienyl) $(\eta^4$ -1,3**pentadiene)chlororuthenium(II)** and Acetylene. The procedure for the reaction was similar to that described above. The reaction was performed from Cp*RuC1(1,3-pentadiene) (la; 17.4 mg, 0.0513 mmol), silver triflate (1.2 equiv), and acetylene (1 atm) in dichloromethane (7.5 mL) $(3 \text{ h}, -20 \text{ °C})$ to room temperature). 1H-NMR analysis of the oily product indicated that $3a$, $2a$, and $2b$ were formed in 70.7, 11.4, and 10.2% yields, respectively.

MHz, CDCl₃, TMS) δ 0.83 (3H, d, $J = 7.32$ Hz, C6-Me), 1.11-1.30 (lH, m, C6-H), 1.84 (15H, **a,** Cp*), 3.02 (lH, ddd, J ⁼2.93, 8.30, 12.7, $-CH=CH_2$), 3.14 (1H, d, $J=$ 8.30, cis vinyl), 3.41 (1H, $(1H, m, C5-H), 3.94 (1H, d, J = 12.7, trans vinyl), 5.01 (1H, dd,$ NMR (67.8 MHz, CDCl₃) δ 9.60 (q, $J = 129.1$ Hz), 17.2 (q, $J =$ 125.2), 22.7 (d, $J = 129.1$), 34.5 (d, $J = 146.7$), 43.2 (d, $J = 168.3$), 45.5 (t, $J = 162.4$), 47.3 (d, $J = 172.2$), 79.7 (d, $J = 166.3$), 80.4 (d, 172.2), 87.6 (d, $J = 172.2$), 96.5 (s). $[Ch^*Ru\n 1n^2, n^4-CAH_0(CH_3)(CH=CH_2)$ }] OTf (3b): ¹H-NMR (270 dd, $J = 5.86, 6.35, C1-H$, 3.51 (1H, d, $J = 6.83, C4-H$), 3.62 $J = 5.62, 6.83, C3-H$), 5.23 (1H, dd, $J = 5.62, 5.86, C2-H$); ¹³C-

 $[Cp*Ru(r^6\text{-}toluene)]⁰Tf (2b):$ ¹H-NMR (270 MHz, CDCl₃, TMS) **6** 1.98 (15H, **a),** 2.20 (3H, **s),** 5.70-5.77 (2H, m), 5.77-5.96 (m).

Reaction of $(\eta^{\sharp}$ -Pentamethylcyclopentadienyl) $(\eta^{\sharp}$ -iso**prene)chlororuthenium(II)** and Acetylene. The procedure for the reaction was similar to that described above. The reaction was performed using Cp*RuCl(isoprene) (IC; 17.4 mg, 0.0513 mmol), silver triflate (1.2 equiv), and acetylene (1 atm) in dichloromethane (7.5 mL) (3 h, -20 $^{\circ}$ C to room temperature). 'H-NMR analysis indicated that 2a and 2b were formed 25.1 (0.0129 mmol) and 19.5% (0.0100 mmol) yields, respectively.

Reaction of $(n^2-Pentamethylcyclopentadienyl)(n^4-1,3$ **butadiene)chlororuthenium(II)** and 2-Butyne. The procedure for the reaction was similar to that described above. The reaction was performed using Cp*RuCl(butadiene) (la; 100 mg, 0.307 mmol), silver triflate, and acetylene in dichloromethane (45 mL) $(3 h, -20 °C)$ to room temperature). The removal of solvent gave the pale yellow complex (2c; 143 mg, 94.2%).

 $[Cp*Ru(\eta^6-\circ-xylene)]OTF(2c):$ 'H-NMR (270 MHz, CDCl₃, TMS) **6** 1.92 (15H, **s),** 2.12 (6H, **e),** 5.70-5.78 (2H, m), 5.78-5.85 $(2H, m);$ ¹³C-NMR (67.8 MHz, CDCl₃) δ 10.2, 16.6, 87.2, 89.1, 95.2, 99.2. Anal. Calcd for C₁₉H₂₅O₃SF₃Ru: C, 46.43; H, 5.13. Found: C, 46.02; H, 5.09. MP: 128-130 °C dec.

Reactions of $(\eta^2$ -Pentamethylcyclopentadienyl) $(\eta^4$ -diene)chlororuthenium(I1) and Deuterated Acetylene. The procedure for the reaction of $Cp*RuCl(\eta^4$ -butadiene) and deuterated acetylene was similar to that described above, respectively.

(1) The reaction was performed using $Cp*RuCl(\eta^4\text{-}butadiene)$ (la; 16.2 mg, 0.0550 mmol), silver triflate, and C_2D_2 in dichloromethane (7 mL) $(3 \text{ h}, -70 \text{ °C})$ to room temperature). The removal of solvent gave the pale yellow complex (24.3 mg). 1H-NMR (500 MHz, CDCl₃, TMS): δ 0.69 (1H, m), 0.82 (0.64H, m), 1.86 (15H, **a),** 3.35 (lH, **a),** 3.41 (0.64H, m), 3.54 (0.66H, m), 3.62 $(0.71H, m)$, 5.06-5.13 (1.48H, m) in 3a; δ 2.03 (15H, s), 5.87 (1.47H, **s**) in 2a. ²D-NMR (41.3 MHz, CDCl₃): broad peaks appeared at **0.82,3.03,3.16,3.41,3.54,3.62,5.07,and5.12ppmcorresponding**

to ¹H-NMR in 3a and at the aromatic region in 2a. ¹³C(¹H)-NMR (67.8 MHz, CDCl₃): spectra analogous to those for 3a and 2a were observed except for a change of the 47.0 ppm signal (t, $J_{\text{C-D}}$ = 23.4 Hz), and signals at 42.3 ppm and for the benzene ring were buried **into** the base line.

(2) The reaction was performed using $\text{Co*RuCl}(n^4-1.3\text{-pen-})$ tadiene) (1b; 20.7 mg, 0.0588 mmol), silver triflate and C_2D_2 in dichloromethane (7 mL) (3 h, -20 "C to room temperature). The removal of solvent gave the pale yellow complex (32.6 mg). 'H-1.11-1.30 (lH, m), 1.84 (15H, **s),** 3.41 (0.46H, m), 3.51 (0.46H, m), 3.62 (0.42H, m), 3.94 (lH, **s),** 5.01 (lH, m), 5.23 (0.6H, m) in 3b; **6** 2.03 (15H, **s),** 5.87 (0.60H, **s)** in 2a; 6 1.98 (15H, **a),** 2.20 (3H, **e),** 5.75-5.85 (3H, m) in 2b. 2D-NMR (41.3 MHz, CDCh): broad peaks appeared at 3.02, 3.14, 3.41, 3.51. 3.62, and 6.23 ppm corresponding to 'H-NMR in 3b and at the aromatic region in 2a and 2b. ¹³C $\{$ ¹H $\}$ -NMR (67.8 MHz, CDCl₃): spectra similar to those of 3a, 2a, and 2b were observed except for the 45.5 ppm signal (t, $J_{\text{C-D}}$ = 23.5 Hz), and signals at 43.2 and for the aromatic ring were buried into the base line. NMR (270 MHz, CDCl₃, TMS): δ 0.83 (3H, d, $J = 7.32$ Hz),

(3) The reaction was performed using $Cp^*RuCl(\eta^4\text{-isoprene})$ (1c; 16 mg, 0.0471 mmol), silver triflate, and C_2D_2 in dichloromethane (7 mL) $(3 \text{ h}, -20 \degree \text{C}$ room temperature). The removal of solvent gave the pale yellow complex (19.2 mg). 'H-NMR (270 MHz, CDCh, TMS): 6 2.03 (15H, *8)* in 2a; **6** 1.98 (15H, **a),** 2.20 (3H, **s),** 5.75-5.85 (3H, m) in 2b. 2D-NMR (41.3 MHz, CDCl₃): broad peaks at the aromatic region in 2a and 2b. ¹³C- ${^1}H$ -NMR (67.8 MHz, CDCl₃): spectra similar to those of 2a and 2b were observed except for the disappearance of the aromatic ring signals.

Reaction of $(\eta^5$ -Cyclopentadienyl) $(\eta^4$ -1,3-butadiene) bromoruthenium(I1) and Acetylene. **Into** a 30-mL round-bottom flask was placed the (diene)bromoruthenium complex (Id; 15 mg, 0.050 mmol) and acetone $(10$ mL). The flask was put in an acetone dry-ice bath kept at -30 "C. Acetylene gas (6.0 **mL** at 20 °C, 0.25 mmol) was added with stirring, followed by an acetone solution of silver triflate $(0.1 \text{ N}, 0.75 \text{ mL}, 0.075 \text{ mmol})$. The acetone-dry-ice bath was gently warmed to room temperature for 3 h, and the reaction mixture was stirred for 2 h at room temperature. The reaction mixture was filtered through a Celite column. The filtrate was evaporated under reduced pressure. Recrystallization of the residue **(dichloromethane/diethyl** ether) gave the complex (2d; 18.8 mg, 95 *5%* **as** pale ivory-white cryatale.

 $[ChRu(\eta^6\text{-}benzene)]^{OTf} (2d): 'H-NMR (270 MHz, acetone$ *d*₆) δ 5.55 (5H, s), 6.36 (6H, s); ¹³C-NMR (67.8 MHz, acetone-d₆) δ 81.7, 87.6. Anal. Calcd for C₁₂H₁₁O₃SF₃Ru: C, 36.64; H, 2.82. Found: C, 36.42; H, 2.66. Mp: 205-207 °C dec.

Reaction of $(\eta^5$ -Cyclopentadienyl) $(\eta^4$ -isoprene)bromoruthenium(I1) and Acetylene. The procedure for the reaction was similar to that described above. The reaction was performed from CpRuCl(is0prene) (le; 15 mg, 0.060 mmol), silver triflate, and acetylene (5 equiv) in dichloromethane (10 mL) (7.5 h, **-40** "C to room temperature). Removal of solvent gave the complex $(2e: 53\%)$.

 $[CpRu(r^6\text{-}benzene)]$ OTf (2e): ¹H-NMR (270 MHz, acetonede) **6** 2.37 (3H, **s),** 5.45 (5H, **s),** 6.17-6.33 (5H,m); '3C-NMR (67.8 MHz, acetone-&) **6** 21.1, 81.9, 88.2, 86.9, 88.7, 104.0.

Acknowledgment. The authors are indebted to Dr. A. Yanagisawa and Prof. **H. Yamamoto** of Nagoya University for measurements of the **500-MHz 'H-NMR** spectra. K.I. is grateful to the Ministry of Education, Science, and Culture, Japanese Government, for a Grantin-Aid and to Mitaubishi Chemical Co. for financial $support.$

OM920795L